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“SUMMARY

In this report the behaviocur of a human operator in a specific control
task is evaluated. The control task i1s an inventory control: the human
operator has to determine the‘inventory for séme product, based on
information from the past. One part-of this information is the demand,
that is generated as first order filtered white noise; the second part
is the profit rate: the profit in each period,

An attempt has been made to fit the behaviour of the human operator, as
a cognitive system, into a zgrpﬁéﬂgrder model, and this model is tested
on its acceptability. : g

Por this purpose a computer program has been written that is able to
run experiments with experimental subjects.

This program evaluates the quality of the model by means of the runs
test, and the determination of the autocorelﬁtion function of the

residual. The mcdel parameters are estimated with a least-squares

estimation procedure.
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PREFACE

Many tasks imposed on a human operator are control tasks; in gemeral
these control tasks, and specifically cognitive tasks, can be gepara-
ted into a few blocks (see also v.Bussel(1980)):
1. perceptual receiving of the value of some variables,
2. prediction of the future behaviour of one or more output varlables
that have to be controlled,
3. making a decision on adjusting the system to control the cutpul

variable(s).

Research on the beha&iour’of a human being in such a situation can be
of use to incorporate the human operator into the description of a lar-
ger system; another result of these studies can be a quantification of
the effects of learning, physiqal state etc,

To test.the behaviour of a human operator, a simple control task has
been apranged by the group "Fpnktieleer“ of the Department of Psycho-
logy of the Tilburg University. '

Based on the results of a&,o0., van den Hoven (1978) and Koenraads (1978)
with experiﬁeﬁtal data, it seemed interesting to try to model the
(cognitive) behaviour of the human operator into a model, that assumes

the human operator to be a pure predictor.

The purpose of this project was to create a zero order model of the hu-
man operator in the specific inventory control task, and to evaluate

- its results,

‘Chapfer 1 gives a description of the control task and explains the model
- of the human eperator., In chaptef 2 two tests will be introduced for
eValuating»the quality of the model, In chapter 3'the computer program is
described that controls the PDP 11/60 computer in running the experiments
and evaluating the results. Chapter 4‘gives a description of the experi-

ments and presents the results.



'CHAPTER 1 @ DESCRIPTION OF THE INVENTORY CONTROL SYSTEM !

The inventory control task for a shopowner can be definéd as the task
te choose an inventory for a produdt every period in such a way that
his profit will be maximal, Because of the fact that the shopowner
does not know the exact demand of his clients for the following period,
he has to make a prediction of thig demand and base the inventory for
the next pericd om this prediction.

Naturally his choice of an inventory is not only based on.a prediction
ot the demand, but also on other variables as storage costs, costs of
less of goodwill, decay of his broducts during storage etc.

By way of counting his profit at the end of a periecd, the shopowner gets
sbme kind of feedback on the decisions he made at the beginning of the

period,

1.1 The processes in the inventory control system.

- Pirst there is the demand precess. (cf. figure 1)

We assume this process to be first order filtered white noise;

The demand in period i: v(i) = Yy + X (v(i-1) - vo) +'§(i-1) (1)

where o< = autoregressive parameter, =-1§&xX<K1
'5 = gaussian white noise
e a.cpnstant.

- The sale process:
‘The sale in period i: a(i) = min( x(i),v(i) J (2)
where x(i) = the inventory at the beginning of period i.
- Thé-invéntory at the beginning of period 1 depends on the products
: remaining from the previous period, on the decay, and on the

purchase:

x(1) = (1=A) 32D+ b(-1) R ()

where A = decay parameter, 0¢A <1
y(1i) = inventory at the end of period i

b(i) = purchase order at the end of’period i

~and y(i) = =x(i) - a(i) S R (4)




-~ The profit rate of period i will be calculated as follows:

w(i) = p, a(i) - p, B(i-1) - py y(i) - p, ( v({i) - a(d) ) (5)
- where Py = price of sale,
Py = price of purchase,
Py = storage costs,
P, = price of "loss of goodwill",

A block diagram of this system is given in fig -1-.

ISk

Gaussian white | (i-1) Demand process: e
i =0,€= % v(i) = v +a(v(i-1)
n01se4u-0,€_1 0
- -v,) +<(i-1)
<
5
- \
z . |
" c Inventor rocess: ¥— 2
) 2?5 s ain el =1 A ) | b(1)
' ) = e R . Con
Y1) (=(1),v(i)] ¥ o x@) = (3-A)Y "] controller
| bt (x(i=1)-a(i-1))+b(i~1)
A 0 e NEDT Rl
A o A e (1)
B(i)

fig - 1 -

Block-diagram of the inventory control system. 5 s S
‘ ' i previous profit rates

Every;pericd the shopowner has to make a choice with fespect to the
~size of the purchase order for the next period. In this case this is
the only choice he has to make. | »

Within the system, as drawn in fig -1-, there are a few parameters that

can be chesen from outside the system.

N NP
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‘Phese are:

- the parameters of the noise generator:/u, S

- the parameters of the demand process: &« » Vo

~ the parameters of the inventory process: A

- and the parameters that determine the profit rate: Pqs Pos P3y Py

As will become clear in the sequel, the only parameter that is important

for studying the system‘is . The other parameters only have to be cho-~

sen in a way that makes the'inventofy problem a réalistic one.

'3asing our choice on this criterion and not going further into specifiec
Lo o ¥ e

arguments for the valueg,we have chosen the next values:

N

i G - 1-
VO = 5. l
AL TB 0.1

. p1 .; 1.
p2 = 005
p3 = , 0.05
p4 = Q.1

%
\\k o« is the parameter that determines the character of the demand, and is

therefore the most important parameter.

1.2 The optimal controller.

Knowing the wa§ in which the demand is generated, an optimal controller
can be constructed that Optlmlzes the exnected profit rate.

By using dynamic optlmlzation technlques one can prove ( Braakman, 1980)
that, given the inventory x(i) at the beglnnlng of a period i, and the

demand v(i) during that period, an optlma choice for b(i) can be found

‘that ontlmizes i?w(a)

$=t

This optimal b(i) can be written as:

p (1) = ‘vo oGO iv(1) = 3 IERT (S -'A) y(i) + b (6)

The optimal choice for b(i) can be transformed into an optimal choice

for x(i) by using eq. (3) -

x (1) = vo+o<(v(i)-vo) + by | ‘(7)



-  where bo can be determined by

p1-p2+p4
Py - (1-A)p2,+ Py + D

P(€(1)€b,) = (8)

4
and € (i) is the noise sample in period i.

We can see that bv¥(1) is made up of three parts:

vy * «( v(i) - Yo oy a one step ahead predictor of the demand of

the next period,

- A) y(i), \ the inventory at the beginning of the next
period,
by ' ' an extra pufchase that is dependent on the

density function of the noise and the prices
on which the profit rate,is based, It is a
result of relating the costs for possible
loss of goodwill to the costs for possible

extra storage.

Paking the p- and A- parameters as mentioned before, bO
by P (€(1)<by ) = 0.857. |

If ‘S(i) issampled white noise with zero mean and unit variance, as in
will equal 1.06.

will be given

our case, bO

1,3 The human operator.

