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Abstract 
 
This report focusses on different aspects of jackknife instability of articulated trucks. 
Jackknife instability is a form of lateral instability where the tractor pivots backward 
into the trailer. By doing simulations of a simplified bicycle model and evaluating the 
eigenvalues of the system, it is investigated what exactly causes jackknife instability. 
It is found that adjusting the system parameters can cause the system to become 
unstable when the parameters are not selected properly. Also, system inputs such as 
brake force can cause the system to become unstable. Finally, two different systems 
are analyzed which can help prevent jackknife instability. These systems are Active 
Yaw Control (AYC) and Active Front Steering (AFS). An AYC system uses variable 
braking forces on separate tires, whereas an AFS system uses a variable steering gear 
ratio. 
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List of symbols 
 
Symbol Unit Description 
� rad Tire side slip angle 
a m Distance from front tire of the tractor to the centre of 

gravity of the tractor 
� rad Vehicle side slip angle 
b m Distance from the centre of gravity of the tractor to the 

rear tires of the tractor 
B N.m.s/rad Damping 
c m Distance from the centre of gravity of the tractor to the 

pivot point of the vehicle 
C� N/rad Tire cornering stiffness 
� rad Steering angle 
d m Distance from the pivot point of the vehicle to the centre 

of gravity of the trailer 
e m Distance from the centre of gravity of the trailer to the 

rear wheels of the trailer 
F N Force 
� rad Articulation angle 
J kg.m2 Inertia 
K N.m/rad Self-aligning stiffness 
� - Eigenvalue 
m kg Mass 
r rad/s Yaw rate 
P Pa Braking pressure 
q rad/s Articulation rate 
� N.m Torque 
� - Road friction coefficient 
u m/s Longitudinal velocity 
v m/s Lateral velocity 
�n rad/s Natural frequency 
�o rad/s Natural frequency of the undamped system 
	 rad Vehicle yaw angle 

 - Damping ratio 
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Indexes Unit Description 
(..)1 - Front tire of the tractor (in case of force, cornering 

stiffness and side slip angle) 
(..)1 - Tractor (in case of mass and inertia) 
(..)2 - Rear tire of the tractor (in case of force, cornering 

stiffness and side slip angle) 
(..)2 - Trailer (in case of mass and inertia) 
(..)3 - Tire of the trailer (in case of force and cornering 

stiffness and side slip angle) 
(..)ABS - Anti-lock braking system 
(..)afs - Active front steering 
(..)AYC - Active yaw control 
(..)d - Desired 
(..)drv - Driver 
(..)hw - Handwheel 
(..)max - Maximum value 
(..)s - Steering system 
(..)x - Longitudinal direction 
(..)z - Vertical direction 
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1. Introduction 
 
As a result of the increasing demand on load capacities of trucks, problems may occur 
when it comes to stability of trucks. The most important stability problems occur 
when lateral acceleration becomes too high (roll-over) or when the tractor pivots 
backward into the trailer (jackknife). A jackknife can occur for example due to 
slippery roads, hard braking or shifting loads. This form of instability is discussed in 
this report. Over the years, many systems to reduce jackknife instability are 
developed. Two systems that are discussed in this report are Active Yaw Control 
(AYC) and Active Front Steering (AFS).  
 
To get insight in what causes large truck crashes, studies are performed by several 
organizations. One of these studies is the Large-Truck Crash Causation Study [1]. It is 
conducted in the United States and the crashes that are examined occurred from April 
1, 2001, through December 31, 2003. The study shows that of all examined 
multivehicle crashes regarding trucks causing the accident, 9% is due to a jackknife 
event. Another report is published by the National Highway Traffic Safety 
Administration. This report [2] is based on traffic accidents in the United States in 
2003. It shows that 3.1% of all examined crashes caused by tractor-trailer 
combinations is due to a jackknife event. Moreover, 7.1% of all examined fatal 
crashes caused by tractor-trailer combinations is due to a jackknife event. 
 
The problem that is discussed in this report is what exactly causes jackknifing and 
what can be done to prevent this instability. This is done by running simulations in 
Matlab and a literature study respectively. The simulations in Matlab are done by 
using a simplified model of a tractor semi-trailer combination.  
 
The remainder of this report is organized as follows:  
First, the modeling of the tractor semi-trailer combination is discussed in chapter 2. In 
chapter 3, a way to determine the worst-case brake- and steering input is given. After 
that, simulations with a linear bicycle model are made in chapter 4. A stability 
analysis is made for various vehicle parameters (chapter 5) and for varying cornering 
stiffnesses during braking (chapter 6). In chapters 7 and 8, two systems that can 
reduce or prevent jackknife instability are discussed. The final chapter contains the 
conclusions and recommendations. 
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2. Modeling 
 
The first step towards simulation is building a model for the tractor-semitrailer. The 
model that is discussed is a simple bicycle model. Before building the model, some 
symbols have to be assigned to the variables and states. These are depicted in figure 
2.1. 
 

