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SU LiMARY 

In this report the behaviour of a human operator in a specific control 

task is evaluated. The control task is an inventory control: the human 

operator has to determine the inventory for some product t based on 

information from the past. One part /of ihis information is the demand t 

that is generated as first order filtered white noise; the second part 

is the profit rate: the profit in each periode 

An attempt has been made to fit ths behaviour of the human operator t as 

a cognitive syste:n, into a zero~ order model, and this model is tested - --........------;, 
on its acceptability. 

For this purpose a computer program has been written that is able to 

run experiments with experimental subjects. 

This program evaluates ' the quality of the model by means of the runs 

test t and the determination of the autocorel?tion function of ths 

residual. The medel parameters are estimated with a least-squares 

estimation procedure~ 
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PREFACE 

Many tasks imposed on a human operator are control tasks; in general 

these control tasks, and apecificelly cognitive tasks, can be sapara­

ted into a few blocks (see also v.Bussel(1980)): 

1. perceptual receiving of the value of some va~iebles, 

2. prediction of the future behaviour of one or more . O-Jtp;ü v3.rlables 

that have to be controlled, 

3. making a decision on adjusting the system to control the output 

variable(s). 

Research on the behaviour of a hUIDan being in such a situation can be 

of use to incorporate the human operator into the description of a lar­

ger system; ' another result of these studies can be a quantification 'of 

the effects of learning, physica~ state etc. 

To test the beh,aviour of a human operator, a simple control task has 

been arranged by the group "Funktie leer" of the Department of Psycho­

logy of the Tilburg University. 

Based on the results of a.o. van den Hoven (1978) and Koenr~ads (1978) 

with experimental data, it seemed interesting to try to model the 

(cognitive) behaviour of the human operator into a model, tnat assumes 

the human operator to be a pure predictor. 

The purpose of this project was to create a zero order model of the hu­

man operator in the specific inventory control taak, and to evaluate 

. its results o 

Chapter 1 gives a description of the control task and explains the model 

of the human operator. In chapter 2 two tests will be introduced for 

evaluating the quality of the model. In chapter 3 the computer program is 

described that controls the PDP 11/60 computer in running the experiments 

and evaluating the results. Chapter 4 gives a description of the experi­

ments and presents the results. 

, 
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' CHAPTER 1 DESCRIPTION OF THE INVENTORY COW1'ROL SYSTEM 

The inventory control task for a shopowner can be defined as the task 

te choose an inventory for a product every periodin sueh a way that 

his profit will be maximal. Because of the fact that the shopowner 

does not know the exact demand of his clients for the following period, 

he has to make a prediction of this demand and base the inventory for 

the next peri0d on this prediction. 

Naturally his choice of an inventory is not only based on_.a prediotion 

01· the demand, but also on otner variables as storage costs, casts of 

less of goodwill, decay of his produets during storage etc. 

By way of eounting his profit at the end of a period, the shopowner · gets 

Bome .kind of feedback on the decisions he made at the beginning of the 

periode 

1.1 Thé processes in the inventory control syst.em. 

- First there is the demand process. (cf. figure 1) 

Weaasume this process to be first order filtered white noise; 

The demand in period i: 

where 0( = autoregressive parameter, -1~O<~1 

'5 = gaussian white naise 

va e constant. 

- The sale process: 

Th~ sale in period i: a(i) = mine x(i),v(i) ) 

.wIlere xCi) = the inventory at the beginning of period i. 

- The invèntory at the beginning of ,~eriod i _ d~F~l1.ds on .. !~e _produc ts 

re~aining from the previous period, on the decay, and on the 

purèhase: 
xCi) = (1-A) y(i~1) + b(i-1) 

where Á = decay parameter, a,Á ~ 1 

y(i) = inventory at the end of period i 

bei) = pur:chase order at the end of period i 

a nd y(i) '" xCi) - a(i) 

(1) 

(2) 

(3) 
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-- The profit rate of period i will be calculated as follows: 

w(i) = P1 a(i) - P2 b(i-1) - P3 y(i) - P4 ( vCi) - a(i) ) (5) 

where P1 = price of sale, 

P2 = price of purchase, 

P3 = storage costs, 

P4 = price of "108s of goodwill". 

A block diagram of this system is given in fig -1-. 

Gaussian white 
1---''------"* noise ,r=O,~=1 

Demand process: 

v(i) = vO+~(v(i-1) 

-v .. (i-1) 

Sale proes Inventory process: 

x(i)~ÁJ) . 

Ç(i-1 )-a(i-1) )+b( i-l, 
-.--~- . . - ./ 

a ( i) = min f--'o"r'--""W 

(x(i),v(i) 

b(i) 

fig - 1 -

v(i) 

Controller 
b(i) 

Blo~k-diagram of the inventory control system. "\ 

previou8
1
profit rates 

Every.-pericd thé shopowner has to make a choice with respect te the 

size. of the purchase orderfor the 'next periode In this case this is 

the only choîce he has to make. 

Within the system, as drawn in fig -1-, there are a few parameters that 

.ban be chosen from outside the system~ 
(~~ 

~ ~ 
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'T-hese are: 

- the parameters of the noise generator: ï' CS' 

- the parameters of the demand process: 0<., vo 
- ' the parameters of the inventory process: Á 

- and the parameters that determine the profit rata: P1' P2' P3' P4. 

As will become clear in the sequel, the only parameter that is important 

~ for studying the system is 0<. The other parameters only have to be cho­

sen in a way that makes the inventory p~oblem arealistic one. 

Basing our choice on this criterion and not going further into speciflc 
a..r.:. ""'- ,. 
arguments the values,we have chosen the next values: 

= 

= 

= 

= 

= 
= 

1 • 

5. 
0.1 

1 • 

0.5 

0.05 

0.1 

~ oc is the parameter that determines the character of the demand, and is 
-

lherefore the most important parameter. 

1.2 The optimalcontroller. 

Knowing the way in whiçh the demand is generated, an optimal controller 

can be constructed that optimizes the,expected profit rate. 

Byusing dynam1c optimization techniques one can prove ( Braakman, 1980) 

that, given the inventory xCi) at the beginning of a period i, and the 

demand vei) during that period, an optimal choice for bei) can be found 

that ontimizes -~w(j). 
• _ ,j& L 

This optimalb(i) can be written as: 

(6) 

The optimal choice for b'(i) can be transformed into an optimal choice 
-
for xCi) ~y using eq. (3)i 

(7 ) 



whel'e ba can be determined by 

(8) 

and ::5 (i) is t he noise sample in period i. 

We can see that b~(i) is made up of three parts: 

( 1 -).,,) y(i), 

a one step ahead predictor of the demand of 

the next period, 

the inventory at the beginning of the next 

period, 

an extra purchase that is dependent on the 

density function of the noise and the prices 

on which the profit rate ,is based. It is a 

result of relating the costs for possible 

10 ss of goodwill to the costs for possible 

extra storage. 

Taking the p- and À- parameters as mentioned before, ba will be given 

by P(~Ci)~bO)=0.857. 

If -S (i) is sample&. whi te noise wi th zero mean and unit variance, as in 

our case, ba will equal 1.06. 

10'3 The human operator. 

