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Chapter 1 
Constitutive laws 

1.1 Introduction 

In this chapter three constitutive models will be analyzed. The models are in literature 
given by strain-energy functions. In the first section the relation between the strain-energy 
function and the 2nd Piola-Kirchhoff stress tensor is given. With this relation the 2nd 
Piola-Kirchhoff stress tensors for the three models are derived. 

In the next section two simple test problems, uniaxial stretch and simple shear are worked 
out using the three models. In the last section the plane stress situation is given for each 
model. 

1.2 The strain-energy function 

With the second law of thermodynamics, it is possible to derive that the 2nd Piola-Kirchhoff 
stress tensor can be related to the free energy. The stress-deformation relation is simply: 

where: 
P = 2nd Piola-Kirchhoff stress tensor 
S = 2nd Piola-Kirchhoff stress tensor based on the deviatoric stress 
po= mass density 
$= free energy 
&=Green Lagrange strain tensor 
C=Cauchy Green strain tensor 

W=po II, is an elastic potential energy function (also called the strain-energy function). 
The stress-deformation relation becomes: 
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In the next subsections these relations are used to determine the 2nd Piola Kirchoff stress 
tensors from three different strain energy functions. 

1.2.1 Strain-energy function by Mow/Holmes 
The strain-energy function used by Mow/Holmes [i] to  describe the non linear isotropic 
characteristics of soft gels and hydrated tissues in uitrafiitration yields: 

exp (a1 (Ji - 3) + a 2  (J2 - 3)) 
J3p 

po $(e) = W(C) = Qo 

where: 
$ = free-energy 
W = strain-energy function 
po = mass density 
a o ,  al,  CY^= positive constants 

J1, J2 ,  J3 = three principal invariants of the Cauchy Green strain tensor 
p = Q1 + 2a2 

Using equation 1.2 it is possible to determine the second Piola-Kirchhoff stress tensor. 
(Appendix A) 

1.2.2 Strain-energy function by Bovendeerd 
Bovendeerd [2] uses the following strain-energy function to describe the mechanical be- 
haviour of the passive (heart) myocardium (transversely isotropic with respect to  the ë'3- 

direction). 

W(E) = C [eXp (a11,?32 + a2IIE + a3EB2 + a4(E312 + E322)) - 11 (1.5) 

where: 
c, al, a2, a3, a4 = material parameters 
IE = Ell + E22 + E33 = Ji 

IIE = E:2 + E23 + Ei1 - E11E22 - E22E33 -E33Ell = -J2 

JI ,  J2 = principal invariants of the Green-Lagrange strain tensor 

Because of the incompressibility of the cardiac tissue, the scalar IIIE = det(E) is left out 
of this strain-energy function. 

3 



Equation 1.2 supposes that W is symmetrized in the variables E, and Eji. If this is not 
the case, the symmetry of S, can be maintained by writing [3]: 

Assuming that al = 2 a2 = a3 = a [2] and using equation 1.6 we obtain: (appendix A) 

Ell E12 E13 0 E13 

S = 2 a W ( E )  [ E21 E22 E23 ] +a4 W(E) [ 
O a.] (1.7) 

E31 E32 2 3 3 3  E31 E32 

1.2.3 Strain-energy function by Huyghe 
To describe the passive behaviour of myocardial tissue (orthotropic), Huyghe [4] specified 
the strain-energy function W by: 

W(E) = c, {exp (a,jEll) - a,jE11 + exp (acfE22) - acfE22 + exp  (afE33) - a j E 3  
+ [ezp (ab-&) - a&1] [exp (ab&) - aJ3221 

+ [exp (ab-&) - abEii] [exp (abE33) - abE331 

+ [exp (abE22) - abE22.l [exp (abE33) - 4 3 3 3 1  - 6) 
+ cs{exp [as(E12E12 + E13E13 + E23E23)] - 1) (1.8) 

where: 

c, = initial normal stiffness 
c, = initial shear stiffness 
act = exponential factor in cross-fiber stiffness 
af = exponential factor in fiber stiffness 
ab = exponential factor in bi-axial stiffness 
as = exponential factor in shear stiffness 

The above strain-energy function assumes implicitely that the stress-strain relationships 
in direction 1 (transmural) and direction 2 ( plane cross-fiber direction) are the same. 