 
Figure 2.1 Schematic representation of the 3-axle bicycle model 
 

2.1 Equations of motion 
 
The equations of motions for this system are given as 
 
( )( ) ( )1 2 2 2 1 2 3m m v ur m c d m d F F Fψ γ+ + − + − = + +�� ���    (2.1) 

 

( )[ ] ( ) ( )
( )

2 2
2 1 2 2 2 2

1 2 3

...m c d v ur J J m c d r J m d q

aF bF F c d e

� �− + + + + + + + + =
� �

= − − + +

� � �

  (2.2) 

 
( ) ( ) ( ) ( )2

2 2 2 2 2 3m d v ur J m d c d r J m d q F d e� �− + + + + + + = − +� �� � �   (2.3) 

 
with: 
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1

2

 mass of the tractor

 mass of the trailer

 vehicle lateral velocity
 vehicle longitudinal velocity
 vehicle yaw rate

, , , ,  vehicle characteristic lengths (figure 2.1)
 vehicle yaw angle

m

m

v

u

r

a b c d e

ψ
γ

=
=

=
=
=

=
=
=

1 2 3

1

2

 articulation angle
, ,  tyre cornering forces

 tractor moment of inertia

 trailer moment of inertia

 articulation rate

F F F

J

J

q

=
=
=

=

 

 
These equations of motion agree with Pacejka’s equations in [3]. The tire cornering 
forces can be described as 
 

             for 1, 2,3i i iF C iα= − =        (2.4) 
 
with: 

 tire cornering stiffness
 tire side slip angle

C

α
=
=

 

 
The linearized equations for � are given as 
 

1  
v ar

u
α δ+= −         (2.5) 

 

2  
v br

u
α −=          (2.6) 

 
( ) ( )

3  
v c d e r d e q

u
α γ

− + + − +
= −       (2.7) 

 
with: 

 steering angleδ =  
 
A combination of (2.1) through (2.7) can be transformed into a first-order system in 
matrix form. This matrix form can be described as 
 

1Mx Kx B u= +�          (2.8) 
 
with: 
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1

 mass matrix
 stiffness matrix
 input matrix

M

K

B

=
=
=

 

 
For the representation in (2.8), the state vector and the derivative of the state vector 
are given as 
 

vehicle lateral velocity
vehicle yaw rate
articulation rate
articulation angle

y v

r
x

q

ψ
γ
γ γ

� � � � � �
� � � � � �
� � � � � �= = =
� � � � � �
� � � � � �
� � � � � �

�

�

�
     (2.9) 

 
vehicle lateral acceleration
vehicle yaw acceleration
articulation acceleration
articulation rate

y v

r
x

q

ψ
γ
γ γ

� � � � � �
� � � � � �
� � � � � �= = =
� � � � � �
� � � � � �
� � � � � �

�� �

�� �
�

�� �

� �

    (2.10) 

 
The matrices M, K and B1 are given in appendix A. 
 
2.2 State-space form 
 
In order to observe the dynamics of the model, the model is manipulated to be 
represented in state-space format, shown as 
 
x Ax Bu= +�          (2.11) 
 
When the forward velocity and cornering stiffnesses are assumed to be constant, the 
matrix A is time-independent. The formulation in (2.8) is converted into state-space 
format using the transformation with 
 

1A M K−=          (2.12) 
 

1
1B M B−=          (2.13) 
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3. Worst-case maneuvers 
 
The problem that is discussed in this chapter is what combination of brake and 
steering inputs is the most dangerous for the truck, in the sense of jackknife when 
both inputs are limited below a certain threshold value. Moreover, when can we 
guarantee that no jackknife could occur under certain initial speed and road friction 
conditions? 
 

3.1 Worst-case problems formulation 
 
Worst-case evaluation problems can be divided into four types [4]: one player without 
preview information (lP), one player with preview information (lPP), two players 
without preview information (2P), and two players with preview information (2PP). 
The two-player types are applicable to systems with both control and disturbance 
inputs and when their objectives are opposite. The preview cases should be applied 
when one of the players could “peek into the future” against its opponent. The 
preview information, in fact, usually arises from the delays of system components. 
The jackknife of articulated trucks is formulated as a 1P problem, for which we want 
to identify the worst-case inputs (steering and braking). 
 
The dynamics of the vehicle are assumed to be in state-space form, described as 
 

0

( ) ( ( ), ( ), )
(0)

x t f x t w t t

x x

=
=

�

      (3.1) 

 
with: 

( ) state vector
( ) disturbance vector

x t

w t

=
=

 

 
The disturbance vector is assumed to be governed by the worst-case algorithm, which 
represents the worst possible action that could come from a human driver. It is 
assumed that the goal of w(t) is to maximize a cost function [5] described as 
 

{ }
0

( ( ), ( ), ) ( ) ( ) ( ) ( )
ft T T

t
J x t w t t x t Qx t w t Pw t dt= −�     (3.2) 

 
where Q and P are weighting matrices that are positive semi-definite and positive 
definite respectively. The matrices P and Q are selected in such a way that a large 
penalty is imposed on the variable that is most important for the selected stability 
evaluation. For example, in the jackknife case, this variable is the articulation angle. 
Theoretically, only the relative size between P and Q matters. Therefore, P could be 
selected to be an identity matrix. However, elements of P actually determine the 
convergence rate of the nonlinear learning algorithm. This 1P formulation defined by 
(3.1) and (3.2) is a standard optimization problem. By replacing the nonlinear 
dynamics with linear state matrix (2.11), the optimal solution to the optimization 
problem, (3.1) and (3.2), is known to be [6] 
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1( )* ( ) ( )Tw t P D K t x t−= −        (3.3) 

 
where K is the solution of the Riccati differential equation 
 

1( ) ( ) ( ) ( ) ( )
( ) 0

T T

f

K t A K t K t A K t DP D K t Q

K t

−= − − + +
=

�

    (3.4) 

 

3.2 Sensitivity 
 
In the past, the research focus has been on the relationship between this instability 
mode and vehicle parameters. Even though this relationship can easily be found with 
current simulation technologies, it is not clear how to generate “bad” steering and 
braking inputs leading to truck jackknifing. An option is to introduce a general “bad” 
maneuver to apply to a vehicle and determine the stability of the vehicle based on the 
response of this vehicle to this maneuver. This option is similar to Dugoff’s “drastic 
maneuver” [7]. A drastic maneuver may be proposed for jackknife events as well. 
However, the selected maneuver may favor one vehicle over others and may not be a 
fair basis for determining a tendency to jackknife. The worst-case vehicle evaluation 
methodology (section 3.1) identifies the weak link of each individual vehicle and 
generates the worst-case maneuvers accordingly. Therefore, the vehicle performance 
can be more fairly assessed. 
 