As mentioned before, the human operator has to make a decision with res-
pect to the size of the purchase b(i) for the next period, based on +he
inventory X, the sale. a, and the. demand v of previous periods.

Because of the fact that there is a unlquerrelat¢on between x, a and v:
a(i) = min( v(i),x(i) ), and that a choice fof the purchase b(i) comes
-toﬂigg_same thlng as a choice for the new inventory x(i+1) when the old

inventory is known, we can write the process of the human operator as

 follows:

S R
;:/zrﬁv/" ‘/ v(i)

g Human : x(i+1) «
x(1) Operator
z-1
v |

fig - 2 -

Human operator process.



.30 what first seemed to be a MISO process we now can write as a simple
SISO system, considering the inventory x(i) as a state-condition,
This interpretation leads to the following description of the process

of the human operator:

Viilgr___ s Human __gﬁilil)

Operator

T

criterion

fig - 3 ~
The human operdtor w111 in control of gome criterion,try to choose the in-
W- Tty
ventory x(i+1) in such a-way that his profit rate will become optimal.
However the mathematical construction of the profit rate 4s not known
to him, and 1f.se—wou1d be @ucq)too complicated to base the rﬂght de~
cisions upon. L bt (7
[
The Model of the human operator
To construct a model for this human operator-task, we have to visualise
the way in which the human operator will make his decision.
He has got the following information: :
- the demand v of périod i and of previous periods,

- the value of the profit rate of period i and of previous periods.

Because of the const;uction of the profit rate, this function's only

task is to give the human operator a view on the optimal strategy: }laﬁiﬁwu«
taking an "dver—inventdry“ to be able to serve all customers, or taking

an "undér-inventory".to be sure that all products can be sold.

The main point in the choice of the human operator will be his predic-

- tion Of the demand in the next period. This prediction}fogéther with

the effect of the profit rate, as mentioned above, will determine the
‘inventory of the mew period.

The wvalue of the profit rate in each pe*iod is partly dependent on 4

&y A OV £ 4
the demand, on which the human operator has no influence. In this¢ way, ° /

he gets hardly any feedback on the'optimaiity of his decision, and




!
therefore the control task can rather be considered as a prediction
 task.

The model of the human operator is now chosen to be as follows:

g (1) = B wvilisg1) ) = 65 (9)

with E(v(i+1)) the prediction of the demand for the next period, and
56 an extra inventory, based on fhe experience of the human operator
in previous periods.

Theeretically the demand-function is given as:
v(i+l) = Vot X ( v(i) - v D f(i—1)

Knowing the demand in period i, the right expectation of the demand in

period i+1 is

E( v(i+1) ) vy + ¢ ( E( v(i) ) o E(’S(i) )

) ,  (10)

BCv(141) ) = v+ ol v(i) - ¥

0 0

The results of equation (9) and (10) can be combined into a theoretical

medel of the human operator:

L

x(i+1) = Vo * O((.V(l) =Rry ) + b, ‘ (11)
Because the human operator will not meke a distinction between vd, &,
and EB, the model will become:
x(i+1) = A v(i) + B _ (12)
' which is a moving average
with A = X, (MA) model.
~
B = (i1-0().vo + bo.

Determination of A and B.

0

Afféf_an experimenf, in which the human operator has to choose the in-
#entory féf N sﬁccessive periods, the;e aré available‘i.a. two arrays:
x(i) and v(i). Takiﬁg these two arrays as a starting point we can con-
struct 1east squares estimators K and B for the A- and B-parameter.

We want to determine A and B in such a way that
N-1 T & iy &
'2: ( x(i+1) = X v(i) - B )? becomes minimal,

Led -

. —



_Therefor this expression has to be differentiated with respect to

X and B: N-q X !
-2 E: ( x(i+41) - A v(i) - B.) v(i) = O
L=O
-1 y;
L -'p if ( x(i+1) - £ v(i) - B ) = '0

t=o

 Combining these two equations yields . !

I
=2

=

1 N-1 =4 S N=1 2
N%x(iﬂ) v(i) - Zx(i+1)l&v(i) [N%vc(i) - (Zv(‘i) )"]
1=0 i=0 i=0 0 i=0

which results in:

‘§=1 \ N-1 N=1 )
N 2 x(i+1) v(i)] - ;:x(i+1)_§:v(iﬂ
X x N i___o / \‘]‘_=O 1=O / (1 3)
= .- I - . n N=1 -
N v‘(i)} - Q%:v(i) 52
. 1=0 / 1=0 !
N-1 N2, 1 /Nt | Nt |
2 x(A+1) 2 v (1)) - | Zx(i+1) v(i) 2 v(i) )
{=0 "{=0 =t S\i=0 T/

(14)

[v=R1
i

:'. _1 \ _1
2 52
N:};Ov (1) - _(_j?;‘ov(i) )

The estimation of A and B according to the method described, does not
introduce any bias in the results, because of the fact that the humen
operator model is a MA~-model and the noise is assumed to be additive

and independent of the demand ‘(see also section 2.1).

1.4 Composition of the different systems.

> .
LR : -
‘Now we can compose the different systems we have constructed in one

scheme, 'resulting in an overview of the systems that are of interest:



< ME actual demand
" v(i+1)
ShGen T4 actual results of
——y the human operator
Operator x(i+1)
A
i he Demand |
noise Process
p 4 ) .
= Model of 11 estimate of the hu-
O \ > | man.operator ‘
the H.O. i x§ﬂ1+1) = A v(i) + B
\ ¢ -
e Ot Optimal v ; optimal strategy
“ . 9‘ & ¢ DV
Controller x€(i+1)=v +{v(i)=v )+Db
' & o] o) o
fig -4 -

Comparison of the available systems.

For the experiments as described in chapter 3 and 4, the next four resi-
dugls are evaluated:
' II - III  (H-M)

H = Human Operator

IT -1 (H-D) D = Actual Demand
II - IV (H-C) C = Opfimal Strategy
RV T (Cc-D) M = Model of the H.O,

The comparison of the four system-outputs ié useful because all four sys-
tems are based on (a prediction of) the demand in the next period. The op—l
timal strategy is in fact a predictioﬁ of this demand summed with a con-
stant (see also section 1.2). Therefore, with the comparison of these four

system outputs three different predictions of the demand are compared.

Evideﬁtly the comparison of the actual results of the human operator and

the results of the other systems is of interest: comparison of II and III

tells us something about the quality of the model; comparison of II and

IV gives an idea of the optimality of the human operator decisions with

respect to the profit rate. The residual of II minus I shows the.p;ggip-

tion-cap&k}}}iy_9f7j§9“§3@§§"93§p§39;, while the residual of I minus IV

e 7

gives information on the nolse parameters and on bo. _ e
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CHAPTER 2 : THE EVALUATION OF THE MCDEL

2.1 Introduction.

n
white ¥ _
roise ’ Filter > Human
' Operator
fig - 5 - | Model

We assumelthat n is a signal of white noise samples, and that n is an ad-
ditive noise which the human operator adds to the results. Any possi-
ble correlated noise is assumed to be an internal process in the human
operator system., In view of this,the model has an optimal quality if
there are nc more deterministic factors in the residual e. If there
should be ény deterministic factors in e, they should be incorporated
in the model, leaving e non-deterministic,
So the model is optimal if e equals white noise.
/@EE?EASﬂ“fEé_Qdéiity of the modelgthereforefban begomg tests on the

. whiteness of the residual e,

In this report two tests are used to examine the whiteness of e:
1. the runs test,

LAy the determinauion of the autocorrelationfunct"on.