As mentioned before, the human operator has to make a decision with res­

pect to the siza of the purchase bei) for the next period, based on the 

inventory x, thesale . a, and the dernand v of previous perj.ods. 

Because of the fact that there is a unique relation between x, a and v: 

a.(i) =min( v(i),x(i) ), and that a choice for the purchase bU) come s 
.,~ 

. to the same thin~ as a choice for th~. new inventory x( i+1) when the old 
/~ 

inventory is known, we canwrite thEi process .of the human operator as 

follows: 

Human x 
> 

x(i) Operator 

fig - 2 -

Human operator process. 
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', So what first seemed to 'Oe a IvlISO proeess we now ean wri te as a simple 

SISO system, eonsidering the inventory xCi) as a state-condition. 

This interpretation leads to the following description of the process 

of the human operator: 

Human 

Operator 

criterion 
fig - :3 -

The human operator will'~~3.QE.1~...3~.!:~_<?_n, try to choose the in­

ventory x(i+1) ih sueh a -way that his profit rate will become optimale 

Hp~eve r' the mat lîema Fical Const rü:ëtion of- the - profi t rat~s not known 

to him, and if..se- would be @luch) too complica ted to base the right de-
\ 

cisions upon. "s.(l ~< ,-f 

- The Jodel of the human operator , 

Ta construct a model for this human operator-task, we have to visualise 

the way in which the human operator will make his decision. 

He has got the following information: 

- the demand v of period i and of previous periods, 

- the value of the profit rate of period i and of previous periods. 

Because of the construction of the profit rate, this function's only 

tl:isk is to give the human operator a view on the optimal strategy: ;...~ 
taking an "over-inventöry" '1;0 be able to serve all eustomers, or taking 

an "under-inventory" to be su re that all products ean be solde 

The main point in -the choiee of ths human operator will be ,his predic­

tion of tha .demand in thenext periode This predieti.on ,.)together wi th 

the effect of the profit rate, as mentioned above, will determine the 

J-nventory of the _new periode 

The value of the profit rate in eaeh period is partly dependent on 
~".... ,~, ........ -

the demand, on which the human operator has no influence. In thi-s"" way, 
~-

he gets hardly any feedback on the optimaiity of his decision, and 
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therefore the control task canrather be considered as a prediction 

task. 

The model of the human operator is now chosen to be as follows: 

x(i+1) = E ( v(i+1) (9) 

with E(v(i+1)) the prediction of the demand for tne next period, and 

t; an extra inventory, based on the experienee of the human operator 

in previous periods. 

Theoretieally the demand-function is given as: 

v(i+1) = vo + 0( v(i) - Vo ) + '$(i-1) 

Knowing the demand in period i, tne rignt expeetation of the demand in 

period i+1 is 

E( vU+1-) = 

E( v(i+1) ) = 

Vo + 0( ( E ( v ( i ) ) - v ) + 
l 0 

B( )0) ) 

(10) 

~he results of equation (9) and (10) can be combined into a theoretical 

model of the human operator: 

x(i+1) + ( 11) 

Because the human operator will not make a distinetion between vo' 0(, 

and b~, the model willpeeome: 

x(i+1) = ~ vei) + B 

With A 0(, 
IV 

B = ( 1- 0<..) . v 0 + bO' 

- Determination of A and B. 

whieh is a moving average 

(MA) model. 

( 12) 

Af ter an experiment, in whieh the hu man operator has to ehoose the in­

ventory for N sueeessive periods, there are available , i.a. two arrays: 

xCi) and v(i). Taking these two arrays as a starting point we can con-
,., -

struct least squares estimators A and B for the A- and'B-parameter. 

We want to determine A andB in sueh a way that 
H-l 

L. ( x(i+1) - Ä v(i) - Ë )2 
i:. .. o -

beeomes minimal. 
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Therefor this expression has to ba differentiated with respect to 

Ä and B: N-i 

t 
-2 ~ ( x( i+1) - -

1. .. 0 

~1 
- 2 L- ( x(i+1) -

~::o 

A vei) - B 

A vei) - B ) 

.L Comb'ining these two equations yields 

whieh results in: 

.... 
A = 

N -1 ij.::,,1 
- Lx(i+1),Lv(i) 

i=O i=O 

l N-1 \ 
IN Lx(i+1) v(i) ! 
" -i=O 

t li=.1 2 .\ 
I. N Lv (i» ) ­
I, i=O 

, N-1 

vei) o 

= o 

: \ 
~-1 N-1 ) 

( .2: x(i+1) .[ v( i) 
<!.=O 1=0 · 

jJ:.1 ~ 2.. v( i) )l2 
-i=O 

". N-1 

... 
- ' LX(i+1) 

i=O 
v(i \~ V(i)Î 

i ~=O 
B = 

i 1i:..1 2 ' 
N Lv (i) 

, i=O 
(~V(i) \ 2 
, i=O 

( 13) 

The estimation of A and B according to the method àescribed, does not 

introduce a:'1y bias in the resul ts, because of the faet that the human 

operator model is a ~;A-model and the noise is assumed to be addi tive 

and independent of thedemand (see also seetion 2.1). 

1.4 Cornposition of the different systems. 

1',.-·\ 
Now we ean compose the different systems we have eonstructed in one 

scheme, resulting in an overview of the systems that are of interest: 



w 
n 
hite 
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Demand 

Process 
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i 
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Human 

Operator 

Model of 

the H.O. 

Optimal 
r 

Controller 

I actual demand 

-

--!4 

III 
~ 

IV 
~ 

v\.i+1 ) 

actual results of 
the human operator 

x( i+1 ) 

estimate of the hu­
man operator 
~(i+1) = A vei) + B 

optimal strategy 

x~(i+1)=v +~(v(i)-v )+b 
t- . 0 0 0 

-fig 4-

Comparison of the available systems. 

For the experiments as described in chapter 3 and 4, the next four resi­

duals are evaluated: 

II- III (H-M) H Human Operator 

11 - I (H-D) D = Actual Dernand 

II - IV (H-C) C Optimal strategy 

IV - I (C-D) M = Model of the H.O. 

The comparison of the four system-outputs is useful because all four sys­

tems are based on (a prediction of) the demand in the next periode The op­

timal strategy is in fact a prediction of this demand summed with a con­

stant (see also saction 1 0 2). Therefora, with the , comparison of these four 

system outputs three different predictions of the demand are compared. 

Evidently thecomparison of the actual results of the human operator and 

the results of theother systems is of interest: comparison of 11 and 111 

teils us something about the ~ali ty of the m~9-e~; comparison of 11 and 

IV gi ves an idea 0f the o . .p-~.!E!~li Jy"_~f the l:l..B,~a..!l~~era.~~~ decisions wi th 

respect to the pro fit rate o The residual .of 11 minus 1 shows the :pre_f!.:i~­

~~pabili ty ~Èe hum~~,_<?l!.è_E?:~_~~, while the residual of I minus IV 

gives information on the noise parameters and on b • _- -
o 

? 
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,-CHAPTER 2 THE EVALUATION OF TEE MODEL 

2.1 Introduction. 

white 
TIoise Filter n 

fig - 5 -

n 

Human 
Operator 

Model 

x 

e 

We assume that n is a signalof white noise samples, and that n is an ad­

ditive noise which the human operator edds to the results. Any possi-

, bIe correlated noise is assumed to be an internal process in the human 

operator system. In view of this,the model has an optimal quality if 

there are ne more deterministic factors in the residual e. If there 

should be any deterministic factors in e, they should be incorporated 

in the model, leaving e non-deterministic. 

