
 

Making spatial trade-offs using multiobjective H2 synthesis

Citation for published version (APA):
Donkers, M. C. F. (2006). Making spatial trade-offs using multiobjective H2 synthesis. (DCT rapporten; Vol.
2006.109). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/60e2b664-25af-4f39-8916-bd64b6d9f6de


Making Spatial Trade-Offs Using
MultiobjectiveH2 Synthesis

Tijs Donkers

DCT 2006-109

Internship report

Supervisor: Matthijs Boerlage

Technische Universiteit Eindhoven
Department Mechanical Engineering
Dynamics and Control Technology Group

Eindhoven, September 2006





Abstract

In feedback control design, the Bode sensitivity integral dictates that trade-offs must be made
frequency-wise. For multiple-in-multiple-out (MIMO) systems, trade-offs can also be made
spatially (element-wise). To do this using ‘norm based’ control methods, such as H2 or H∞,
one can only change weights on the inputs and the outputs of the systems. This way, it is not
possible to exploit all spatial design freedom, e.g. it is not possible the put a lot of weight on
one particular element of the transfer function matrix. To exploit all spatial design freedom,
multiobjective methods can be employed.

In the first part of this report, we discuss a multiobjective H2 synthesis method, which uses
a vector valued performance criterion. This criterion is handled using the notion of Pareto
optimality. Using this, the multiobjective problem is converted into a ‘simultaneous model
matching problem’ by using the Youla parametrisation. Finally, a closed form expression is
formulated to calculate one (out of many) Pareto optimal compensator.

Second, we show that a H2 optimal control problem can be formulated by giving a frequency
domain interpretation to the ‘classical’ LQG optimal control problem. Then, given a SISO
system, it is shown that this method of multiobjective control synthesis is capable of trading
off competing objectives.

Then, this method is extended to MIMO systems, so spatial design freedom can be studied.
First, we show that it is possible for a system with a non-minimum-phase zero (NMPhZ) to
shift the effect of the NMPhZ from one output to another output. Then, the multiobjective
problem is formulated for a 2 × 2 system, with one (real) NMPhZ. Four objectives can be
distinguished: from each input to each output, which can be traded off against each other.

Spatial design freedom is depicted by a curve of all Pareto optimal compensators. This curve
shows that the output in which the zero is most present, is more restricted in bandwidth
(resulting in a higher minimal 2-norm). Moreover, it can be seen that decoupling of the
system decreases performance of the other loops mostly in the direction which the NMPhZ is
present.

Subsequently, a similar multiobjective problem is formulated for a 2×2 modal MIMO system,
which is is not fundamentally restricted in bandwidth, but restricted due to robustness spec-
ifications. The curve of Pareto optimal compensators shows that both outputs are equally
restricted and that the cost of decoupling is equal in both outputs.

Conclusively, it can be said, that multiobjective control synthesis can be used to make spatial
trade-offs. However, we were unable to apply this methodology to more realistic systems.
Thus, the implementation need some improvements.
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Nomenclature

L2 Hilbert space of matrix-valued functions which are square integrable on the
imaginary axis, including at ∞. The inner product, and the norm induced by
this inner product are as follows:

〈F,G〉 =
∫ ∞

−∞
trace[F (jω)G∗(jω)]dω (∗ denotes complex conjugate trans-

posed)

‖F‖2 =
√
〈F, F 〉

H2 Subspace of L2, with functions that are analytic in the open right-half plane.

H⊥2 Subspace of L2, with functions that are analytic in the open left-half plane.
(Orthogonal to H2.)

H∞ Banach space of matrix-valued functions that are bounded on the imaginary
axis and analytic in the open right-half plane.

R Used as a prefix; it denotes real rational.

PH2 Orthogonal projection from L2 to H2.

G∼(s) = GT (−s)[
A B

C D

]
shorthand for state-space realisation = C(sI −A)−1B + D.

A⊗B Kronecker product: [aijB]

vec(A) Vector formed by stacking columns of A.

Fl Lower linear fractional transformation.
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Chapter 1

Introduction

In feedback control design, the Bode Sensitivity Integral dictates that analytical (frequency
wise) trade-offs must be made (e.g. see [5]). This means that reducing sensitivity at one
frequency implies that it is amplified at other frequencies. This holds for single-in-single-
out (SISO) systems, but also for multiple-in-multiple-out (MIMO) systems. This sensitivity
integral can be generalised to MIMO systems by using the determinant or the singular values
(see e.g. [11]). For a stable system, the sensitivity integral is as follows:

∫ ∞

0
ln |det (S(jω)) |dω =

∑
j

∫ ∞

0
lnσj (S(jω)) dω = 0 (1.1)

This integral shows that for MIMO systems another kind of trade-off can be made, namely:
spatially (element wise). By reducing one singular value of S, the others are amplified.
Because singular values are associated with an input and output direction, this results in a
spatial trade-off. In addition, in [6] is illustrated that if the system has unstable poles or
non-minimum phase zeros (NMPhZ) in non-canonical directions, these effects can be shifted
toward a certain input or output, respectively. Again, a spatial trade-off.

Some conventional control design methods make use of decoupling, where a n × n MIMO
system is converted into n SISO systems. For some systems, this decoupling does not decline
optimality. In many systems, the decoupling reduces spatial design freedom. Control design
methods that do not require decoupling can be ‘norm based’ methods, such as H2 or H∞.
However, with these norm based techniques it is not transparent how trade-offs are made
spatially for they map multivariable system properties in scalar measures. In this report, we
will further study H2 control, and try to overcome this limitation induced by using a scalar
performance measure.