Using equation 1.6 we obtain: (appendix A) 

s.. 22 - - c,{a,jEii - a,j + ab exp (a&i + Ejj) - abexp (abEjj)  i = 1 
-ab2Ejjexp (abEii) + ab2Ejj)  i = 2  j = 1 , 3  

i = 3  j = 1 , 2  

i , j  = 1,2,3 

j = 2,3 

(1.9) 

Sij = i c S { 2 a s E i j e ~ p  (as(Ei2Ei2 + E13E13 + E23E23))) 

i # j  
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1.3 Simple test problems 

Our aim is to  implement the non-linear elastic constitutive equations in the Finite Element 
Package DIANA [5]. If we want to test these implemented equations it is necessary to 
compare the output of DIANA with analytical solutions. Therefore the analytical solutions 
for two different (simple) test problems are derived: uniaxial stretch and simple shear. 

1.3.1 Uniaxial stretch and compression 

Consider a uniform compression or extension of the block in figure 1.1, in the &direction. 
It’s length changes from 130 to 13? and its cross-section changes from A0 to A. 

1 1 

Figure 1.1: deformation of a block 

The deformation gradient tensor F depends on the material symmetry: 

* isotropic/ transversely isotropic ë‘3-direction 

A 2  o o 
F = (  o o A Z  o A1 o )  

* orthotropic 

A1 o o 
F = (  o o A2 o A3 o )  

A2 = (1.10) 

(1.11) 
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1. Uniaxial stretch/compression in the model of Mow/Holmes 

The equation for the 2nd Piola-Kirchhoff tensor has been derived in section 1.2.1 (equation 
1.4). 

p = 2 w {(a1 + ( Y 4  - - J2 P) z + (-CY2 + - Jl P)C - - P c21 
J3 J3 J3 

The Cauchy-Green strain tensor C for isotropic uniaxial stretch/compression yields: 

C = F . F =  o A; o i:: h:) 
where: 
J1 = tr(C) = AS + 2 A i  
~2 = f { (tr (c)')- tr(C2) >= 2 ASA; + A$ 
J3 = det( C )= ASAi 

substitution of this equation in equation 1.4 gives: 

Pi1 = 2poW[a1+ a2AS + a2A;  - -1 P 

P22 = 2poW[Cu1+ ads + a2x2 - -3 P 

P33 = 2poW[CY1+ 2a2A2 - -1 P 

A; 

A; 

AS 

where: 

(1.12) 

(1.13) 

(1.14) 

It is difficult to  interpret the second Piola-Kirchoff stress tensor. Therefore the first Piola- 
Kirchhoff stress tensor (7) is used. 7 is directly related to the force on an undeformed 
surface. 

7 = P . F  (1.15) 

In this case: 

(1.16) 
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In the case of uni-axial stretch/compression in &-direction, TI1 and T22 have to  be zero. 

The relevant solution of this equation yields: 

Substituting A i  in Tm gives: 

(1.18) 

(1.19) 

In the next figure T33 is given as a €unction of XI: 

Figure 1.2: T 33 as a function of XI,  where a0=1, a1=0.3 and a2=0.2. 

2, uni-axial stretch/compression in the model of Bovendeerd 

The equation for the 2nd Piola-Kirchhoff stress tensor has been derived in section 1.2.2: 

Ell E12 E13 0 E13 

S = 2aW(E) [ E21 E22 E23 ] t a4W(E)  [ 0 
E31 E32 2 3 3 3  E31 E32 
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The Green-Lagrange strain tensor E for transversely isotropic uni-axial stretch/compression 
yields: 

o AS-1 O )  
E = - ( F . P - T ) = L (  2 

1 AZ,--1 o 
2 o  o AZ,-1 o 

Substituting equation 1.20 in equation 1.7: 

si1 = a W(E)(AZ, - 1) 
s 2 2  = a W(E)(AZ, - 1) 
ss = a W(€)(AS - i) 

where: 

In this case TI1 and T 2 2  have to be zero. 

The only solution for this equation is A2 = 1. 

T33 = A,S, = a W(€) (A; - 1) 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

Figure 1.3: T33 as a function of A l ,  a=3 and c=0.5 [kPa] 
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3. Uniaxial stretch/compression in the model of Huyghe 

In section 1.2.3 the 2nd Piola-Kirchhoff stress tensor for the model of Huyghe has been 
derived. 

