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On the equivalence of certain ergodic properties

for Gibbs states

Frank den Hollander� University of Nijmegen �

Je�rey E� Steif� Chalmers University of Technology y

Abstract

We extend our previous work by proving that for translation invari�
ant Gibbs states on Zd with a translation invariant interaction potential
� � ��A� satisfying

P
A�� jAj

���diam�A��dk�Ak �� the following hold	
�
� the Kolmogorov�property implies a Trivial Full Tail�
��� the Bernoulli�property implies Flner Independence�
The existence of bilaterally deterministic Bernoulli Shifts tells us that nei�
ther �
� nor ��� is true for random �elds in general without some further
assumption �even when d � 
��

� Introduction

The purpose of this paper is to extend some results for Markov random �elds�
that were proved in �HS�� to a large class of �possibly in�nite range� Gibbs states�
In x	 we give some notations and de�nitions� In x
 we formulate our theorems�
In x� and x� we give proofs�

Notations and de�nitions� Throughout this paper we consider stationary
stochastic processes X  fXxgx�Zd taking values in a �nite set F � We also view
X as a probability measure � on �  FZ

d

that is invariant under the natural
Zd�action�

We write Bn  ��n� n�d �Zd to denote the n�box in Zd� If � is a probability
measure on FZ

d

and A � Zd� then we let �A denote the probability measure on
FA obtained by projecting � onto A� We also let XA denote the process restricted
to A� so that �A is just the distribution of XA�
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In order to save space� rather than repeating verbatum a number of de�ni�
tions we will frequently refer to �HS�� In particular� the reader can �nd there
the de�nitions of the d�distance between two probability measures �A and �A
with �nite A� entropy� ergodicity� K�automorphism �K�� Trivial Full Tail
�TFT�� Bernoulli �B�� Very Weak Bernoulli �VWB�� and F�lner Inde�
pendence �FI��

For translation invariant ergodic random �elds the following orderings hold
�see �HS�� x	 and Theorem 
�� and references��

FI � VWB� TFT � K
FI � TFT � VWB � K
B  VWB�

A Gibbs state is de�ned as follows �see �G�� Chapter 
�� An interaction po�
tential is a family �  ��A� of maps �A�F

A � R satisfying
X

A�A�� ���

k�Ak �� for all � �Zd non�empty and �nite�

where k�Ak  sup��FA j�A���j and where A runs over the non�empty �nite
subsets of Zd� For a given �� a Gibbs state for � is any random �eld � whose
conditional probabilities on � given � on �c are of the form

���j�� 
	

Z���
exp��H���j��� for all � �Zd non�empty and �nite and � � F�c

�

where Z��� is the normalizing constant �or partition sum��

H���j��  �
X

A�A�����

�A��� 	 ��A� �� � F��

is the Hamiltonian on � given � on �c� and �� 	 ��A is the con�guration � 	 �
restricted to A�

The class of interaction potentials that we allow in this paper are the ones
satisfying

�
�

�
�A  �A�z for all A and all z �ZdP

A��
�
jAj �diam�A��dk�Ak ���

where diam�A�  supx�y�A jx � yj�� The second of these conditions means that
for large sets the total interaction across the boundary of the set is of the order
of the surface of the set�

Despite the fact that the interaction potential is assumed to be translation
invariant� there may � and in general will � be Gibbs states that are not translation
invariant� In this paper� however� we only consider translation invariant Gibbs
states�






� Main theorems

The goal of this paper is to show that the converses of �FI implies VWB� and
�TFT implies K�� though not true in general �see �HS� for a discussion�� are true
for allZd�invariant Gibbs states for interactions satisfying �
�� That is� we prove
the following two theorems�

Theorem ��� If � is aZd�invariant Gibbs state for an interaction satisfying �
�
and is VWB� then � is FI�

Theorem ��� If � is aZd�invariant Gibbs state for an interaction satisfying �
�
and is K� then � is TFT�

The proofs of these theorems are given in x� and x�� Thus� for the class �
�
we obtain the following ordering�

�

� FI  V WB � TFT  K�

Remarks�
��� For d  	� �
� precisely coincides with the well�known su�cient condition
for uniqueness of the Gibbs state ��G�� p� 	���� Being the unique Gibbs state�
the measure is necessarily TFT ��G�� Theorem ����a��� So Theorem 
�
 is of no
interest for this case� In fact� for d  	� �
� is known to imply that the unique
Gibbs state is Weak Bernoulli ��G�� p� ��	�� which is stronger than FI� Therefore
Theorem 
�	 is also of no interest in this case�
��� Theorem 
�
 is trivial� for any d � 	� if all ��� Gibbs states for the given inter�
action areZd�invariant� In fact� then ergodicity is already enough to imply TFT�
The reason for this is that any such ergodic Gibbs state cannot be decomposed
as a convex combination of two Gibbs states for the same interaction� since these
would necessarily be Zd�invariant and by ergodicity would be identical� Hence�
any such ergodic Gibbs state is extremal within the class of all Gibbs states� and
therefore must be TFT �again by �G�� Theorem ����a���
�	� In �OW	� it is proved that for the Ising model with ferromagnetic nearest�
neighbor interaction both the �� state� and the �� state� are B� So for this case
all four properties in �

� hold� The proof shows that the same is true for all in�
teractions satisfying the FKG lattice condition ��G�� p� ����� the technical reason
being that then the conditional measure in a �nite set is stochastically increasing
as a function of the con�guration outside the set�
�
� As will become clear from the proofs� both Theorem 
�	 and Theorem 
�
 are
statements of the type� if a certain property holds �one�sided� then it also holds
�two�sided� �i�e�� if the property holds with respect to the lexicographic past of a
large box� then it holds with respect to the entire outside of the large box�� In

�



the theory of Gibbs states similar types of statements occur� for instance� for the
notions of Markov property ��G�� Section 	��	� and entropy �E��
���An open question is whether TFT  VWB for the class �
�� In �H� an example
is constructed of a Markov random �eld onZ� that is K but not VWB� Since �HS�
shows that K  TFT for Markov random �elds in general� this example violates
TFT  VWB� However� it is not Gibbsian �because it is not strictly positive on
all cylinder sets�� Perhaps a Gibbsian counterexample can be found in the class
of nearest�neighbor �clock models� �FS�� where Gibbs states are known to exist
that are unique and yet have arbitrarily slow decay of correlations�
��� Another open question is whether �

� also holds for the larger class of inter�
actions where the second condition in �
� is weakened to

P
A�� k�Ak � �� i�e��

the usual summability condition�

� Proof of Theorem ���

	�� Key lemma� We will need the following property of a Gibbs state for an
interaction satisfying �
�� which plays an important role in the proofs of both
Theorem 
�	 and Theorem 
�
�

Lemma 	�� Fix an interaction satisfying �
� and let � be a Zd�invariant Gibbs
state for this interaction� Then� given 	�m � N and 
 � �� there exists a
C�	�m� 
�� satisfying

lim
���

C�	�m� 
�  	 for �xed m and 
�

such that for any k � �	�m	� � N� any �� �	 � FBc
k that agree on Bk�b��cnBk� and

any � � FBk� the following bounds hold a�s��

	

C�	�m� 
�
�

�Bk
��j��

�Bk
��j�	�

� C�	�m� 
��

Proof� Fix m � N and 
 � �� For k� 	 � N� let Ak���� denote the collection of
�nite sets A satisfying A � Bk  � and A � Bc

k�b��c  �� Given any �nite set A�

let TA�k� 	� 
� denote the number of translates of A that are contained in Ak�����
Some elementary combinatorial geometry �left to the reader� shows that there
exists a C��m� 
� such that

sup
A

sup
l�N

sup
k����m�	�N

TA�k� 	� 
�

�diam�A��d
� C��m� 
��

�



Next� for any l � N� any k � �	�m	��N� any �� �	 � FBc
k that agree on Bk�b��cnBk�

and any � � FBk� we have

jHBk
��j���HBk

��j�	�j �
P

A�Ak����
k�Ak


P

A��
TA
k�����

jAj
k�Ak

� C��m� 
�
P

A���diam
A�
b��c
�
jAj

�diam�A��dk�Ak�

By assumption �
�� the sum in the right�hand side tends to zero as 	 � ��
Hence there exists a C��	�m� 
�� satisfying lim��� C��	�m� 
�  	 for �xed m and

� such that

	

C��	�m� 
�
�

e�HBk

�j��

e�HBk

�j���

� C��	�m� 
�

for any l� k� �� �	� � as above� These inequalities being true for all �� the ratio of
the corresponding partition functions also satis�es the exact same inequalities�
This proves the claim with C�	�m� 
�  C��	�m� 
��� �

	�� Proof of Theorem ���� If a process is VWB� then it is B �see x	�� The
latter is in turn equivalent to the following condition� called extremality �see �HS��
x� and references��

De�nition 	�� A Zd�invariant probability measure � is called extremal if for
all � � � there exist an N � N and a 
 � � such that� for all n � N and for all
decompositions of �Bn of the form

�Bn 
MX
i��

pi�i

with �p�� � � � � pM � a probability vector and M � 
�jBnj� most of the �i�s are d�close
to �Bn in the sense that X

i� d
�Bn ��i��	

pi � 	� ��

In words� any �not too large� decomposition of the measure on large blocks must
have almost all components close to the original measure�

We must contrast extremality with the de�nition of FI� which reads�

De�nition 	�	 A Zd�invariant probability measure � is called F�lner Inde�

pendent if for all � � � there exists an N � N such that� if n � N and S � Bc
n

with S �nite� then
d��Bn� �Bn�� � �

for all � � F S except for an ��portion as measured by � �where �Bn� denotes
�Bn conditioned on �	�

�



In words� for large n and for most con�gurations on Bc
n the conditional distribu�

tion on Bn is d�close to the unconditional distribution�
To show that �� is B� implies �� is FI�� let � � � and pick N�� 
 from De�nition

��
� Next� choose � � � su�ciently small and pick N� such that jF jjBn�b�ncnBnj �

�jBnj for all n � N�� Next� pick N� from Lemma ��	 such that C�n� 	� �� � 	 � �
for all n � N�� For such n� it follows readily from the bounds in Lemma ��	
that� for any �� �	 � FBc

n that agree on Bn�b
ncnBn� the measures �Bn��j�� and
�Bn��j�

	� are within � in total variation distance�
By Lemma ��
 in �HS�� to verify the FI�condition in De�nition ��� it su�ces to

consider n � maxfN�� N�� N�g and �nite sets S � Bc
n that contain Bn�b
ncnBn�

Since jF jjBn�b�ncnBnj � 
�jBnj� extremality yields that there exist con�gurations
��� � � � �M on Bn�b
ncnBn� with M � jF jjBn�b�ncnBnj� such that their total measure

is at least 	� � and such that also d��Bn� �Bn�i� � � for each �i�
Now consider all con�gurations � on S such that the restriction of � to

Bn�b
ncnBn is �i for some i � f	� � � � �Mg� Clearly� these con�gurations have
total measure at least 	 � �� and so we need only show that for each such ��

d��Bn� �Bn�� � 
��

For this it su�ces to show that

d��Bn�� �Bn�� � �

whenever � is a con�guration on S whose restriction to Bn�b
ncnBn is �� However�
�Bn� and �Bn� are each averages of measures that� as we saw earlier� are all
within � in total variation distance of each other� Hence �Bn� and �Bn� are
within � in total variation distance� and therefore also within � in d�distance� �

� Proof of Theorem ���

We will prove the result only for d  
� the extension to higher dimensions being
straightforward� The proof is a variation on the proof of the analogous statement
for Markov random �elds given in �HS�� The main point is to implement Lemma
��	� which requires some estimates�

TFT means that the ��algebra T de�ned by

T  �m
�Tm
Tm  ��Xx� x � Bc

m�

is trivial� On the other hand� K is equivalent to the smaller ��algebra T 	 de�ned
by

T 	  � ��m
�T
	
m�

T 	
m  �n
�T

	
m�n

T 	
m�n  ��Xx� x � f�x�� x�� � x� � �n or �x� � �n and x� � m�g�

�



�T 	
m�n is the lexicographic past of the rectangle ��n� n� � ��n�m� in Z�� being

trivial �see �HS�� x	 and references�� We will show that T  T 	 a�s� which more
than implies the claim that K  TFT�

In order to do so� we appeal to Lemma 
�	� in �BH� �which is stated there
only for d  	 but whose proof for higher dimensions is identical�� According to
this lemma� since T 	 � T it su�ces to show that

h�XBnjT
	�  h�XBnjT � for all n � ��

where h��j�� denotes conditional entropy�
Fix n � �� Since T 	

n � T 	 � T � it su�ces to show that

h�XBn jT
	
n� � h�XBn jT �� �	�

To achieve this� we will show that there exists a function ��k� 	� 
� � �� de�ned
for k� 	 � N with k � 
n and for 
 � �� satisfying

lim
���

��k� 	� 
�

�
	 � 	��
 � for �xed k and 
� �
�

such that

h�XBnjT
	
n�k�n� � h�XBnjTk
������n� � �k����h�X�� �

��k� 	� 
�

�
	 � 	��
� ���

where h��� denotes entropy and

�k���� 
b
	c��r � 	� � b
	c�b
	c� 	�

�
	 � 	��
with r  k�	 � 	�� n�

Assuming the latter� we can let 	 � �� 
 � �� k � � �in this order� in ���
and use �
� to obtain �	�� Note that �k���� vanishes in this limit and that� by the
backwards martingale convergence theorem� the two entropies in ��� converge to
the two entropies in �	��

To construct ��k� 	� 
�� we de�ne

Ck��  �x�y� jxj���jyj��fBn � �kx� ky�g

and note that the �
	�	�� translates of Bn comprising Ck�� are disjoint and have
distance at least k � 
n between them� Let r  k�	� 	�� n as above and de�ne