1.1 Limitations of regular H2 control

Like we already mentioned above, in ‘regular’ H2 control, a multivariable system is mapped
into a scalar norm. Within this norm, some elements can be made more significant by applying
input and output weights. However, by applying these weights, it is not possible to influence
a single element individually. In this section, we will therefore show that it is in principle not
possible to exploit all spatial freedom using regular H2 optimal control.
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First consider the case were diagonal input and output weights are used. For simplicity,
we consider a 2 × 2 system G(s), with input weight Wi = diag(1, a) and output weight
Wo = diag(1, b). The 2-norm of this system would be:

‖WiGWo‖2 =
∥∥∥∥(1 0

0 a

)(
G11 G12

G21 G22

)(
1 0
0 b

)∥∥∥∥
2

=
√

G2
11 + (bG12)2 + (aG21)2 + (abG22)2

(1.2)

From (1.2) can be seen that it is e.g. not possible to put a lot of weight on element G12

without influencing either G22 or G21. If we use full weighing matrices instead of diagonal
ones, the same still applies, although less transparent. First consider that the input and
output weights have a singular value decomposition Wi = UiΣiV

T
i and Wo = UoΣoV

T
o . Note

that Σi and Σo are again diagonal, and Ui, Uo, Vi, and Vo are unitary matrices, thus have
norm 1. Then, the 2-norm is:

‖WiGWo‖2 = ‖UiΣi V
T
i GUo︸ ︷︷ ︸

G̃

ΣiV
T
o ‖2 =

∥∥∥∥(σi1 0
0 σi2

)(
G̃11 G̃12

G̃21 G̃22

)(
σo1 0
0 σo2

)∥∥∥∥
2

(1.3)

The result is equivalent to (1.2). Again, it is not possible to stress a single element without
influencing the others. If we want to be able to do so, other methods need to be employed,
in which the performance criterion is intrinsic vector valued, instead of a scalar norm.

1.2 Problem formulation

A solution to this can be found in the field of multiobjective control synthesis, where indeed
vector valued performance criteria are used. These vector valued performance criteria could
be solved using Linear Matrix Inequalities (LMIs). However, solving LMIs has proved to be
difficult when applied to realistic systems (see e.g. [3]). An alternative to this can be found
in [7], where a method for solving a multiobjective H2 synthesis problem is discussed. This
particular method uses the Youla parametrisation and a projection in a Hilbert space.

This leads to the following problem formulation:

How can spatial trade-offs be made in a transparent, straightforward way,
using the multiobjective H2 synthesis proposed in [7]?

2



In order to study this problem, the following questions need to be answered:

• How does the method discussed in [7] work, and (how) can it be implemented in a
numerically stable way?

• How is a H2 optimal control problem formulated?

• How can multiobjective control be used to make trade-offs in a transparent way?

• How do we visualise information about spatial design freedom in a easy to interpret
way?

• What spatial design freedom can we expect from systems, using the theory from [6]?

1.3 Outline of this report

This report is organised as follows: In chapter 2, the aforementioned multiobjective H2 syn-
thesis will be discussed. We elaborate on both principle and implementation in state-space.
Next, a SISO system will be used to show how a H2 problem is formulated, and how a mul-
tiobjective method enables us to make trade-offs, however, not spatially. In chapter 4, the
multiobjective problem will be put into a framework, that can be used to make spatial trade-
offs for MIMO systems. A system with a NMPhZ will be used to demonstrate the spatial
design freedom. In the subsequent chapter, the same will be done for a modal system. In the
final chapter, some conclusions will be drawn and some recommendations will be given for
future research.

3
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Chapter 2

Multiobjective H2 Synthesis

In this chapter, the algorithm for solving the multiobjective optimal control is discussed. The
outline of this chapter is more or less the same as [7], but more elaborately. In order to solve
a multiobjective optimal control problem, we need a suitable notion of optimality. This next
section will be devoted to that. Subsequently, we can formulate the control synthesis problem
as a convex optimisation problem. Then, we are able to derive an expression for the optimum
(or optima as it will soon be clear). Subsequently, we make use of some Kronecker algebra
(see [2]) and the inner/outer factorisation to obtain a closed form expression for the optimum.
Methods for implementing this in state-space are given in the latter section of this chapter.

2.1 Pareto optimality

In optimisation theory, the concept op Pareto optimality can be used to handle multiple
objective problems (see [1]). It is defined as follows: let X be a arbitrary nonempty set, and
fi : X → R+, i ∈ s be s nonnegative functionals defined on X. On this set, a point xo ∈ X
is said to be Pareto optimal with respect to the vector valued criterion f = (f1, f2, . . . , fs) if
there does not exist an x ∈ X such that:

fi(x) ≤ fi(xo), for all i ∈ s, and

fk(x) < fk(xo), for some k ∈ s

To illustrate this, we consider a criterion f(x) = (f1(x), f2(x)). Point xo is Pareto optimal, if
it minimises e.g. f1(xo), and, for that xo, makes f2(xo) as minimal as possible. This is shown
in figure 2.1 (taken from [9]). Note that there are in principle an infinite number of optimal
solutions.