3.3 Simulation 
 
Arcsim is a program that describes 3D motions of a truck using 79 state variables. 
Since not all these states are relevant for describing the jackknifing, many of these 
variables can be neglected. 
 
To illustrate a jackknife, simulations can be done by using Arcsim. In these 
simulations, the truck is assumed to start from an initial speed of 60 mi/hr. When the 
cost function (3.2) is then modified to penalize the articulation angle between the 
tractor and the trailer, the "worst-case" steering and braking produce a large 
articulation angle. However, when the road friction is low enough, it is possible to get 
a jackknife even when the steering angle is small. To generate the truck jackknife, it is 
necessary to apply heavy braking for an extended period of time. Steering plays only 
a secondary role, which serves to generate initial perturbations to the yaw motion of 
the vehicle. A large articulation angle is then generated from the inverted pendulum 
nature of the articulated vehicle. This is shown in figure 3.1. 
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Figure 3.1 Vehicle response for inputs that cause a jackknife (� =0.4) 
 
One of the benefits of the worst-case evaluation method is to determine important 
vehicle and operational parameters involved in the truck jackknife. 
 

3.4 Conclusions 
 
In this chapter, it is shown that a worst-case evaluation determines the stability of 
each tractor-semitrailer combination separately. This is a better way to determine 
stability than a standardized “bad” maneuver, which may favor one vehicle over 
others. A worst-case evaluation determines the worst possible braking and steering 
input for each vehicle that could come from a driver. 
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4. Simulation of the linear model 
 
Using the program Matlab, simulations can be made of the dynamics of the model. 
The matrices from the state-space form have been derived in section 2.2. With these 
matrices, linear simulations can be done with the lsim command in Matlab.  
 

4.1 Parameters 
 
Before a simulation can be made, the system parameters have to be determined. Table 
4.1 shows some realistic values for the vehicle parameters and they are obtained from 
[8]. The parameters originally are determined for the TruckSim simulation program. 
 
Table 4.1 Vehicle parameters 
Parameter Value Unit 

m1 8812 kg 
m2 16484 kg 
J1 46100 kg.m2 
J2 4.5201.105 kg.m2 
a 2.062 m 
b 2.723 m 
c 2.539 m 
d 7.483 m 
e 3.760 m 

C1 3.8193.105 N/rad 
C2 7.3339.105 N/rad 
C3 8.8144.105 N/rad 

 

4.2 Linear simulation results 
 
Using the lsim command in Matlab, simulations can be made with varying parameters 
and variables. In figure 4.1, the dynamic response is shown for a sinusoidal steering 
input with a frequency of 0.25 Hz and an amplitude of 0.1 rad. This is comparable to a 
lane change which consists of a sinusoidal steering input. The parameters are taken 
from table 4.1 and the longitudinal velocity is 20 m/s (=72 km/h), which is close to 
the legal speed limit in the Netherlands. 
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Figure 4.1 Vehicle response to a sinusoidal steering angle input 
 
As can be seen from this figure, the system is stable. Simulations with other steering 
inputs can be made as well. In figure 4.2, the dynamic response of the system is 
shown for a step input for the steering angle of 1 rad after 1 second. 
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Figure 4.2 Dynamic response for a step steering input 
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As well as the input, the system parameters can be varied. Figure 4.3 shows the 
dynamic response to a step input for the steering angle for a cornering stiffness C2 that 
is half the value with respect to the previous simulation. The rest of the parameters 
and variables are unchanged. 
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Figure 4.3 Dynamic response (blue) for a step steering input (grey) with reduced C2 
 
Clearly, it can be concluded from this simulation that the system becomes unstable. 
As a result of the linear simulation, at least one state goes to infinity when time goes 
to infinity. This is not possible in real situations, because an angle cannot become 
larger than 360 degrees. However, this gives an initial estimate of the stability of the 
system. 
 

4.3 Conclusions 
 
The stability of the system is dependent on the system parameters. From the 
simulations in this chapter it can be seen that a stable system can become unstable by 
varying only one parameter. 
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5. Stability 
 
From section 4.2 it can be concluded that the stability of the system is dependent on 
the vehicle parameters. The stability of the system can be determined by computing 
the eigenvalues of the system matrix A from the state-space form (2.11). 
 

5.1 Analysis on the baseline vehicle 
 
With the system matrices of the state-space form from section 2.2, an analysis can be 
made regarding the stability of the system. Since the forward velocity and cornering 
stiffnesses are assumed to be constant, the system matrices are time-independent. The 
stability can then be analyzed by computing the eigenvalues of matrix A. Also, the 
natural frequency of the undamped system, the natural frequency and the damping 
ratio can be computed for this analysis as  
 

2 2abs(Re( ) ) abs(Im( ) )oω λ λ= +       (5.1) 
 

abs(Im( ))nω λ=         (5.2) 
 

                  (5.3) 

 
with: 

natural frequency of the undamped system

natural frequency

damping ratio
eigenvalue

abs( ) absolute value
Re( ) real part
Im( ) imaginary part

o

n

ω
ω
ζ
λ

=
=

=
=

=
=
=

 

 
Table 5.1 shows the eigenvalues of a vehicle with parameters equal to those in table 
4.1. A longitudinal velocity of 20 m/s (=72km/h) is taken for the analysis. 
 
Table 5.1 Eigenvalues of the baseline vehicle at 20 m/s 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -0.0909 - - - 
�2 -4.0683+1.3023i 4.2717 1.3023 0.9524 
�3 -4.0683-1.3023i 4.2717 1.3023 0.9524 
�4 -3.9993 - - - 

 
From the table it can be seen that the real parts of all eigenvalues are negative, so the 
system is stable. The damping ratio’s are close to 1, so the system is well damped. A 

2 2

abs(Re( ))

abs( Re( ) ) abs( Im( ) )

λζ
λ λ

=
+
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similar analysis can be performed with a velocity of 30 m/s (=108 km/h). The results 
are given in table 5.2. 
 
