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Abstract 

In this report' the radiation from the open end of a parallel plane waveguide 

with slots at both edges is analysed, with the help of Keller's geometrical 

theory of diffraction. Comparison of the results with the known solution for 

the same problem without slots shows that the effect of the slots with 

respect to amplitude and fase of the radiation, is significant for the 

amplitude distribution only. 

Subsequently special attention is given to the problem of two dimensional 

diffraction at an edge, when the latter is situated on the shadow boundary 

of the incident radiation. This situation presents itself as a sub-problem 

in the above mentioned parallel plane waveguide diffraction problem. 

A modification of Sommerfelds classical method makes it possible to attack 

this problem. The first correction term in the half plane diffraction 

coefficient is found. 
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I. Radiation from the slotted open end of a parallel plane waveguide 

In 1968 Yee, Felsen and Keller applied Keller's geometrical theory of 

diffraction to the problem of reflection in an open-ended parallel-plane 

waveguide [1]. This paper is discussed and criticized in a report by 

Steures [2]. 

To analyse the problem of radiation from a slotted open-ended parallel-plane 

waveguide we use the same method. The configuration consists of (fig. 1) the 

perfectly conducting half planes y ; a, Z < 0 (with edge y ; a, Z ; 0; 

indicated A) and y ; -a, z < 0 (edge y ; -a, Z ; 0; indicated C). The slots 

consist of the planes y ; a + h, -d < Z < 0 (edge y ; a+h, Z ; 0; indic. B), 

a < y < a + h, z ; -d and y ; - a - h, -d < Z < 0 (edge y ; -a -h, z ; 0; 

indic. D), -a -h < y < -a, z ; -d. 

y 

p 

I l h 
~ 

A f 
a. EL H~ 

~.p y, l( 

~ 

0 2 

q 

c I th 
D , 

d 

Fig. 1. 

. i i 
Assu~ng plane wave excitation E , H from the left we can write for the 

i y x 
complex field H (adopting a time-factor according to exp(jwt)) 

x 

( 1 ) 

Diffraction at the point A and C thus arises as a consequence of incident 

primary rays in the direction ~ = 0, for which 
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1 • (2 ) 

In the notation of Yee, Felsen, Keller [1]: 8. = 0, ~ . = 1. In the 
1. p1. 

following we use the symbol H for H when it results from diffraction only; 
x 

we use H to indicate effects of diffraction of a reflected wave. 

We consider the following partial effects as sufficient to characterize the 

total radiation, after summation. 

For y > 0: 
i 

a) primary diffraction at edge A as a consequence of the incident wave H , 
x 

giving HA(P,<j», 
p 

b) secundary diffraction at edge B as a consequence of reflection of HA in 
p 

the upper slot, giving ~B (p,<j», 
s 

c) secundary diffraction at edge A as a consequence of reflection of HA in 
p 

.. -A 
the upper slot, g1.v1.ng H (p,<j», 

s 
d) secundary diffraction at edge B 

on edge B, giving HB (p,<j». 

as a consequence of HA impinging directly 
p 

As 
The similar effects for y < 0 are, respectively 

e) 

Further we have to add the contributions 

i) secundary diffraction 
A 

impinging at C as a consequence of H directly on C, 

giving HC(P,<j», 
P 

s 
j) secundary diffraction at A as of 

C 
impinging a consequence H directly on A, 

.. A ( ) 
p 

g1.v1.ng H p,<j> , 
s 

k) secundary diffraction consequence of 
A 

impinging at D as a H directly on D, 

., D ( ) 
p 

g1.v1.ng H p,<j>, 
As 

1) secundary diffraction consequence of 
C 

impinging at B as a H directly on B f 

., B ( ) 
p 

g1.v1.ng H p,<j>. 
Cs 

It is clear that the edges Band D are situated exactly on the shadow boundary 

of He and HA, respectively. This situation constitutes a new basic diffraction 
p p 

problem, that is discussed in part II of this report. 

The ray-optical method is an asymptotic method. This means that free space 

wavelength A should be a fraction of transverse dimensions in order that 

significant results are 

the smallest transverse 

the exact solution. 

to be expected. Yet, results of [1] show that even in case 
A 

dimension h = 3 we have a fairly good agreement with 
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On the other hand we suppose that only dominant mode propagation is possible 

in waveguide and slots. These conditions together means that dimensions and 

frequency should be chosen such that 

4a < A < 3h • (3 ) 

We shall also investigate the radiation in case the outer edges of the slots, 

Band D, are not situated in the plane z = 0, so we put z = -b (fig. 2). 

~~ 
....-------" B 1 

---'------t-', -----+1 ~ 
I I 

-J-L 
I 1° 

: :e 
'-, ----:,D 
I d ~ 
,.. 'I 

Fig. 2. 

For 

and 

o both contributions HD 
As 

of course disappear. 

The primary diffraction at the edges A and C can be expressed with the well­

known non-uniform asymptotic result 

where -j1T/4 
e 

(sec 
2,!21Tk 

-jkp 
A 

e 

8-8 
i --+ 

2 
sec 

8+8. 
--~) 

2 

(4) 

(5) 

The non-uniformity in fact means that (4) and (5) are only significant away 

from the shadow boundaries. 

The analogous result for edge C reads 

C 
H (P ,8) _ D(8,21T) 

p c 

-jkp 
c 

e 
(6 ) 
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Fig. 3. 

3. Reflection in a slot 

From sufficiently large distance an edge can be seen as a magnetic current 

line source, whose magnetic current density distribution K can be written 

(fig. 4): 

K = KI5 (y) 15 (z)x 
a 

(7) 

-The electromagnetic field of K, satisfying 

in every point (p,~,z), p ~ 0 

- -
'I x E = -jW)lH - K 

-
'I x H = jw£E 

-* 
Fig. 4. will be found by putting E -'I x A 

Then it appears that 

-2-* 2-* 
'I A + k A = -K 

on imposing 
-* 

'1.A + jW)lX o. 

Condition (12) implies also 

2 2 
'I X + k X o. 

In view of the behaviour of the fields for p -7 00 the only acceptable 

solution of (11) reads 

A* = C H(2)(kp) ;; 
o 0 

where C at the moment is unknown, but in the following is found as a 

function of the current strength K. 

(8) 

(9) 

(10) 

( 11 ) 

(12) 

(13) 

( 14) 

In the immediate vicinity of the line current (p + 0) we can write (fig. 4) 

K = - lim 11 E. ill, 
p+O 

2n 
lim f -E p~ 
p+O 0 ~ 

(15) 



Now 

with 

* aA 
E = - -- = 
~ ap 

d H~2) (kp) 

dp 

-8-

d H~2)(kP) 
-C --':--­

dp 

The leading term in the small argument expansion of J
1 

(x) and Yl (x) is 

So we find 

J 1 (x) 

Y 1 (x) 

x 
= 2" + ••••..• 

2 
- - + 

1fX 

21f 

} (x -+ 0) 

K = -kC f lim [-p J 1 (kp) + jp Yl (kpl]dp 
o p+o 

or 

K 
21f 

+ C f j ~ d~ = 4jC. 
1f o 

With (19) we arrive at 

We observe 
-* V.A 

* 
~= ax 0, so X ° 

For the field H then follows 

- -* -* 
H = -jwEA - 'IX = -jwEA 

or 
-
H 

For large kp we have the approximation 

-
H~-

WE K ~ 2 e -jkp+ j1f/4 ~ 
4 1fkp 0 

(kp +00) • 

( 16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(23) 

Comparison with (4) and (5) gives us the formal line current equivalence 

4 jf -j1f /4 
K (8) - -D(8,0) -e 

WE 2 (24) 

or 

K (8 ) -j 2 1 
WE 8 

(25 ) 

cos'2 

So we see that 
2· 

K (21f) =~ 
WE 

(26 ) 
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To find the complex amplitude of the reflected wave in the slot, caused by 

the diffraction source represented by (26), we imagine K situated on the wall 

of a half-infinite slot. The origin of the coordinate system is chosen on the 

line source for this occasion (fig. 5). 

