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Integral stocknorms in divergent systems with lot-sizes.

by K. van Donselaar.

Abstract

In this paper an overview is given of integral stocknorm formulas

for several periodic review production/inventory systems. To derive

these formulas, all systems up to the most complex system (a 2-stage

divergent system with lot-sizing) are translated in terms of the most

basic system: a 1-stage linear system without lot-sizing. The resulting

formulas are simple and coherent.

In divergent systems imbalance may occur. Imbalance occurs if the

inventory positions of the final products with a common component are

not equivalent. In case of an integral re-order policy, imbalance may

cause non-optimal re-order suggestions. For systems without lot-sizing

the impact of this imbalance is negligible.

In this paper the role of imbalance due to lot-sizing is

investigated. This role will appear to be small in many cases. In those

cases where imbalance is no longer negligible the stocknorms can be

adapted to take account of this effect. A method to do so is suggested

and tested.

Systems with depot as well as without depot will be considered and

compared. It will appear that the following rule holds in general:

The positive effect of decreased imbalance in case a depot is present

will appear to be small compared with the negative effect of decreased

ability to satisfy customers' demand. The only exception to this rule

are systems with a large lot-size for the common component combined

with large coefficients of variation for the final products' demand.

Attention will be restricted to the identical products case.



1. Introduction.

* The goal.

The goal of this paper is to gain insight into the effect of

integral stocknorms on service level in divergent systems. An example

of a divergent system is given in Figure 1.

common

part

stockpoint

final

products

Figure 1. A divergent system with depot consisting of

2 final products having one part in common.

In a divergent system a common part is produced which goes into

several final products. In this paper the common part is assumed to be

controlled by means of an integral re-order rule: If all inventory in

the divergent system (including the final products' inventories

expressed in equivalent amounts of the common part) is below an

integral stocknorm, a new order will be placed.

If the inventory levels of the final products are very unbalanced,

this integral (or aggregate) re-order rule might perform poorly. Take

for example a divergent system with two final products: A and B. The

demand for A and B equals 10 products/week. The inventories of A and B

are resp. 200 and zero. Each unit of A and B needs one common part.

Suppose there are no common parts on hand. All this implies that the

actual integral inventory equals 200*1 (A) + 0*1 (B) + 0 (common part)

= 200 common parts. If the integral stocknorm equals 120, then no

common parts are ordered. However it is obvious that 8 needs extra

supply. So extra common parts should have been ordered.
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The error in this re-order suggestion results from the fact that

only aggregate information is used ("there are 200 common parts in the

system") combined with the fact that the system is out of balance ("all

200 common parts are used for A exclusively"). From this example it can

be concluded that the assumption that inventories are balanced leads to

an overestimation of the expected service level.

For divergent systems with identical final products the extend to

which each of the final products' inventories (on hand plus on order)

deviates from the average inventory at the final stage is called

imbalance. In most literarture concerning .. integral re-order policies

imbalance is assumed to have negligible impact on the system's service

level.

Clark and Scarf [2] proved that integral or echelon re-order

policies are optimal for linear multi-echelon inventory systems without

setup-costs. From that they concluded that integral order policies are

also optimal for divergent multi-echelon inventory systems if imbalance

is assumed to be negligible. EpPen and Schrage [4] derived formulas for

integral stocknorms in divergent systems, corresponding with a pre

determined service level, again assuming that imbalance is negligible.

In practice integral re-order policies are rarely implemented,

despite the proven optimality. One of the reasons is the fear, that

imbalance might appear to be large; e.g. due to lot-sizing. This paper

investigates whether this fear is warranted or not and in which way

large imbalance might be tackled.

Earlier research in this field has been performed by Zipkin [6]. He

derived an aggregate (dynamic) program, which takes account of the

actual state of imbalance. His approach yields a.o. guidelines for

allocation policies in case the coefficient of variation of the demand

is equal for all final products. It does not however provide a direct

and simple relation between the integral stocknorm and the system's

parameters. To come up with such a relation imbalance is tackled in a

more structural way in this paper: Instead of continuously keeping

track of the actual imbalance, the system stocknorm is increased

structurally based on the average imbalance. This increase of the

stocknorm compensates the negative impact on the service level caused

by imbalance.
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* Description of the divergent system.

The divergent production/inventory system consists of two levels: a

part level and a final product level. All final products require the

same (common) part and it takes one part to produce one final product.

Results for these type of systems can be translated easy to more

complex systems, where each final product requires several common

parts. Hereto all demand and inventory data should be translated in an

equivalent amount of parts. Suppose for example that the final product

is a table. Then the inventory and demand for the table should first be

multiplied by four before the results of this paper can be applied to

the legs which go into the table.

The final products are assumed to be identical with respect to their

leadtime, lot-size and demand characteristics.

The final products are always made to stock. Whether the common part

can be stored for a number of periods or whether it has to be allocated

to the final products immediately is determined by the presence resp.

absence of a central depot. In this paper both system, with and without

depot for the common part, will be considered.

All order policies are periodic review integral (or echelon) re

order-point policies. That means, that if the integral inventory on

hand plus on order is below its norm at the review moment, an order is

placed to bring the inventory above the norm again. For systems without

lot-siZing every order is equal to the demand in the previous period.

For systems with lot-sizing every order is equal to or a multiple of

the lot-size. The lot-size for the common part is assumed to be equal

to or a multiple of the lot-size for the final products. Otherwise dead

stock would result.

Demand is assumed to be stationary in time and distributed

independently with respect to consecutive periods as well as with

respect to different final products. Demand which can not be satisfied

due to a shortage of supply will be.backordered.

As an indicator for the system's performance, service levels

(instead of costs) are being used.

* Definition of variables.

The main variables used in this text are:

N - number of final products
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j index of a final product, j=1, .. ,N

- a safety-factor

- pre-determined service level, defined as the percentage of

periods, that demand can be met from on hand inventory

instantaneously.

- standard normal distribution functiont(.)

k

r - the (integral) re-order point of the common partcomm
Q - the lot-size for the common partcomm
~ - the leadtime for the common partcomm
a

For each of the final products:

~ -tM average demand

a - the standard deviation ofd~and

r - the re-order point

Q - the lot-size

~ - the leadtime.