 
Table 5.2 Eigenvalues of the baseline vehicle at 30 m/s 
Eigenvalue Value �o �n � 

�1 -2.7122+1.3170i 3.0150 1.3170 0.8996 
�2 -2.7122-1.3170i 3.0150 1.3170 0.8996 
�3 -0.0920 - - - 
�4 -2.6347 - - - 

 
The system is still stable, since the real parts of the eigenvalues are negative. 
However, the value of the natural frequency of the undamped system has decreased as 
well as the damping ratio. 
 

5.2 Analysis on the system parameters 
 
There are twelve system parameters that can be varied. For the stability analysis, the 
eigenvalues are again analyzed. First, the stability is analyzed when the cornering 
stiffness of the different tires is varied. This can be done as a function of the 
longitudinal velocity of the vehicle. This is shown in figure 5.1. The line separates the 
stable region from the unstable region. The parameters that are not varied are taken 
according to table 4.1 and are constant.  

 Figure 5.1 Stability for cornering stiffness versus longitudinal velocity 
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From figure 5.1, it can be concluded roughly that for increasing C1 and u and for 
decreasing C2 the system becomes unstable. However, it must be taken into account 
that the other parameters are kept constant at a certain value. The results are according 
to what can be expected in a real situation. An increasing C1 and decreasing C2 makes 
a vehicle more oversteered, while an increasing speed causes the damping ratio for the 
vehicle to decrease (section 5.1).  
 
Simulations show that varying cornering stiffness C3 cannot cause the system to 
become unstable regardless of longitudinal velocity, unless the cornering stiffness 
becomes negative. However, a negative cornering stiffness is not realistic. Although 
the system cannot become unstable, two of the eigenvalues have a real part that is 
exactly equal to 0 when the cornering stiffness C3 is equal to 0. 
 
Next, the mass of the tractor and trailer is analyzed. An assumption for this part is that 
the moment of inertia does not change. In practice, this can be regarded as removing 
mass near the centre of gravity. The results are shown in figure 5.2. 
 

 
Figure 5.2 Stability for mass versus longitudinal velocity 
 
From figure 5.2, it can be concluded that for decreasing m1 and increasing m2 the 
system becomes unstable. Again, it must be taken into account that the other 
parameters are kept constant at a certain value.  
 
Simulations show that varying inertias J1 and J2 cannot cause the system to become 
unstable regardless of longitudinal velocity. 
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The last parameters that can be varied are the characteristic lengths of the vehicle 
shown in figure 2.1. The results are shown in figure 5.3 through 5.5. 

 
Figure 5.3 Stability for lengths a and b versus longitudinal velocity 

 
Figure 5.4 Stability for b versus u 
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Figure 5.5 Stability for e versus u 
 
From figure 5.3 through 5.5, it can be concluded that for decreasing b and d and 
increasing a, c, and e the system becomes unstable. Again, it must be taken into 
account that the other parameters are kept constant at a certain value. 
 
When comparing the values from table 4.1 for the various system parameters to the 
stability results shown in figures 5.1 through 5.5, it can be seen that the parameters in 
table 4.1 are all in the stable region for realistic values of the longitudinal speed. 
 

5.3 Conclusions 
 
An increasing forward velocity can cause an articulated truck to become less stable. 
Besides the forward velocity, the system parameters can also cause the system to 
become less stable. The simulations in this chapter show that this is the case for 
increasing C1, m2, a, c and e and decreasing C2, C3, m1, b and d.  
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6. Cornering stiffness during braking 
 
As can be seen from chapter 5, parameters in the vehicle can be chosen so that the 
system is stable. However, unlike the other parameters, the cornering stiffness 
changes during different maneuvers. The cornering stiffness is dependent on the road 
friction coefficient, the vertical force and the longitudinal force on the tire. The focus 
in this chapter is on the dependency of the cornering stiffness on the longitudinal 
force (braking). 
 
6.1 Dependency of cornering stiffness on longitudinal force 
 
The dependency of the cornering stiffness on different variables is obtained from [3]: 
 

( )1 1
( , , ) ( )

2 2z x z z z xC F F C F F F Fµ ϕ µ µ� 	= − + −
 �
� 


    (6.1) 

 
with: 
 

1/

1

nn
Fx
Fz

ϕ
µ

� 	� �� �= −
 �� �
� �� �� 


        (6.2) 

 
Depending on the curvature, a value for n between 2 and 8 can be chosen. This is 
displayed in figure 6.1 where a possible cornering stiffness characteristic is given for 
different values of n. 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Fx [N]

co
rn

er
in

g 
st

iff
ne

ss
 C

1 [N
/r

ad
]

n=2
n=8

 
Figure 6.1 Cornering stiffness for different values of n 
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As can be seen from figure 6.1, the cornering stiffness drops to 0. This happens when 
x zF Fµ=  (wheel lock). 