Er  f�i� j� � j � �rg
Dr��  Br�b��cn�Br � Er��

In words� Er is the lower half plane adjacent to the bottom segment of the bound�
ary of Br� while Dr�� consists of b
	c layers adjacent to the left� right and top

�



segments of the boundary of Br� Note that the boundary of Br encloses Ck�� and
is a distance k � 
n away from it�

We next order the �
	�	�� translates of Bn in Ck�� lexicographically� Namely�
we say that Bn � �x� y� precedes Bn � �x	� y	� if y � y	 or �y  y	 and x � x	��
In this way� we get an ordering of the translates of Bn� which we enumerate as
B�� B�� � � � B
������� The idea of the proof is to compute the conditional entropy

�y�  h�XDr��
	XCk��

jXEr �

in two di
erent ways� to derive an upper� respectively� lower bound for the two
resulting expressions� and in this way obtain an inequality between these bounds�
This inequality will then be exploited to complete the proof�

For the lower bound� we estimate

�y� � h�XCk��
jXEr�  h�	
������

i�� XBijXEr�


P
������

i�� h�XBijXEr 	XB������Bi����

Clearly� each of the terms in the sum is bounded below by h�XBn jT
	
n�k�n�� because

the distance between the translates Bi is k � 
n and so is the distance between
�iBi and Er� Hence

�y� � �
	 � 	��h�XBn jT
	
n�k�n�� ���

For the upper bound� we write

�y�  h�XDr��
jXEr� � h�XCk��

jXEr 	XDr��
��

The �rst term is at most jDr��jh�X��� where jDr��j 
Pb��c

i�� ��r�	�
i�  b
	c��r�
	�� b
	c�b
	c�	�� We express the second term as h�XCk��

jXBc
r
����k� 	� 
� with

��k� 	� 
�  h�XCk��
jXEr 	XDr��

�� h�XCk��
jXBc

r
� � �

�the inequality coming from Er �Dr�� � Bc
r�� We develop h�XCk��

jXBc
r
� as

h�XCk��
jXBc

r
�  h�	


������

i�� XBijXBc
r
�

�
P
������

i�� h�XBijXBc
r
�

� �
	� 	��h�XBnjT�r�
k�n���

using the fact that the largest distance between the boundary of Br and the center
of a translate Bi is 
r � �k � n�� Thus

�y� � �
	 � 	��h�XBn jT�r�
k�n�� � jDr��jh�X�� � ��k� 	� 
�� ���

�



Comparing ��� and ���� noting that 
r� �k� n�  k�
	�	�� n and dividing by
�
	�	��� we obtain ���� Hence we need only verify �
� with the above de�nition
of ��k� 	� 
��

To achieve the latter� we need the following trivial lemma�

Lemma 
�� Let p  fpigi�I and q  fqigi�I be two �nite probability vectors
satisfying

	

C
�
pi
qi
� C for all i � I�

Then h�q� � � logC � �
C
h�p�� where h��� denotes entropy�

Proof� Write

h�p� 
X
i

pi log
� 	

pi

�
�
X
i

Cqi log
�C
qi

�
 C logC � Ch�q��

�

We want to apply Lemma ��	 when p is the conditional law of XCk��
given

XEr	XDr��
and q is the conditional law ofXCk��

givenXBc
r
� Fix k and 
� Applying

Lemma ��	 and averaging over the con�guration in Br n Ck��� we �nd that there
exists a C�	� �namely� C�	�  C�	� 
k� 
� in the notation of Lemma ��	 because
kl � r � 
kl�� satisfying

lim
���

C�	�  	�

such that for any 	 � N� any � � FCk��� any � � FEr�Dr�� and any �	 � FBc
r whose

restriction to Er �Dr�� is �� the following bounds hold a�s��

	

C�	�
�
��XCk��

 �jXEr 	XDr��
 ��

��XCk��
 �jXBc

r
 �	�

� C�	�

�use that Br�b��cnBr � Er � Dr�� � Bc
r�� Using Lemma ��	� we now obtain

�integrate over �� �� �	�

h�XCk��
jXBc

r
� � � logC�	� �

	

C�	�
h�XCk��

jXEr 	XDr��
�

and so

� � ��k� 	� 
�  h�XCk��
jXEr 	XDr��

�� h�XCk��
jXBc

r
�

� logC�	� �
�
	 � �

C
��

�
h�XCk��

jXEr 	XDr��
��

But h�XCk��
jXEr 	XDr��

� can be bounded above by �
	 � 	�� h�XBn�� Hence �
�
follows because lim��� C�	�  	� �
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