* The content of the paper.

As mentioned before imbalance in a divergent syst~ will be tackled

by increasing the system's stocknorm. To come up with an appropriate

stocknorm, simpler systems are studied first in the next Section. This

will lead to a stocknorm formula for the divergent system with fixed

lot-sizes, which uses imbalance as an input-variable.

In Section 3 estimators are derived for imbalance, which are a

function of system parameters. Each estimator can be used in the

stocknorm formula derived in Section 2.

In Section 4 the quality of the estimators for imbalance is tested

by means of simulation. The estimators will appear to be poor

estimators for the imbalance itself, but fortunately they are

sufficiently good for the determination of appropriate stocknorms.

With these estimators the impact of imbalance on the service level

is quantified in Section 5. It will be shown that in many cases

imbalance has negligible influence on the service level. So then

imbalance may be ignored when stocknorms are determined. There are

however systematic exceptions where imbalance is too large to be

ignored. In those cases imbalance should be incorporated in the

stocknorm. The estimators found in Section 3 may be used for this.
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In Section 6 an evaluation will be made on the merits and demerits

of having a depot in a divergent system. The paper ends with a summary

of the major conclusions.

2. Integral stocknorms for several systems.

To come up with a stocknorm formula for the divergent system with fixed

lot-sizes, five simpler systems will be analyzed first:

* System I: 1-stage linear system without lot-sizing.

Consider the system in Figure 2. This is the most basic

production/inventory system.

Figure 2

(1)

( 1 ' )with k such that

The stocknorm proposed for this system is based on the assumption that

demand is normally distributed (see e.g. [5]) :

r = (~+1)~ + k~(~+1)a

~(k) = a

In words this formula reads: In order to be able to meet demand

directly from stock a pre-determined percentage of periods, the content

of the system after ordering should equal the average demand during

'leadtime plus review period' (~+1)~ plus some safety stock. This

safety stock is equal to the safety factor times the standard deviation

of demand during leadtime plus review period.

In case demand is (partially) known, (~+1)~ should be replaced by

the demand forecast for the next (~+1) periods and ~(~+1)a should be

replaced by the standard deviation of the forecast error. This

observation applies to all systems studied in this paper.

* System II: 1-stage linear system with lot-sizing.

This system is the same as in Figure 2, except for the ordering

policy. Instead of ordering exactly the demand of the previous period,
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the system should order a multiple of the lot-size Q to bring the

inventory level above the re-order point r. It is known, that the

inventory level after possible ordering is uniformly distributed

between rand r+Q (see [5]). Let f(.) be the corresponding uniform

probability density function. Then r can be solved from the equation

J-!(Service levellinventory=x).f(x) dx =--
J

r+Q
p«e+1) periods of demand~X).~ dx =

r

1 Jr+Q x-(e+1)~
_. ~( ) dx = a
Q r ~(e+1)a

Note that the service level is measured each period and not per order.

In practice the above equation is difficult to handle. Fortunately

in literature there are several heuristics to determine the re-order

point r. In this paper a simple approximative formula is proposed to

determine r, which only takes account of the mean and standard

deviation of the inventory position after possible ordering.

The reason for coming up with this formula is twofold:

-1. The aim is to have coherent formulas for all inventory systems.

That implies that an expression of the same type as formula (1) has

to be found for the system with lot-sizing.

-2. The above equation for the system with lot-sizing does not

explicitly express the stocknorm in terms of the system parameters.

To come up with a formula which satisfies both these conditions, the

following observation is used: The inventory position is uniformly

distributed between r and r+Q. As a consequence its mean and variance

are resp. r+Q/2 and Q2/ 12 . The service level a equals P(IAD~O), where

lAD is the inventory in the stockpoint just after demand took place.

Note that lAD equals the inventory (on hand plus on order) after

possible ordering minus (e+1) periods of demand.

So E(IAD) = r+Q/2-(e+1)~ and var(IAD) = Q2/ 12+(e+1)a2 .

Assuming (in concordance with the derivation of formula (1» that lAD

is normally distributed yields:

with k such that

r = (e+1)~ - Q/2 +k~ [(e+1)a2+Q2/ 12 ]

~(k) = a

(2)

(2' ) .

This formula performs well, except when the variance term due to

lot-sizing far exceeds the variance term due to demand uncertainty.
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Experiments reported below show, that if Q becomes relatively large,

then it is no longer advisable to assume a normal distribution for lAD.

Since in this case the variance term of the uniform distribution

(Q2/ 12 ) clearly dominates over the variance term of the demand

«e+l)a2), it is natural to assume then that lAD has a uniform

distribution function.

If lAD is supposed to be uniformly distributed between the

lowerbound LB (sO) and the upperbound UB (~O) then lAD has a mean

M and variance V with:
2M = (LB+UB)/2, V = (UB-LB) /12.

So UB and LB can be written as folilows:

LB = M - O.5~(12V), UB = M + O.5~(12V).

It can be readily seen that P(lAD~O) equals (UB-O)/(UB-LB) since lAD is

a uniform distributed variable with LBsO and UB~O.

This probability can be expressed in terms of M and V as follows:

P(IAD~O) = (M + O.5~(12V» / ~(12V).

Since this probability should equal a, M should equal

M = (a-O.5)·~(12V)

Since it is known for lAD that M and V equal

M = r+Q/2-(e+1)~ V = Q2/ 12+(e+1)a2,

the stocknorm r should be chosen such, that

r+Q/2-(e+1)~ = (a-O.5)·~(12V).

Therefore:

r = (e+l)~-Q/2 + (a-0.5)~12.~(Q2/12+(e+1)a2)

This corresponds to formula (2) with

k = ~12 • (a-0.5) (2")

In all simulations reported in this paper demand was gamma

distributed. The arguments for this are listed in Burgin [1].

The fact that demand was gamma distributed was not taken into account

in the determination of the stocknorms, since

1. the gamma distribution function is more difficult to handle than the

normal or uniform distribution function. For example no explicit

standardized formula for the stocknorm can be derived.

2. As soon as Q>O, lAD is no longer purely gamma distributed, but the

sum of a gamma and a uniform distributed variable, which is even

more difficult to handle.