 
To apply a variable cornering stiffness to the model, the dependency of (6.1) and (6.2) 
have to be calculated for the vehicle with parameter values of table 4.1. The vertical 
forces can be calculated from: 
 

1 1 2z

b b c e
F m g m g

a b a b d e
−� � � �� �= +� � � �� �+ + +� � � �� �

     (6.3) 

 

2 1 2z

a a c e
F m g m g

a b a b d e
+� � � �� �= +� � � �� �+ + +� � � �� �

     (6.4) 

 

3 2z

d
F m g

d e
� �= � �+� �

        (6.5) 

 
These values are constant for our bicycle model on a flat road. For the road friction 
coefficient �, a value of 0.8 is chosen. This is comparable to a truck tire on asphalt. 
Figure 6.2 shows the cornering stiffness of the different tires as function of the 
longitudinal force for these given conditions and a value for n of 2. 
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Figure 6.2 Cornering stiffness as function of longitudinal force 
 

6.2 Stability 
 
The stability of the system can be analyzed for different values of braking forces and 
brake force distributions. For this analysis, the eigenvalues can be evaluated as in 
section 5.1. A forward velocity of 20 m/s is chosen. 
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6.2.1 Braking on one axle 
 
Table 6.1 shows the eigenvalues when the brake force is completely shifted to the 
front tire of the tractor. 
 
Table 6.1 Eigenvalues for braking at the front tire of the tractor 
Fx1=0 N, Fx2=Fx3=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -0.0909 - - - 
�2 -4.0683+1.3023i 4.2717 1.3023 0.9524 
�3 -4.0683-1.3023i 4.2717 1.3023 0.9524 
�4 -3.9993 - - - 

 
Fx1=20000 N, Fx2=Fx3=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -3.7805+2.0096i 4.2815 2.0096 0.8830 
�2 -3.7805-2.0096i 4.2815 2.0096 0.8830 
�3 -0.0909 - - - 
�4 -4.0001 - - - 

 
Fx1=40000 N, Fx2=Fx3=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -2.5177+3.5180i 4.3261 3.5180 0.5820 
�2 -2.5177-3.5180i 4.3261 3.5180 0.5820 
�3 -0.0910 - - - 
�4 -4.0006 - - - 

  
From this table, it can be concluded that a larger brake input on the front tires of the 
tractor causes the system to be less stable. Especially at 40000 N brake input, which is 
close to front wheel lock (figure 6.2), the system becomes less stable. Although the 
system remains stable, the eigenvalues are closer to the imaginary axis and the 
damping drops to 58%. 
 
Table 6.2 shows the eigenvalues when the brake force is completely shifted to the rear 
tire of the tractor. 
 
Table 6.2 Eigenvalues for braking at the rear tire of the tractor 
Fx2=0 N, Fx1=Fx3=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -0.0909 - - - 
�2 -4.0683+1.3023i 4.2717 1.3023 0.9524 
�3 -4.0683-1.3023i 4.2717 1.3023 0.9524 
�4 -3.9993 - - - 

 
Fx2=35000 N, Fx1=Fx3=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -0.0909 - - - 
�2 -2.7691 - - - 
�3 -4.8424 - - - 
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�4 -3.9045 - - - 
 
Fx2=70000 N, Fx1=Fx3=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -6.3800 - - - 
�2 1.6488 - - - 
�3 -0.0911 - - - 
�4 -3.9586 - - - 

 
At 70000 N brake input, which is close to tractor rear wheel lock, one of the 
eigenvalues becomes positive. This means that the vehicle becomes unstable. Clearly, 
this braking option is not desirable. 
 
Table 6.3 shows the eigenvalues when the brake force is completely shifted to the 
trailer tire. 
  
Table 6.3 Eigenvalues for braking at the trailer tire 
Fx3=0 N, Fx1=Fx2=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -0.0909 - - - 
�2 -4.0683+1.3023i 4.2717 1.3023 0.9524 
�3 -4.0683-1.3023i 4.2717 1.3023 0.9524 
�4 -3.9993 - - - 

 
Fx3=43000 N, Fx1=Fx2=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -4.0940+1.3170i 4.3006 1.3170 0.9520 
�2 -4.0940-1.3170i 4.3006 1.3170 0.9520 
�3 -0.0913 - - - 
�4 -3.3336 - - - 

 
Fx3=86000 N, Fx1=Fx2=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -4.0882+1.3646i 4.3100 1.3646 0.9486 
�2 -4.0882-1.3646 4.3100 1.3646 0.9486 
�3 -0.0933+0.0887i 0.1288 0.0887 0.7246 
�4 -0.0933-0.0887i 0.1288 0.0887 0.7246 

 
From this table, it can be seen that a brake force of 43000 N does not give a big 
change in stability of the vehicle. However, at 86000 N (close to trailer wheel lock) 
another pair of complex conjugated eigenvalues exists. This pair has a much lower 
eigenfrequency and damping ratio of 72%. Although the system remains stable, a 
simulation at trailer wheel lock shows that two of the eigenvalues have a real part that 
is exactly equal to 0 and the damping ratio drops to 0%. 
 

6.2.2 Braking on tractor tires 
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There are two options when the brake force is chosen to be on the tractor tires only. 
One can choose for an equal brake force distribution and a brake force distribution 
causing equal slip at the tires. This is shown in tables 6.4 and 6.5. 
 
Table 6.4 Eigenvalues for braking at the tractor (equal brake forces) 
Fx1=Fx2=0 N, Fx3=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -0.0909 - - - 
�2 -4.0683+1.3023i 4.2717 1.3023 0.9524 
�3 -4.0683-1.3023i 4.2717 1.3023 0.9524 
�4 -3.9993 - - - 

 
Fx1=Fx2=20000 N, Fx3=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -3.6660+1.7751i 4.0732 1.7751 0.9000 
�2 -3.6660-1.7751i 4.0732 1.7751 0.9000 
�3 -0.0909 - - - 
�4 -4.0095 - - - 

 
Fx1=Fx2=40000 N, Fx3=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -2.1119+3.1615i 3.8020 3.1615 0.5555 
�2 -2.1119-3.1615i 3.8020 3.1615 0.5555 
�3 -0.0910 - - - 
�4 -4.0030 - - - 