One approach to solve the optimisation problem is to parameterise this optimal set by the
solution to a parametric scalar-valued optimisation problem. This results into the following
(see [7]): suppose that X is a normed, linear space and each component of f = (f1, f2, . . . , fs)
is convex in X. Let:

Λ =

{
λ ∈ Rs : λi ≤ 0 :

s∑
i=1

= 1

}
, s = 1, 2, . . . , k (2.1)

5



Attainable Setf 2
(x

)

f1(x)

Pareto optimal set

Figure 2.1: Pareto optimality

Then, for each λ ∈ Λ the following scalar valued optimisation problem results into a Pareto
optimal point:

inf
{
λT f(x) : x ∈ X

}
(2.2)

2.2 Formulation of the optimisation problem

In (post)modern control, the standard plant paradigm is used to formulate the control syn-
thesis problem (see figure 2.2). The signals w1, w2, . . . , ws, u, y, z1, z2, . . . , zs are vector valued
functions of time (or frequency). For each k ∈ s, wk denotes an exogenous input vector
(e.g. setpoints, disturbances, measurement noise), and zk are the outputs to be regulated.
The vector signals u and y are the controlled inputs and outputs, respectively. The transfer
matrices P and K denote the given standard plant and compensator. It is assumed that P
can be stabilised and that the open loop from u to y is strictly proper.

P

K

w1

w2

ws

… …

z1

z2

zs

u y

Figure 2.2: The standard plant
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For each k ∈ s, Tk is the closed loop transfer function from wk to zk, the control goal is to
find a compensator K, such that K internally stabilises P , and K is Pareto optimal with
respect to the vector valued cost function:

min
K

J(K), with: J(K) = (‖T1(K)‖2, ‖T2(K)‖2, . . . , ‖Ts(K)‖2) (2.3)

2.2.1 Conversion to a ‘simultaneous model matching problem’

So far, we defined the control synthesis problem as a multiple objective optimisation problem.
Now, we link the aforementioned optimisation problem to the notion of Pareto optimality.
First, the compensator should internally stabilise the given plant. (In terms of section 2.1: it
should be a in the linear space X.) Furthermore, the optimisation problem should be convex
in X. A way of fulfilling both conditions is to introduce the Youla parametrisation of all
internally stabilising compensators, (e.g. see [12]). By doing so, the closed loop transfer
functions turn out to be affine functions of the free parameter Q, that is:

Tk = Rk − UkQVk, k ∈ s (2.4)

where Rk, UK , and Vk are transfer function matrices in RH∞, and depend only on P . It will
be shown later how these transfer function matrices are obtained, and how the compensator
K can be derived from this Q.

After applying (2.4) to (2.3), the problem turns into a ‘simultaneous model matching problem’,
because ideally it would be the goal to match the product UkQVk such that it equals R. In
that case, the result would be zero, hence, the norm would be zero. The simultaneous model
matching problem is defined as follows:

min
Q

I(Q), with: I(Q) =
(
‖T1(Q)‖2

2, ‖T2(Q)‖2
2, . . . , ‖Ts(Q)‖2

2

)
(2.5)

The algorithm for solving the ‘simultaneous model matching problem’ is obtained by directly
applying (2.2). First fix (λ1, λ2, . . . , λs) ∈ Λ and obtain transfer function matrices Rkλ and
Ukλ according to:

Rkλ =
√

λkRk and: Ukλ =
√

λkUk (2.6)

Then find a Qo ∈ RH∞ such that:

s∑
k=1

‖Rkλ − UkλQoVk‖2
2 = inf

{
s∑

k=1

‖Rkλ − UkλQVk‖2
2 : Q ∈ RH∞

}
(2.7)

If this Qo exist, the Pareto optimal controller can be obtained.

7



2.3 Achieving a Pareto optimal point

After we formulated the control problem as a optimisation problem, and linked it to a proper
definition of optimality, we can discuss finding a Pareto optimum point for a particular choice
of (λ1, λ2, . . . , λs) ∈ Λ. Note that changing λ ∈ Λ yield different compensators. Before
actually giving an expression for the optimum, a necessary condition is discussed.

2.3.1 Necessary conditions for existence of an optimum

The solution to the model matching problem had a finite H2-norm, if Ukλ and Vk have full
column and row rank on the extended imaginary axis, respectively, and if Rkλ and UkλQVk

match perfectly at the point jω = ∞. In order to achieve this, Q is partitioned into Q =
Q̂ + Q∞. Then, Q∞ is chosen such that:

Rkλ(∞) = Ukλ(∞)Q∞Vk(∞), for all k ∈ s (2.8)

When this Q∞ is not unique for all k ∈ s, the Pareto optimal solution does not exist. If it
does, let: Qo = Q̂o + Q∞, then:

R̂kλ = Rkλ − UkλQ∞Vk, with: R̂kλ, Q̂ ∈ RH2 (2.9)

2.3.2 Achieving the infinum

Now, we can write (2.7) more conveniently by substituting (2.9) herein:

inf
Q

{
s∑

k=1

‖Rkλ − UkλQVk‖2
2

}
= inf

Q

{
s∑

k=1

‖R̂kλ − UkλQ̂Vk‖2
2 : Q̂ ∈ Hm×p

2

}
(2.10)

To solve this optimisation problem, an analogy is used from the Euclidian space. The minimi-
sation of ‖R̂kλ−UkλQ̂Vk‖2

2 with Ukλ and Vk having full column and row rank on the extended
imaginary axis, respectively, is analogous to a common least-square problem: min ‖b− Ax‖2

2

in the Euclidian space, where it is the goal to minimise the distance between b−Ax and Ax.
The minimum ‘distance’ in this case is where R̂kλ−UkλQ̂Vk and UkλQ̂Vk are orthogonal [10]:

s∑
k=1

〈R̂kλ − UkλQ̂oVk, UkλQ̂Vk〉 = 0, for all Q̂ ∈ Hm×p
2 (2.11)