Rather the stocknorms were determined by using the approximative

formulas (2), (2') and (2"). Calculations were performed to find out
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when formula (2") should be preferred over formula (2'). These

calculations determined the expected service level for a system with

gamma distributed demand and stocknorms based on (2) and (2') resp.

(2"), that is: stocknorms based on the assumption that lAD is normally

resp. uniformly distributed. The parameters of the system were:

~=10, 0=10, (~+1)=6, target service level =95\. The lot-size Q was

varied (see Figure 3). It appears that as long as Q2 /12 ~ 4'(~+1)02,

formula (2") should be preferred over formula (2'), since it yields a

service level which is closest to the target service level.

It is interesting to note that calculations for a system with normal

distributed demand (not reported here) lead to the same preference

rule.

Figure 3 also shows, that in case demand is actually gamma

distributed (which holds if Q=O), a stocknorm based on the assumption

of normal distributed demand yields a service level below the target.

normal

95%
service
level 93%

t

91%

~:.:.:-.::.::.::.=.::.::-~.::-:.:-=;;,;;-__-;;:;,.;;;;.;-=-z:~-
~ uniform

o 4

Expected service level for various values of Q

if the stocknorms are based on formulas (2') and (2").

Figure 3.

* System III: 2-stage linear system without lot-sizing.

System III is depicted in Figure 4. It consists of two consecutive

inventory systems, both without lot-sizing, like System I. For the

production of one unit of final product, one unit of the part is

needed. The leadtime for the final product and the part are resp. ~ and

~comm
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part

~)\1

~comm V
Figure 4.

final product

(3' )

The re-order point for the final product (r) can be determined by

means of equation (1):

r = (~+1)~ + k~(~+1)o2 (3)

The re-order point for the entire system can be determined in an

analogous way, that is: by assuming that system III is a special case

of system I with leadtime ~ +~+1
comm 2

r = (~ +~+1)~ + k~ (~ +~+1)ocomm comm comm

Notice, that in formulas (3) and (3') k can no longer be solved

using ~(k)=a, since this would yield a service-level of a only in case

of a 1-stage system. System III however is a 2-stage system, which

implies, that the resulting service level is lower due to retaining

inventory in an intermediate depot. This effect is thoroughly discussed

in [3] and can be handled by adapting the safety-factor k.

An approximation (even simpler than the one proposed in [3) to take

account of this effect follows from the following observation:

Assume that the 2-stage system is treated like two 1-stage systems,

resulting in formulas (3) and (3') with k simply solved from ~(k)=B.

The actual service level in this 2-stage system will be less than Band

larger than B2• So the stockout probability is larger than 1-B and less

than 1_B2 . Note that
2 2

1-B = 2(1-B) - (1-B) ~ 2(1-B) if B~1.

If it is known that the actual stock-out probability is somewhere

between 1-B and 2(1-B), the most straightforward estimation of the

stock-out probability is 1.5(1-B). This corresponds with a service

level of 1-1.5(1-B) = 1.5B-0.5. So if the target service level is a,

B should be chosen such that 1.5B-0.5=a. That implies B=1/3 + (2/3)a.

In other words: In order to reach a service level a for System III, the

safety factor in formulas (3) and (3') should be chosen such that:

~(k) = 1/3 + (2/3)a (3").

From the derivation above it will be clear that formula (3") only

yields a rough approximation of the service level.
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* System IV: 2-stage linear system with lot-sizing.

System IV differs from the system in Figure 3 by having a lot-size

for the final product (Q) as well as for the common part (Qcomm)·

Determination of the re-order points results from a combination of the

concepts behind systems II and III.

The final stage in the system can be viewed as an occurrence of

system II. So formula (2) determines r, with k solved from (4)

.(k) = 1/3 + (2/3)a if 02/12 < 4(~+1)a2

k = J12·(1/3 + (2/3)a-0.5) elsewhere (4)

Note that the service level used to determine k is set equal to

1/3 + (2/3)a since System IV is a 2-stage system.

The stocknorm r follows from interpreting System IV as a 1-stage
comm

linear system with leadtime ~ +~+1 and lot-size Q :corom corom

+

2
°comm

+ --],
12

(4' )

where k results from

.(k) = 1/3 + (2/3)a

k = J12·(1/3 + (2/3)a-0.5)

2 2if Q /12 < 4(~ +~+1)acomm comm
elsewhere

* System V: 2-Stage divergent system without lot-sizing.

This system is the system with depot depicted in Figure 1. It

differs from system III by having more than one final product requiring

the same component. For each of the final products the re-order point r

can be determined by means of equation (3). The re-order point for the

common part can be calculated by collapsing the system into a linear 2

stage system as described in [3]. This collapsing is allowed since the

imbalance of the system is negligible. The resulting formulas are:

r = (~+1)~ + kJ(~+1)a

r = t(~ +~+1)~ + kJ [~ ta2 + {tJ(~+1)a}2],comm comm comm

(5)

(5' )

where k results from (3"). Note that in case of no depot k has to be

solved by means of equation (2').
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* System VI: 2-Stage divergent system with lot-sizing.

System VI is analogous with System V. The only distinction is the

introduction of lot-sizing in the products' ordering policies. This

implies that the final stage consists of N final products having the

same characteristics as the final product in System IV. Therefore the

re-order points for the final products are determined in the same way

as the re-order point for the final product in the 2-stage linear

system with lot-sizing (System IV).

The re-order point for the entire system is, just like in System V,

calculated by collapsing the system into a linear 2-stage system (and

thus assuming that the imbalance is negligible). The mean and standard

deviation of demand for this collapsed system are known from formula

(5'). Substituting these in formula (4') yields:

Formula (6) does not yet take into account the imbalance. In order

to be able to incorporate imbalance in the stocknorm, imbalance has to

be defined properly first. Recall that in this paper it is assumed that

the final products have identically distributed requirements and equal

lot-sizes. Imbalance of a final product j in such a divergent system is

defined here as

imbalancej = Ij-I,

where I j is the economic inventory of product j after possible ordering

and I is the average economic inventory of the N products (I = EI./N).
)

Note that E[imbalance.l = O. The variance of imbalance. will be denoted
2) )

by aimb .