These two methods will be described respec+1vely in the sequ&i of thls ev/
chapter.

2.2 The runs test.

A statistical test for determining the whlteness of noise°

(see also Swed et al (1943) and Wald et al.
e 2vil Explanatlon of the principle. ~(1940) )

The crucial point of this test is a test on the hypothesis H that a
sample-array can be regdrded as sampled white noise
For the test on this hypothesis H use will be made of the grouplpg of

samples that have the same sign with respect to the median value



y LT

/vfﬁbyJﬂJ
of the sample-array. According o thig/.the samples with values excee-
ding the median will be regarded as + samples, fhe samples with values
smaller than the median as - samples.
An uninterrupted part of the array with samples of the same sign is cal-
led a run; the total number of runs in thé array is felated Yo the pro-
bability'that the sample~array can be regarded as white noise, and there-
fore to the acceptance/rejection of hypothesis H. '

)

Let m be the number of samples with a + sign, and n the number of samples
with a - sign; the total number of different arrangements of the + and
(m+n)

- signs then equals

Let u be the number of runs in any one arrangement;

we then can state that:

P(ugu' ) = P(u=t1 )+ P(u=2 ) + ... + P{ u=u' )

About hypothesis H we now can say the following:
Assume that all possible arrangements are equally probable; the hypo-

thesis H will then be rejected when
P( ugu' ) < [3 (15)

accepting this as a tendency for the distribufionvto be nonrandomly dis-
tributed. .

For a given situation, a certain @ results in a significant runlength
u', the smallest in%eger u' for which the hypothesis holds.

@ is called the level of significance, and can be chosen subjectively.

Becausé of the definition of the sign of a éample, one would expect that
in &l1 cases the equation m-= n would hold.,The formulas to compute
P( ugu') would be much simpler the ;
Thébdetermination of P( ugu' ) is exé?gygd in appendix A of this report.
‘In this evaluation the gengral situation m # n is assumed, for reasons
1thét ﬁill become clear in chapter 3,

EUT ke el it v
2.2.2, Application.

In this test, the level of asignificance ﬁ will be chosen 0,05; this
choice leads te a significant runlength of 42, (see Swed and Eisenhart
- (1943)), :
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'Assume a probability density function p(u) of the number of runs in an

array of fixed length, as drawn in fig ~5b-.

p(u)

~

NN

u!

u

fig - 5b - Probability density function of the number of runs
in a sample array of which all arrangements are
equally probable.
There has Pgﬁg'takenrasuéﬂstaffihg point /that a1l possible arrangements
of an array arémeéually probable. Therefore pf{u) has the shape as drawn
in fig -5b-. ‘
Given a sample array, the nqmbqr of runs can now be counted, If this

A |

number is so small that p(u) is smaller than _B (= 0.05), the sta-
¢ Uz o

tement that all arrangements are equally probable ( and therefore the

array is smapied white noise) will be rejected.

Concerning the &éé%é of a cne-sided runs test in stead of a double-sided,

attention is paid to this item in chapter 4.

& Whifeness-test,by means of the autocorrelationfunction,

2.3.1 Approximated autocorrelatiopfunction.

The autocorrelatiog&unction H’xx(T)’ of a stationary discrete signal x
ig defined as: ensemble

'\lfxx(‘\.') = x(1) x(i+7)

In case of ergodicity, as we will assume in our case, we can write:

time '
N/xx(t) = x(1i) x(i+7) (19)

When x(i) is an array of sampled whiie noise, «r&x(Tﬂ will be a del-

: fa-function $ (o).

For the residuals,we want to investigate whether or not the computed

gutocorrelationfunction can be regarded as a delta-function.
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‘Because of the fact that equation (19) is a mean value in the time do- ,
main, and there's only a finite number of samples available in the ar-
ray X, we can only compute an approximated autocorrelationfunction,
defined as:

«q/n(k) = N—_:‘-k—-gx(i)‘ Ehek) (20)

~From this approximated autocorrelationfunction we are able 1o determine
the estimation and the variance of Y instruments to evaluate the del-

~ ta-character of "K{x(k).

+ [";xx(k)]

1 N=-k
E { :"I_—E _§1x(i) x(i+‘zc)]
N-

. k
'ITI_EE i=1E [x(i) x(i+K)]

1 - 1
SRl ), )

50 E‘[q’xx(k)] ’\{/xx(k) . (21)

2.3.2 The variance of the approximated autocorrelationfunction.

K [{’\fox( k)

(1
1

B () )]

> E[(’q’xx(k) Yxx(k) )2]

- o 5200] + p 2w - 2w
T 2

E['\Yxx(k)] ’\yxx(k)

var ['q/xx(k)] :

“+

I

2

e N— -k ;
'var[’\{/n(k)] = N_ﬁ) 2}‘( g: l:x(l) x(j) x(i+k) x(j+k)} ~ N k) (22)

On the assumption that x is of a normal distribution, we can write

( Laning & Battin, 1956,p.162 ):  _

E(xx

3 4)+h(’t X)E(X x)+

+ E( X, ?4) B( X, x3).
Fow we can write eq.(22) as:

Van|ay (k)| = —1—N§_A( 2('-i) + ' 2(}c) + (3=i+k) | (1~-j+k)
& 'Yxx 2 §= A{’xx J IYxx ‘\‘\’xx ok ’\{/xx U=

(N-k)"1i=1 : 5
‘ -I\Yxx(k)
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N~k N- :
4 Var[‘\*’xx(k)} & 22_ Z_IA‘./X;?((J_” +Yxx(j-i+k)\rxx(j-i—k):[ |

(N=-k) i<l j=

in which we have taken ﬁy- ’—J+ﬁ) = \Y;X(j-i-k).

The new expression for var[ ] is an even function of (j-i), so
we can write:-
N-k Nk 2
A I - : -+ 0 b
el faut] - 5 88 Ty Yyt
(N‘K/
i>i
N-k% 5
o 27 (5=1) + (j=-i+k) (j—i-k%
(ﬂ k) 1z1 }= Akkx mkkx \yix

=

We can take j-i:lu as a new argument for the correlationfunction:

2

N-X~1

Y Ut e oA 2

va?['\"xx(K):l = (N_k)2 /“2: (N-k-/u)[\{/xx(/u) + "{/xx(/uﬁc)f\'/xxw-x)}
'1—};['\{/ (0) + '\r (k)]
Conclusion:
2, 2

s (0) (k)

var ['\Yxx(k‘)] ,\Yﬁfk b Y?-tk o

-h(l = ﬁ&;) { xx(fq i V/x;gu+k)«kxx9u-kﬂ

(23)

b

/A

en A+’ (k) has the character of a delta-function, the values of Akkx(k
for k#0 will be much smaller then QP' (0).