S.. 22 - - c,{a,~Eii - a,f + ab exp (ab& + Ejj) - abezp (abEjj) i = 1 j = 2,3 
-ab2Ejjexp (ab&) + ab2Ejj) i = 2  j = 1 , 3  

i = 3  j = 1 , 2  (1.25) 

i , j  = 1,2,3 Sij = $Cs{2asEijexp (as(E12E12 + E13E13 + E23E23))) 

;#.i 
For orthotropic uni-axial stretch/compression the Green-Lagrange strain tensor yields: 

o A ; - 1  O )  
&=I( o xi-1 o 

A S - 1  o 

2 o  
(1.26) 

Combining these equations and equation 1.15 gives: 

- abesp (abS(X: 1 - i)) + u ; p :  1 - 1)) (1.27) 
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In the case of uni-axial stretch TI1 and T22 have to be zero. 

Substituting A: and A i  in 7'33 yields: 

Figure 1.4: T 3 3  as a function of A3 where cn=O.O1 [kPa], acf=lO, ab=12. 

(1.30) 

1.3.2 Simple shear 
The top surface of the block in figure 1.1 is subjected to a translation in the &direction 
(u3), while the bottom surface is fixed. The deformation gradient matrix F for this proces is: 

* isotropic/ transversely isotropic/ orthotropic 

1 0 0  
F =  ( o  1 o )  

7 0 1  

1. Simple shear in the model of Mow/Holmes 

In the case of simple shear the Cauchy-Green strain tensor yields: 

(1.31) 

(1.32) 
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Using equation 1.4, 1.15 and 1.32 we obtain: 

where: 

These functions are shown in the next figure: 

Y 

(1.33) 

(1.34) 

Figure 1.5: T22, TI3 and T31 as a function of 7 where ao=1 , a1=0.3 and a2=0.2. 

2. Simple shear in the model of Bovendeerd 

In the case of simple shear the Green-Lagrange strain tensor yields: 

(1.35) 

(1.36) 

11 



r35 

(1.37) 

Y 

Figure 1.6: Til, T33, T13 and T31 as a function of y where a=3, c=0.5 [kPa] and a4=0.5. 

3. Simple shear in the model of Huyghe 

Using equation 1.9 , 1.15 and 1.35 it is possible to derive: 
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1.3.3 Summary 

Uni- 

axial 

tensile 

test 

Simple 

shear 

Holmes/Mow 

b=al + 2a2 

O 

o 

2poW[(a1 + 4 7 1  

where: 

w = ZeXP (-Y2(a1 + az)) 

Bovendeerd 

N.B. AZ = 1 

a W 7 2  

~ 

O 

where: 

w = c[eXp $yZ(ayZ + 2a + u4) - i] 

Huyghe 

N.B. X: = 1 
X22 = 1 

In uniaxial compression the models of Bovendeerd and Huyghe predict TI1 = O for 
A1 ( A,) = O. In practice TI1 has to go to minus infinity as A1 ( A,) approaches zero. 

It is also remarkable that in the simple shear situation the model of Mow/Holmes 
(T11, T 3  = O ; T 2 z  # O) predicts the opposite of the models of Bovendeerd and Huyghe 
(T11, T33 # O ; T 2 2  = O). In the simple shear situation, TI1 can’t be zero. This can be 
made clearly from the following figure: 
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/ / 1; / / 

Figure 1.8: deformation block in simple shear 

The upper plane moves to the right, but stays at the same height 11 > 110. To achieve 
this there must be a force on the block in 11-direction. The model of Mow/Holmes must 
therefore be distrusted in shear stuations. 

1.4 Plane stress situation 
We want to use a membrane element in DIANA. The behaviour of this element can be 
described in a plane stress situation. To compare the DIANA-results for this element with 
analytical results, the equations of the 2nd Piola-Kirchhoff stress tensor have to be rewrit- 
ten to the plane-stress situation. In the next subsections this will be done for the models 
of Mow/Holmes, Bovendeerd and Huyghe. 

In the plane-stress situation it is assumed that the 13-, 23- and 33-components of the stress 
tensor are zero. With the equation P(S), = 0, it is sometimes possible to express E33(C33) 
as a function of Ell(C11) and E22(C22). Substituting the equation for C33 in Si1 and S22 

yields the 2nd Piola-Kirchhoff stress tensor for the plane- stress situation. 

If it is not possible to express E33 as a function of Ell and E22, E33 is left out of the 
strain-energy function. Because S33 = w, leaving E33 out ensures that S33 = O. From 
the new strain-energy function the 2nd Piola- Kirchhoff stress tensor for plane stress can 
be derived. In the first situation the coefficients of plane-stress can be used in the 3-D 
situation. In the second situation this is not possible. 