The term (~+1)a2 in formula (6) emerges from the fact that the

service level is measured after (~+1) periods demand for each final

product, assuming balanced inventories. The fact that before demand

takes place the system is out of balance, can be modelled as starting

with a balanced system, which is first confronted with an extra

artificial (possibly negative) demand with expectation zero and
. 2 bevar1ance a imb fore the real demand takes place.

Thus in order to get a good estimation of the service level the

variance for product j should be set at (~+1)a2 + a~mb instead of

(~+1)a2. This yields formula (6'): 1
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+

So in that case the variance of I.
J

2
Qcomm 2 2 2 2

+ kJ [-1-2--- + ~comm~o + {tJ [(~+1)o + 0imb] } ] (6')

with k solved from
2 2 2 2 2

.(k) = 1/3 + (2/3)0 if Q /12<4(~ to + {~J [(~+1)o + o].'mb] } )comm comm
k = J12'(1/3 + (2/3)0-0.5) elsewhere

In Section 3 it is shown that O~mb depends on the ratio r /r in]. comm
case a depot is present. This effect is not taken into account here.

In fact it is assumed that the safety factors for both echelons are

always chosen equal. Recall that formula (6') is only an approximation

of the stocknorm necessary to obtain a service-level o.

In the next Section an estimator for the variance of imbalance for a

system with identical final products will be given.

3. An estimator for the size of imbalance in case of identical products

In order to derive approximations for the variance of imbalance, the

cases without depot (subsection 3.2) and with depot (subsection 3.3)

are analyzed separately. It will appear that the variance of imbalance

in both systems is a function of the minimal variance of imbalance,

which is defined and explored below.

3.1 Minimal variance of imbalance.

Consider a divergent system with depot. Assume there is an infinite

amount of inventory available in the depot. This ensures the ability to

bring all final product inventories up to a level, which is between

their stocknorm r and r+Q. The variance of imbalance corresponding to

these levels is solely due to the lot-sizes and not enlarged by non

availibility of inventory in the depot. Therefore this is called the

minimal variance of imbalance.

The variance of imbalance equals var(I.-I) = (N-1)·var(I.)/N if the
J J

final products face independent demand. According to Hadley and Whitin

[5] I. is uniformly distributed between r and r+Q if there are always
J

sufficient components available.
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equals Q2/ 12 , resulting in the fact that the minimal variance of

Q2 N-1
imbalance equals --

12 N

3.2 Imbalance in a system without depot.

Suppose in a system without depot an order of size Q has to becomm
distributed among the final products. Then it is no longer possible to

end up with the minimal variance of imbalance. It can be shown (see

Appendix), that in case of no depot the variance of imbalance just

after allocating an order equals

2 Q2 (N-1) (N+2)
a. = -.--.-- (7)

1mb 12 N N

In the system with depot and with a large inventory in the depot, it

is possible to keep the distance between the inventory levels less than

the lot-size Q each period. In case no depot is available, however,

this is no longer possible: The system has to wait for the next order

for the common part in order to be able to reduce the imbalance again.

To get a rough indication of this effect, the time between two

orders for the common part is assumed to be constant. Note that the

larger the coefficient of variation of demand, the more this assumption

is violated. After allocating an order it takes Q /N~ periods oncomm
average before the next order will be allocated. In the meantime the

imbalance of the products will increase due to the variance in demand.

The increase in the variance of imbalance per period equals (N-1)a2/N.

If the time between two orders is less than one period, this increase

is assumed to be negligible. If the time between two orders is larger

than or equal to one period, then the variance increases at a constant

rate during Q /N~-1 periods, whereas in the Q /N~-th period thecomm comm
variance drops back again. This leads to an estimated average increase

in the variance of imbalance equal to

1 Qcomm N-1 2
-.(-- - 1). - a
2 N~ N

This combined with formula (7) gives an estimator for the variance

of imbalance if no depot is available:
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2
2:. N- 1.N+2 +!( Qcomm -1 )N-1. 0

2

12 N N 2 N~ N
=

22:. N-1 .N+2

12 N N
elsewhere

if Q ~N~comm

(8)

3.3 Imbalance in a system with depot.

For any divergent system with depot the variance of imbalance equals

at least the minimal variance of imbalance: non-availability of

inventory in the depot can only increase the variance of imbalance.

The exact equality holds if there is always enough inventory in the

depot, that is if the stocknorm for the whole system is large compared

to the stocknorm for the final products.

Likewise it can be argued that the variance of imbalance for a

system with depot will always be smaller than or equal to the variance

of imbalance for the same system without a depot. The equality holds if

the stocknorm for the specific products is extremely large compared to

the stocknorm for the whole system. These observations combined with

formula (8) lead to:

Q2 N-1
2 02 N-1 N+2

-- S 0imb S --- +
12 N 12 N N

Q2 N-1
2 02 N-1 N+2

-- S 0imb S -----
12 N 12 N N

1 Qcomm
-.(-- - 1).

2 N~

N-1
2

--0

N
if 0 ~N~comm

elsewhere.

Furthermore, if in a system with depot both the stocknorm for the

whole system as well as the stocknorms for the final products have

equivalent levels (that is: have the same safety factor), it is likely,

that the variance of imbalance is closer to

Q2 N-1 N+2 Q2 N-1 N+2 1 Qcomm N-1 2----- than to --- + -.(-- - 1) . a •. .
12 N N 12 N N 2 N~ N

This is due to the fact that the last term is caused by non-

availability of components in the depot. As explained in the previous

paragraph this term is appropriate in case no depot is available. A

system with depot and a relatively low stocknorm for the whole system

compared to the stocknorms of the final products is comparable with a

system without depot. So the variance of imbalance for such a system is
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close to the above right hand side of the inequality for the variance

of imbalance in case Q ~N~.comm
This can be seen from Figure 5. There the variance of imbalance is

shown for various divergent systems. Each simulated system there had a

different integral stocknorm for the whole system (corresponding with a

safety factor k ) whereas the stocknorm for the final products was
comm

kept constant with corresponding safety factor k equal to 1.83.

For small k the variance of imbalance tends to equalcomm
2Q N-1 N+2

12 N N
+

1 Qcomm N-1
-.(- - 1).

2 N~ N

2
o = 258.3.