--
h II PI>" r 

slot 

z.-d z, at' 

Fig. 5. 

y 

..0 

0 

-

B 
/ Line CUIfr-

<>ouv-ce 
eY1t re?yesen"ti n ~ 

01 <\', \f1"B-C \-1M 
{t.. 

"-:z,o+ 

For a small contour around the line source we can write 

Denoting 

we obtain 

lim ¢ E.di ; -K 
6-;.0 

+ 

Hxlz;o+ 

+ 

EzIY;_<I E I - E H ; E 
Y z;O+ Y X Z 

Eyiz;o- EzIY;+<I 

+ 
; E 

H I 
; H ; E 

Y x - x z z;O 

0+ 
- + 

J (E -E ')dz 
z z 

+<1 + _ 
+ J (Ey-Ey)dY; K 

o -6 

+ E - E 
Y Y 

t <5 (y) i.. <I (y) . 
WE 

(27) 

For this source an expansion in TM-modes as representation of the field in 

the slots is complete. For the upper slot we can write then 

00 

[k (m) (z+d) 1 H(y,z) L A mrr (-d < z < 0) (28) cos h y.cos 
m;O m z 

00 -jk(m)z 

L 
m1T z 

H(y,z) B cos h y · e (z > 0) (29) 
m;Q m 

where 
k (m) ~k2 _ (ffi1T ) 2 

z h 
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As for z=Q we have H 
x 

H+ it follows that 
x 

Also 

A 
m 

cos k(m)d 
z 

B 
m 

00 aH+ + 1 1 
E ----= -

jW€ I j Y jW€ az m=O 

00 

j~E I k(m) 
E A cos Y z m m=O 

With (27) and (30) we arrive at 

k (m) 
z 

mn 
h"Y 

m 0,1,2,3, ..... (30) 

mrr 
B cos -y 

m h 
(31 ) 

sin k(m)d. (32) 
z 

k (m) d + ~ sin 
z J 

k(m)d)]= L <S(y).(33) 
z WE 

nn 
Multiplying left- and righthand member through with cos h" y and integrating 

from y = 0 to Y = h gives 

with 

So we find 

_1_ t, 
WE 

t, 
n 

A 
o 

= 

n 
k(n\ A (-cos 

z n 

{ 1 for n = 

I:. for n > 

. -jkd 
_..L e 

2kh 

0 

0 

k(n)d 1 k(n)d) ....L + '7 sin = 
z J z 2WE 

(34) 

(35) 

With (28) and (35) the complex amplitude of the fundamental wave reflected 

from the end z = -d is found to be 

-jk(z+d) 
= ....L 

4kh e 

-jk(z+zd) 
H(z) I:.A 

o 
e (36) 

The asymptotic expressions for the various partial diffractions now read as 

follows: 

A 
a) Hp - D(6,0) 

-" ----'---A ........ 

(37a) 

Fig. 6a. 
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I~ 

'""" 
-B 

4~h exp (-2jkd) 
exp (-jkp ) 

D(8,0) B 
(37b) 

b) H '" - ;p; s 

Fig. 6b. 

-A 
4~h exp (-2jkd) 

exp(-jkP
A

) 
e) H '" - D(8,211) (37e) ~ ~ s ,;p; A' .... 

Fig. 6e. 

d) HB HA (h .22<.) 11 
exp(-jkP

B
) 

(37d) B~ '" D (8 ':2) As p '2 IPB 
t':.. 

where 

HA (h 311) 311 eX12(-jkh) 
p '2 '" D(2'O) 

vb 
Fig. 6d. 

exp(-jkp ) 
e) H

C 
'" D(8,211) e 

(37e) p IP;;" 
~ 

c!--A • ......... 

Fig. 6e. 

exp (-jkPD) 
f) 

-D 
4~h exp (-2jkd) D(8,211) (37f) 

H '" -s ;p;:; 
~ ./ 

Fig. 6f. 1:>~ 

4~h exp(-2jkd) 
exp(-jkP

C
) 

g) 
-C 

D(8,0) (37g) H '" -s !PC 
c!/ 

~ 

"'" Fig. 6g. 

h) 
D 

~ (h,}) D(8,;") 
exp(-jkP

D
) 

(37h) H '" vPD Cs 

where 

H~(h,}) '" D(~ 2 ) ex12(-jkh) 
.~ 2' 11 III 

1:>"..... Fig. 6h. 
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exp(-jkp ) 
i) 

C A 11 D(8 l1!..) c 
(37i) H '" Hp (2a'2) s '2 

~ ?c/ 
with :"1>.. 

A 11 11 eXI2 (-2jka) 
Hp (2a'2) '" D(2'0) 

/'La Fig. 6i. 

exp(-jkPA) .K: A C 311 11 
(37j) j) H '" Hp (2a'2) D (8 '2) s !PA t with 

HC (2 l1!..) 311 eXI2 (-j 2ka) 
p a'2 '" D (2' 211) 

v'2a Fig. 6j. 

HD A 11 311 
exp (-jkP

D
) 

k) '" '>H P (2a+h, 2) D (8 '2) 
/I5D 

(37k) 
As 

L# with 
A 11 11 eXI2{ -jk (2a+h)} 

Hp (2a+h'2) '" D (2,0) 
ha+h I)" Fig. 6k. 

B '>HC (2a+h 311) 
11 

exp(-jkP
B

) B.A" 
1) H '" D (8 '2) ( 371) 

r~ Cs p '2 IP; 

with 
C 311 311 e!9:2{-jk(2a+h)} 

Hp (2a+h'2) '" D(2,211) 
12a+h Fig. 6l. 

It is a relative simple matter to consider a more general configuration with 

slot-edges Band D situated behind the mouth of the waveguide (fig. 7) • 

_~1_ 

Fig. 7. 
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From fig. 7 can be seen that 

arctan 
b 
h"=a 

Vb
2 

+ h
2 = w 

P B ~ Pso 
+ b cos ~ 

P
D 
~ PDO 

+ b cos ~ 

PA ~ P - a sin ~ 

PBo~ P - (a+h) sin ~ 

Pc ~ P + a sin ~ 

P
DO 

~ P + (a+h) sin ~ 

e ~~+7f 

We obtain then 

-s . 
H ~ - ....l- exp (-jk(2d-b)} D(e,O) 

s 4kh 

s _ 
H -As 

-D . 
H ~ - ....l- exp (-j)d2d-b)} D(e,27f) 

s 4kh 

1 1 
G 1f 

cos" (q>- -+ ex) cos"(~+ 
L_ a) 2 2 

Defining 

{O for b > 0 

L1b = 
1 for b 0 

and 

for P sufficiently 

far from 0, so 

p » a 

we arrive with (5) at 

exp (_jL) 
A ____ =4= 

H -
exp(-jkp + jka sin~) 

P sint."II"21fk ~ 

(38) 

(39) 

(40) 

(41a) 

(41b) 

(41c) 

(41d) 

(42) 

(43 ) 

(44a) 
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-B 0 exp(-j~) 1 
H "" - ~ - exp{ -2jk2d - jkp + jk (a+h) sin ~ + jkb - jkbcos~} (44b) 

s 4kh 0 2.. {;C""7C r-
s~n2.y21fk vp 

-A 0 exp(-j~) 
H "" + ~ ---2-

s 4kh 0 1. ~2 k 
_1_ exp{ -jk2d - jkp + jka sin~} 
/f; S1n

2
. v' "::7TK 

HB "" exp ( - j ~) _1_ ~ :::e!!xp={ __ J",o ko.:w'------"j!!k"'p-'-+-"j k=( ae..+,..,h",)..;;s",i",n:,,:<pL--.....I.;j k~b",c::;o::;s,-,,-,,<p } 