 
Table 6.5 Eigenvalues for braking at the tractor (equal slip) 
Fx1=0 N, Fx2=0 N, Fx3=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -0.0909 - - - 
�2 -4.0683+1.3023i 4.2717 1.3023 0.9524 
�3 -4.0683-1.3023i 4.2717 1.3023 0.9524 
�4 -3.9993 - - - 

 
Fx1=20000 N, Fx2=35000 N, Fx3=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -3.4465+1.2202i 3.6561 1.2202 0.9427 
�2 -3.4465+1.2202i 3.6561 1.2202 0.9427 
�3 -4.0483 - - - 
�4 -0.0909 - - - 

 
Fx1=40000 N, Fx2=70000 N, Fx3=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -4.0141 - - - 
�2 -0.0899 - - - 
�3 -0.6806 - - - 
�4 -0.8964 - - - 
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From tables 6.4 and 6.5, it can be concluded that an equal brake force distribution 
causes the system to be more stable than a brake force distribution with equal slip. 
This is because the real parts of the eigenvalues of the equal brake force distribution 
are further away from a value of 0. However, the front tire of the tractor locks up first 
in this configuration and the steering response of the vehicle is much worse. 
 

6.2.3 Braking on all tires 
 
As in section 6.2.2, one can choose for an equal brake force distribution or a brake 
force distribution causing equal slip at the tires. This is shown in tables 6.6 and 6.7. 
 
Table 6.6 Eigenvalues for braking on all tires (equal brake forces)  
Fx1=Fx2=Fx3=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -0.0909 - - - 
�2 -4.0683+1.3023i 4.2717 1.3023 0.9524 
�3 -4.0683-1.3023i 4.2717 1.3023 0.9524 
�4 -3.9993 - - - 

 
Fx1=Fx2=Fx3=20000 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -3.6702+1.7743i 4.0766 1.7743 0.9003 
�2 -3.6702-1.7743i 4.0766 1.7743 0.9003 
�3 -0.0910 - - - 
�4 -3.8497 - - - 

 
Fx1=Fx2=Fx3=40000 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -2.1152+3.1599i 3.8025 3.1599 0.5563 
�2 -2.1152-3.1599i 3.8025 3.1599 0.5563 
�3 -0.0913 - - - 
�4 -3.4629 - - - 

 
Table 6.7 Eigenvalues for braking on all tires (equal slip) 
Fx1=0 N, Fx2=0 N, Fx3=0 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -0.0909 - - - 
�2 -4.0683+1.3023i 4.2717 1.3023 0.9524 
�3 -4.0683-1.3023i 4.2717 1.3023 0.9524 
�4 -3.9993 - - - 

 
Fx1=20000 N, Fx2=35000 N, Fx3=42500 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -0.0913 - - - 
�2 -3.4743+1.2095i 3.6788 1.2095 0.9444 
�3 -3.4743-1.2095i 3.6788 1.2095 0.9444 
�4 -3.3923 - - - 
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Fx1=40000 N, Fx2=70000 N, Fx3=85000 N 
Eigenvalue Value �o [rad/s] �n [rad/s] � [-] 

�1 -0.1074 - - - 
�2 -1.0033 - - - 
�3 -0.4621 - - - 
�4 -0.6736 - - - 

 
From tables 6.6 and 6.7, it can be concluded that an equal brake force distribution 
causes the system to be more stable than a brake force distribution with equal slip. 
This is because the real parts of the eigenvalues of the equal brake force distribution 
are further away from a value of 0. However, the front tire of the tractor locks up first 
in this configuration and the steering response of the vehicle is much worse. 
  

6.3 Conclusions 
 
Cornering stiffness is a system parameter that is dependent on variables such as 
vertical load on the tire, road friction coefficient and braking force. In this chapter, it 
is investigated how different ways of braking influences the cornering stiffness and 
thus the stability of the system. Although the brake force is not directly included in 
the equations of motions, this gives a good indication how different braking strategies 
influence the stability of the system. Braking on the front tires of the tractor cannot 
cause the system to become unstable unlike braking on the rear tires of the tractor. 
Although braking on the trailer tires cannot cause the system to become unstable, it 
makes the system less stable and can cause the trailer to ‘swing’. Although shifting 
the brake force towards the front tires of the tractor seems the best option, it causes 
the steering response to become much worse during braking. A compromise has to be 
made between the ability to brake and the ability to steer. 
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7. Active Yaw Control 
 

7.1 Working principle 
 
An Active Yaw Control (AYC) system is an augmentation to a Anti-lock Braking 
System (ABS). The main objective of an AYC system is to maintain a small vehicle 
side slip angle under all driving conditions. This is achieved through proper control of 
the vehicle yaw moment. There are two major types of AYC designs: the phase plane 
approach and the simultaneous yaw rate/vehicle side slip control designs. The phase 
plane approach utilizes the phase plane analysis to characterize the vehicle lateral 
stability. The control action is activated when the vehicle states enter the unstable 
regions. This approach requires identifying the boundaries of the stable and unstable 
region under different steering angles and vehicle speed. The latter approach requires 
estimations of the desired yaw rate and side slip angle based on driver's inputs and 
vehicle states. 
 
The evaluation problem of an AYC system can be regarded as a two-player worst-
case evaluation (section 3.1). The control player (the AYC controller) tries to 
maintain yaw stability, while the disturbance player, which controls the steering and 
brake pressure, represents the action of a human driver. 
 
The worst-case AYC evaluation problem is stated below [5]: 
 
Given a nonlinear vehicle dynamic model ( , , , )x f x u w t=� , where the disturbance 
input w  includes front wheel steering angle δ  and brake pedal command p . The 
control input u  includes the ABS pressure command ABSp  and AYC pressure 

command AYCp . The final brake pressure to the vehicle wheels depends on the three 
pressure command signals. Assuming that the control algorithms of the ABS and AYC 
modules are known. Find, within saturation bound max maxδ δ δ− ≤ ≤  and max0 p p≤ ≤ , 
the time signal ( )w t  which maximizes a cost function 

{ }
0

( , , ) ( ) ( ) ( ) ( ) ( ) ( )
T T T TJ x w t x t Qx t u t Ru t w t Pw t dt= + −� . The matrix Q  is selected 

such that the vehicle side slip angle is maximized. 
 