As k increases, the variance of imbalance decreases, since thecomm
probability that the depot has no inventory decreases. If k gets

2 comm
large, the variance of imbalance tends to equal Q 112~(N-1)/N = 16.7.

When kcomm = k = 1.83, the variance of imbalance equals 34.3.

This supports the statement made earlier that as long as the safety

factors are approximately equal, then the variance of imbalance (=34.3)
2Q N-1 N+2

will be closer to

than to

12 N N
2Q N-1 N+2

12 N N
+

1 Qcomm
-.(-- - 1).

2 Nl1

N-1 2
-- 0

N

(=33.3)

(=258.3) .

o 1.83

- - - - - - - - - - - - -- - - - - - - - - ... -- ---

50

150

100

16.7

-2

258.3 - - - - - - -

-) safety factor kcomm

2
0

1
. 00 for a system with depot and parameters Q =200,comm

Q=20, ~=10, 0=10, e+1=3, N=2 and k=1.83.

Figure 5.
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According

02
N-1

-.- :S

12 N
The limit of

to this statement the following approximation holds:
2

2 0 N-1 N+2
0imb :S -.-.-.

12 N N 2
both the lower and upperbound is 0 /12 as N-)~.

Besides that:

02
N-1 02

-.- :S and

2o N-1 N+2
-.-.- ~ for all N~2.

12 N 12 12 N N 12
2/ f ~. d t'So 0 12 is an appropriate approximation or 0imb 1n case a epo 1S

present and N~2.

Summarizing: For a system with depot the variance of imbalance can be

estimated as follows:

=

if N~2

if N=1

(9)

2
4. The quality of the estimators for 0imb~

In this Section the estimators for the variance of imbalance are

tested. For the reader not interested in netailed results the results

can be summarized thus:

1. Although the estimators (8) and (9) appear to be poor estimators for

the variance of imbalance under certain circumstances, they perform

well enough to serve as estimators for imbalance in a stocknorm

formula for any divergent system. This is due to the fact that

whenever the estimator performs poorly, other elements in the.
stocknorm formula will dominate over the variance of imbalance.

2. In general 02
/12 can also be used as an estimator for the system

without depot, except in those cases where 0 and o/~ are high.comm

2Since the derivation of the estimators for 0imb is heuristic,

many simulations over a broad set of parameters have been performed.

The purpose of these simulations is to test the quality of (8) and (9)

as estimators for O~mb. A total of 144 systems were simulated.
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The parameters and their values were:

with values and 3 (so ~+1 was equal to 2 or 4) .

The total leadtime was always equal to 6. So ~ = 6 - (~+ 1) .
comm

defined as Q/~, with values 1 and 3.

defined as o /NO, with values 1 and 3.
comm

f1

fO

depot present or not;

N with values 2, 4 and 8;

a with values 5, 10 and 20 (~ was equal to 10);

~

The sytems with 8 final products performed in much the same way as

the systems with 4 final products. Therefore it is expected that

systems with a number of final products larger than tested here will

behave similar to the systems with 8 final products. A coefficient of

variation equal to 2 is rather large. It is merely used to gain insight

in the effects of large uncertainty in the system. The average time

between two orders is minimally one period and maximally three periods

(f1) for the final products and nine periods (fO'fl) for the common

part.

The estimators for the systems with and without depot will be

investigated separately in subsections 4.1 and 4.2.

4.1 The system with depot.

As an indicator for the quality of (9) as an estimator for the

variance of imbalance, the ratio O~mb(Sim) over o~mb{est) will be used.

The two variables mentioned last stand for the actual variance of

imbalance, which was measured during the simulations, resp. for the

estimated variance of imbalance using formula (9). Their ratio appeared

to be 2.8 on average, the maximum ratio registered was 13.1 and the

minimum ratio was 0.6; a poor result. Particularly if o/~ and fO were

high and if fl was low, the estimator performed badly.

Recalling that the primary purpose of estimating the variance of

imbalance was to get good stocknorms, the quality of (9) as an

estimator for total system standard deviation (totsd) is considered

too. Total system standard deviation is defined as

0
2

totsd = ' [ comm + n 2 , [ 2 2 }2y 12 ~commEO + {Ey (~+1)o + 0imbl l.
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Totsd(sim) and totsd(est) are defined as totsd with the variance of

imbalance replaced by o~mb(Sim) resp. o~mb(est).
The simulations showed an average ratio totsd(sim) over totsd(est)

of 1.00, with a maximum of 1.04 and a minimum of 0.94. A good result,

which can be rapidly explained by looking at the definition of totsd

and recalling that the variance of imbalance was estimated badly for

high ° and Q (note that Q equals fOf1N~): The factors which
comm comm

make up totsd, other than the variance of imbalance, are large if the

latter is estimated badly.

Up till now stocknorms were based on ofmb (est). The simulations for

the 12 systems with depot using these stocknorms yielded a service
2level a(oimb(est» of 93.2\ on average. To check the influence on the

service level of mis-estimating the variance of imbalance by using (9),

all 12 systems were simulated again, now using 0fmb(Sim) to determine

the stocknorms. The service level a(Ofmb(Sim» turned out to be 93.2\

on average again. So although formula (9) is a bad indicator for the

variance of imbalance under certain circumstances, it can be used very

well for determination of stocknorms for divergent systems with a

depot.

In most simulations the service level appeared to be somewhat below

the target level of 95\. The main cause for this is the fact that

actual demand was gamma distributed (see Figure 3).

For the reader not only interested in aggregate and relative

figures, Table 1 contains a representative subset of the simulation

data. From Table 1 it is obvious, that 0fmb(sim) depends on o. For

example the simulated variance of imbalance for a system with fO=f1=1

and 0=5 resp. 0=20 equals 1.5 resp. 92.8. This observation is not

incorporated in the estimator for the variance of imbalance: In both

cases the variance of imbalance was estimated to be 8.3. The reason for

this is that the potential improvement on the quality of the

estimations of totsd (110.5 estimated versus 114.4 simulated in case

fO=f1=1 and 0=20) and the service level (only 0.2\ misestimated for

£0=£1=1 and 0=20) is small (see Table 1).