As sinJ, (a+ ~). h1fk rw ;p 2 &k 

exp (-j :!!.) 
H
c ___ .....:!.4_ 1 {ok 

"" - - exp -J p 
P sint. h1fk IP 

- jka sin~} 

(44c) 

(44d) 

(44e) 

o exp (-j ~) 1 
+~ -

4kh '" 
exp{ -jk2d - jkp - jk (a+h) sin ~ + jkb - jkbcos ~} (44f) 

sint. h1fk IP 

-C 
H "" s 

o exp (-j ~) 1 
- ~ - exp { -jk2d - jkp - jka sin~} 

4kh sint. h1fk ;p 
(44g) 

He ~ _ 
s 

A 
H "" + s 

D 
H "" As 

B 
H 

Cs "" 

exp(-j :!!.) 
2 _1_ ~ exp{ -jkw -

sinJ, (a+ ~) • h1fk /W ;p 2 

jkp - jk(a+h)sin </>- jkb COSP}(44h) 

h1fk 

exp(- .:1:!!. ) sin .<P. 
1 _1_ exp{ -2jka 2 2 

- jkp - jka sin ~ } 
1fk cos ~ na IP 

(44i) 

exp(-j:!!.) sin .<P. 
1 _1_ exp{ -2jka 2 2 

+ jka sin ~ } - jkp 
1fk cos ~ na IP 

(44j) 

exp (-j:!!.) sin 1. 
1 _1_ exp{ -2jka - 11 2 2 

jkh - jkp - jk (a+h) sin ~} (44k) -
b 1fk cos ~ 

ha+h ;p 

exp (-j:!!.) o 1. 

+ I1b 
2 s~n 2 1 

_1_ exp{ -2jka jkh - jkp jk (a+h) sin ~} - + 
1fk cos ~ 

ha+h Ip 
(441) 

We find the resulting field H(p,~) in a distant point by summing these 

contributions. Writing this sum as 

H(p,~) = (U + jV) 
exp(-jkp) 

l1fkp 
(45 ) 



where 

u 

~ + --
1Tka 

and 

v 

sin (ka sind» 
. ~ 

s~n 2" 
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1 sin{k(a+h)sin~} ( 
+ 4kh cos kb - kbcos ~ -2kd) 

sin !l. 
2 

+ _1_ sin{k(a+h)sinp} 
sin (kb - kbcos ~ - 2kd) 

+ 

4kh sin !l. 
2 

1 
4kh 

=.s=.i~n~(k~a~s=.in~~~) 1 cos2kd + _¢ 4kh 
sin 

2 

sin(ka sinp) 

sin t 
2 

sin2kd 

1 G 

2/1Tkw sin I, (ex + ~) 
sin {k(a+h)sin~}cos(kw + kbcos~) 

sin .<P. 
. 2 sin (ka 

cos ~ 

211b 
sin~)cos 2ka + ~::;:=== 

l1Tk (2a+h) 

sin .<P. 
2 

cos ~ 
sin{k(a+h)sin~}cos(kh+2ka 

(46) 

sin(ka sinp) 

sin .<P. 

~s=i~n~{~k~(~a~+~hL)~s=in~p~} 
- cos(kb - kbcos~ - 2kd) 
4kh sin ~ 2 

+ sin{k (a+h) sinp} sin (kb _ kbcos ~ _ 2kd) 

4kh sin ~ 

+ sin(ka sinp) 

4kh sin ~ 
cos2kd + 

sin(ka sinp) 

4kh sin ~ 
sin 2kd 

1 G 

2lrrkw sin I,(ex 
sin{k(a+h)sin~}sin(kw + kbcos~) 

+ .IL) 
2 

.'£. sin 2 
~ sin (ka sin~) sin 2ka 

cos't' 

/1Tk(2a+h) 

pin .'£. 
____ ~2 . sin{k(a+h)sin~}sin(kh + 2ka) . 
cos ~ (47) 

5. Numerical results 

Let us define 
def 

U + jV A'exp(jF) (48) 
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and denote A' = A' when b = 0 and ~ = O. From (46) and (47) it is seen that 
o 

Ub=O = 2ka + ~cos 2kd - ~sin 2kd 

~=O 

Vb=O 2ka - ~cos 2kd - ~sin 2kd 

~=O 

2 
V )b=O 

2 2 
8k a + ~ - 4ka sin 2kd 

~=O 

2 
{A' (k)} 

o 

(49 ) 

(50) 

(51 ) 

Now we normalize AI, as defined 

k = k
t 

= ;d )corresponding with 

in (48), with respect 
A 

slot-depth d = 4). 
to AI, computed for 

o 

So our numerical calculations concern the quantities A and F according to 

... /u 2 
+ v2 

A =l"~ + 8k2a2 
t 

F arctan 
V 

U 

as a function of ~, for different values of b, k and d. We choose 

a = 18,7 mm 

h = 3/2 a 

(52) 

and compute the ~-dependence of A and F, keeping d at 19,6 mm and b = 0, 

for k = 75; k = k
t 

= 80 and k = 85. 

Subsequently we investigate the effect of slot-depth by keeping the 

frequency fixed at k = k
t 

30 mm, while still b O. 

80 and calculating A and F for d = 19,6; 25 and 

Finally the effect of b follows from calculation of A and F for k = k
t 

= 80; 

d = 19,6 mm and choosing successively b = 0; ~h; hi 2h. 

The numerical results show that the position b of the outer edges of the slots 

has some influence on the dire.ctivity. With the slots becoming more effective 

(smaller b) it is seen that the radiation far from the main direction weakens. 

A simi·lar, but more significant, effect on the directi"vi ty is found by increasing 

the slot depth d. As the overall level of the radiation is now rising with 

increasing slot depth, the conclusion seems justified that with increasing d 

better adaption of the waveguide to free space is obtained. 

The effect of changing frequency on the amplitude distribution is rather small 

but confirms the expectations. 

To conclude we observe that the presence of the slots appears not to effect 

significantly the fase distribution F(~) of the radiation. 
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II. Diffraction at an edge, situated in a shadow-boundary of the incident 

radiation 

1. Introduction 

In this part II we investigate more closely the diffraction process pictured 

in fig. i. P, Q and R are edges, u
l 

is the primary, incident, wave. u
2 

is 

the wave resulting from diffraction at 

P, u
3 

is the result of u
2 

after passing 

the edge Q. Finally u
4 

is the secundary 

diffracted wave as a result of u
3 

impinging on R. It is clear that R is 

situated in the shadow-boundary of u
3

. 

The qualitative behaviour of lu
3

1 as 

a function of z will be as shown in 

fig. ii. 

This peculiar position of R defines a 

special diffraction problem which is 

the Subject of this part of the report. 

We will try to find a first correction 

to the contributions HB , (expression 
D Cs 

371), and H , (expression 37k) of As 
part I where we simply accounted for 

the special position of R with a 

factor '>. 

t~ 
p~;---------------------
I 

.~ 
ll~~ 

u., 
-<~iSSS II" \\"1 

~3~ .... ___ --, 

U I#' I 
4 Fig. i. 

Fig. ii. 

----2 

--z 

To do this we use an approach presented by Lewis and Boersma [5] and by 

Ahluwalia, Lewis and Boersma [6] to find a uniform asymptotic solution,of 

the basic problem of diffraction by a plane screen. Subsequently a modi­

fication of Sommerfeld's classical function-theoretic method is set up 

leading to the expression for the first correction term in the diffraction 

field. 