On this assumption, an approximation of the variance is:

' 2
P (0)
e[ w] - T2 e

2.3.3 Application,

With equations (21) and (24) we can test the delta-character of the
approximated autocorrelationfunction. For this purpose we will follow
the next procedure: : :

Given the sample-array x(i1) we will construct the approximated autocor-

relationfunction, dévidedbby AV%X(O), which leads to' a function with
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Lvalué 1 for ¥k = O and value <1 for k # 0. (the normalized autocorre-

lationfunction).
¥ ~
Assuming again that ﬂk%y(o) >>1f;x(k)k¥o and considering N/XX(O) as a

constant, we can state:

ey .
A*xx(k) 1
Bl A | 1 Y en
. A 2
e e N 1 Yo ) 1
and var _—T-TBT = 5 5 = T
BLe-. 2 N L0) Bk
| DTN
S ) T (26)
q?kx(o)_ N-k :

R D e il
L_Qna;@qr;ggvﬂk%xgo)rag a constant is allowed.bec§uoe of “f;X\O)ﬁb'Y’XX(L)

and var Yxx( 0)e< ‘Yxx( Q).

In stead of the §-value we can also work with the reliability intervzal,
a more practical bound fto test the function.
For a Gaussian distributed function the 95% reliability interval can be

computed by

T (x) g
Ty VYix 3 1.645 (27)

ﬂYﬁX(O) 95% VN-k

We will state that the evaluated autocorrelationfunction is a delta-
function w?pn all its values for k # 0 lie within the range
)

1.645 ;i . (28)

VN-k

as defined in the equation above.

In case of a summation of n autocorrelationfunctions, the variance of
) Ahije ol A -

this sum (cfn) is given by o’n =1/n.8€".

According to this, when we sum the autocorrelationfunctions over n ex-

periments, the range as defined in (28) has to be multiplied by 1/Vm.
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In this chapter two methods are described for testing the randomness
of a sample array. These two methods are implemented in a computer
program that runs experiments and analyses the results, The analysis

with the runs test is done by computing P( y&?ﬁ' ) and averaging this

IS ot

over *the number of experiments.
The analysis with the autocorrelation function is done by computing
this function for every experiment and averaging the results over the
number of experiments, The result, an averaged autocorrelation function,
is compared with a delta~function, taking intc account the variance of

the results.
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‘CHAPTER 3 : THE COMPUTER PROGRAM

3,1 Structure of the program.

In view of the possibility to test the constructed model of the humen
operator in some experiments, a computer program has been written to
run these experiments and to make the necessary computations on the re-

sults.

‘The program, called INV, is written in Fortran IV-Plus ana implemented

on a PDP 1V6Q computer. To create the posslbility of getting the results
of the experiments in different forms (on screen, on lineprinter, or on
plotter) fhe program is chosen to be ¢f an interactive form., In this way
one is also able to change any parameters of the system if reguired.

The tasks of the program are the folloﬁing: | )

1. Communicating with the experimental subject, and running an experi-

ment for N sample periods.

2, Computing the resulis after the expsriment:

creating an.optimal strategy for the choice of the inventory XC(i);

- creating the model of the humen operator, as explained in 1.3,
b - . ¥
XM(i);

- evaluating the residuals that are to be investigated:
1. human operator - model of the h.s.: XHM (1)
2. human operator - optimal strategy : XHC(i)
3., human operator - actual demand : XHD(1)

4, optimal strategy - actual demand : OB
- determining the mean squares of the four residuals, SHM, 3HC,SHD,
. 8CD; |
- evaluating the profit rate for the optimal controller and for the

medel of‘the human operator, WC and WN;

-zdeterminingmthe_normalized autocorrelationfunction of the four resi-
duals: AUT(1,1-4);

~ determining the standard deviation of this function;'AUT(i,S);

- determining the results of the runs test: the probability P( ugu' ),
the number of runs u', the number of positivé and negative samples,

and the mean value of the array.
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3, Printing the results on screen and/or on lineprinter. On demand
plotting the four autocorrelationfunctions and/or the four system-

arrays X(i), XM(i), Xc(i), v(i).

4, Storing the resulis in files if the parameters chosen (such as A,

N, ) have tne same values as in other experiments,

5. = .0n demand computing the results of all experiﬁents, analysed for

different values of &: «= 0,0, ®= 0,6, and &= 0.8,
- Printing the total results on screen and/or on lineprinter;

On demand plotting the four autocorrelationfunctions.

The program is written in an overlay structure, as drawn in fig -6-.

PLOT Lib. PLOT Lib,

|1vvovi Irwovz] INVOV3 INVOV4

I l I |

[ TNVOV ]

fig - 6 - Overlay structure of the program

In ths second part of this project the overlay structure had to
be introduced because of the comprehensive library of plotiing foutines

that had to be used. This usiﬁg caused an overflow in memory allocation.

The four subroutines INVOV1 - INVOV4 execute the tasks of the program,

as mentioned at the beginning of this chapfer.

A more extensive description of these four.subroutines and of the routi-

nes and functions theyir; using; ig included in appendix?B1 and B2,

A list of symbols and_hames of variables, used in this report and in

the program listing, is added in appendix C.

The complete listing of the program is available in the archive of the
k

group feasurement end éontrol,

+2 Storage of the results.

)
4 : :
The object of this part of the research was testing the quality of the
model. To do so some experimenis would be run for threéAdifférent' p

values of &« : &= 0,0, X= 0,6, &=0,8,



'In case of more than one experiment the resulits of the experiments have
to be brought together. Therefore it is necessary to store the results
of one experiment into one or more files that can be kept on floppy
disk.,

To be able to compute the total results of all experiments, the follo-

wing results of one experiment have to be stored:

- first we have the parsmeters of the model: A, B, and the estimated

value of (tne constant that the human operator adds to nls pre-
diction of the demand of the next period), computable ef*these
values,

~ then there are the values of the profit rates: one of the human o-
perator (W), one of his model (WM), and one of the optimal strate-
gy (We).

~ the mean squsres of the four residuals have 1o be stored, to examine
3 q ’

the residuals; SHM, SHC, SHD, SCD.

- the results of the runs test: the value of P( ugu' ) for all re-

siduals; P P P

g’ Tu-¢’ Tm-p’ To-p°

= the normalized approximated autocorrelationfunction of the four re-
s%duals. AUT(1,1-4);
”

é&entualTy the. array of standard dav1a+1ons of these functions,
AUT(i,5).

Because of the required memory-space, the autocorrelationfunctions of
the residuals of all experiments can not be stored separately. Therefore
we have chosen %o create files in which the functions from different ex-
periments are summed., Because there are four residuals and one standard
'deviation-array, we have to store 5 arrays in a file.