This does not imply that the overall impact of imbalance is

negligible. This impact is thoroughly investigated in Section 5.1.

It will appear that neglecting the variance of imbalance when

stocknorms are determined may lead to a maximal decrease in service

level of approximately 10\ in case a depot is present!
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2 totsd aa imb
a f1 fO est sim est sim est sim
5 1 1 8.3 7.5 45.5 45.3 94.4 94.4
5 1 3 8.3 7.9 56.0 55.9 93.8 93.8
5 3 1 75.0 66.0 64.8 63.7 94.3 94.1
5 3 3 75.0 63.2 117.5 116.7 94.4 94.3

10 1 1 8.3 10.7 86.4 86.6 93.7 93.8
10 1 3 8.3 16.6 92.4 93.1 93.4 93.4
10 3 1 75.0 76.1 98.0 98.1 93.6 93.6
10 3 3 75.0 80.3 138.6 138.9 93.1 93.1
20 1 1 8.3 92.8 170.5 174.4 92.9 93.1
20 1 3 8.3 109.3 173.6 178.2 92.8 93.0
20 3 1 75.0 169.6 176.6 180.9 92.9 93.1
20 3 3 75.0 228.6 202.0 208.0 92.4 92.7

Simulation results for a divergent system with depot, N=4 and (~+1)=4.

For various values of a, fO and f1 the resulting a~mb(est), a~mb(Sim),

totsd (est) , totsd(sim) , 2 2 ~ 1

a(oimb(est» and a(aimb(sim» are given.

Table 1.

4.2 The system without depot.

AS an indicator for the quality of (8) as an estimator for a~mb' the

ratio a~mb(Sim) over O~mb(..t) will be used again. For the system

without depot this ratio appeared to be 3.8 on average, the maximum

ratio registered was 41.0(!) and the minimum ratio 0.8; the performance

of formula (8) is even worse than the performance of formula (9) in the

previous subsection. This bad performance is mainly due to the 6

simulations with a=20 and fO·f1=1. The remaining 66 simulations showed

a ratio O~mb(Sim) over o~mb(est) of 1.30 on average.

The bad performance in case of fO·f1=1 and 0=20 can be explained by

looking more closely at formula (8). In case fO·f1 equals 1, the second

term in (8) vanishes. This is based on the assumption, that gvery next

period a new order will be allocated to the final products. Due to the

large variance of demand it is possible, that this assumption is

violated. In that case the variance of imbalance is increased with
2

a (N-1)/N, which is large if 0 is large.

Although imbalance is sometimes badly estimated because of the large

variance of demand the influence of this on the system's performance

might be negligible, because that very same variance of demand may far

outweigh the total variance of imbalance in the stocknorm formula.

To investigate this, totsd(est) and totsd(sim) are considered.
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The 72 simulations showed an average ratio totsd(sim) over

totsd(est) of 1.01, with a maximum of 1.13 and a minimum of 0.97. This

together with the observation that a(O~mb(est» equals 93.4\ for the 72

simulations, whereas a(a~mb(Sim) is only 0.2\ higher on average, leads

to the same conclusion as in the previous subsection: Although formula

(8) is a bad indicator for the variance of imbalance under certain

circumstances, it can be used very well for determination of safety

stocknorms.

AS in subsection 4.1 a representative subset of the simulation data

is given for the system without depot (see Table 2). Each row is based

on 5000 simulation runs.

2 totsd°imb a

° fl fO est sim est sim est sim
5 1 1 9.4 11. 4 45.6 46.0 94.1 94.2
5 1 3 28.1 29.2 58.7 58.9 94.1 94.1
5 3 1 103.1 105.3 68.2 68.5 94.4 94.4
5 3 3 159.4 163.9 123.1 123.4 94.6 94.6

10 1 1 9.4 29.4 86.5 88.3 93.2 93.5
10 1 3 84.4 89.1 98.7 99.1 93.5 93.6
10 3 1 159.4 165.5 104.6 105.1 93.7 93.7
10 3 3 384.4 377.7 155.4 155.1 93.8 93.8
20 1 1 9.4 278.5 170.5 182.7 92.1 93.0
20 1 3 309.4 426.6 187.0 191 .9 92.7 93.0
20 3 1 384.4 507.2 190.0 195.2 92.7 93.1
20 3 3 1284.4 1072.3 245.3 238.2 93.5 93.1

Simulation results for a system without depot, N=4 and (~+1)=4.

For various values of a, fO and f1 the resulting a~mb(est), O~mb(Sim),
totsd(est), totsd(sim) , 2 2 1 1

a(oimb(est» and a(oimb(sim» are given.

Table 2.

Finally the consequences of using the estimator for the variance of

imbalance for a system with depot (that is Q2 f12 ) as an estimator for

the system without depot are investigated. As might be expected, using

Q2/12 as estimator for the system without depot leads to poor results

in case Qcomm and ° are high. In those 6 cases a 2.7\ drop in service

level is due to mis-estimating a~mb' For all other systems Q2 f12 is a

reasonable estimator.
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5. Mathematical analysis of the impact of imbalance

on the service level.

The question posed in this Section is: "What is the largest possible

decrease in service level due to neglecting imbalance when the

stocknorms are determined?". To answer this question a mathematical

worst case analysis is performed using the results of the previous

sections.

It will be shown that in general imbalance has hardly any impact on

the service level. The exceptions are

1. systems with large time between two orders for the final products

and demand, which has a relatively small variance.

or 2. systems without depot, large time between two orders for the

common part and very uncertain demand.

To come up with these results the service level is calculated for a

system which does have a positive variance of imbalance, but whose

stocknorm is based on the assumption that imbalance is negligible. This

service level is compared with the target service level, which would

have been achieved if there had not been any imbalance.

First of all extra variables are defined and old variables are

redefined:

totm '- ~(~ +~+l)~ - Q /2.-
c~mm comm

totsd(est)
Qcomm 2 2 2 }2]'- ~ [~ + ~ ~o + {~~ [(~+1)0 + °imb(est)].- comm
Q

~02 (~+1)02 }2]totsd(O) '- ~[~ ~ + {~~.- 12 + comm

Thus totsd(O) represents the total system standard deviation if the

variance of imbalance equals zero.