In this part II a time-factor exp(-jwt) is understood. 
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We consider a perfectly conducting half-plane y = 0, z > 0 (with edge 0 at 

y = 0, z = 0) and a line source parallel with the edge, at a = r , 6 = 6 
o i 

2 

Fig. iii. 

(fig. iii). This line source can be 

the edge of another perfectly 

conducting half-plane, at which for 

instance primary diffraction takes 

place. 

The distance between line source 

and a point of observation P(o,6) 

we denote by s. 

The wave u emanating from the line source, where [5], [6]: 
o 

m=o 
(jk)-m Z (a,6) 

m 

causes a field u by diffraction at O. We can write 

with: 

while 

u = U(a,6) + U(a,2n-6) (-n"6,,n) 

00 
-m c 

(jk) Z + 
m r'k 

s = r + (J 

} 0 

c _1_ exp (j !.) 
I1T 4 

2 x 2 
f(x) = -j c exp(-jx ) I exp(jt )dt 

_00 

~2 s - s sgn f, sgn cos [~(6.-6)] 
~ 

au 
ay = 0 on the half-plane. 

(k -;. 00) 

e, is the angle denoting the direction of incidence of the source-wave 
.~ 

( 1 ) 

(2 ) 

(3 ) 

(4) 

(5) 

(6 ) 

(7) 

(fig. iii). We derive an expression for v in the same way as done in [7]. 
o 



Defining 8. - 8 = v, we get 
1 

and 

~2 = r + a - s 
o 
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s = "'a 2 + r2 - 2ar cos v 
, 0 0 

following (1.19) and (2.2.12) of [7] we can write 

A (ljI) = 
o 

_--..:c,,-__ Z (0 , ° ) 
2/2 cos v /2 0 

For the source-wave we write (see also [1]) 

So 

U 'V 
o 

(k ~) exp j s + 4 

2127fks 

Z (0,0) = 
o 

exp(j ~) 

2127fkr 
o 

= exp(jks)Z 
o 

Following (1.17) and (1.18) of [7] we get 

= C(ks) 

-
v (0) 

o 

A c 
_0_ = _ __ =-___ Z (0,0) 
y 2;:;;; cos v /2 0 

and 

v = c(v 
o 0 

-1 
- l:. ~ Z) 

o 

Then follows 
Z v 

0 0 
v = -+ 

0 c 2~ 
and 

exp (j ~) 
( /2 _ sec v /2 ) v 

0 8 rrrk V's frO 
0 

Higher order terms (m ~ 0) will not be considered. 

(8) 

(9 ) 

(10 ) 

(11 ) 

(12) 

(13 ) 

(14 ) 

(15 ) 

(16) 

Consider a two-dimensional configuration (fig. iv), consisting of the 

perfect conducting half-planes y = r , Z > ° (with edge B at y = r ,Z 0); 
o 0 

y = 0, Z > ° (with edge 0 at y 0, Z = 0) and y = -b, z > ° (with edge A at 

y = -b, Z = 0). 
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S 

a ,- ~ ~.-~ 

<' 
V 

R 
'9~cI,~ 

Y:-b A 

Fig. iv. 

We assume that at the half-planes 

~= 0 3y , with u _ H 
x 

1"0 

z 

b 

( 17) 

H is the x-component of the magnetic field-strength. In fig. iv we see that 
x 

(18) 

y = Rcos W - b (19) 

The edge at B (y = r I Z = 0) serves here as a source, generating a wave 
o 

u 
o 

Note that e, 
~ 

1f 
exp j (ks + 4) 

~ ------------~ 

212TIks 

TI 

2 

C(ks) 

The distance from a point of observation P(y,z) to the edge B we call s; to 

the edge 0 we call r; to the edge A we call R. 

The angle between the positive z-axis and AP is called $; that between AP 

and AO is called W(fig. iv). 

In accordance with Sommerfeld [8] we call the angle of incidence of the 

wave from 0 at A: u. Secundary diffraction of u occurs at O. The wave that 
o 

arrives at A from 0 will be treated there as a plane wave with the amplitude-

function of the real wave, for r = b. 



-25-

From the considerations in the foregoing paragraph it follows that we can 

write 

u(y,z) = U(r,e) + U(r,-e) 

~ exp j~ _ . [/2 sec [ '> (e i -e)] ] ! 
U(r,e)'V{expjk(r+ro )} __ f(~Ik)+ ~ Us - __ 

2/211ks ~ /r r 

exp (-j ~) 
___ ...:.4_ {exp(-jks2)} 

lIT 

see also [2], p. 16. 
311 

Around (O,-b), so for e "':2' we have 

{ 
sgn ~ 

sgn s = + 

for z > 0 

for z < 0 

at y 

at y 

Denoting 

s/k = x 

* f (x) 

g 

we can write 

(exp jx2
) f(x) .exp(j ~) 

4 

f 

sec[,>(e.-e)] 
1 

rrr o 

* (x) 

o 

-b 

-b. 

1 x 2 f exp jt dt 
lIT _00 

jks + 12- jk(r+r ) U(r,e) '" exp 811k exp 
21211ks 

0 

We now 

with 

first show that g exists for e 
311 - and 
2 

g = ~-:"( r--+....:
2
:"r-_-s-:")-S 

o 

11 e - - = S 
2 

1 

rr;- cos S/2 
o 

e. 
11 . 

1 2 

(20) 

(21 ) 

(22 ) 

(23) 

(24) 

(25) 

(26) 

(27 ) 

(28 ) 

when e t ;" , then sgn f; = + and S t 11, while cos S/2 can be approximated 
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cos a/2 ; cos rr /2 + (IL _ 1L) (:d cos a/2~ + 
2 2 d a/2 Ja;rr 

3 

a rr 2 
~ (- - -) 

2 2 

2 

(
d cos a/2) + 

d a/2
2 

a=rr 

2 
; ~(rr-a) [1 + 0 < (rr-a» ] 

Also 

(r+r ) 
a 

cos a ; cos rr + (a-rr) e~~sa) + 
2 

~(S-rr) 

a;rr 

2 2 
; -1 + ~(a-rr) [1 + 0 ce(S-rr) >] 

(r+ro)~ 1 -

2rr 
{~(S-rr)2 [1 + 0 < (a-rr)2>]} 

0 
So 5 ; 

2 
(r+r ) 

0 

rr 
2 4 

(r+r ) 
0 

; 1 - (S-rr) + 0 < (S-rr) > 
2 0 

(r+r ) 
0 

(r+ro ) [1 rr 
2 0 

; (a-rr) + 0 < 
2 

2(r+r ) 
0 

Now we see that 

(r+r -5)5 
o 

2 4 
; ~ r r (S-TI) + 0< (S-rr) > 

o 

rr-S 
V(r+r -5)5 ---

o 12 
2 

+ 0 < (a-TI) > 

we find that 

So 

g ; 2 

(rr-a) /rr + 0 «S-rr)? 
o 

lim g ; 0 

et;rr 

(a-rr )4>J 

2 
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The plane wave approximating U(r,8) in the neighbourhood of A we call U
1

• 

Putting 

-then U
1 

will be of the form 
jk(r -y) 

(29) 

- 0 
U1'Ve ( ••.••. ) 

B 

~r~--------------~z 

P --t-:------
%:b( A 

and 

= e 

in which 

Fig. v. 

37f 
e - 2 

r;b 'V z 

e z 37f 'V-+ 
b 2 

s = -Vb2 + 
0 

2 
r 

a 

F 1 (z) = e 

= e 

jk(r +b) 
o 

+ 2br 
0 

In the amplitude function we can set 

r = b. 