8



This can be rewritten as:
s∑

k=1

〈R̂kλ − UkλQ̂oVk, UkλQ̂Vk〉 =
s∑

k=1

1
2π

∫ ∞

−∞
trace

[
(R̂kλ − UkλQ̂oVk)(UkλQ̂Vk)∼

]
dω ⇔

=
s∑

k=1

1
2π

∫ ∞

−∞
trace

[
U∼kλ(R̂kλ − UkλQ̂oVk)V ∼k Q̂∼

]
dω ⇔

=
s∑

k=1

〈U∼kλ

(
R̂kλ − UkλQ̂oVk

)
V ∼k , Q̂〉 = 0 (2.12)

In section A.1 of appendix A it is shown that this latter expression is equivalent to the
following projection on the H2 space:

PH2

(
s∑

k=1

U∼kλUkλQ̂VkV
∼
k

)
= PH2

(
s∑

k=1

U∼kλR̂kλV ∼k

)
(2.13)

where PH2 denotes an orthogonal projection on the H2 space. An orthogonal projection on
the H2 space is nothing more than taking the stable part.

2.4 Obtaining a closed form expression for the infinum

So far, we have found an expression for the infinum for the ‘simultaneous model matching
problem’ via a projection on the H2 space. In this section, a basis for constructing a state-
space solution to the problem is presented by first resorting to Kronecker algebra and then
using the inner/outer factorisation.

2.4.1 Solutions via Kronecker algebra

The first step in obtaining a closed form expression is to apply some Kronecker algebra (see
[2]). The idea is that the matrix equation can be converted to a problem in which the unknown
is a vector. We define:

Wkλ = V T
k ⊗ Ukλ (2.14)

W =
(
W T

1λ . . . W T
sλ

)T (2.15)

vec(R̂) =
(
vec(R̂)T

1λ . . . vec(R̂)T
sλ

)T
(2.16)

Then, as derived in section A.2 of appendix A, (2.13) can be written as follows:

PH2

(
W∼W vec(Q̂)

)
= PH2

(
W∼ vec(R̂)

)
(2.17)

Because for all k ∈ s, Ukλ and V ∼k have full column rank on the extended imaginary axis, so
does Wk. Thus, W does have full column rank on the extended imaginary axis.
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2.4.2 The inner/outer factorisation

The last step in the derivation is applying an inner/outer factorisation. Before doing so, we
first need to define inner and outer transfer functions. According to [7], a transfer function
P is inner if: P∼P = I, and a transfer function is outer if it is proper and stable, and that
its inverse is also proper and stable. In [12] is shown that a transfer function matrix can be
written uniquely as:

W = WiWo (2.18)

if W has full column rank on the extended imaginary axis. This, we had already concluded.
Because W∼

i Wi = I, the following holds:

W∼
o Wo = W∼W (2.19)

When applying the inner/outerfactorisation to (2.17):

PH2

(
W∼

o Wo vec(Q̂)
)

= PH2

(
W∼

o W∼
i vec(R̂)

)
⇔

PH2

(
Wo vec(Q̂)

)
= PH2

(
W∼

i vec(R̂)
)

(2.20)

From this expression, and the fact that Q̂ ∈ RH2 follows:

vec(Q̂) = W−1
o PH2

(
W∼

i vec(R̂)
)

(2.21)

This latter expression is the desired closed-form expression for finding an Pareto optimal point.
How this can be implemented in state-space, and how a compensator can be calculated from
this expression, will be discussed next.

2.5 Implementation in state-space

In the previous section is shown that a closed-form expression can be used to calculate a
Pareto optimal compensator. In this section, state-space realisations required to implement
this procedure in Matlab are discussed. The required realisations are: vec(Rk) and Wkλ,
and they can be derived from the state-space formulae of the Youla parametrisation. Then,
we discuss a method of implementing the inner/outer factorisation in state-space. After that,
it should be straightforward to implement the procedure in Matlab.

10



2.5.1 Obtaining a compensator K from the Youla parameter Q

In section 2.2.1, it was mentioned that the Youla parametrisation of all internally stabilising
compensators could be obtained from the standard plant P . Now, we show how this can be
implemented in state-space. As a starting point, we consider the standard plant once again:

P =


A B1 . . . Bs Bu

C1 D11 . . . D1s D1u
...

...
. . .

...
...

Cy Dy1 . . . Dys Dyu

 (2.22)

where A, Bk, Bu, Ck, Cy, Dkk, Dku, Dyk, with k ∈ s, are correctly partitioned matrices from
the realisation of the plant P . Subscripts 1, . . . , s denote the exogenous input channels wk and
output channels zk, and subscript u and y denote the controlled input and measured output,
respectively. According to [12], the parametrisation of all internally stabilising compensators
can be parameterised as depicted in figure 2.3.

Figure 2.3: The Youla Parametrisation as a linear fractional transformation

It can be seen that an initial stabilising compensator J is used to parameterise all stabil-
ising compensators. According to [12], that this initial controller is given by the following
realisation:

J =

 A + BuF + HCy −H Bu

F 0 I
−Cy I 0

 (2.23)

Where F and H are such that A+BuF and A+HCy are stable. F and H can be calculated
by solving two Riccati equations (see [12]). Note that this initial controller J only depends on
A, Bu, and Cy. Thus, for every k ∈ s, this initial compensator can be taken the same. The
final compensator can then obtained by taking a Lower Linear Fractional Transformation:

K = Fl(J,Q) = J11 + J12Q(I − J22Q)−1J21

As introduced in 2.2.1, realisations Rk, Uk and Vk can be obtained using this initial compen-
sator. They will not be directly implemented in Matlab. For completeness, they are given
in appendix B.
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2.5.2 Realisations vec(Rkλ) and Wkλ = V T
k ⊗ Uk