These arrays have to be stored.for 3 different values of X, so we get
3 storage~filos for tne autocorrelatlonfunctlons, these files are cal-~
1ed NAUTO.DAT, NAUTo6. “AT NAUTB DAT,

For any value of « the number of experiments run with tnattx ig recor-
ded in the Llwat record of each file,

The build-up of the files NAUT.DAT is drawn in fig -7-.
L t"’ﬂw/.nf;«

A1l the other variables are stored in one file: KNVAR.DAT,
To separate the results of the experiments referring to different values

of o« , these variasbles are stored as drawn in fig -8-.
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NAUTO.DAT, NAUTE,.DAT, NAUT8.DAT:

recordnr,
1 NT
m ) i ) I 7 (
2 TAUR(1), ZAUT(), .  ZAUR(), o ZAUR(1), o DEV(1)
7 ) uT 5
3 TAUN(2), , ZAUN2). . @ RAUN2), o ZAUT(2), o DEV(2)
* UT(N), - AUT(X Ly RV (N
Net  ZAUTQN), o ZAUR(N), .o ZAUT(N), VZAL ()gp — DEVN)

fig - 7 - Composition of the storage files NAUT.DAT for the

autocorrelation functions,

NVAR.DAT
recerdnr,
1 NTOT
2 XK
? AT Do oM Q
B A bo B 100xW 100xWM 100xWC SHM SHC SHD SCD PH-M PH-C PH-D PC—D
4 X
5 A C' L] . .

fig - 8 -~ Composition of the storage file NVAR.DAT for the

numerical results of the experiments.

The value of &« in recordnr. i belongs to the results in record i+1.

NTOT is the total number of experiments.

3,3 Some remarks on the program. .

- As mentioned in chapter 1,. the optimal controller is constructed as

‘Pollows: XC(1) = v. 4+ o ( v(i-1) - vy ) + by,

0]
In the program'this optimal controller is computea assuming the cor-
rect values of o and bd. This means:_given the value of Y used in
vthe program, and given the distribution of the noise by which bO is

known; It should be more correct to evaluate these two parameters du-.

- ring the experiment, based on the generated demand-function. Then a
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fair comparison with the human cperator is possibdle.

However, this adjustment will probably not change very much with res-
pect to the results. On the other hand will this require much more
complicated calculations and will cause an increase of computation

time,

in chapter 2 the principles of the runs test are explained. 'wo va-
riables in this test are the number of samples avove (m) and the num-
ber of samples beneath (n) the median. Because the value of the median
in the array can appear more than once m does not have to equal n,
For this reasonrthe calculations in this test are done for the gene-

ral case.

The number of periods for which the program can be run is limited
by the declaration eof the required arrays.

The maximum value of N equéls 120,

Because of the way of storage of the results in files, these files
have to be created before the first storage of results takes place.

For this purpose a program INIT is written that creates the three

. NAUT-files and the file NVAR, and that fills these files with zerc's,

To make the values of the profit rates more practical ones, we will
be working with the variable INT(100x%) instead of W. The same holds
for WM and WC.



~CHAPTER 4 : EXPERIMENTS AND RESULTS

4,1 The é;oeriments;

7

There have been run 30 experiments with 30 different experimental
subjects, who héd never participated in.a similar experiment before,
Not one of them had any knowledge?neither of the way of generating

the demand, nor of any other crucial information.

The subjects were given a written instruction in which their task was
described, This instruction is added in appendix D.

They were asked to enter the inventory for 100 succe551ve periods.,
After each period the dewmand of the customers, and the cumulated pro-
fit rate after the«dééoernlﬂg period, were displayed on screen.

The subjects could take as much time as they wanted for the experiment,
there was no time limit.

Although they knew the variables, determining the profit rate, they had
no information on the exact construction of the profit rate: the prices
of sale, purchase, storage and loss of goodwill were unknown, just as
the DC component of the demand Vo the decay-parameter A , and evident-
ly the autoregressive parameter o ,

One'experiment is defined as the actioﬁ of one experimental subject,

entering the inventories for 100 successive pericds.

The experiments started with the genefation of the demand in period O;
This value.functioned as an indication of the size of the demand.

The expectation existed that the subjects would predict the demand of the
next period when ordéring the inventory. In doing so they would pro-~
bably add some extra inventory bo based on the information of the pro-
fit rate. This extra 1nventory causes a higher profit rate because loss

of goodwill is chosen relatively more expensive than storage costs.

One remark that has to be made is that the experimental éubject could
not choose the inventory unlimited. There was one restriction: he was not
ellowed to choose the inventory for perioq =) smal}er than the inventory
remaining from the previous period., In other words it was not allowed

to sell products back to the wholesale dealer.

This resgtriction is incorporated in the program,

-4,2 Results of the estimation of the ‘modelparameters.

A-The results of the estimated modelparameters are listed in table -1--

on the next page.



P N

N = 10 (=4 O.Q X = 0,6 &= 0.8
mean S mean g mean o3
A 0.56 0.29 0.73 0.21 0.87 0,10
262 1009 1261 1.08 0.71 0.63
bO 0.41 0.34 0.26 0.31 0.06 0.46
table = 1 - Results of the estimated modelparameters, for each value

ofafaveraged over 10 experiments.

The results of the estimation of the A-parameter in the model vary con-
siderably with different values of X ; the standard deviation of the es~
timations decreases with increasing «« , while in all cases A is over-
estimated with respect fo &« . For = 0,6 and <= 0,8 the estimated
parameters 0.73 and 0.87 are quite good estimators. In both cases the
A of A for

X = 6.8% Tan estimation close to the real value, and with a small stan-

equation ™o~-C < A< «+& holds. Remarkable is the estimation

dard deviation,

For oL = 0,0 the estimator A is not as good (0.56); the difference
{A-a| is larger than €., In this case of complete white noise as demand,
the human operator apparently wants to see some kind of correlation in
the demand, although there is none., A is unlikely large, and therefore 9
it may be reasonable to consider the test-situation very critically.

As mentioned in chapter 1, equation (12), B = (1 -~ A) vy * 56;
therefore 66 can be derived from A and B.
BO’ the parameter that leads to an optimallstrategy, equals 1.06.
In all three cases the estimated value Balis far below this optimal one.
Apparently the subjects have hardly or not given notice to the fact that
an optimistic choice fof the inventory leads te a higher profit rate than
a pesgimistic choice., In some way the information that the human operator
should receive via the profit rate does not work out very well..
The nexf two points may have contributed to this underestimating of'bC:
1. the profit rate is presented to the human operator on screen in a cu-
mulative form., In this way it is a stimulaﬁggn for the subject to ful-
On fhe other

hand this way of pfebenting the profit rate makes 1t hard for the

fil the task and to optimize the total profit rate.

subject to get information on the quality of his choice of the inven~
tory. A profit rate, presented as an account in one period, should be

a more direct way of giving feedback to the sﬁbject.



2. the profit rate, as calculated in this experiment, depends on the 1
demand, which is not controllable by the subject, In other words:
the level of the profii rate is dependent on the level of the demand,

. mle
and therefore it is no direct measurse

Fy

or the performance of the sub-
ject. It would be more correct to relate this profit rate to the ma-
ximum procfit rate that could have been achieved. In that way the sub-

ject gets direct information on his performance.

~r

It is not certain that the clearly increasing bo

is a consequence of the previous remarks. One could say that the less

with decreasing K also

deterministic the demand, the more the subject adds some constant level
-to his expectation. In other words: the more confidence the subject
nas in the demand v(i) as a predictor for v(i+1), the less he adds

"external" components, such as 56.