We write for s, ~, x and 9 resp. 

s , ~ , x and g when r = b. So a 0 0 0 

(fig. v) 

s. =-Vb2+r2 
a a 

7f 
- 2bro cos (8 - 2). (30) 

With r; being the angle between OP and 

the negative y-axis (and .r;. positive 

for z > 0 and negative for z < 0) we 

obtain 

(31 ) 

(32) 

( 33) 

~ cos (34) b 

(35) 

F
1

(-RsintjJ) 

(36) 
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Consider now U(r,-8). We already have s s(8). When we define s' 

then 
2 z 

+ r - 2rr cos 
o 0 b 

Constructing a plane wave, we can write for the phase 

s' r - r 
o 

r + y 
o 

(y < 0) 

Starting from ~ = ~(8) we get 

~' = ~(-8) = Ir + r - s' sgn [cos ~(8. + 8)l 
o ~ 

s(-8)(37) 

(38) 

(39) 

(40) 

In the neighbourhood of A ~' is always negative. In the same way we get 

x' ~ , Ik (41 ) 

and 
sec h (8 . +8 ) 1 

g' 12 ~ 

~'& rr-; 
0 

(42 ) 

-
Denoting U

2 
the plane wave approximating U(r,-8) near A, then 

-jkRcosljJ jk(r +b) 
jgo 

, jkRcosljJ jk(r -b) f* (x I) 0 0 
0 

(43) U2 '" e e --+ e e 8nk 
2121Tks 

, 
0 

go 
, x , and s , 

mean g' , x' and s' for r = b. , 
0 0 

We define jk(r +b) 
0 jgo 

, 
F

2
(Z) F

2
(-RsinljJ) = e 

81Tk 
(44) 

Y 
X = n - ljJ (45) 

P 
So sin ljJ sin X 

cos W -cos X • '" ,r 
Next we define '1:- -- Z 

G(z) = G(-Rsinlj;) -- '=1r---
jk(r -b) * 0 f (x ' ) 

0 
= e 

2121Tks 
, 

Then 0 Fig. vi. 

-jkRcos Ij; -jkRcos X 
U2 '" e F

2
(-RsinljJ) + e G (-RsinX) (46 ) 
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Near A we have 

-
u(y,z) ~ u = U

l 
+ U

2 (47) 

splitting u in a ¢-dependent and a x-dependent part 

-jkRcos¢ -jkRcosx 
u = e F(-Rsin¢) + e G(-RsinX) 

(48) 

in which 

(49 ) 

and 
-jkRcos¢ I 

F(-Rsin¢) 

-jkRcosX 
urI = e G (-RsinX) 

(51 ) 

Following the classical procedure of Sommerfeld we suppose an incident wave 

u 
o 

-jkRcos¢ 
Ae 

-jkRcos(~-a) 

Ae 

in which ~ and a are the angles to be found in fig. iv. 

(52) 

The field u l caused by diffraction at A must satisfy the following equations 

and conditions: 

a) 

b) 

2-
Im

l 
+ k u

1 

aU
l ay = 0 

o 

o 
for ~ = { 

211 

(53) 

(54) 

c) u l everywhere finite and continuous outside the edge of the screen 

d) the radiation condition. 

e) limRVu
l

=O. 
1<+0 

We suppose a function US with period 411 in (~-a), satisfying conditions a) and 

c) for 

-2n ~ <p-a. ~ 21T 
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and also conditions d) and e) (see [8] for a more detailed treatment). 

The solution of our problem can then be expressed as 

(see fig. vii and Appendix D). 

When A = 1, we can write u as 
o 

_ 1 e jS -jkRcos(~-S) 

Uo = 2n f j S ja e dS 
e -e 

where the contour of integration 

encloses the pole S = a. 

(56) 

p 

/' 

,~/ 
<J./ 

~~ 
" 

0( 

i tic: bO·;\­
plCln,,­

'Nil.ve 

Fig. vii. 

(55) 

When we want that the path of integration extends to infinity then the 

integrand must go to zero there in the right way (fig. viii) L, M and N are 

situated on the real axis with 

L(S=~-n), M(S=~) and N(S= ~ +n). 

Denote 

S = p' + jq 

and 

~-p' = p. 

We have now 

cos(~-S) cos(~-p'-jq) = 

/' = cos (p-jq) = 

~ -plane 

Fig. viii. 

= cosp cosh q + jsinp sinh q. 

When p = ~-p' = kn 

i.e. Re(S) = ~ + kn k=0,~1,~2,~3, .. 

or q = 0 

we have 1m [cos(~-S)] = o. 
This is true on the boundaries 

between the hatched and non-hatched 

domains (fig. viii) 

1m [cos(~-S)] = sinp sinh q. 

sinp = sin(~-p') as a function of p' and sinh q as a function of q are scetched 

in fig. ix. 
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p' 

Fig. ix. 

When q > 0, then 1m [cos (¢-S)] < ° only when p' is situated between ¢ + 2mrr 

and ¢ + (2m+l)rr (m = natural number). 

When q < 0, then 1m [cos (¢-S)] < ° only when p' is situated between ¢ + (2m'+1)rr 

and ¢ + 2m'rr. (m' = natural number). 

So in the hatched domains of fig. viii we have 

lim exp [-jkRcos(¢-S)] = 0. 
q-+-.±..oo 

(59) 

The contour of integration in fig. viii consists of the parts C, D1 and 02. 

A horizontal translation over 2rr maps the parts D1 and D2 on to each other. 

The integration over Dl and D2 thus cancel and only the part C remains. Can 

we find a function US with period 4rr in (¢-a), satisfying Helmholtz' equation 

and the afore mentioned conditions then u
1 

is known by (55). 

We take 

US = _1 f 
4rr C 

denoting 

we get 

US = !rr f 
C 

exp(jS/2) (. /2) exp {-jkRcos(S-¢)} dS 
exp(jS/2) - exp Ja 

(60) 

S - ¢ y 
(61 ) 

exp(jy/2) . 
( . /2) ( "/'/2) exp(-JkRcosy)dy exp JY - exp -J'I' 

(62) 

This US is nothing else than exp[-jkRcos(¢-a)], so a solution of Helmholtz' 

equation. 
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In fig. x we find the path C in the y-plane. The pole S = a (fig. viii) is 

now 

For R + 00 the integrand everywhere 

disappears in the right way in the 

hatched domains. The path C can now 

be modified so that the paths 01 

and D2 remain, however, with 

reversed directions. The part 

-TT < Re y < TT , 

on the real axis, is passed in 

opposite directions. As the 

integrand has period 4~ the 

integrals along 01 and 02 do not 

cancel. 

Now 

c 

Fig. x. 

lim 
s 

0 U when IIJJI > TI, so in the "shadow" 
R+w 

(fig. vii) 

lim 
s 

U 
R+w 

= exp[ -jkRcosl/I 1 when 11JJ! < TT, so in the "illuminated" 
domain (fig. xi). 

When 11/11 > ~ only the integrations 

along 01 and 02 remain. The latter 

is found from that along 01 by 

replacing 

jy /2 -jy /2 
e + e 

and by accounting for the reverse 

direction of travel. 

So we find 

e 

in which 

e 
jy/2 

-jkRcosy 
<I> (y) dy 

jy/2 
e 

-If 

<I> (y) 
" /2 J""'/2 e JY + e 'Y 

jy/2 -jl/l/2 
e -e 

+rr 

Fig. xi 

2 e j (y-\j!)/2 

e
jy -j\j! 

- e 

(63 ) 

(64 ) 
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We now suppose that in stead of the wave exp{-jkRcos(~-a)} we have the wave 

u
I 

at A: 

u I 
= exp{-jkRcosW} F(-RsinW). 

s s 
By diffraction u

1 
is generated. We derive u

1 
with the help of the function 

s 
U1 

s 1 J U = - e 
1 41T 

D2 

-jkRcosy 

in which again 

~ (y) = .:::2..,.e=--_--:-_ 
e jy - e-jW 

1T 
but now with W = ~ - 2 . 
Introducing 

Rsin y = z 

F(Rsiny) ~(y)dy (65) 

(66 ) 

we can write for sufficiently small z 

F(z) '" F(O) + F' (O)z 

Fig. xii. 