The realisations given in section 1 of appendix B could be implemented in Matlab, and then
perform the Kronecker algebraic manipulations described in section 2.4.1. This will result into
a time consuming, sensitive algorithm, because Kronecker products result in large matrices,
which are sensitive to numerical errors. In [4], an alternative is proposed. Namely, we can
calculate both vec(Rk) and Wk in a single realisation, which can then be partitioned:(

vec(Rk) Wk

)
= (A + HCy)T ⊗ Ip1 CT

y ⊗ (Ck + DkuF ) vec(C1) −CT
y ⊗Dku

0 Ip2 ⊗ (A + BuF ) vec(−H) −Ip2 ⊗Bu(
(Bk + HDyk)T ⊗ Ip1

) (
DT

yk ⊗ (Ck + DkuF )
)

vec(Dkk)
(
−DT

yk ⊗Dku

)
 (2.24)

where Ip1 and Ip2 are identity matrices with the sizes according to the vector length of k and
y, respectively. A full derivation of these realisations are given in appendix B. Now, we can
easily calculate vec(Rkλ) and Wkλ as defined in section 2.4.1:

vec(Rkλ) =
√

λk vec(Rk), and Wkλ =
√

λkWk (2.25)

2.5.3 Implementation of the inner/outer factorisation

In this section, the implementation of the inner/outer factorisation is discussed. We already
defined the notion of inner and outer, but so far, we did not mention that an inner/outer
factorisation is just a special form of a coprime factorisation. In [12], efficient state-space
formulae are derived to make an inner/outer factorisation. Given a state-space realisation of
W and R1/2R1/2 = R, the inner and outer factors are obtained as follows:

(
Wi

W−1
o

)
=

 A−BX BR−1/2

C −DX DR−1/2

−X R−1/2

 (2.26)

where R = D∗D ≥ 0, and X = −R−1(B∗Y + D∗C). Y is obtained by finding the positive
definite solution of the following algebraic Riccati equation:(

A−BR−1D∗C
)∗

Y + Y
(
A−BR−1D∗C

)
+ Y (−BR−1B∗)Y + (C∗(I −DR−1D∗)C) = 0
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2.6 Summary

In order to get complete picture of the algorithm, we now summarise the steps that have to
be taken:

• Fix λ = (λ1, λ2, . . . , λs) ∈ Λ, according to (2.1);

• Correctly partition the standard plant P and calculate and initially stabilising compen-
sator J , using (2.23);

• Calculate vec(Rkλ) and Wkλ, for each k ∈ s;

• Form W and vec(R) according to (2.15) and (2.16), respectively;

• Apply an inner/outer factorisation to W ;

• Calculate the Pareto optimal Q from (2.21), and the compensator K from this Q.

By changing λ ∈ Λ, all Pareto optimal compensators are obtained.

2.7 Conclusions

In this chapter, a method for multiobjective control has been discussed. Using this method,
it is possible to trade off various objectives. Its implementation can be done in state-space,
requiring algebraic Riccati equations to be solved.
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Chapter 3

Making Trade-offs in a SISO System

In this chapter, multiobjective control synthesis is applied to a single-in-single-out (SISO)
system. Obviously, there is no spatial freedom in a SISO system, but there is design freedom
is trading off competing requirements, (e.g. low control sensitivity versus low process sensitiv-
ity). First, we obtain a formulation for the standard plant. Subsequently, the multiobjective
control problem can then be formulated. Results of the synthesis, using the method discussed
in chapter 2, are shown in the last section of this chapter. These results will turn out to be
trivial, but this chapter only acts as a steppingstone to more complicated systems.

3.1 Obtaining a standard plant formulation

3.1.1 LQG control as a H2 optimal control problem

The generalised plant in a H2 optimal control problem, can be obtained by giving a frequency
domain interpretation to the LQG problem [11]. The LQG problem is as follows: given a
stochastic system

ẋ = Ax + Bu + wd

y = Cx + wn
, where: E

{[
wd(t)
wn(t)

] [
wT

d (τ) wT
n (τ)

]}
=
[
W 0
0 V

]
δ(t− τ)

The LQG problem is to find a u = −K(s)y, such that the following cost function is minimised:

J = E

{
lim

T→∞

1
T

∫ T

0

(
xT Qx + uT Ru

)
dt

}
, with: Q = QT > 0, R = RT > 0

This can be put in an H2 optimisation frame by defining an output signal z and the input
signal w as:

z =
[
Q1/2 0

0 R1/2

] [
x
u

]
, and:

[
wb

wn

]
=
[
W 1/2 0

0 V 1/2

]
w

where w is a white noise process of unit intensity. Using this and Parseval’s theorem, the
LQG cost function becomes:

J = E

{
1
2π

∫ ∞

−∞
zT (jω)z(jω)dω

}
= ‖Fl(P,K)‖2

2, where: z(s) = Fl(P,K)w(s)
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The standard plant P , belonging to the above stated problem is:

P =


A W 1/2 0 B

Q1/2 0 0 0
0 0 0 R1/2

−C 0 V 1/2 0

 (3.1)

The formulation of the LQG problem given in terms of the standard plant, is shown in
figure 3.1. In this case, all weights Q, R, W , and V are independent of frequency. In principle
the could be frequency depended. A way of selecting frequency depended weights is proposed
in [8].