The profit rates were also calculated and averaged over any 10 experi-

ments, The results are listed in table -2-,

N=:IO & = 0,0 X = 0.6 « = 0.8
mean (<3 mean o mean
W 216 5 222 14 210 33 - Ko
M 223 . 7 224 15 213 32 - e ddad
we 233 6 232 13 225 29 = oA e

table -~ 2 - Calculated values of the profit rates; for each value of
averaged over 10 experiments.

.Because of the fact that the noise generator is started before any ex-
periment with a random number, and therefore with an unequal demand

for the different experimentg, the profit rates of the different expe-
riments can not be compared. Prom these results we can draw a conclu-
gion that in general the profit rate of the model approaches the one of

the human operator from the upper side.

To give a picture of results of experiments as a function of time (or
‘period) theaezégg added Some plots/in appendix E. In these plots there
are drawn the systém-arrays: the inventory x(i), the demand v(i), the
model xm(i), aﬁd the optimal strategy xc(i); they are plotted two and‘two

and the plots are just an illustration of the results. ’
# i A

There has been jaken an arbitrary experiment for any applied value of X, pratel,



= - 26 -

‘Appendix Ei gives‘the results for &= 0.0, E2 for XK= 0,6, and E3 for
X = 0,8,

4.3 Test on the quality of the model.

As mentioned before, two tests are applied on the four residuals as de-
fined in fig =4-:
H-M : humen operator - model of the h.o,

H-C : human operator - optimal strategy

7
&

human operatocr - actual demand

C-D : optimal strategy - actual demand.

In table -3- the results of the runs test P( ugu' ) and the mean

squares of the residuals are listed:

e X = 0.0 X = 0.6 == 0,8
mean (o3 mean (Y mean g
SHM 0.88 0,66 0,24 |' 0,17 gl 0.26
SHC 1.78 0.74 1.08 0.63 o 1 0.90
SHD 2.63 0.93 1.41 0.28 1.45 0.58
SCD 215 0.28 . 270700 930 2.12 - 0.33
PH-M 0,13 0,24 0.03 0.07 0.06 0.11
P —c 022 0{26 0.00 0.01 0.04 0,07
PH-D 0.79 0.30 0.37 0.37 0.52 - 0.36
PC—D 0.59% 0.27 0.50 0,32 0.66 0,25

table - 3 - Mean squares and the results of the runs test P(usu')

of the four residuals; for each value of e« averaged over
10 experiments.,

The results fér the approximated autoéorrelationfunctions, summed over
10'exberiments are added in appendix F1-F3., The scaling factor of the-
se autocorrelationfunction equals the mean squares of the residuals,

that are listed above. In the plots in appendix F also the suandard de~

viatlon-array is plotted.

Some remarks on the results:
- In the optimal case the autocorrelation function of the residual of
human operator - model is a delta-function,

A tendency towazds such a function can be seen iﬁ the drawings
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in appendix ¥, slthough the values for small k are eud—of the reliabi~

lity interval. This appears in all three cases., However there are some

. differences for different values of & : for &K= 0,8 only for k&4 the
values of Ay(k) are beyond the 95%-reliability interval., For &« = 0.6

this holds for k£ 7. For «= 0.0 the model doesn't seem to fit very well,
according to this picture.

Moreover ome has to take into account that because of the fact that 0\
is not purely Gaussian distributed, the S5%-reliability interval is lar-

ger than the assumed factor 1,645 multiplied by & . (see eq. 27 pg.16)

The residual of human operator - optimal strategy can tell us something
about the learning effects of the subj.ect. A tendency towards making '
choices in the optimal direction causes a decreasing of '\‘/(k) for in-
creasing k. A relatively small decrease of '\y(k) can be seen in all pic-
tures. The decrease Vin case of <= 0,8 for k> 50 is thel clearest one,
elthough it is not very convincing. ‘

Anyway, evaluation of this residual with window technics is a better

strategy for getting knowledge about the learning effectis.

For the runs test there 1s chosen a level of significance $= 0.05,

If P( ugu' ) is smaller than 0.05, we therefore reject the hypothesis
that the residual can be regarded as sampled white noise, According to
table -3~ this happens for the residuals H-M and H-C if &= 0.6 and

o = 0,8, ,

These results are in contradictien with the results of the autocorrela-
tion function. In that test the results for o= 0.0 were worse than

for « = 0.6 and &= 0,8, k

One reason for this difference is the fact that the runs test is taken
to bé a one~sided test. There is assumed that the more runs in an array,
the 'mo_re chance that the array is sampled white noise, In principle this
is no{ correct: very many runs in an array indicates -the existence of
relati{rely many high frequenciés in the array.

The appe&irance of a few experiments with more than 50 runs in a resi-
dual array of 100 samples ( and therefore P(ugu')>»0,5) can influence
the results of' tlr‘xe‘runs test essentially. Especially in case of « = 0.0
(the demand~-array has relatively more high frequencies in its specirum
then) this influence is not negligable,

For the residual H-D there are even situations where the number of runs



is higher than the double-sided critical value: P( ugu' )> 0.95.
This happens four times when X = 0,0,
In case of o= 0.6 and «= 0,8 introduction of a double sided runs test

will have influence on the results for the residuals H-D and (¢-D,

If we consider the remark above, we can conclude that the values of
Ay(k) for small k affect the results of the runs test essentizlly with
respect to the comparison of the human operator and his medel., The re-
sults of this test only- lead to the conclusion that the model ié not

correct.



CONCLUSIONS

The purpose of this project was to determine whether a simple zero or-
der model could be a right description of the behaviour of a human o-
perator in a gpecific control- c.q. prediction-task, To attain this
purpose, a computer program is written that is able to test such a model,
and to estimate its parameters in an experimental situation,

30 Experiments have been run in three groups ,0f ten, and from the re-

. . ALt .
sults of these experiments we can draw the . iext conclusions:

- The zero order model can be a satisfying model to describe the main

lines of the behaviour of the human operator,

~ Extension of the model to a first- or maybe a second-order model pro-~

bably can improve the description of the behaviour.
— /}1(JI-* ) A
- The profit rate as presented to the human operator in the test doss

not function very well as a feedback to the operator. It should not
be presented in a cumulstive form and it has to be considered wnet-

her it should be related toc a maximum achievable profit rate.

- The human operator can, within fair limits, approximste the autore-~
gressive parameter of the demand function. Only for o/; 0.0 the es-
timaticr differs from the real vaLue. Thls can have been affected by
the previous remark.

A
. : Fri
Based on these remarks the aext reccmmendations can be stated:
- Reconsidering the presentation of some profit rate,
- Changing fhe program in such a way that it is capablé to apply the
SATER-package to the experimental data,

~ Applying an order-test to this data.
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APPENDIX A : THE RUNS TEST, DETERMINATICN OF P( ULU' ).

For determining P( ugu' ) we will first svaluate P( u=u' ).

A distinction can be made between two possible situations:
a) u' is even, -

b) u' is odd.

In case a) the number of positive runs equals the number of negative
runs. In case b), on the other hand, these numbers differ. _

Let's call the number of positive runs e+, the number of negative runs
e . e +e_=ul i

: o . ; . .th
Let r+j be the number of elements with sign + in the j run of this

4

- , L ] . . ! .th = :
kind, and r 3 the number of elements with sign - in the j run of this
kind.

'a) u' is even —> ' = 2 k, with k€. :

The first element v, of the array, together with the numbers .