(67) 

with n = y - 1T (fig. xii) (68) 

we can write 

Rsin y 

and 

Rsin(n+n) -Rsin n (69) 

-jkRcosW 
J Rsiny e ~(y)dy 

o -jkRcos (1T+n) 
J e Rsin(1T+n) ~(1T+n)dn + 
-n'+joo 

n'-joo -jkRcoS(1T+n) 

+ J e Rsin(n+n) ~(n+n)dn 

o 

-n'+joo jkRcosn 
= - J -e Rsinn~(1T+n)dn 

o 

-n'+joo 

- J 
o 

jkRcosn 
e Rsinn.<!>(1T-T))dT) (n' -+0) (70) 
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-nl+joo jkRcos n 
= R f e si n n '¥ (n ) dn (71 ) 

0 

in which 

'¥ (n) <!>(rr+n) <I> (rr-n) -4j sin n/2 sin 0//2 -
cosn + coslji 

( 72) 

This leads to the following expression for U*, the part of US arising from 
1 

the second term on the right of (67): 
-n'+joo jkRcosn 

rru* = -jF' (0) Rsin 0//2 f e 
o 

sin n/2 sinn dn 
cosn + coslji 

or 
jkRcoslji 

-jF' (0) Rsin 1ji/2.P 

in which 

-n'+joo jkR(cosn + coslji) 
P = f e 

o 

~s,-=i:;;n,--"n"-/-=2-=s-=i;:n,,,"n - dn 
cosn + coslji 

Now we have 
-n'+joo jkR(coslji + cosn) 

aR jk f e sin n/2 sinn dn 
ap 
-= 

o 

AS coslji + cosn = 2cos
2 

(1jJ/2) - 1 + 1 - 2sin
2 

(n/2) 

we find 2 2 
-2jkRsin (n/2) 2 2jkRcos (1ji/2)-n'+joo 

ap = 2jk e f 
aR e sin (n/2)cos 

o 

Partial integration leads to 

"a: = - e2jkRCORS2 (0//2) [s,n!l. e 2 o ~ -2jkRsin (n/2)-n'+joo 
10 

-2jkRSin
2

(n/2) 1 
e cos n/2 dj 

-nl+joo 

f 
o 

with 
sin n/2=~rr s 4kR 

we obtain 
2jkRcos21ji/2 s2 

ap e ~ 
joo -jrr'T 

aR 2R f e ds 
0 

" 
2jkRCOs

2
(1jJ/2) 

ap j (1+j) e 
aR = (lL) 

4 k RIR 

(73) 

(74) 

(75) 

(76) 

(77 ) 

(78) 

(79) 
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Let us now denote 2 
2jkRcos (1jJ/2) 

II = .::.e ____ _ 
(80) 

R/R 

For cos ~/2 < 0, so in the shadow, we can set up the following reasoning. 

Denote 
1 ~_1 = -'> 

p = 2cosljJ/2 
aR 

k/R 

in which 

a = 1~ 2cosljJ/2 k 

So 

2.£.= a ---
oR 2R/R 

and we can write 

o o p ( ••• ) 
2R/R 0 

= - -a- oR ( .••. ) 

As a consequence 

or 

with T 

with 

-2 
'>j1fP 

e 
II = =------

II = 

-1 
= t 

2 0 P - -- f 
a oR 

o 

we get 

e 

2 0 
II = --­

a oR 

lip L' t 2 

f 
.J1f 

-e 
-= 

lip = 2cosljJ/2 ~ 
We have now 

II = .?. oJ 
a oR 

with '> ' 2 P J1ft -2 
J f e t dt 

and -= 

p ~ 2cosljJ/2 -;;-. 

-2 
t dt 

divergent for p > 

(81 ) 

(82) 

(83) 

(84) 

(85) 

(86 ) 

(87) 

0 (88) 

(89) 
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GOing back to (79) and substituting 

dP 1+" 
( :'l.) 

3/2 
2 ~ 2cos 1ji/2 

dJ -= "k .!:.:!:l. 
dR J 4n k dR 

So 

P = -(l-j)cos 1ji/2.J 

From (74) we then find, for p < 0 

1+" .!:.:!:l. F' (0) Rsin 
-jkRcos1ji 

U = 1ji/2 cos 1ji/2 e • n 

Does U. satisfy condition e (see par. 5)7 

This conditions demands 

We 

lim R\]U. = 0 
R+O 

have 

= (:~. , \]U. 
! dU. ) 

R d1ji 

Denote -jkRcos1ji 
U = Rsin1ji e • 

with 

K= .!.!i F' (0) 
2n 

Now 
b 2 js 2 

f 
js -2 e e s ds = 

S 
a 

js 
2 

b b 2 

J.K. 

b s=b 

I - f s d(e
js 

a s=a 

b 2 

2 

e I 2j f js ds 2 f js -2 - e + e s ds s 
a a a 

So 

b js2-2 f e s ds 
a 

b 2 " 2 
" JS 

2j f e J s ds - : 
a 

b 

L 

-2 
5 ) 

(90) 

(91 ) 

J (92) 

(93) 

(94 ) 



So 

As 

J = j1f 

L' 2 
P 'J1ft 
J e dt 

-00 

L' 2 
,J1fP 
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e 

L' 2 
,J1fP 

2 
p 

3J = j1f e 
3p 

-2 2 
- P (j1fP e 

L' 2 
,J1fp 

3U. 

3R 
3J 
3p 

~ , the term in 
3R 3R which most probably does not go to 

zero for R 7 0 is 

~ '>j1fp2 
_ cos~/2 _ ~e~ __ _ 

, 1f 2 r.:: 
p yR 

This term is of the order R-
3

/
2

. But even this term goes to zero, for 

accounting for R in RVU. and with R in (93), we see that in fact RVU. goes 

" to zero for R ~ 0 according to R . 

In (92) we found, for p < 0 

-jkRcos~ 

U. = lti F' (0) R sin1/l/2 cos1/l/2 e J. 
1f 

For p « -1 we can expand 

'> . 2 e J1fp 

, 3 
J 

J1fp 
(1 + ~+ 

j1fP 

5.3 ) 
2 2 + ..••.• 

(j1[p ) 

retaining only the first term we can write 

thus 

~ 2jkRCOs21/1/2 
TI e 

J~ kR :::---""3--
SjkRcos 1jJ/2 

'kR 
u*~_-"l_-~~ __ F' (0) sinl/!/2 e

J 

Skcos 1/1/2 /nkR 

(95 ) 

(96 ) 

(97 ) 

Of course this result is only significant for large R in the shadow, away 

from the shadow-boundary 1/1 = 1f. 

Now 
TI U (~- -) • ~ 2 

The solution for ~* in the shadow is 

(98) 



From (97): 

( 1L) u. ¢- 2 
'" {sinp/2 

(sin¢/2 

U ( ~+ 1L) " (sinp/2 
• ~ 2 v 

(sin¢/2 
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- cosp/2}12 
2 

+ cos¢/2) 

"kR 
1-j F'(O} ,,] 
8k r77:" 

"7fkR 

+ cosp/2) 12 l:i F' (O) 
2 8k 

- cos¢/2} 

So we arrive at 

jkR "' 
_e_~F'{O} 
l7fkR 2k12 

2 
sin¢/2(2cos (¢/2)+ i) 

2 
cos ¢ 

(99) 

( 100) 

(101 ) 

s 
It must be kept in mind that u* that part of u

l 
is which is associated with 

the term F' (O}z in the expansion of F(z) around z = O. 