Figure 3.1: The LQG problem formulated in a standard plant paradigm

3.1.2 Standard plant of a mass-spring-damper system

After seeing thatH2 control is basically a frequency domain interpretation of the LQG control,
we try to formulate a standard plant for a mass-spring-damper system, given by the following
transfer function:

G(s) =
10

s2 + 0.2πs + (2π)2
(3.2)
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A state-space realisation of this transfer function can be obtained by automated algorithms.
A few other adjustments are made to the standard plant, discussed in the previous section:
instead of state noise, input noise is assumed, therefore, in terms of LQG control, W 1/2 = B.
Furthermore, the measured output is also the controlled output, thus: Q1/2 = C. Finally, for
simplicity: R1/2 = ρ, and V 1/2 = v. Both are taken v = ρ = 5 · 10−4, because standard H2

control would yield a bandwidth (first 0dB crossing of the open-loop GK) of around 20Hz.
By making these adjustments, figure 3.1 simplifies to figure 3.2. The state-space realisation
of the standard plant is given in appendix C.

_
+

+
+

Figure 3.2: The standard plant used for multichannel synthesis

3.2 Formulation of the multiobjective control problem

After obtaining a standard plant for this problem, the multiobjective problem can be for-
mulated. First, we need to define some objectives by channelling inputs and outputs. We
choose T1 to be the closed loop transfer from w1 to z1 and T2 be the closed loop transfer from
w2 to z2. It can be verified that T1 represents the (weighted) process sensitivity, given by
(I+GK)−1G, and that T2 represents the (weighted) control sensitivity, given by K(I+GK)−1.
These are obviously competing objectives; pursuing low process sensitivity yields a high gain
compensator, while pursuing low control sensitivity yields a low gain compensator.

Now we are ready to solve the multiobjective control problem using the algorithm described
in chapter 2. We take Λ = {(α, 1− α) : α ∈ [0, 1]}. Note that α = 1 is corresponds to
minimising ‖T1‖2, and therefore minimising the process sensitivity, while α = 0 corresponds
to minimising ‖T2‖2, which is equivalent to minimising the control sensitivity. The synthesis
of the compensator K is done by using the results of chapter 2.
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3.3 Results

In figure 3.3, the process sensitivity and control sensitivity are shown for three (out of many)
Pareto optimal compensators. It can be seen that choosing α to be large, results in a low
process sensitivity and, thus, in a large bandwidth. The converse is also true: choosing α to
be small, results in a low control sensitivity and, thus, in a small bandwidth. This trivial
example shows that it is indeed possible to use multiobjective control for making trade-offs.
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Figure 3.3: Resulting process sensitivity and control sensitivity for various α’s.

3.4 Conclusions

This chapter demonstrated how multiobjective H2 synthesis can be applied to SISO systems.
We formulated a H2 control problem by giving a frequency domain interpretation to the
LQG problem. The resulting standard plant can then be transformed to a multiobjective
problem by selecting competing objectives. Although the results of this synthesis can be
obtained using a conventional H2 synthesis, the SISO example provides valuable insights in
formulating multiobjective control problems.
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Chapter 4

Making Spatial Trade-Offs in a MIMO System
with a NMPhZ

After showing that it is possible to make trade-offs using multiobjective control synthesis, an
extension is made to MIMO systems. In the following two chapters, multiobjective control
synthesis, and the notion of Pareto optimality, are employed to make spatial trade-offs. In
this particular chapter: for a MIMO system with a non-minimum-phase zero (NMPhZ), a
zero in the open right half plane. But before doing so, we show what a NMPhZ imposes on the
Bode sensitivity integral, especially for a MIMO systems. Then, such a system is given, and
the multiobjective problem is formulated, in a similar way of the previous chapter. Because
of this NMPhZ, the system is fundamentally restricted in bandwidth. In the latter section of
this chapter, the curve of all Pareto optimal compensators is plotted. In this plot, the spatial
freedom, and the effect of the NMPhZ, can be observed.

4.1 Spatial design freedom in a MIMO system

In [5], an extension to the Bode sensitivity integral is made for SISO systems with unstable
poles and NMPhZ. For example, given a system, with a single (real) NMPhZ at s = z, and
two more poles than zeros, the Bode sensitivity integral is given as follows:∫ ∞

−∞
ln |S(jω)| z

z2 + ω2
dω = 0 (4.1)

This shows that a NMPhZ causes larger peaks when the bandwidth approaches z. In [6],
this result is further extended to MIMO systems, where the sensitivity integrals are in vector
form. Thus, it shows how directionality of either NMPhZ or unstable poles can be exploited
in making trade-offs. We will demonstrate the results of this paper by means of a 2×2 system
with a single (real) NMPhZ zero at s = z along the vector h =

(
h1 h2

)
. Let:

S =
[
S11 S12

S21 S22

]
(4.2)

be the closed loop sensitivity function. Applying the theory developed in [6] gives the following
inequalities:

1
π

∫ ∞

−∞
ln |h1S11(jω) + h2S21(jω)| z

z2 + ω2
dω ≥ lnh1 (4.3)

1
π

∫ ∞

−∞
ln |h1S12(jω) + h2S22(jω)| z

z2 + ω2
dω ≥ lnh2 (4.4)
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This shows that there is indeed spatial design freedom in a system with a NMPhZ, if this
NMPhZ has a non-canonical direction. Therefore, it is possible shift the effect of the NMPhZ
to a certain output.