Two assumptions are made concerning AYC systems: 
• AYC only increases the brake pressure on one of the front wheels. It never 

reduces brake pressure. 
• The overall brake pressure applied to the tires is the sum of the three brake 

command signals from the ABS (PABS), AYC (PAYC), and the driver (Pdrv). This is 
illustrated in figure 7.1. 
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Figure 7.1 The Brake Model 
 

7.2 Simulation 
 
Simulations have been done where a standard passenger vehicle model is augmented 
with an AYC control system [5]. The AYC design used here is a yaw-rate feedback 
approach. When the vehicle side slip angle is greater than a threshold, AYC is 
activated. The magnitude of AYC braking is calculate from 
 

1 2 3AYC AYC d AYC AYCP C r r C Cβ β∆ = − + + �      (7.1) 

 
with: 

1 2 3, , control gains

desired yaw rate

vehicle side slip angle

AYC AYC AYC

d

C C C

r

β

=
=
=

 

 
The differential braking from AYC is applied only to the front tires. When β is 
positive and larger than a threshold, the AYC activates the front right tire. Similarly, 
if β is negative and less than a threshold, the brake pressure at the front left is 
increased. 
 
The effectiveness of the AYC is first examined under three standard maneuvers: brake 
in a J-turn, double lane changes and the worst-case maneuver. Simulation results 
under a double lane change maneuver are shown in figure 7.2. It can be seen that the 
vehicle without AYC lost control when the steering direction is reversed. The vehicle 
with AYC, however, remains stable. 
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Figure 7.2 Vehicle response under a double lane-change maneuver, source: [5] 
 
Figure 7.3 shows the vehicle, equipped with AYC, under two different maneuvers. 
Under the brake in a J-turn maneuver, the steering and braking input limits are 0.05 
rad and 300 psi, respectively. The vehicle remains stable under this severe maneuver. 
 

 
Figure 7.3 Response of an AYC vehicle under two maneuvers, source: [5] 
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7.3 Conclusions 
 
AYC systems use adjustable brake forces on separate wheels to maintain a small 
vehicle side slip angle. Although an AYC control system has proven itself already in 
experiments for passenger cars, it has not been implemented in tractor-semitrailer 
combinations yet. Because of the extra variables concerning the tractor-semitrailer 
combination with respect to a passenger car, designing a control law for such a 
combination is much harder and therefore has not been implemented yet in articulated 
vehicles. 
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8. Active Front Steering 
 

8.1 Working principle 
 
Active Front Steering (AFS) is a new advanced steering system. The handwheel angle 
in this system is augmented by an electronically controlled electric motor.  
 
Because of the development of hybrid electric-diesel trucks with electric driven 
accessories, it becomes interesting to investigate AFS for large trucks to assist in 
avoiding jackknife conditions. In order to effectively deploy this technology in 
commercial fleet operations, emphasis is given to design aspects to minimize the 
tendency of AFS systems to interfere with the driver’s perception of the truck 
dynamic response. 
 
Drive-by-wire systems have been under development for a number of years for the 
passenger vehicle market. In these systems, the chassis has a mechanism to provide an 
additive steering angle component to the driver’s input. This augmented steering input 
can be used to modify the effective steering gear ratio. With electronic control, the 
gear ratio is continuously varied. Depending upon speeds the ratio is increased. 
However, during rapid acceleration and deceleration, AFS may cause enough 
variation to confuse the driver about how the steering system is responding. This 
situation can occur in emergency conditions for example. For these types of 
conditions, additional development is needed to incorporate yaw rate and lateral 
acceleration sensors into the control of the AFS system. 
 
Electronically controlled steering for large commercial vehicles is motivated by 
improving public safety. The AFS system improves the stability of the tractor-trailer, 
but may modify the dynamic response to a point where the driver begins to perceive a 
disconnection between steering handwheel inputs and the resulting behavior of the 
vehicle. 
 
An AFS mechanism as described in [9] is shown in figure 8.1. 
 

 
Figure 8.1 AFS mechanism, source: [10] 
 
The AFS assembly consists of two planetary gear sets with a torque input from the 
handwheel and a separate torque input path from an electric servo motor. These two 
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torque inputs are summed together at the output shaft. The dual planetary mechanism 
allows for position isolation between the two torque inputs. In this manner, the actual 
steering angle of the front axle wheels can be adjusted independently of the driver’s 
input. The AFS augmenting steering angle is limited to a maximum deflection to 
prevent a completely uncontrollable situation arising due to a fault condition. 
However, small angle displacements are significant at highway speeds and therefore 
AFS is a safety critical system. The AFS system is fail-safe, since a loss of power to 
the electric servo motor results in a normal mechanical steering operation. 
 
The controller in an AFS system uses the measured signals handwheel position, 
longitudinal velocity, yaw rate and lateral velocity for both the tractor and trailer, and 
brake apply status. An electronic controller receives the sensor inputs and processes 
the data to determine an augmentation steering angle. This angle is then executed 
through a servo motor as a component of the AFS system. A block diagram of this 
configuration is shown in figure 8.2. 
 

  
Figure 8.2 AFS configuration, source: [10] 
 
The dynamics associated with the application of a torque to the steering mechanism to 
the resulting steering angle are 
 

1s s s hw afsJ B Kδ δ α τ τ= − − + −�� �        (8.1) 

 
with: 
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1

inertia of the steering system

steering angle
damping of the steering system

self-aligning stiffness of the tires

side slip angle of the front tires
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AFS torque
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In most cases, a jackknife or rollover event is caused by traveling at higher speeds that 
can be negotiated by the tractor-trailer. It is intended that AFS would be incorporated 
as part of an enhanced stability system that includes electronically controlled brakes. 
 