The stocknorm for a divergent system corresponding with a service

level a may now be re-written as

r = totm + k.totsd(est)comm
if totsd(est) is assumed to be the true total standard deviation.

Here k is solved from

~(k) = B

k = ~12.(B-O.5)

if Q2 /12 < 4.(totsd2(est)-Q2 /12)comm comm
elsewhere.

with B = a in case of no depot and

B = 1/3 + (2/3)a in case a depot is present.
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Finally from here on Q and Q will be expressed as fOf1N~comm
resp. fl~.

If it is assumed that imbalance is negligible, the appropriate

stocknorm r (0) equalscomm
r (0) = totm + k·totsd(O)comm

with ~(k) = B.

Assuming that the true relationship between the stocknorm and the

service level is given by

r = totm + k·totsd(est),comm
it becomes clear that the service level which corresponds with r (0)comm
equals ~(k·totsd(O)/totsd(est» rather than ~(k), since

r (0) = totm + k·totsd(O)comm
= totm + k·totsd(O)/totsd(est) • totsd(est).

Obviously, if the ratio totsd(O)/totsd(est) decreases, the actual

service level corresponding with r (0) will deviate more and morecomm
from the target service level Q. Therefore this ratio, and particularly

its maximum value, is analyzed mathematically below. This is done

separately for the systems with and without depot.

5.1 The system with depot.

In case a depot is present, totsd(est) and totsd(O) can be written as :
2 2 222+ N (~+l)a + N f1 ~ /12.
2 2

+ N (~+l)a .

So
2totsd (est)
2totsd (0)

This ratio is maximal if ~ , (~+1) and fO are minimal and N,f1 andcomm
(~/a) are maximal. Since ~ /N+~+l~l it follows thatcomm

totsd(est)/totsd(O) s ~[(1+(f02+1)b)/(1+f02b)]

with b = f12(~/a)2/12.

So totsd(est)/totsd(O) is maximal if f1~-, ~/a~- and fO=l.

In general the maximal ratio equals 4[(f02+1)/f02].

Note that the maximum ratio equals ~2 and is achieved if fO equals 1.

This result is going to be used to find a lowerbound on the expected

service level if the stocknorm is based on the assumption that
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imbalance is negligible. To do so it is necessary to know that in case

fO=1 the appropriate equation for the safety factor is ~(k)=B. This

fact can be proven easily and the proof is therefore left out here.

Assuming imbalance is negligible, the stocknorm for a system with

fO=1 equals

r (0) = totm + k·totsd(O)comm _
with

~(k) = 1/3 + 2/3a.

Since in reality there is imbalance, the actual service level y

. corresponding with this stocknorm r (0) can be solved from
comm

r (0) = totm + k'· totsd(est)comm
with

~(k') = 1/3 +(2/3)y.

Obviously

k' = k·totsd(O)/totsd(est).

So y can be solved from

~(k·totsd(O)/totsd(est» = 1/3 + (2/3)y.

This yields:

y = 1.5·~(k·totsd(O)/totsd(est» - 0.5.

Since

totsd(O)/totsd(est) ~ 1/42

we have

y ~ 1.5·~(k/42) - 0.5.

-1For a=95\ the corresponding k equals ~ (0.333+0.667·0.95)=1.83 and

thus y~85.3\ if fO~1.

If fO gets larger than 1 this lowerbound rapidly increases:

y~92.4% if fO~2

and y~93.9\ if fO~3.

These figures are the worst results obtainable. Usually performance

is far better. To show this simulation is used. All 72 simulations

from subsection 4.3 were performed once again, now using zero as an

estimator for the variance of imbalance. These simulations led to an

average service-level of 92.5\, which is only 0.7\ less compared with

the service-level achieved by using formula (9) as an estimator for the

variance of imbalance.

The worst results were indeed obtained for simulations with small

coefficient of variation, small fO (=Q /NQ) and high f1 (=Q/~). Incomm
those cases the service-level was up to 3.5\ lower compared with the
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simulations in which formula (9) was used. The reason for this is that

in these cases there is only a little amount of safety stock available

due to the small coBfficient of variation, while imbalance is

considerable due to the large lot-sizes Q.

Note however, that in most cases (neglecting) imbalance has little

impact on the expected service-level. The simple explanation for this

is that the variance of imbalance is only one of many variance factors

and it is large only if other variance factors are large too.

5.2 The system without depot.

For the determination of the ratio totsd(est)/totsd(O) for a system

without depot two cases will be distinguished. The reason for this is

that based on approximation (8) for the variance of imbalance no fixed

upperbound can be found for totsd(est)/totsd(O) unless a/~ is given.

For most cases however another approximation can be used, which does

yield a fixed upperbound.

-1. no high Q or no high a/~.Comm
In subsection 4.2 it has been shown empirically, that in these

cases Q2 /12 is a reasonable estimator for a~mb' That means that

totsd(est)/totsd(O) is the same as in the case with depot and all

results derived there with respect to totsd(o)/totsd(est) apply

here as well.

-2. high Q and a/~.comm
Under these conditions the second term in formula (8) dominates

and a~mb may be approximated by 0.5,fOf1(N-1)a2/N. Since fOf1 is

high, fOf1-1 is approximated by fOf1. This results in:

2totsd (est)

totsd2 (0)

Optimizing with respect to fOf1 yields a maximal ratio if

f0
2

f1 2=12(e IN + e+1)/(~/a)2,comm
Th ' '1 t' 1 1 (N-1)' 0.5.../3

1S maX1ma ra 10 equa s + N '(~/a),.../(e /N+e+1),
COmm

For a given (~/a) this ratio is maximal if N~., e ~O and e~o:comm
The maximal ratio equals 1 + 0.5..J3(a/~) and has no fixed

upperbound for all possible systems since if (~/a)~O this ratio

will get very large.
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totsdd t(est)/totsd d t(est)epo no epo

From the simulations with zero as an estimator for the variance of

imbalance it appeared that neglecting imbalance in case no depot is

available decreased the service level with 2% on average (91.6% in

stead of 93.6%). The influence of imbalance was particularly large

a) when a/~ was small and f1 was large.

b) when a/~, Q and N were large.comm
The largest drop in service level due to neglecting imbalance was 5.7%

(for small a/~ (=0.5) and large f1 (=3».