4.2 Obtaining a standard plant formulation

The problem under consideration is formulated similar to that of chapter 3. Now, we consider
a (physically not realisable) system, consisting of a sum of a diagonal mass-spring-damper
system, and a rotated second order system with a NMPhZ at s ≈ 2π · 100 and poles at
s = −2π(1± 500). The poles are present just to make the whole system strictly proper. The
system is described as follows:

G(s) =

[
1000

s2+0.8πs+(2π)2
0

0 1000
s2+0.8πs+(2π)2

]

+
[ √

k −
√

1− k√
1− k

√
k

][ −5·10−6s
1

(2π·500)2
s2+ 2

2π·500 s+1
0

0 0

] [ √
k −

√
1− k√

1− k
√

k

]−1

(4.5)

the pre- and post multiplication with an unimodular matrix with 0 ≤ k ≤ 1 enables us to
study the behaviour of the NMPhZ in various non canonical directions, without influencing
the eigenvalues of the system. The input and output direction of the NMPhZ are both along
the vector h =

(√
k

√
1− k

)
.

Again, like in chapter 3, the standard plant is obtained by giving a frequency domain inter-
pretation to the LQG problem. We use the same standard plant, and again W 1/2 = B and
Q1/2 = C. Then, we choose R1/2 = 1 · 10−3I and V 1/2 = 1 · 10−2I. The standard plant is
given in appendix C.

4.3 Formulation of the multiobjective control problem

Like in chapter 3, we formulate the multiobjective problem by channelling inputs and outputs
and selecting weights Λ. Here, we can define four channels:

• T1 is from w1 and w3 to z1 and z3

• T2 is from w2 and w4 to z2 and z4

• T3 is from w1 and w3 to z2 and z4

• T4 is from w2 and w4 to z1 and z3
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This way, each channels contains a (weighted) combination of process, control and comple-
mentary sensitivities for each physical input and output of the system G. Again, we use the
algorithm discussed in chapter 2 to solve the multiobjective problem. We take:

Λ =
{
(α, 1− β − α, 1

2β, 1
2β) : α ∈ 〈0, β〉 : β ∈ 〈0, 1〉

}
(4.6)

This way, the parameter β can be used to enforce closed loop decoupling as β → 1, while the
parameter α can be used to shift the weight between the diagonal terms.

4.4 Results

In this section, some results obtained using the multiobjective synthesis are shown. These
results will be discussed in the certain order. First, we make some statements based on the
results discussed in section 4.1 and verify them by looking at the output sensitivity function.
It will become clear that this is not the most transparent way of showing spatial trade-offs.
That is why we show this trade-off by showing curves of all Pareto optimal compensators
(see section 2.1). Finally, using this Pareto curve, we can show how spatial design freedom
changes when the input and output direction of the NMPhZ changes.

4.4.1 Spatial freedom using Pareto optimal compensators

To show how spatial freedom can be exploited, we first fix k = 0.2. This gives the system
a NMPhZ in the input and output direction h ≈

(
0.45 0.89

)
. Then, we first reconsider

(4.3) and (4.4). From these inequalities, some statements can be made, which are verified
by looking at the output sensitivity (from reference r to error e), shown in figure 4.1. By
considering the multivariable Bode sensitivity integral, one could say that:

1. the transfer from reference input r2 to error e2, denoted r2 → e2, shows the NMPhZ
behaviour most clearly;

2. the bandwidth in loop r2 → y2 will be lower than loop r1 → y1;

3. decoupling will ‘cost’ more performance at input r2 than at input r1, especially when
demanding high performance from either output y2 or y1, respectively;

In figure 4.1, a bode magnitude diagram is shown of the output sensitivities for several values
for α and β. It can be seen in the lower-left quadrant of this figure that loop r2 → e2 has
the highest peak, and therefore shows more NMPhZ behaviour. This confirms statement 1.
Moreover, for a fixed value of β, the bandwidth (first 0dB crossing of the sensitivity function)
of loop r1 → e1 is higher than loop r2 → e2. To confirm this, compare the green line in
the upper left quadrant (41Hz) with blue line of the bottom-right quadrant (34Hz), and the
cyan line of the upper left quadrant (37.5Hz) with the red line of the lower left quadrant
(31Hz). To confirm the third statement, compare the blue and the red line from the upper
right quadrant with the green and cyan line from the lower left quadrant of the figure.
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Figure 4.1: Bode (mag) plot of the (output) sensitivity for various α and β.

It can be concluded by looking at the bandwidths, that the statements, made from considering
the Bode sensitivity integral, are difficult to distinguish by looking at the output sensitivity.
This is mostly due to limited interaction of the loops, and therefore differences are not really
significant. Yet, there is a way of showing the spatial design freedom more clearly. This will
be discussed next.

4.4.2 Curve of all Pareto optimal compensators for k = 0.2

Another way of showing spatial design freedom is by looking at the achieved minimal norm
in each channel. This shows achieved performance by a number, rather than a bode diagram.
In figure 4.2 such a Pareto curve is shown for the system discussed before (k = 0.2). The four
lines contain the minimal norm of channel T1 and T2 for a fixed value of β. By going along
the line, the parameter α is changed, and therefore trading off channel T1 and T2. Although it
makes the notion of performance more difficult to interpret, it makes spatial design freedom
more clearer to see.
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Figure 4.2: Pareto optimal costs

It can be seen much more clearly that the statements made in the previous section hold. In
the T2 channel, where the NMPhZ is more dominant, the lowest achievable 2-norm is higher
that in channel T1. Moreover, the ‘cost’ of decoupling is lower in channel T1, where the
NMPhZ is present less dominantly. Conclusively, using the notion of Pareto optimality, we
can show the spatial design freedom in a transparent way.