So the model 1s optimal if e equals white' noise. 

J Tests on the qualit y of- the mode~ there~or~can betem~ tests on the 

whiteness of the residual e o 

In this report two tests are used to examine the whiteness of e: 

1. the runs test, 

2. the determination of the autocorrelationfunction. 

These two methods will be described respectively in the sequjl · of this ,j 
chapter. 

2.2 'Theruns test. 

A ,s tatistical test for determining the whiteness of noise o 

(see also Swed et al (1943) and Wa.ld et al. 
2.2.1 Explanation of the principle. C (i-9'40j) 

The cruc1at point of this test is a test on the hypothesis H that a 

sample-array can be regarded as sampled white noise. 

Por the test on this hypothesis H use will be made of the grouping of 

samples that have the same sign with respect to the median value 
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h' ;,.Y 
I:Y/ " 

of the sample-array. Aceording to this ri he samples wi th values excee-

ding the median will be regarded as + samples, the samples with values 

smaller than the median as - samples. 

An uninterrupted part of the array withsamples of the same sign is cal­

led a run; the total number of runs in the array is related _to the pro­

bability that the sample-array can be regardèd as white noise f and there­

foreto the acceptance/rejection of hypothesis H. 

Let m be the number of samples with a + sign f and n the number of samples 

with e- sign; the total number of different arrangements of the + and 

( m+n). - signs then equals n 

Let u be the number of runs in any one arrangement; 

we th en can state that: 

p ( u ~ u' ) = p ( u= 1 ) + p ( u= 2 ,) + • ~. + p ( u=u I ) 

About hypothesis H we now can eay the following: 

Assume that all possible arrangements are equally probable; the hypo­

thesis H will then be rejected when 

P( u EU' ) ( 15) 

aocepting this as a tendency for thB distribution to be nonrandomly dis­

tributed. ' 

For a given situetion, a certain presults in a significant runlength 

UI, the smallest integer Ui for which the hypothesis hoIds. 

~ is called the level of significance, and can be chosen subjectively. 

Because of the' defini tion of the aign of a sample, one would expect tha t 

in all cases the equation m:: n would hold The formulas to compute 

p( u ~ u. 1 ) would be much simpIer , théfi""1fhan in the general case. , '---.. _ -- d 
The <te ~e.rmination of p( u ~ U I ) is execr.f~d in appendix A of this report. 

In this evaluationthe gen~ral situation mln is aasumed, for reasons 

that wil1 bycome clear in chapter 3. 
' " 4(, ~~""';..4. 

2.2.20 A~plication. 

In this test, the level of significanee ~ wi11 be chosen 0.05; this 

choice leads to a significant . runlength ' of 42. (see Swedand Eisenhart 

(1943)). 

,-
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'Assume a probability density function p(u) of the number of runs in an 

array of fixed length, as drawn in fig -5b-. 

p(u) 

fig - 5b - Probability density function of the number of runs 

in a sample array of whieh all arrangements are 

equally probable. 

~he-~~~ee~_.take~;r' as a s "tart ingp oi nt I that all possJ bIe arrangements 

of an array are equally probable. Therefore p(u) has the shape as drawn , 

in fig -5b-. 

, Given a sample array, the number of runs ean now be eounted. If this 

number is so small that ~u"p(~) is smaller than ,~ (= 0.05), the sta-
u:o 

tement that all arrangements are equally prutable ( and therefore the 

array is smapled white noise) will be rejected. 
-~ , 

tNU-Coneerning the bl:eege of a cne-sided runs test in stead of a double-sided, 

attention is paid to this item in chapter 4. 

2.3 Whiteness-test by means of ths autocorrelationfunction. 

Î 

' 2.3.1 Approximated autoeorrelatiol)1function. 
( 

, I 
The autocorrelatiOl7'ï'unction , 't xx("t") . of a stationary dLscrete signal x 

isdefined as: ensemble 
't xx('t') = xCi) x(i+'t") 

In case of ergodieity, as we will assume in our case, we can write: 

time 
"Yxx('t") .. x(i) x(i+"t') ( 19) 

When x( i) 'is an array of sampled white noise, "r xx (1:") will be a del­

ta-funetion & ("'C). 

For the residuals)we wantto investigate whether or not the computed 

autoeorrelationfunction ean be regarded as a delta-funetion. 
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Because of t he fact that equation (19) is a mean va lue in the time do­

main, and there's only a finite number of samples available in the ar­

ray x, we can only cornpute an approximated autocorrelationfunction, 

defined as: 

= N~k ~X(i) x(i+k) (20) 

From this approximated autocorrelationfunction we are able to determine 

the estimation and the yariance of y, instruments to evaluate the del­

ta-charader of"U' (k). 
f xx 

= 

= 

so 

N-k 
(N-k) '\lr . (k) 

I xx 

2.3.2 The varianee of the approximated autocorreiationfunction. 

E[{f (k) xx - E ( 'i xx ( k ) )}2] 

E[ (yxx(k) - Yxx(k) )2J 

E[ 'tx;(k)] + '\V 2(k) _ 2 '\lr 2(k) 
T xx lxx 

E[ "yx;( k)] - "1'x! (k) 

(21 ) 

. var[ixx(k)] = . (N~k)/~ j~kE[X(i) x{j) x(i+k) X(j+k)] - "+'x;(k) . (22) 

On · the assumption that x is of anormal distribution, we can wrtte 

Laning & Battin, 1956,p.162 ): 

.-

E( x 1 x2 x
3 

x4 ) = E( x1 x 2) E( x
3 

x
4

) + E( x1 x
3

) E( x2 x
4

) + 

+ E( x
1 

x
4

) E( x
2 

x
3
). I 

Wow we can write eq.(22) as: 

[ ... Ik)] 1 N~ ~[ 2(J"_i) 
var "Yxx' . (N_k)2i~ j~ "f'xx 
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=' 1 2: L "v. 2(j_i) +'Ilr (j-i+k)'\V (j-i-k)l ' 
N-k N-! 

t N _ k ) 2 i =1 j = 1 I xx T xx · I xx J 

in which we have taken ~ (i-j+k) = \V (j-i-k). 
1 xx 1 xx 

The new expression for var[fxx~k)J is an even function of (j-i), so 

we can 'Nri te : . 
N ... k N-k 

-"':"-""'2 2 f [['\1/ 2 (j -i) + "'V: (j -i+k f\Jr (j -i-k)~ + 
, i=1 ;)=1 f xx 1 xx T xx 

I N-kJ.1 \ j,>i 

N-kNo! . 
. + 1 L L , 2(j_i) +'1'; (j-i+k)'\lr (j_i_k)l 

(N;"k)2 i=1 j=1 1"xx xx T xx J 
j:i 

We can take j-i=~as a new argument for the correlationfunction: 

Conclusion: 

(23) 

j) 
wlJen "'V xx(k) has thecharacter of adel ta-function, the values of "rxx(k) 

for k#O will be much smaller than I\J/ (0). 
Txx 

On thie assumption, ~~ approximation of the variance is: 

N-k 

2.3.3 Application. 

With equations (21) and (24) w. ean test the delta-character of the 

approximated autocorrelationfunction. For this purpose we will follow 

fhe next procedure: 

(24) 

Given the sample-array xCi) we will constrQct the approximated autocor­

relationfunction, dèvided by 1(xx(O), which leads to'a function with 



Lvalue 1 for k = 0 and value < 1 for k F O. (the normalized autocorre- , 

lationfunction) . 
'" 

Assuming again that ~xx(O) »~x(k)kIO and considering ~/ (0) as a r xx 

constant, we can state: 

and 

«' [fxx ( k ) ] 
sa '.l '\Lr (0) 

r xx 

Ltan;it~ ~t!l~ "'t~.x~) as B-

and var 'txx(Ok.< "Yxx( 0). 