1.4.1 Plane stress in the model of Mow/Holmes 
The 2nd Piola-Kirchhoff stress tensor in the model of Mow/Holmes yields: 

In the case of plane stress, C13, c23, P13, P23 and P33 are zero. 

P, = 2p&qa1+ a 2 J 1 -  -P) J2 + ( 4 2  t -PIC33 Jl - 4 3  P = Q 
53 J3 J3 

(1.39) 

(1.40) 
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where: 
Ji = Cii + C 2 2  + C s  
J2 = CiiC22 + C22C33 + CiiC33 - CS2 

J3 = CiiC22C33 - C!2 C s  
p =  Q1+2Q2 

Q exp (al(J1 - 3) + a z ( J 2  - 3)) W(E) = 9 PO 

It is now possible to  express C33 as a function of C11 and C22: 

J3p 

c33 = B (1.41) 

Substituting C s  in equation 1.4, we obtain the 2nd Piola-Kirchhoff stress Pil, P22 and 
Pl2, for plane stress: 

QZCll+ Q2C22 + Ql 

Jl P 
J3 J3 

P12 = 2poW(-aa + -p) c12 - -(C11C12 + C22C12) (1.42) 

1.4.2 
In plane stress the equation for S33 in this model yields: (E139 E23 = O) 

Plane stress in the model of Bovendeerd 

SB = 4aW(E)E33 = o (1.43) 

The only solution is Es=0. This means that in this model plane stress and plane strain 
are the same. In practice this is not very plausible. With S33, E13,E23 and E33 we obtain: 

s = 2uW(E) ( 2  2 )  (1.44) 

Because we left out the Z3-direction in this 2nd Piola-Kirchhoff stress tensor, this equation 
is now isotropic. (&,&-plane was isotropic) 

1.4.3 Plane stress in the model of Huyghe 
The equation for S s  yields: 
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This equation can be rewritten to  the basic form: 

Solving this equation means that ayb + cyd = e, where b and d are unknown. This can 
only be done numerically. Therefore the second method is used. Leaving E33, E13 and E23 

out of the strain-energy function gives: 

The elements of the 2nd Piola-Kirchhoff stress tensor for plane stress are: 

1 aw aw 
2 aEl2 dE21 

s12  = s 2 1  = - (- + -) = csasE1ze~p (as~12E12) 

17 
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Appendix A 

In this appendix the derivation of the 2nd Piola-Kirchhoff stress tensor for three different 
strain-energy functions will be made. 

A.l  Mow/Holmes 
Mow and Holmes use the following strain-energy function: 

exp (a1 ( A -  3) + QZ (J2 - 3)) 
J3p 

po$(C) = W(C) = Qo 

where: 
$ = free energy 
po = mass density 
a o ,  al, az= positive constants 
p = a 1  + 2% 
J1, J2, J 3  = three principal invariants of the Cauchy Green strain tensor 

The 2nd Piola-Kirchhoff stress tensor can be related to the strain-energy function: 

The derivates of the invariants to the Cauchy-Green strain tensor have the following form: 
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It is now possible to determine the 2nd Piola-Kirchhoff stress for the model of Mow and 
Holmes: 

P = 2{ 

-p> z t ( - a 2  t -Plc Jl - - J3 P C2} 
J3 J3 

p = 2 w ( ( a 1  t a 2 J 1 -  

A.2 Bovendeerd 
Bovendeerd uses the strain-energy function: 

1 2  12 
W(E) = c [ e s p  (a l   IE^ t a 2  IIE t a3 I,g + a4 I IE ) - 11 

To derive the 2nd Piola-Kirchhoff stress tensor the following relation is used: 

1 aw 

The derivates of the invariants to the Cauchy-Green strain tensor are: 
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(A.lO) 

(A.ll)  

Assuming that a1 = 2 a2 = a3 = a, it is now possible to derive the 2nd Piola-Kirchhoff 
stress tensor: 

(A.12) 

Or in matrix notation: 

( Ell E12 " 3 )  ( 0 2;) (A.13) 
5 =2aW(E) E21 E22 E23 + u ~ W ( E )  O 

E31 E32 E33 E31 E32 0 

A.3 Huyghe 

Huyghe specified the strain-energy function by: 

This equation can be written as: 
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W(&) = 
+ 
+ 
+ 
i- 

Using this equation and equation A.6 we obtain: 

s21 = - 1 (- dW + -) dW = si2 
2 dE21 dE12 

(A.19) 

(A.22) 

(A.23) 
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This can be written as: 
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