To find an expression which is representative for the illuminated domain we 

reform (92) by applying partial integration to (88) 

P L" 2 f e,]7ft dt 
-00 

Substituted in (92) gives 

L" 2 ,]7fP 
:::.e ___ = j7f 

p 

P L " 2 
Je,7f]t dt 

_00 

2jkRcOS 2,p/2 
e 

2cos,p/2 ~ 

u. =_.!.:tiF'(O) 
2,1;[ 

IRsin,p/2 "kR 
:....:.:==-'-'=- e] + j (1+j) F' (O) R sinl/J/2 cos tjJ/2. 

Ik 

Expanding J for p 2 ~ cos,p/2 » 1 gives 

J j7f(l+j) + 

L" 2 ,]7fP 
:::.e_..,,- + O{~} 

j 7fP 
3 

P 

So that we find for large R in the illuminated domain 

-jkReostjJ 
U."'- F'(O)R sintjJe 

incident wave 

1-j 
+ 2 F' (0)sintjJ/2 

Skeos ojJ/2 

_00 

{102} 

( 103) 
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7. Finding expressions for F' (0) and G' (0) ---------------------------------------

In order to derive an expression for F'(O) it is convenient to have all 

relevant formulas together. First we have 

in which 

z = Rsin y 
more explicitly for z real, see (36) and (44) 

in which 

F (2) e 0 0 + 0 0 
jk(r +b)[f* (x ) j (g +g,)] 

2hnks 87fk 

x = ~ /k 
o 0 

* f (x ) = 
o 

x 
1 0 

J ;;;- -00 

o 

(104) 

(see paragraph 4 for the meaning of s , 
o ~o' go and g~) . 

For z = 0 we can write 

e 37f 
= b + ~o 0 = s r = 

2 0 0 
(105) 

2 
* jxo df (x ) 

0 e 
= 

dx ;;;-0 

(106) 

or 
df* (~ ,Ik) 'k~2 

0 ~e J 0 
= 

d~ 
0 

(107) 

For Z real = z < o we have 

d~ -':; 0 
-':;(b+r --= -s ) 

ds 0 0 
( 108) 

0 

ds 
z 2 2 z -':; 0 

-r sin h (b +r +2br cos -) 
dz 0 o 0 b 

( 109) 

df*(x ) 
df* (x) d~ ds 

0 0 0 
(110) = 

dz d~ ds dz 
0 0 

or 

df*(x) 

=~e 
'k~2 r 

0 J 0 0 z -':! 2 2 z -':! 
dz 2 

sin 
b 

(b+r -s ) (b +r +2br cosh) .(111) 
0 0 o 0 
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Also we have * ->, ds 
df ;;:-_ * 0 

d * >, f.s 
(_f _) dz 0 0 dz 

(112) dz /s s 
0 

0 

The factor (b+r -8 )-~ seems to give singular points, however when z f 0 
o 0 

we can write 

~ + 3" 
8 'V b 2 

so 
z 

-cos b 

z 
We obtain for so' as cos b 

2 " + r - 2br cos(-2 - 8) 
o 0 

Using 

=~b2 2 
+ 2br 

z 
+ r cos 

b 0 0 

2br 
(b+r ) 0 z 

= 1 -
(b+r ) 2 

( 1-cos-) 
0 b 

0 

(b+ro)~l br 
(~) 2 0 

'" 
(b+r ) 2 b 

0 

(b+r ) 
o 

o (~) 2 br ] 

2 (b+r ) 2 b 
o 

br 
0 (~) 2 b + r 

2(b+r ) 0 b 

/b + r 
0 

- s 

br 
o 

0 

~ 'V 
o 

z 
b 2(b+r ) 

o 

sin ~ 'V ~ we find 
b b 2 

df* = _[ e jk~o 
dz l;;-

r 
o 
2 

0 

'V ~::~+r ) 
0 

z 
sin 

b 

s 
o 

(~) 
b 

2 

1 

2br cos z 
o b 

(113) 

( 114) 



so 

Now 
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~:'J . - kr 
0 

2'1fb (b+r ) z=o 0 

dg 
we consider -.--.£. for z 1 o. 

dz 

/2 1 
go 

C IS Ibr
o

' cos[l,(}- e )] 
o 0 

Tf 
cos [l, (2' - e) 1 '" - z 

sin 
2b 

(115) 

Further 

and 
-1 

d (s ) 
0 

dz 

2 
Co 

- l, s 
0 

dc o 
ds 

o 

-3/2 

ds r sin Z 
o 0 b 

-dz- = - -=-:-:--~~===J~:::;;====~ 
2(b+r -s )Vb+r -s Vb2+r2 + 2br cos z 

0000 0 0 b 

z ds r sin 
0 0 b --= 

dz s rs {b2+r2 + 2br cos 
z 

0 0 0 0 b 

When z lOwe can write for these quantities 

~,::-,,) , ~ ~2 (b+ro ) 

2 br 
zTo 

z a 

(116 ) 

~,::-,,) r z 
0 

'" b(b+r )5/2 
zlo 0 

(117) 

d ( -1) des -l,) 

~z (C ~) 
Co 1 1 0 

= --+ 
dz rs Co dz 

o 0 0 

b ~2(b+ro) 1 
r z 
0-

~2 br 
Ib+r 5/2 z 0 

~ 0 z 0 b (b+r ) 
b (2b+r 0 

0 

/2b 1 ~2:0 
z2.;;- 2 

(b+r ) 
0 0 

z 
-1 

cos 
2b 2b d (sin 

z 
2b) '" - 2 dz 2b . 2z 

S1n 2b z 



With 

Next 
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these expressions we obtain the result 

dg 
2 ~ 2~ 0 2 --'" 2 r 0 (b+r) 2 2 dz 
z z 

0 

dg' 
investigate 0 

for z To. we 
dz 

~z (~~~) = 

d~,-l 
1 1 0 

dz 
--+ 

~' rso 0 
0 

'-1 -~ 
~ = -(b+r -s') 

o 0 0 

dz 

ds' 
= -I,(b+r _s,)-3/2 0 

o 0 dz 

'-I, 
ds 

o 
dz 

-I, s'-3/2 
o 

ds' 
o 

dz 

~= ~ . b 

0 (b+r ) 
0 

ds'-I, 
0 

dz 

2 
( 118) 

As we can see from (109) the last two expressions become zero when z + o. 

11 
cos[H2 + ell = 

d -1 z 
dz (cos 2b) 

-cos L 
2b 

1 -2 z !:.) 
2b cos (2b sin b 

This term of 
dg' 

o 
dz 

also becomes zero for z ~ o. 
We conclude that 

(dg~) = 0 . 
dz z=O 

Returning to formula (112) we see that for z = 0 we get 

d 1 --,"---
dz,;;:- IS 

This gives 

F' (0) 

o 0 

-e 

jk(r +b) 
o 

kr 
o 

2nb(b+r ) 
o 

(:i 
b + ro 

1 .Fa 
b+r ,,~ + 

o 

i 
4nk 

(119 ) 

(120) 

(121) 
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When k(r +b) » 1 we can approximate 
o 

F' (0) 'V -

jk(r +b) 
e . 0 

4lT(r +b) 
o 

The incident wave at A contains also the term urI' for which we have 

according to (51) 

-jkRcos X 
u
II 

= e G(-Rsin X). 

(122) 

Diffraction generates a cilinder-wave u; emanating from A, which we can 

express in the well-known way with the help of a function u~. 

We put again 

G(z') 'V G(o) + G' (o)z' 

and consider the effect of the second term only. 