= "r 1 (0) . '"'(xx ( k ) xx 
(25) 

1 "tx~( 0) 

"V 2(0) N-k xx 
= N-k 

1 (26) 

T<-constant is allowed , because of '\l/ . ( 0) '» "'\L.-' ( k) r xx I xx 

In stead of the ~-value we can also work with the reliability interval, 

a more practical bound to test the function. 

For a Gaussian distributed function the 95% reliability interval can be 

computed by 

A ""Y'95% = 1 • 645 . (! 

so A [~xx~:~] 
,, "rxx 95% 

1.645 

~ 
(27) 

We will state that the evaluated autocorrelationfunction is a delta­

for k I Olie within the range function V0fR all its values 

1.645 
+ (28) 

as defined in the equation above. 

In case of a su..mmation of n autocorrelationfunctions, the varianee of 
, 2 ' 2 

this sum «) ) is given by cS" = 1/n. <S • 
n n 

According to this, when we sum the autocorrelatio'!'lfunctions over n ex­

periments, the range as defined in (28) has to be multiplied by 1/Yn. 



In this chapter two methods are described for testing the randorru:ess 

of a sample array. These two methods are impleme!lted in a computer 

program that runs experiments and analyses the results. The .e.nalysis 

with the runs test is done by computing 

over the number of experiwents. 

p( lY~~ , ) and a~Teraging this ; - / 
'-.,./ 

The analysis with the autocorrelation function is done by computing 

this function for every experiment and averaging the results over the 

number of experiments. The result, an averaged 2utocorrelation function, 

is compared with a delta-function, taking into account the varianee of 

t4e results • 

. , 
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'CHAPTER 3: 'I'HE COMPUTER PROGRFJil 

3.1 st~lcture of ~he program. 

In view of the possibility to test the constructed model of the human 

operator in some experiments, a computer programhas been written to 

run these experiments and to make the necessary cornputations on the re­

sults. 

The program, called INV, is written in Fortran IV-Plus and implemented 

on a PDP 11/60 computer. To create the possibili ty of getting the resul ts 

of the experiments in different forms (.on screen, on lineprinter, or on 

plotter) the program is chosen to be of an interactive forma In this way 

one is also able to change any parameters of the system if requir·ed. 

The tasks ' of the program a.re the following: 

1. Communicating with the experimental subject, and running an experi­

ment for N sample periods. 

2. Computing the results af ter the experiment: 

- creating anoptimal strategy for the choice of the inventory XC(i); 

- creating the model of the humanoperator, as explained in 1.3, 

XM(i); 

- evaluating the residuals that are to be investigated: 

1 • human opera.tor - model of the h.o. : XHM(i) 

2. human operator - optimal strategy XHC(i) 

3. human operator actual demand XHD(i) 

4. optimal strategy - actual demand XCD(i) 

- determining the mean squares of the four residuals, SHM,3HC,SHD, 

SCD; 

- evaluating the profit rate for the optimal controller and for the 

model of the human operator, ViCand VlM; 

idetermining_ the_ normalized au tocorrela tionfunction of the four resi­

duals: AUT(i,1-4); 

- determining the standard deviation of this function, AUT(i,S); 

- determining the résul t.s of the runs test: the probabili ty p( u, u' ), 

the number of runs u', the numberof positive and negative samples, 

and the mean . value of the array. 
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' 3. Printing the results on screen and/or on lineprinter. On demand 

plotting th& four autocorrelationfunctions and/or the four system­

arrays X(i), XM(i), XC(i), V(i ) . 

4. storing the results in files if the parameters chosen (sueh as A. , 
N, 0<..) have tne same values as in other experiments. 

5. - .On demand computing the results of all experiments, analysed for 

different values of 0(; o{= 0.0, 0(= 0.6, and C>(= 0.8. 

- Printing the total results on screen and/or on lineprinterj 

On demand platting the four autocorrelationfunctions. 

The program is written in an overlay structure, as drawn in fig -6-. 

I PLOT Lib.1 
[ 

ÜNvOV4 ~ 
INVOV 

fig - 6 - Overlay structure of the program 

In ths second part of thisprojeet the overlay structure had to 

be introduced because of the comprehensive library of plotting routines 

that had to be used. This' us~ caused an overflow in memory allo ca tion. 

The four subroutines INVOV1 - INVOV4 execute the tasks of the program, 

as mentioned at the bQginning of this chapter. 

A more extensive descriptton of these four subroutines and of the routi-
. - , 

nes and functions they~/re using, is included in appendix ' B1 and B2. 

A list of symbols a.nd ,names of variables, used in this report and in 

the program listing, is added in appendix C. 

The compiete ,listing ofthe program is available in ths archive of the 

group leasurement and ~~ntrol. 

3.2 storage of the results. 
r 
The object of this part ' of the research was testing the quality of the 

model. To do so some experiments would be run .lor three different ' 

values of 0( : 0(= 0.0, . eX= 0.6, 0(=0.8. 
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'In case of more than one experiment the results of the experi~ents have 

to be brought together. Therefore it is necessary to store t he resul t s 

of one experiment into one or more files that can be kept on flop py 

disk. 

Ta be able to compute the total results of all experiments, the follo­

wing results of one experiment have to be stored: 

- fi-rst we have the parameters of the model: A, B, and the estima ted 

value of b (the constant that the human operator adds~to his pre-
o ':1'/1'''', 

diction of the iemand of the next period), computable '. these 

values. 

then there are the values of the profit rates: one of the human o­

perator (W), one of his model (WM), and one of the optimal strate-

gy (WC). 

- the mean squares of the four residuals have to be stored, to examine 

the residuals; SEM, SHC, SHD, SCD. 

- the resul ts of the runs test: the value of p( u" u' ) for all re­

siduals; PH- M, PH- C' PH- D, PC_Do 

... ths normalized approximated autocorrelationfunction of the four re­

siduals: AUT(i,1-4); 
,J/~ ...J{ 
lventuálly the. array of standard deviations of these funetions, 

AUT(î,5). 

Because of the recrllired memory-space, the autoeorrelationfunctions of 

the residuals of all experiments ean not be stored separately. Therefore 

we have chosen to create fil~8 in which the functions from different ex­

periments are s.uriuned. Beeause there are tour residuals and one standard 

deviat:i.on-array, we have to store 5 arrays in a file. 