The formulation of the control law for the AFS torque is complicated by the large 
variation and uncertainty in the conditions under which the tractor-trailer may be 
operated. The design of stability enhancement systems often is based upon gain 
scheduling of feedback control laws to account for vehicle dynamic changes as a 
function of vehicle speed. Although this gives a technically optimal control, this can 
cause the driver to perceive that the vehicle behavior is unpredictable. This tends to 
increase the problem of controlling the vehicle under emergency conditions. Thus, the 
control for AFS using constant state feedback of the vehicle dynamics variables is 
preferred. The form of the AFS control law is given as  
 

1 1 2 1 3 2 4 5 1afs k v k r k r k k vτ γ= + + + + �       (8.2) 

 
with: 

1

1

2

AFS control gains

tractor lateral velocity

tractor yaw rate

trailer yaw rate

articulation angle

ik

v

r

r

γ

=
=
=
=
=

  

 

8.2 Simulation 
 
Simulations have been done with an AFS system. The particular situation examined is 
a rapid braking and lane change of a large truck at 70 mph. This happens for example 
when avoiding a rear-end collision with a stopped or rapidly decelerating passenger 
car on an interstate highway. The truck simultaneously brakes to decelerate in the 
longitudinal direction and steers to the center of the left lane in order to avoid 
colliding with the preceding passenger car.  
 
The dynamics of human operator as part of a closed-loop system is an extensive area 
of study for which there is a considerable body of literature. This study is further 
complicated by the large number of variables that affect the performance of a human 
driver. This includes experience level and familiarity with the particular tractor-trailer. 
Road conditions and visibility are also important variables. In addition, the fatigue 
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level and alertness of the driver are critical factors. This research considers a 
simplified human model that captures the primary dynamics of interest without 
unnecessarily complicating the overall model. 
 
The scenario is selected such that a driver of average skill would not be able to avoid 
a collision with jackknifing the vehicle. AFS position control is limited to +/- 4.5 
degrees (tire coordinates). At highway speeds, tire angle changes of 0.5 degrees are 
perceptible to the driver. The AFS angle is additive (plus or minus) to the handwheel 
angle. The articulation angle with and without AFS is shown for a simulated condition 
in figure 8.3. 

 
Figure 8.3 Articulation angle comparison for simulated evasive maneuver, source: [10] 
 
In general, as the AFS level is decreased, the tractor-trailer becomes less stable and 
has correspondingly large path and angle instabilities. As the AFS torque level is 
increased, the tractor-trailer is stabilized, but at the expense of potentially creating an 
interference situation with the driver performance. The lane position results for 
various AFS factors are shown in figure 8.4. 
 



 43

 
Figure 8.4 Lane position for various AFS factors, source: [10] 
 

8.3 Conclusions 
 
An AFS system uses an electronically controlled electric motor to augment the 
handwheel steering angle to maintain stability. The AFS system improves the stability 
of the tractor-trailer, but may modify the dynamic response to a point where the driver 
begins to perceive a disconnection between steering handwheel inputs and the 
resulting behavior of the vehicle. This has to be avoided, because it can result in 
unpredictable steering behavior of the driver. Simulations show that AFS can improve 
stability of articulated vehicles when adjusted properly. 
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9. Conclusions and recommendations 
 
In this report, the jackknife stability of a tractor semi-trailer combination is examined. 
In order to do so, a linear bicycle model is build for the combination. After that, a way 
to determine the worst possible steering and braking inputs is analyzed, but is not 
used in the simulations that are done with the model. This is because the stability of a 
linear bicycle model does not change during different maneuvers. However, the 
worst-case evaluation can be used for simulations of a 3D model. To determine what 
causes jackknife instability, an analysis is done for a simplified linear bicycle model. 
This analysis includes linear simulations with Matlab and an analysis of the 
eigenvalues of the system for various values of different vehicle parameters. Although 
braking forces are not directly included in the equations of motion of the vehicle, an 
analysis is done on the effects of braking forces on the cornering stiffness of tires. 
This analysis is done because the cornering stiffness of tires, unlike other system 
parameters in the linear bicycle model, is not constant, but varies during different 
maneuvers. With the effect of braking force on cornering stiffness being known, an 
analysis of the eigenvalues of the system is done for various braking possibilities. 
Finally, two systems that can prevent jackknife instability are discussed. An Active 
Yaw Control system uses variable braking forces on separate tires, whereas an Active 
Front Steering system uses a variable steering gear ratio. 
 
To determine the jackknife stability of a tractor semi-trailer combination, a linear 
bicycle model is used in this report. Although this is a possibility to determine certain 
trends that can cause instability, this is not a way to determine stability for an existing 
truck. This is because the linear bicycle model does not include some effects that are 
present in a 3D space. A few of these effects are: 
 
• Load transfer on the tires between the left and right side of the vehicle during 

cornering. This affects the cornering stiffness of tires and the deflection of the 
suspension which causes roll motions. 

• Load transfer on the tires between the front and rear side of the vehicle during 
braking. This affects the cornering stiffness of tires and the deflection of the 
suspension which causes pitch motions. 

• Displacement of the centers of gravity of the tractor and trailer due to pitch and 
roll motions. 

 
In order to determine the stability of existing trucks, a 3D model needs to be used to 
take these effects into account. Furthermore, the system parameters are assumed to be 
constant. When the system parameters are not assumed to be constant, the analysis of 
eigenvalues is not a valid way to determine the stability of the system. In this case, an 
other way such as Lyapunov stability analysis can be used. 
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