T r r orere s L completely determine the array.

+1,.I‘+2,..., -1

+k’ -k

Let v1 =i

k
The number of sequences that conform to _S:r . = m equals ;
S ' k-1

(m—1)
for: there are m characters of the same kind; these have to be sepa-
rzted into k parts. In other words: there are k-1 slashes that have

. e i m-1
to be distributed over m-1 locaticns; so there are (.

< k-1) possibili-

ties. ]
For the same reason the number of sequences that conform to

k :
n-1
r ., = 1n equals .
;;1 -3. 1 (g1
As follows the number of possible arrangements in the situation V=%

m=1 n~1
is (1) Gq)e

The same story holds for the case v, = =5 80 the total number of

possible arrangements is
: : 1 =
e e

k=1’ Vw1
: : m+n
The number of all possible arrangements is ( s
» Rty
These results lead to the conclusion that P( u=2k ) = m+n"
{5
m



b) u' is 0dd ———>

Let v,

e S B
= 43

The number of seguences

The number of seguences

Therefore ithe number o

Let v k

1

e
+

~then =

.
’

The number of sequences

The number of sequences

Therefore the number of

These results lead to the

P( u

2k ~1)

Substituting k=1 in this

Out of a) and b) and the res

conclude:
P( ugu')
with £ = 2 (™1
u k-1
end | £ = KE::) (;:

N
and e_ = A
X
3 B, 8 m-1
that conform to Z-r . =m equals (, .).
g=t 4 b _ k-1
LEX n-1
that conferm to j=1r-j = n equals (k-2)'
f possibie arrangements is (m—1\ (n—1§
F = * k=1’ ‘k-2’°
-1 and e_ =k, ~
k=1 ”
that conform to #.. =@ egeals € ).
j=1 +J k-2
5 1
that coanform to jg;r_j = n equals (;:T)
ogsible arrangements is (m—1) (n-1)
ol 8 1€ arrx & 11 15 k-2 k—1 .
conclusion that:
m-1 n-1 m-1 n-1
AL e e VRO
s (17)

n
formula gives P( u=1 ) = 0.

ults of equations (16) and (17), we now can

u' :
2 ¢

m+ny =1
(e ) 2Ty (18)
n-1,. , h Ry
k—1) For o= 2 ik, kelN
1 ‘m=1 n-1
p)ot (o o) y) forw=2k -1, kel
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APPENDIX B1 : FLOW CHARTS OF THE SUBRCUTINES.

|

(Subroutine INVOV1]
l "
Initialize all var-
iables and parameters

run an
experiment?

Evaluate the mean
squares of the four
residuals

Change values of para- l
meters N,LABDA,P1,P2, Evaluate the autoccor.

P3,P4 on demand functions of the resH
[ ' duals and store them

Enter ALFA ‘ in AUT(I,1-4)
Print the demand in Evaluate .the results
period 0,V01,on of the runs test
screen l

| Write the results on
Enter inventory, screen
Return next demand, l
Return profit-rate

Print the results on
l i the lineprinter
Evaluate on demand
modelparameters >— |
vy | p
Evaluate BO out of
P-parameters and
LABDA

l

Bvaluate the opti-
mal controller XC,
and the model XM.




~ WP

(éuhroutine INVOVZ)

plot

~

any results?

Ask which results

System-arrays/
Autocorrel.functions

should be plotted

plot
system-array

Scale the arrays
with PLOS

-

~

Plot axes for the
system~arrays with
PLOA

Plot system-~arrays on
L _demand with _PLO

functions?

Plot the axes for
1the autocor,funct.
with PLAX

l

Plot autocor,funct,
on demand with PLA

[ =,

Y

>,

RETURN



(Subroutine INVOV3)

= B3

Tell it to
the operator

‘YY

Open old files
NAUT,.DAT and
NVAR.DAT

l

Update NT, the number

of experiments with

given ALFA, 1st re-
cord af NAUT

!

In file NAUT:

£dd AUT(I,J) to the

summed autoccer.funct.

for the four residu-

sls J=1,4.

AUT(1I,5), the devia-

tion, remains unchan-
ged

l

Update NTOT, the to-
tal number of exp.,,
in the 1st record of
NVAR.

Write BO in NVAR.

N7

STOP

Write ALFA in
the next empty
record of NVAR

l

Write in the next re-
cord of NVAR: A,BO,B,
100xW, 100x%M, 100xWC,

SHM,SHC,SHD,SCD,P

H-M?
P P PC-D'

H-C’ H-D'

1 ‘
‘J47C1ose the filegj

=
<

5

o yo
4nt the re

ults of all e
perim.?

v

RETURN



('subroutine INVOV4 )
|

<

Tl

¥ <

Ask for which ALFA tle
results should be
evaluated

I

Open the file NVAR
and the concerning fi
le NAUTC/NAUT6/NAUTS

J

Read NTOT in
file NVAR

Read the variables in

NVAR for the given

ALFA. ,

Sum them in PT(J),
j=1’14'

I

Construct an array of
mean values of the 14
varisbles: PT(J)

|

Construct an array of

standard deviations

of the variables:
PS(J)

|

Construct out of the
summed sutccor,funct,
in HAUT a matrix of
mean auvtocor,funct.
and their stand.dev.
AUD(I,d), J=1,5.

|

Write the results of
the variables on the
screen

|

Write autocor.funct-
ions on screen, if

wanted.

krint the variables

Print the autocor,
functions if wanted]

do you
vant resultis
otted?

LY

)

Plot a pair of
labeled axes with

PLAX

T
|

Plot autocor.func-
tion(s) and deviation
with PLA

.

Y

results
for other AL-
FA?

RETURN




APPENDIX B2

PECIFICATICONS OF SUBROUTINES AND FUNCTIONS.

INVOV?

INVOV2

INVOV3

INVOV4

AUTO(XAU)

OVER(K1,K2)

Subroutine that runs, on demand, an experiment and re-
turns the results on screen or/and on lineprinter.

To start the experiment one has to enter values for the
different parameters LABDA,P1,P2,P3,P4,N or leave them
uncnanged.'The operator has to type the value of ALFA
and to start the Gaussian noise generator.

INVOV1 calls the subroutines AUTO, RUNS and the func-
tions SRAN, GAUSSN, PROB, COVER,

This subroutine plots the results of one experiment:
system-arrays in one or in separate pictures, and/or
the autocorrelationfunction(s) of the residuals, also
in one or in separate pictures.

INVOV2 calls the subroutines PLAX, PLA, PLOA, PLOS,
PLO, and the plotting library.

Subroutine that checks and asks if the results of one
experiment can and should be stored. If the parameters

have the right values, the results are stored on demand.

Subroutine that evaluates the fotal results of all ex-
periments, The results are written, printed and/or plot-
ted. The evaluation is done for the value of ALFA that
the operator has entered.

Cn demand the resulis éan be displayed, printed and/or
plotted. - |
INVOV4 calls the subroutines PLAX, PLA and the plotting

library,

Subroutine that determines an approximation of the nor-

~mallzed autocorrelationfunction of the array XAU of

length N; this function is returned in array PSI,
P e
PSI(I) conforms tc\rxx(I qER.