These arrays have to be stored , for 3 different values of « , so we get 

3 storage~files for t~e autocorrelationfunctions; these files are cal­

led N~UTO.DAT, NAUT~~ DAT, NAU t~\ DATo 

For any value Of 0( the . number of experiments I run with that 0<. is recor­

ded in the first record of eaeh file. 

The build-up 01' the files NAUT • DAT is drawn in fig 
[t'h-t) •. ;," t"', 

... -/-. 

All ~ other variables are stored in one file: NVAR.DAT. 

~o separate the results of the experiments referring to different values 

af ~ f these variables are stored as drawn in fig -8-. 
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NAUTO.DAT, NAUT .DAT, NAUT8.DA'!': 

recordnr. 

1 NT 

2 

3 2:'.o\UT( 2) C-D 

N+1 

fig - 7 - Composition of the storage files NAUT.DAT for the 

autocorrelation functions. 

NVAR.DAT 

recordnr. 

NTOT 

0( 

DEV(1) 

DEV(2) 

1 

2 

3 A hO B 100xW 100xWM 100xWC SHM SHC SHD SCD PH- M P P P H-C H-D C-D 

4 

5 

0<.. 

A • 

fig - 8 - Composition of the storage file NVAR.DAT for the 

numerical results of the experiments. 

The value of ~ in recordnr. i belongs te the results in record i+1. 

NTOT is the total number of experiments. 

303 SOffie remarks on the program. 

As mentioned in chapter 1, the optimal controller is eonstructed as 

follows: XC(i) = V o + 0« v(i-1) - V o + bO 

In the program this optimal controller is computed assuming the cor-

- reet values of V o and bO. This means: given the value of vo' used in 

the program, and given the distribution of the noise by which bO is 

known; It should be more correct, to evaluate these two parameters du-. 

- ring the experiment, based on the generated demand-funetion. Then a 
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fair comparison with the human operator is possible. 

However, this adjustment will probably not change very :nuch with res­

pect to the results. On the other hand will this require mueh more 

compl~cated calculations and 'lIill cause an increase of computa"tion 

"time. 

- In cbapter 2 the principles of the runs test are explained.. 'l'WO va­

riables in this test are the number of samples aoove (m) and the num-

ber of samples beneath Ion) the mediane Because the value of the medÜ~.n ? 
in tne array can appear more than once m does not have to equal n. - - . - ~ . 

For this reason the calculations in this test are done for the gene-

ral case. 

The number of periods for which the program can be run is limited 

by the declaration of the required arrays. 

The maximum value of N equals 120. 

- Because of the way of storage of the results in files, these files 

have to be created betore the first storage of results takes place. 

For this purpose a program INIT is written that creates the three 

NAUT-files and the file NVAR, and that,fills these files with zerc's. 

- To make the values of the profit rates more practicalones, we will 

be working with the variabIe INT(100xW) instead of W. The same holds 

for WM and WC. 

? 
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~CHAPTER 4: EXPERIMEN'l'S Mm RESULTS 

4.1 The tDeriments~ 
There have been run 30 experiments with 30 different experirnental 

subjects, who had never participated in . a similar experiment before. 

Not one of them had any knowledge ,.3ei ther of the way of generating 

the demand, nor of any other crucial information. 

The subjects were given a written instruction in which their task was 

described. This instruction is added in appendix D. 

They were asked to enter the inventory for 100 successive periods. 

Af ter eacil period the demand of the customers, 8~d the cumulated pro­

fit rate af ter i;..""}e-d~-eFning period, were displayedon screen. 

The subjects could take as much time as they wanted for the experiment, 

there was no time limit. 

Although they knew the variables, determining the profit rate, they had 

no information on the exact construction of the profit rate: .the prices 

of aale, purchase, storage and loss of goodwill were unkno'/m, just as 

the De component of the demand va' the decay-parameter A , and evident­

ly the autoregressive parameter ~ • 

One experiment is defined as the action of one experimental subject, 

entering the inventories for 100 successive periods. 

Th.e experiments started wi th the generation of the demand in period 0; 

This value functioned as an indication of the size of the ~emand. 

The expectatlon existed that the subjects would predict the demand of the 

next period, when ordering the ~nventory. In doing sa they would pro­

bably add some extra inventory b~ based on the information · of the pro­

fit rate. This extra inventory causes a higher profit rate because 108s 

of goodwill is Cflosen relatively more expensive than storage costs. 

One remarkthat has to be made is that the experimental subject could 

not choose the inventory unlimited. There was one restrietion: he was not 

allowed to choose the inventory for period i smaller than the inventory 

remaining from the p:cevious period~ In other words it was not allowed 

to sell productsback to the wholesale dealer. 

This restriction is i~corporated in the program. 

-4.2 Results of the estimation of themodelparameters. 

The results of the estimated modelparameters are listed in table -1-

on the next page. 
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C( = 0.0 0( = 0.6 0<= 0.8 
N :; 10 

mee.n CS" mean cr' mean <:r 

A 0.56 0.29 0.73 0.21 0.87 0.10 

È 2.62 1.59 1. 61 1.08 0.71 0.63 

bO 0.41 0.34 0.26 0.31 0.06 0.46 

table - 1 - Results of the estima"ted mod el parameters, for each value 
Ofc:$}averaged over 10 experiments. 

The results of the estimation of the A-parameter in the model vary con­

siderably with different values of 0(; the standard deviation of the es­

timations decreases wi th increasing 0( , while in all cases A is over­

estimated with respect to 0(. For 0(= 0.6 and 0(= 0.8 the estimated 

parameters 0.73 and 0.87 are quite good estimators. In bath cases tbe 

equation 0(- cr < A < 0(+ <l bolds. Remarkable is the estimation of A for 

0( = 0.8: an estimation close to the real value, and 'llith a small stan­

dard deviation. 

For 0(. =, 0.0 the estimator A is not as good (0.56); the diff erence 

\A-ocl is larger than~. In this case of complete white noise as demand, 

the human operator apparently wants to see some kind of correlation in 

the demand, although there is none. A is unlikely large, and therefore 

it may be reasonable to consider the test-situation very critically. 

As mentioned in chapter 1, equation (12), B = (1 - A) V o + bo; 
therefore ~ can be derived from A and B. 

bO' the parameter that leads to an optimal strategy, equals 1.06. 

In all three cases the estimated value b~ 'is far below this optimal one. 

Apparently the subjects have hardly or not given notice to tpe fact that 

en optimistic choice for the inventory leads te a higher profit rate than 

l a pessimistic choice. In some way the information that the buman operator 

, should receive via the profit rate does not work out very weIl. 

The next two points may have contributed to this underestimating of be : 

1. the profit rate is presented to the human operator on screen in a cu-
~"-

mulative form. In this way it is a stimulat4en for the subject to ful-

fil the task end to optimize the total profit rate. On the other 

ha.'ld this '?Jay of presenting the profit rate ma kes i t hard for the 

subject to get information on the quality of his choice of the inven­

tory. A profit rate, presented as an account in one period, should be 

amore direct way of giving feedback to the subject. 

? 
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.2. the profit rate, as calculeted in this experiment, depends on the 

demand, which is not controllebIe by ths subject. In other wards: 

the level of the profit rate is dependent on the level of the demand, 
/I;J I t:<-

and therefore it is no direct meesure for the performance of the sub-

ject. It would be more correct ta relate this profit rate to the ma­

ximum profit rate that cou ld have been achieved. In that way the sub­

ject góts direct information on his performance. 