6. Comparing the system with depot and the system without depot.

Comparing formulas (8) and (9) and formulas (2') and (3") the

essential differences between a system with depot and without depot

become visible: A system with depot has less variance of imbalance

(compare the columns a~mb(est) in Tables 1 and 2 e.g.), which

contributes to a higher service level. The price which has to be paid

for this is the fact that inventory has to be retained in the depot.

As long as this inventory remains in the depot, it does not contribute

to a higher service level. So in order to achieve the target service

level total inventory has to be raised. This effect is quantified by

formula (3"'). The dilemma that having a depot has a positive as well

as a negative effect on service level has been mentioned by EpPen and

Schrage [4].

This dilemma can be quantified if the estimators for the variance of

imbalance are used: To achieve the same service level the stocknorms

for the system with depot resp. without depot are

totm + kdepot·totsddepot(est) and totm + kno depotototsdno depot(est),

where k(no) depot is the safety factor for the system with(out) depot.

So in order to determine the system with the lowest stocknorm it should

be investigated whether the following ratio is smaller or larger than

one:
kdepot o totsddepot (est)

kno depotototsdno depot(est)
Both factors kd t/k d andepo no epot
will be investigated.

The factor kd t/k d t depends on whether k is solved fromepo no epo
.(k) = 8 (a)

or from k = -112. (8-0.5) (b)
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Figure 6 shows the ratio kd t/k d t in both cases for variousepo no epo
values of o. Note that as 0 increases, the relative difference in the

safety factors gets smaller and thus it will sooner become economical

to have a depot. It should be mentioned here that the formula

8=1/3+(2/3)0 is a rough approximation. From [3] it is known, that the

service level 0 in a 2-stage system also depends on the ratio of the

variances in the first and second echelon.

k /kdepot no depot

1.2

0.8 0.9 1.0 -) service level

Figure 6.

To evaluate totsdd t(est)/totsd d t(est) two cases areepo no epo
distinguished:

-1. no high Q or no high a/~.
comm

Using again the result that in this case 02/12 is a reasonable

estimator for a~mb in case of no depot, totsd d t(est) becomes
1 no epo

equal to totSddepot(est). Since kdepot is always larger than

kno depot' in these cases it does not pay (in terms of service

level) to have a depot.

-2. high Q and a/~.
c~ 2 2

In these cases aimb may be estimated with 0.5fOf1(N-1)a /N.

Then the ratio totsdd t(est)/totsd d t(est) is equal toepo no epo

The nominator and denominator are equal except for the last two

terms. It seems that this ratio will tend to decrease if fO and N

and a increase.
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From simulations it appeared that for none of the 24 divergent

systems with N=2 (the same systems as simulated in Section 4) it was

worthwhile to have a depot. The stocknorm in these simulations aimed

for a service level of 95\ for the system with depot. For the system

without depot the system stocknorm was chosen equal to the stocknorm

for the system with depot in order to attain equal average system

inventories. For larger N a depot was only worthwhile if Qcomm and 0

were high.

This comparison is not as black and white as it seems. The

simulations for the system with depot were performed using stocknorms

based on equal safety factors for both echelons. The system without

depot can be seen as a system with depot and an infinitely large safety

factor for the first echelon. All that can be concluded from the above

is that if a depot is available, the stocknorms for the first echelon

should generally be chosen high, unless the variance of imbalance is

very large. In the precise determination of the stocknorms added value

should also be taken into account: The higher the added value in the

last production process, the lower its stocknorm.

7. Conclusions.

a. In this paper estimators for the variance of imbalance have been

derived, which can be used very well to gain insight in the role of

imbalance in divergent systems and to determine stocknorms.

b. Imbalance has a significant influence on the system's performance in

the following cases only:

- in case the coefficient of variation (of the forecast error) of

demand is relative small (small o/~), the leadtime for the final

products is small (small "+1) but the variance of imbalance is

large (large Q/~).

in case of no depot and large imbalance, that is if Q and 0
2

comm
are large in a system without depot.

c. In the stationary situations with unlimited capacity and identical

products as considered in this paper it is hardly ever advantageous

to be very cautious with pushing inventory out of the depot: Pushing

extra inventory out of the depot generally has a larger positive

effect on the service level than the negative effect caused by the
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decreased possibility to keep the final products balanced. The only

exception here are divergent systems with high added value or high

storage costs in the last production process and/or systems with

very large variance of imbalance; the latter are systems with many

products, large colfficient of variation for demand and a large lot

size for the common part.

Further research is necessary to investigate the influence of non

stationarity of the demand process and limited capacity. The case of

non-identical products is investigated by the author. It appeared that

for non-identical products a more elaborate definition of imbalance is

needed and that the system is far more complex. Results for this case

will be part of a dissertation.
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Appendix.

Derivation of formula (7).

For the system without depot the variance of imbalance just after an

order is allocate~ equals

Q2 (N-1) (N+2)

I. are uniformly
J

a result which is

12 N N
This is due to the fact that the inventory levels

distributed on the interval [min{I.}, min{I.}+Q];
1. 1.

analogous to the fact that in a 1-echelon system with orderpoint r

lot-size Q the inventory position after ordering is uniformly

distributed between rand r+Q.

and

In terms of variance of I. the situation with
J

I.-u[min{I.},min{I.}+Q] j=1, .• ,N is equivalent with the situation thatJ l. l.
N-1 products chosen randomly from the N products are uniformly

distributed on [O,Q] and one product equals zero.

Imbalance is defined as var(I.-I} and can be calculated as follows:
J

var(I.-I} = E(I.-I}2=
J J

= E[I~] -(2/N}'{E[I~]+E[I.·.t.I,]) + (1/N2)'{E[tI.·.t,I.] + E[I:I2l.'])
J J J l.~J l. J l.~J l.

= (l-l/N)' E[I~] l/N·E[I.·.t.I.]
J J l.'J l.

= (1_1/N}2Q2/3 1/N'(N-1)(N-2)Q2/(4N)

Q2 (N-1) (N+2)
=-.--.--

12 N N

Q.E.D.
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