K1

Real function, that determines the expression (K2 )

If K1< K2, OVER = O,
If X2 = 0, OVER



RUNS(AR)

PROB{P)

GAUSSN(RAN)
RANDS (RAN)
SRAN(IX)

PLAX(NT)

PLA(NR)

PLOA

3

S BE -

Subroutine that applies the rums test to the array AR,.
and returns a vector PRS(5) that contains:

PRS(1) : P(ugu')

PRS(2) : number of samples above the median,

PRS(3) : number of samples beneath the median.

PRS(4) : number of runs u',

PRS(5) : mean valus of the array-samples.

The number of + and - samples are calculated because the
value of the median sample can appear nmore than once,

s0 e will not equal e_.

RUNS calls the function OVER.

Real function that determines BO out of the relation

P(€<¢BO ) = P, given a normal distribution of the noise

g .

Three real functions that together generate Gaussian

noise. Calling GAUSSN{(RAN) is enough to genefate nor~

. mally distributed noise with zero mean and unit vari-

oo

ance.
The generator has to be initialized by the statement

RAN=SRAN(IX)}, where IX can be.chosen arbitrary

Subroutine thet plets a2 pair of labeled axes for plot-
ting the autocorrelation-characteristics.
NT is the number of experiments runned, and is plotted

in the heading. Also is plotied the array of standard de-

~viations of the approximated autocorrelationfunctions.

Subroutine that plots the autocorrelationfunction of
the residuai with number NR:

NR = 1 : residual H-M,

NR = 2 : residual H-C,
NR = 3 ¢ residual H-D,
NR = ¢ residual C-D,

.

This subroutine plots a pair of labeled axes for the

plot of the system-arrays.



-PLOS

PLO(NS)

This

- B7

subroutine scales the four system-arrays X, XH,

Xc, Vv, for plotting.

For this sceling the four system~arrays ere arranged

in omns array. This array is scaled and afterwards the

four arrays are separated again,

Subroutine

NS = 1
NS = 2
TS5 = 3
NS = 4

that
array
array
array

array

plots the system~array with number NS:
(1),
XM(I),
Ic(I1),
v(I).



AAPPENDIX C

s

¢ LIST OF SYMBCLS.

A ¢
A(T),a(i):
«, ALFA

AUT(I,J) :

AUT(I,5)

B E
B(I),b(i):
BO, b, @
A, LAEDA :
N :
NNEG :
NPOS :
P1

P2 :
P3 s
P4 $
PRE(I)
PRU(I,J) :
PSICL) - s
SHM s
SHC :
SHD :
SCD :
Ty Rt :
VO,vO g
VO‘I,V01 t

V(I),v(i):
W

WM :
WC e
X(I),x(i):
XM(I) :
Xc(I)

modelparameter; multiplicator of V(I-1).

sale in period I.

autoregressive parameter of the demand.

- stored autocorrelationfunction of the residual XHM (J=1),
XHC (J=2), XHD (J=3), XCD (J=4), ]

- stored sum of auntocorrelationfunctions.

stored standard deviation of the autocorrelationfunction

based on one experiment. .

constant parameter in the model of the human operator.

purchase order at the end of period I.

extra purchase, determined by the optimal controller.

decay parameter.

number of peribds..

number of samples in an array with value beneath the median.

number of samples in an array with value above the median.

price of sale of the product.

price of purchase.

price of storage.

price of "loss of goodwill",

array with results of the runs test applied on one residual,

matrix with results of the runs test eof the four residuals,

autocorrelationfunction with shifted number of samples is I-1.

mean square of XHM(I).

mean square of XHC(I).

mean squaré of XHD(I).

mean square of XCD(I).

number of runs in a residual-array.

the D.C., level of the demand.

the demand in period O.

demand in period I.

profit rate for the human operator

profit rate for the model of the human opefator.

profit rate for the optimal controller,

invgntory at the beginning of period I.

array of the model of the human operator.

array of the optimal controller,




'XHM(I) : residual of human operator - model of the human operator.
XHC(I) : residual of human operator - optimal controliler.

XHD(I) : 7residual of human operator - actual demand.-

XCD(I) : residual of optimal controller - actual demand.

S(I) : array of sampled white noise, M= 0, O = 1,

Y(I),y(i): inventory at the end of period I.



SR, =

APPENDIX D : INSTRUCTIONS FQR THE EXPERIMENTAL SUBJECT,

TEST INVENTORY CCNTROL.,

The problem is as follows:

You are a shopowner in a store, and you are selling one product: pro-
duct X. You are asked to give the inventory for product X as you would
choogse it for 100 successive periods, Note that you are asked to gi#e
the inventory and noft the purchase,

After chooging the inventory the machine in return will give the demand
of the customers for product X in this period. Note that the machine
returns the demand, and not the salsa.

Record will be kept of your total profit rate, This amount appears in
the last column at the end of every period. In this amount will be pro-
cessed: the sale, the purchase, storage costs andrbosts of loss of good~

will when the inventory is too small,

On the screen there appears:

in the first column: the number of the period,

in the second cclumn: the invenitory, to be typed in by you,

in the third column: the demand of the customers in this period,

in the fourth column: the profit rate.

For typing the numbers you can use the keys on the upper row of the key-
board., After entering the inventory you have to push the RETURN - key.

Corrections can be made by using the RUB - key.

On the screen the text can appear:

"YOUR PURCHASE IS NEGATIVE, ENTER A NEW ONE",
. This means that the entered inventory is smalier than the inventory re-
maining from the previous day., This situation is not permitted, so you

will have to enter a new choice.
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B
HUMAN OPERATOR - MODEL
HUMAN OPER. - OPTIMAL STRATEGY
HUM. OPER. — ACTUAL DEMAND

l
i

AUTOCORRELATIONFUNCTION OF THE RESIDUALS

1
i

|
I

1. 08
ALFA = DB.D - = OPTIM. STRAT. - ACTUAL BDEMAND
NUMBER OF EXPERIMENTS = 18 . = DEVIATION
B. 7S -
1
\
@.58 1

B.251

@. 25+

1.00 +

SHIFTED NUMBER OF SAMPLES
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APPENDIX F : AUTOCORRELATIONFUNCTIONS OF THE
RESIDUALS, SUMMED OVER 10 EXPERIMENTS.

ALFA = 0.0
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B.75 *"
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AUTOCORRELATIONFUNCTION OF THE RESIDUALS

HUMAN OPERATOR - MODEL

HUMAN OPER. - OPTIMAL STRATEGY
HUM. OPER. - ACTUAL DEMAND
OPTIM. STRAT. — ACTUAL DEMAND

1
It

I
]

ALFA = B.6 e

i

NUMBER OF EXPERIMENTS = 18 . DEVIATION

SHIFTED NUMBER OF SAMPLES



= 5
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HUMAN OPERATOR - MODEL

HUMAN OPER. - OPTIMAL STRATEGY

HUM. OPER. — ACTUAL DEMAND
ALFA = 0.8 = OPTIM. STRAT. — ACTUAL DEMAND

NUMBER OF EXPERIMENTS = 18 - DEVIATION
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AUTOCORRELATIONFUNCTION OF THE RESIDBDUALS
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