Tt is not certain that the clearly Î?lcreasing b~ 'IIi th decreasing 0<. àlso 

is a consequence of the previous remarks. One could say that the less 

determin:l.stic the demand, the more the subject adds some constant level 

to his expectation. In other worde: the more confidence the sub j ect 

has in the demand vei) as a predictor for v(i+1), the l e ss he adds 

n ext ernal" c omponen t s, sucn as bà. 

The profit rates were also calculated and averaged over any 10 experi­

ments. The results are listed in tabla -2-. 

0( = 0.0 0( = 0.6 0< = 0.8 
N = 10 

mean ' CS' mean 0- mean cr 
w 216 5 222 14 210 33 

I' m~ 223 7 224 15 213 32 

wc 233 r 232 13 225 29 0 

table - 2 - Calculated values of the profit rates; for ea ch value of 
averaged over 10 experiments. 

Because of the fact that the noise generator is started hafore any ex­

periment with a random number, and therefore with an unequal demand 

for the different experiments, ths profit rates of the different expe­

ri~ents can not be comparyd. From these results we ean draw a conclu­

sion that in general the profit rata of the model approaches the one of 

the human operator from the upper side. 

Tö give a picture of result~ of experiments as a funetion of time (or 

period) ~ /...~re ~dded j§ome plots lin appendix E. In these plots there 

are drawn the aystem-arrays: the inventory xCi), the demand vei), the 

model xm(i), and the optimal strategy xc(i); they are plotted hvo and two 

and the plots are just an illustration of the results. 
Ä , 

There has been taken an arbitrary experiment for ~appl~ed value of ~ ~~ 
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'Appendix Eî gives the results for 0<": 0.0, E2 for 0(= 0.6, and E3 for 

0(= 0.8. 

4.3 Test on the guality of ths model. 

As mentioned befare, two tests are applied on the four residuals as de-

fined in fig -4-: 

H-M human operator - model of the h.o. 

H-C human operator - optimal strategy 

H-D human operator - aetual demand 

C-D optimal strateg;y - actual dema..'1d. 

In table -3- the results of the runs test p( u~ u' ) and the mean 

squares of the residuals are listed: 

0<.= 0.0 c:x:= 0.6 0(= 0.8 N - 10 -
mean c::r mean IS mean cr' 

81-111 0.88 0.66 0.24 , 0.17 0.27 0.26 

SHC 1.78 0.74 1.08 0.63 1.56 0.90 

SHD 2.63 0.93 1.41 0.28 1.45 0.58 

scn 2.15 0.28 2.07 0.30 2.12 0.33 

PH-bi 0.13 0.24 0.03 0.07 0.06 0.11 

PH- C 
0.22 0.26 0.00 0.01 0.04 0.07 

PH- D 0.79 0.30 0.37 0.37 0.52 0.36 

PC-D 0.59 0.27 0.50 0.32 0.66 0.25 

tabla - 3 - Mean squares and "the results of the runs test p(uSu') 
of the four residuals; for 8aeh value of« av~raged over 
10 experiments. 

The results for the approximated autoéorrelationfunctions; summed over 

10 experiments are added in appendix F1-F3. The sealing factor of the­

se autocorrelationfunetion equals the mean squares of the residuals, 

that are listed above. In the plots in appendix ' F also the standard de­

viation-array is plotted. 

Some remarks on the results: 

- In the optimal case the autocorrelation function of the residual of 

human operator - model is a delta-function. 

A tendeney towa~ds sueh a funetion can be seen in the drawings 
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t" . I 

in appendix F, 2.1 tllough the values for small k are o.ut ·--of the reliabi-

lity interval. This appears in all three cases. Bowever thera are same 

differences fOT different values of 0( : for 0<. = 0.8 only for k ~ 4 the 

values of 1(k) are beyoud the 95%-reliability interval. For ~= 0.6 

this holds for' k ~ 7. For 0( = 0.0 the model doesn' t seem to fit very weIl, 

according to this picture. 

Moreover one has to ta.ke iuto account that because of the fact that "+' 
is not purely Gaussian distributed, the 95%-reliability interval is lar­

gel' than the assurned fador 1.645 multipliad by <:l. (see eq. 27 pg.16) 

'?" The residual of hu man operator- optimal strategy can teIl us something 

ab0ut the learning effects of the subject. A tendency towards mak:i.ng 

choices in the optimal direction causes a decreasing of "r(k) for in­

creasiNg k. A reJ.atively small decrease of "r(k) can be seen in all pic­

tures. The decrease in case of 0(= 0.8 for k>50 is the clearest one, 

although it is not v~ry. convincing. 

Anyway, evaluation of this residual with wind ow technics is a better 

strategy for getting knowledge about the learning effects. 

- For the runs test there is ehosen alevel of significanee ~ = 0.05. 

If p( u~u' ) is smaller than 0.05, we therefore reject the hypothesis 

that the residual can beregarded as sampled white noise. Aceording to 

table -3- this happens for the residuals H-M and H-C if ~= 0.6 and 

~ = '0.·8. 

These results are in contradiction with the results of the autocorrela­

tion fU:lction. Inthat test the results for 0(= 0.0 were WOrse than 

for 0<.::: 0.6 arid 0( = 0.8. 

One reason for this difference is the fact that the runs test is taken 

to ba a one-sided test. There is assumed that the more runs in an array, 

themore chance that the array is sampled white noise. In principle this 

is not C0rrect: very many runs in an array indicates the existence of 

relatively many . high frequencies in the array. 

The appearance of a few experiments with more than 50 runs in a re5i­

dual array of 100 samples ( and therefore ' p(u ~ u') '). 0.5) can irifluence 

the results of the runs test essentially. Especiaily in case of ~ = 0.0 

tthe demand-array has relatively more high frequencies in its spectrum 

then) this influence is not negligabIe. 

For the . residual B-D thera are even situations where ihe number of runs 
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is higher than the double-sided critical value: pC u~u' »0.95. 

This happens four times when ~ = O.O. 

In case of ol. = 0.6 end 0( = 0.8 introduction of a double . sl.ded runs test 

will have influence on the results for the residuals H-D end C-D. 

- If we consider the remark above, we can conclude that the values of 

AY(k) for small k affect the results of the runs test essentially with 

respect to the comparison of the humen operator and his model. The re­

sults of this test only. lead to the conclusion that the model is not 

correct. 

I 
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COKCLUSIONS 

The purpose of this ~roject was to determine whether a simple zero or­

der model could be a right description of thc bel':aviour of a human o­

perator in a specific control- c.q. prediction-task. Tc attain this 

purpose, a compu.ter program iS , written that is able to test such 8. model, 

and to estimate its parameters in an experimental situat{on. 

30 Experiments have been run in three groups ~f ten, and from the re­
~I!, I 

sults of these experiments we can draw the. kex-t conclusions: 

- The zero order model cari be a satisfying model to deseribe the main 

lines of the behaviour~:f thB human operator o 

- Extension of the model to a first- or maybe a second-order model pro- J 
bably c~n ~mr:;'j;e the description of the behavio1.lr. 