In (38) we defined 

s' (z) 

° 
while in (46) we used 

* jk(r -b) f (x') 
o 0 

G = e 

We have now 

df*(x') 
---:-:::-:-,0,-- = .Ji. 

d~ , IT 
o 

= - Ib+r -s' 
o 0 

212lTks' 
o 

e 

2 
'k c ' J So 

d~' 
o 

ds' = 
o 

-'> '> (b+r -s') 
o 0 

ds' 
o --= 

dz 
r sin ~(b2+r2 - 2br cos 

o boo 

df* (x') 
o 

dz 

df (x' ) 
o 

dt; , 
o 

, 
d~ 

o 
ds' 

o 

ds' 
o 

dz 

-" ~) 
b 

"(b+r -s')-" 
o 0 

r 
o 

-" 2br cos ~) 
.0 b 

( 123) 

(124) 
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For z = o we obtain 

s' (0) r - b (125) 
0 0 

1;'(0) - /2b (126) 
0 

So 

~,. ,.;') . 0 (127) 
dz z=O 

and 

[~z C* (?j] 0 (128 ) 
r;:o z=O 0 

The conclusion is that 

G'(o)=O (129) 

u~ = 0 (130) 

So the plane wave u (see (48» originates, as far as it's z-derivative is 

concerned, only a diffracted wave u*. 

We can thus write 

jkR jk(ro+b) 

_e _ .!..:.L ::;.e--,----,.,-.,._ 
IlTkR 2k12 4lT (ro +b) 

.W- . sin ./2 (2cos2 1 + 1) (131) 
2 2 

cos • 

under the conditions 

R + 00 so p = 2cos (1 - 2'.-) .fkR «-1 (see (89» 
2 4 1:;;-

3lT 
/2 «. 2lT 

k (r + b) » 1. 
o 

8. ~~~e~~~~~~_~~_~~_~~~~~~_~~_~~~_~~~~~_~~~_~~~_~~~~~~_~~~~_~~_~~ 

~~~~~!~~-~!-~-~~~~~~-~-~_Q 

According to [2], formulas (3.5) and (3.12) we find, when a wave u for 
o 

which 

u '\, C (ks) 
o 

is incident at 0 from y 

see (11) 

r
o

' z = 0, that at the shadow boundary e }2'.- by 
2 
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by diffraction at 0 a wave u is excited for which 

At the edge A(r=b) this becomes 

311 
u(b, --2 ) ~ ~ C[k(r +b)] + C(kr C(kb) 

o 0 

see appendix B. 

The theory of [1] delivers the expression for the diffraction 
°kR 

1T e J 
U(R,4» 

with 

D(4), ~) 

~ (~C[k(ro+b)] + C(kro)C(kb)} D(4), "2) 
IR 

(sec 4> - 11 / 2 + sec 4> + 1T / 2 
2 2 

(4) .f ~) 
2 

(132 ) 

(133 ) 

u at A. 

(134 ) 

(135) 

This result we also find from Sommerfeld's formula (see [8], page 238). 

Mind the adaption of the coordinate-axes (see Appendix A). We neglect the 

diffraction term in u and obtain 
°kR 

e J 
u ~ ~ C[k(ro+b)] D(4), %) 

IR 
So we find 

u* jll/4 sin¢/2 (2cos2p/2 + 1) 
-_- ~ e 
u /l1kb(r +b) 

o 
cos

2
¢ [sec (~ - ~) + sec (~ + !.) ] 

4 

(136 ) 

(137) 

So it appears that the effect is a factor Ik smaller than the "main effect" 

found with the theory of [1]. 
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Appendix A 

Sommerfeld's coordinate axes are those of fig. vii. In [8] u 1 is Hz' We 

work with the coordinate system pictured in fig. iv. 

We see that for our H we have 
x 

H 
x 

(see fig. 3) 

_ H Sommerfeld 
z 

As far as we follow Sommerfeld's 

method we use the xy-system. 

So then u* = - H 
x 

Once arrived at the result (see 

formula 131) we adapt the sign 

to the yz-system, so that we 

subsequently have 

* u = + H 
x 

':/ 

x 

y 

Fig. 3. 



Appendix B 

- 3n 
Reformulation of u(b,Z-) 

We show that for r = band 8 = 

-47-

3n 
2 

+ C(kr )C(kb). 
o 

We have $ = ~ and R ~ O. According to (47) is 
2 

-
u U

1 + U2 · 

We can put that 

[ j';' .0] jk(r +b) 
0 

4h:k(b+r
o

) 
U

1 
~ e 

3n -1 
for around 8 = 3n/2 the first term of go behaves like 2(Z- - 8) and the 

3n -1 
second term like -2(Z- - 8) . According to (43) is 

jk(r +b) jg' jk(r -b) f* (x') 
- 0 0 0 0 
U2 ~ e 8nk + e 

for 8 ~ 3n/2 we have 

Now 

with 

So 

g' = 
o 

f* (x' ) 
o 

= e 

e 
f(x) '" -

1 

"r;-J) 
o 

jn/4 2jb 
f(x)e = e 

jn /4 
for x -+ _00 

2 x/;[ 

jk(r +b) 
- 0 j 
U2 '" e 

With this result we find 

2,!2nks' 
o 

jn/4 
e {(x) 

see [2], formula (3.10) 



-48-

References 

[1] H.Y. Yee, L.B. Felsen and J.B. Keller, "Ray theory of reflection 

from the open end of a waveguide", SIAM Journal on applied 

mathematics, Vol. 16 no. 2, March 1968, p. 268. 

[2] H.J. Steures, "Reflektie en transmissie in een golfpijp volgens 

een asymptotische methode van Yee, Felsen en Keller", internal 

report dept. of Mathematics, T.H. Eindhoven, May 1970. 

[3] R.F. Harrington, "Time-harmonic electromagnetic fields ll
, 

McGraw-Hill, 1961. 

[4] E.V. Jull, "Reflection from the aperture of a long E-plane sectoral 

horn", IEEE transactions on antennas and propagation, Vol. AP-20, 

no. 1, January 1972, p. 62. 

[5] R.M. Lewis and J. Boersma, "Uniform asymptotic theory of edge 

diffraction", Journal of mathematical physics, Vol. 10 no. 12, 

December 1969, p. 2291. 

[6] D.S. Ahluwalia, R.M. Lewis and J. Boersma, "Uniform asymptotic theory 

of diffraction by a plane screen", SIAM Journal on applied mathematics, 

Vol. 16 no. 4, July 1968, p. 783. 

[7] M.J. van de Scheur, "Diffractie aan een spleet, bij een loodrecht 

invallende vlakke scalaire golf", internal report dept. of Mathematics, 

T.H. Eindhoven, September 1970. 

[8] A. Sommerfeld, "Optik. Vorlesungen iller theoretische Physik, Band IV", 

Geest & Portig K-G, 1959, p. 224. 

[9] R.E. Collin and F.J. Zucker, "Antenna theory, part I", 

McGraw-Hill, 1969, p. 621. 


	Abstract
	Contents
	I. Radiation from the slotted open end of a parallel plane waveguide
	I.1 Description of the problem
	I.2 Primary diffraction at the edges A and C
	I.3 Reflection in a slot
	I.4 Survey of partial diffractions constituting the total radiation
	I.5 Numerical results
	II. Diffraction at an edge, situated in a shadow-boundary of the incident radiation
	II.1 Introduction
	II.2 Uniform asymptotic expression for secundary diffraction
	II.3 Application to slotted open end of parallel-plate waveguide
	II.4 The plane wave approximation
	II.5 Diffraction at the outer edge according to Sommerfeld
	II.6 A modification of Sommerfeld's problem
	II.7 Finding expressions for F'(0) and G"(0)
	II.8 Comparison of the effect of the first and the second term of the expansion of u around z = 0
	Appendix A
	Appendix B
	References