- The profit rate as presented to the human operator in the test does 

not function very weIl as a feedback to the ope:çator. It should not 
." 

be presented in a cl..~mula.ti va form and i t has to be considered whet­

her it should be related to a maximum aehievable profit rate. 

- The human operator can, wi thin fair limi ts, approxima t.e-. the autore­

gressj.ve parameter of the demand function. Only for Ct I 0.0 the es­

timation differs from the real value. This can have been affected by 

the previous remark. 

Ir 
Based on these r'emarks the neJj{t' recommendations ean be stated: 

- Reconsidering the presentation of some profit rata, 

- Changing ths program in sllch a way that it is capable to apply the 

SATER-package to the experiment al data, 

- Applying an order-test to this data. 
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APPENDIX A TEE RUNS TES1', DETEmUNATION OF p( U § U' ). 

For deternüning p( u:!.u' ) we will first evaluate p( u=u' ). 

A distinetion ean 'oe made between two possible situations: 

a) u' is €-ven, 

b) u' is odd. 

In case a) the number of positive runs equals the number of negative 

runs. In case b), on the other hand, these numbers differ. 

Let's eall the number of positive runs 8+, the number of negative runs 

e • e 
+ 

+ e = u' ). 

Let r . be the number of elements with sign + in 
+J 

t ' . th -P .... ' i ne J run O.c 01l S 

kind, and 
th 

r . ths number of elements with sign - in the j run of this 
-J 

kind. 

,a.) u' is even ---'» u' '" 2 k, with kern. 

'e = e k. 
+ 

The first element v
1 

of ths array. together with the numbers • 

r+ 1 , r+ 2 , ••• , r+k , r_1' ••. , r_k completely determine the array. 

k 
The number of sequences that conform to 2:1' . 

j=1 +J 
= m equals (m-1 ) 

k-1 

for: there are m characters of the same kind; these have to be sepa­

rated into k parts. In other wards: there are k-1 slashes tha~ have 

to be distributed over m-1 locations; so there are (~=~) possibili­

ties. 

For the 
k 
Lr. 
J=1 -J 

same 

= n 

reason 

equals 

the number of sequences that conform te 

(n-1) 
k-1 • 

As follows the number of possible arrangeme!lts in the situation -v
1

=+ 

is (m-1) (n-1) 
k-1 k-1' 

The same story holds for the case v
1 

= -, so the tatal number of 

possible arrangements is 
2 (m-1) (~-1). 

k-1 lC-1 

The number of all possible arrangernents is 

These results lead to the conclusion that p( u=2k ) 

2 (rn-1) (n-1, 
k-1 k-1) 

(16 ) 
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b) u' is odd ~ u' = 2 k - 1. 

Let v1 = +; then e = k and e 
+ 

je - Î. 

k 
The 'number of sequences that conform to oL, r 0 

J= +j 
k-1 

The number of sequences tha t conform to oL.., r 0 

J= -J 

Therefore the number of possible arrangements is 

Let v = -j then e = k -
1 + 

and e = ko 

k-1 

m equals 

n equals 

The munber of sequenc8s that conform to ~ r 0 = ra equals 
j=1 +J 

k 
The rHlmber of sequences that conform to L T' n equals 

j=1--j 

(m-1 ) 
k-1 • 

(n-1, 
k-2) . 

Therefore the number of possible arrangements is (m-1) (n-1) 
k-2 k-1' 

These results lead to the conclusion that: 

p( u 2 k - 1 ) ::: 
( m-1) (~-1) + (m-1) (n-1) 
k-1 k-2 k-2 k-1 

(m+n) 
n 

(17) 

SUbstituting k=1 in this formula gives p( u=1 ) ::: O. 

Out of a) and b) and the results of equations (16) and (17), we nOVi can 

conclude: 

F( u~u') (18 ) 

with f 2 (m-1) (n-1 ) for u ::: 2 k, k~1N u k-1 k-1 

and f = (m-1) (n-1) + (m-1) (n-1) for u = 2. k - 1 , kE~. u k-1 k-2 k-2 k-1 
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APPENDIX B1 FLOW CHARTS OF 'l'HE SUBROUTINES. 

( Subrou tinc INVOY1) 
, 

Ini tialize all var-
iables and parameters 

run , an 
N t experiment? 

Evaluate the mean 
., 

squares of the four '( 

residuals 
Change va1ues of para- I 
meters N,LABDA,P1,P2, Evaluate the autocor. 
P3,P4 on demand functions of the resi-

duals and store them 
I Enter AI,FA I in AUT(r,1-4) 

I 
Print tha demand in J 

Evaluate ths results 
period O,V01,on of the I runs t es t 

screen I 
Write the results on 

Enter inventory, screen 
Return next dem5.nd, I 
Return profit-rate Print the results on 

the lineprinter I . Evaluate I on demand 
modelparameters I 

if 

i' °c RETURN ) 
Evaluate BO out of 
P-parameters and 

LABDA 

Evaluate the opti-
mal controller XC, 
and the mo;iel DI. 



'-
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Subroutine INVOV2 

~--------~,-------------Ask which results 
should be plotted 

System-arrays/ 
Autocorrel.functions 

Plot axes for the 
system-arrays wit 

PLOA 

Flot the axes for 
the alltocor.funct. 
with PLAX 

Plot autocor.funet. 
on demand with PLA 

RE TU fu'T 



Subroutine INVOV} 

Open old files 
KAUT. DAT and 

NVAR.DAT 

Update NT, the number 
of experiments with 
given ALFA, 1st re-

cord tilf NAUT 

In file NAUT: 
Add AUT(I,J) to the 
su'mmed autocor.funct. 
for the four residu­
als J=1,4. 
AUT(I,5), the devia­
tion, remains unchan-

ged 

Update NTOT, the to­
t~l number of exp " , 
in the 1st record of 
NVAR. 
Write BO in NVAR. 

- B3 -

Tell it to 
the operator 

I STOP] 

Write ÀLFA in 
thc next empty 

record of NVAR 

Write in the next re­
cord of NVAR: A,BO,B, 
1 OOxW , 1 00X1!lri7 , 1 OOxWC, 
SHM, SHC, SHD s SCD, PH ' ,T' 

-lil 

PH-C,PH-D,PC-DO 



Subroutine INVOV4 

Ask for which AL~A t~ 
results should be 

evaluated 

Open the file NVAR 
and the concerning f~ 

Ie NAUTO/NAUT6/NAUT8 

y 

Raad the variables in 
NVAR for the given 
ALFA. 
Sum them in PT(j), 

j=1,14. 

Construct an array of 
mean values of the 14 
variables: PT(J) 

Cons~ruct an array of 
standard dev1ations 
of the variables: 

PS(J) 

Construct out of the 
summad autocor.funet. 
in NAUT a matrix of 
mean autocor.funet. 
and their stand.dev. 

AUT (I, J ), J = 1 ,5 . 

Write the results of 
the variables on the 

screen 

Write autocor.funet­
ions on screen, if 

wanted. 

- B4 -

variables 

Plot a pair of 
labeled axes with 

PLAX 

Plot autoeor.func­
tion(sl and deviation 

with PLA 

" I 
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INVOV1 

INVOV2 

INVOV3 

INVOV4 

AUTO(XAU) 

OVER(K1,K2) 
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SPECIFICATIONS OF SUBROUTINES AND FUNCTIONS .. 

Subroutine that runs, on demand, an experiment and re­

turns the results en screen or/and on lineprinter. 

To start the experiment one has to enter values for the 

different parameters LABDA,P1,P2,P3,P4,N or leave them 

unchanged. The operator has to type the value of ALFA 

and to start the Gaussian noise generator. 

INVOV1 calls the subroutines AUTO, RUNS and the func­

tions SR.A~, GAUSSN, PROB, OVER. 

This subroutine plots the results of one experiment: 

system-arrays in one or in separate pictures, and/or 

the autocorrelationfunction(s) of the residuals, also 

in one or in separate pictures. 

INVOV2 calls the subroutines PLA .. X, PLA, PLOA, PLOS, 

PLO, and the plotting library. 

Subroutine that checks and asks if the results of one 

experiment can and should be stored. If the parameters Î 

have the right values, the results are stored on demand. 

Subroutine that evaluates the total results of all ex-

periments. The results are written, printed and/or plot-

ted. The evaluation is done for the value of ALFA that 

the operator has entered. 

Cn dernand the results can be displayed, printed and/or 

plotted. 

I:NVOV4 calls the subroutines PLAX, PLA and the plotting 

library. 

Subroutine that determines an approximation of the nor­

malized autocorrelationfunction of the array XAU of 

length NI this function is returned in array PSI. 

PSI (I) conforms ta '\V (I-1) • 
T xx 

Real function, that determines the expres sion 

If 1\1 < K2 , OVER 0. 

If K2 = 0, OVER 1. 

K1 
( K2 ). 



RUNS(AR) 

PROB(P) 

GAUSSN (RA.t\') 
RAl"'1DS ( RAN ) 
SRAN(IX) 

PLA.X(NT) 

PLA(NR) 

PLOA ~ . 
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Subroutine that applies the runs test to the array AR, 

and retur".J.s a vector PRS (5) that contains: 

PRS( 1) P(U~UI) 

PRS(2) number of samples above the median. 

PRSU) number of samples beneath the median. 

PRS(4) number of runs u' • 

PRS(5) mean value of the array-samples. 

The number of + and - samples are calculated beeause the 

value of the median sample ean appeal" more than onee, 

so e+ will not equal e_, 

RUNS ealls the function OVER. 

Real funetion that determines BO out of the relation 

P(~ ~ BO ) = P, given a normal distribution of ths noise 

~. 

Threl3 raaI functions that togeth~r generate Gaussian 

noise. Calling GAUSSN(RAN) is enough to generate nor­

mally distributed noise with zero maan and unit vari-

anee. 

The generator has to be , initialized by the statement 

RAi'{=SHAN (IX), where IX can ba -ehosen arbi trary 

Subroutine that plots a pair of labeled axes for plat­

ting the autoeorrelation-eharacteristics. 

NT is the number of experiments runned, and is plotted 

in the heading. Also is plotted ths array of standard de­

viatións of the approximated autoeorrelationfunctions. 

Subroutine that plots the autoeorrelatio~funetion of 
, 

the residual with number NR: 

NR ::: 1 . residual H-M, . 
NR = 2 residual H-C, 

NR = 3 residual H-D, 

NR = 4 residual C-D. 

This subroutine plots a pair of labeled axes for the 

plot of the system-arrays. 



··PLOS 

PLO(NS) 
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This subroutine scalcs the four system-arrays X, Xhl, 

XC, V, for plotting. 

For this sealing the four system-arrays are arranged 

in OU9 array. This array is scaled and afterwards the 

four arrays are separated again. 

Subroutine that plots the system-array with mImber NS: 

NS = 1 array X (I), 

NS = 2 array XM(I), 

NS = 3 array XC cr) , 

}TC' .u 4 array V (I). 
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·APPENDIX C LIST OF SYi',moI;.ê~ 

A modelparameter; multiplicator of V(I-1). 

A(I),a(i): sale in period _. 

C<, ALFA autoregressive parameter of the demand. 

AUT(I,J) - stored autocorrelationfunction of the rasidual XHM (J=1), 

AUT(I,5) 

B 

XBC (Jc 2), XHD (J=), XCD (J=4). 

- stored sum of autccorrel~tionfunctions. 

stored standard deviation of the autocorrelationfunction 

based on one . experiment. 

constant parame ter in the model of th8 human operator. 

B(I), b(i): purchase order at the end of period I. 

BO, b
O 

extra purchase, determined by the optimal controll,,=r. 

At LABDA decay parameter. 

N nu.mber of periods. 

IDfEG number of samples in an array with value ceneath tbe ffiedian. 

NPOS number of samples in an array with value above the mediane 

P1 

WM 

Y1C _. 

X(I),x(i): 

XM(I) 

XC(I) 

price of sale of the product. 

price of purchase. 

price of st:>rage. 

price of "Ioss of goodwill". 

array with results of the runs 

profit rate for the human operator 

profit rate for ths model of the human ope rator. 

profi t rate for the optimal controller. 

inventory at the beginning of period I. 

array of the model of ths hurnan operator. 

array of the optimal controller. 



'XHM(1) 

XHC( I) 

XHD(I ) 

XCD(1) 

5(1) 

Y(I),y(i): 

- C2 -

residual oI' human operator - mode l of the human operator. 

residual of human operator - optimal cont roller. 

residu.al of human operator - actual demand • .. 

residual of optimal controller - actual àemand . 

array of sampled white nOise,)A-= 0, iS = 1. 

inventory at the end of period I. 
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JlPPEiJDIX D TNS1'RUC1'IOiJS POR THE EZPERU:ENTAL SUBJECT. 

TEST INVEN'l'ORY CONTROL. 

The problem is as fellows: 

YOll are a shopowner in a store, and you a~e selling one product: pro­

duct X. You are asked to give the inventory for product X as you Vlould. 

cnoose it for 100 Succ€ssive periods. Note tnat you are asked to giv€ 

the inventorJ and no~ the purchase. 

Af ter choosing the inventory the machine in return will give the demand 

of tho customers for product X in this periodo Note that the machine 

returns ths demand, and not the salet 

Record will be kept of your total profit rate. This amount appears in 

the last colunm at the end of every period. In this amount will be pro­

cessed: the sale, the purchase, storage costs and costs of loss of good­

will when the inventory is too small. 

On the screen thera appears: 

in the first column: the number of the pcriod, 

in the sElcond column: the invGntory, to be typed in by you, 

in the lhird column: the demand of the customers in this period, 

in the fourth column: the profii; rate. 

For typing t11e nilmbers you can use the keys on the upper ro..., of the key­

board. Af ter entering the inventory you have to push the RETURH - key. 

Corrections can be made by using the RUB - key. 

On the screen the text can appear: 

"YOUR PURCHASE IS NEGA'l'IVE. ENTER A NEW ONE". 

This means that the entered . inventory is smaller than the inventory re­

maining fr om the previous day. This situation is net permitted~ so you 

will have to enter a new choice. 
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~PPENDIX F AUTOCORRELATIONFUNCTIONS OF THE 

RESIDUALS, SUMMED OVER 10 EXPERIMENTS. 

ALFA = 0.0 
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ALFA 0.6 
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ALFA = 0.8 