4.4.3 Curve of all Pareto optimal compensators for various k’s

After this, we can also investigate what happens when the direction of the NMPhZ is changed.
In figure 4.3, Pareto curves are shown for various k’s. Recall that the direction of the NMPhZ
is along the vector h =

(√
k

√
1− k

)
. By changing 0 < k ≤ 0.5, the NMPhZ becomes

less dominant in channel T2, and the minimal achievable 2-norm decreases. As a result the
minimal achievable 2-norm of channel T1 increases. Also, the ‘cost’ of decoupling becomes
smaller in channel T2 and larger in T1 when k increases.

4.5 Conclusions

In this chapter, we applied the framework provided in chapter 3 to a MIMO system with
a NMPhZ. We showed that it is possible to shift the effect of a NMPhZ for one output to
another. However, due to limited interaction in our system under study, this effect of is
not very significant when looking at the output sensitivity function. The curve of Pareto
optimal compensators shows the limitations imposed by the NMPhZ more clearly. Using
Pareto optimality, it is possible to make trade-offs spatially, which would not be possible
using conventional ‘norm based’ methods.
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Figure 4.3: Pareto optimal costs for various k’s
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Chapter 5

Making Spatial Trade-Offs in a Modal MIMO
System

In this chapter, multiobjective control synthesis is employed to show spatial design freedom
in a modal system. In this system, all poles and zeros are in the open left plane, and therefore
theory from [6] cannot applied. There is, however, spatial design freedom, like we introduced
in the introduction of this report. However, it is not possible to shift bandwidth limitations
to a certain input or output. The methodology used in this chapter is equal to the previous,
and therefore, treated more quickly.

5.1 Obtaining a standard plant formulation

The system under consideration is shown in figure 5.1 (blue line). It consists of a mass-
spring damper system, with two flexible modes in (both the same) non-canonical direction.
This system is, like the one in chapter 4, physically not realisable. The flexible modes put
constraints on the bandwidth. However, these constraints are no fundamental ones like the
NMPhZ, but constraints due to robustness requirements. To study the influence of coupling,
the system is approximately decoupled as follows:

G̃ =
(

0.998 0.071
0.071 −0.998

)
G

(
0.655 0.756
0.756 −0.655

)
(5.1)

These (unimodular) decoupling matrices are obtained from making a singular value decompo-
sition (SVD) of the system evaluated at s = 1. This decoupled systems is also shown in figure
5.1. Again, the standard plants are formulated in the same way as in the previous chapter.
However, this time R = 1 · 10−3I and V = 9.5 · 10−3, for both the coupled and decoupled
system. A state-space realisation for both systems can be found in appendix C.
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Figure 5.1: Bode diagram

5.2 Results

The multiobjective problem is formulated in the same fashion as in chapter 4. Again, we
take:

Λ =
{
(α, 1− β − α, 1

2β, 1
2β) : α ∈ 〈0, β〉 : β ∈ 〈0, 1〉

}
(5.2)

Moreover, we again employ the curve of all Pareto optimal compensators for showing the
spatial design freedom. These Pareto curves for the coupled and decoupled system are shown
in figure 5.2. First, it can be seen for both systems that the minimal attainable 2-norm is
equal in both directions. This can be explained by the fact that these systems, unlike a
system with a NMPhZ, are not fundamentally limited in performance. The limitations are
imposed by robustness specifications. The second fact that can be observed is that there is
more spatial design freedom in the coupled case. This can be seen from the shape of the
curve.
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Figure 5.2: Pareto curve for both coupled and decoupled systems

5.3 Conclusions

In this final chapter, a modal MIMO system was put into a multiobjective framework. The fact
that this system has no fundamental limitations in achievable bandwidth can be observed by
looking at the Pareto curve. We also showed by comparing a coupled and a decoupled system,
that the ‘amount of spatial freedom’ can be observed from the Pareto curve. Unfortunately,
when trying to study more realistic systems, it was found out that numerically the algorithm
needs to be improved.
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Chapter 6

Concluding Remarks and Recommendations

This report has presented a method for making spatial trade-offs in a more transparent way.
In this final chapter, conclusions are drawn from the work discussed in this report and some
recommendations for future research are made.

6.1 Conclusions

The algorithm, discussed throughout this report is able to trade-off competing requirements.
It can be implemented in state-space by solving algebraic Riccati equations. We also elabo-
rated on formulating aH2 optimal control problem. This is done by giving a frequency domain
interpretation to the LQG problem. This optimal control problem can then be transformed
into a multiobjective optimal control problem by defining ‘channels’ containing competing
requirements.

Next, we showed how multiobjective control synthesis can be used to make trade-offs in a
SISO system. Then, multiobjective H2 was successfully applied to a MIMO system with a
NMPhZ and a modal MIMO system. Both of these systems were not physically realisable.
Using the Pareto curve, spatial design freedom can be studied and traded-off in a transparent
way.

From the Pareto curve, some fundamental properties of the systems can be visualised. If a
system has a NMPhZ in a non canonical direction, the direction in which the zero is most
present is most restricted in achievable bandwidth. This is shown by the higher minimum 2-
norm in this loop. Also, the cost of decoupling is higher in this loop. By studying the coupled
and the approximately decoupled system (coupling gives more spatial design freedom), it
is illustrated how the ‘amount of spatial freedom’ is shown in the Pareto curve. A heavily
coupled systems shows smoothly curved lines, while a decoupled systems shows a kneed line.

Conclusively, the following can be said:

Multiobjective H2 synthesis, discussed throughout this report, can be
used to make spatial trade-offs in a more transparent, straightforward
way. However, future research is required to make a more stable imple-
mentation, in order to make it applicable to real systems.
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6.2 Recommendations

Although, the algorithm works well on the systems discussed om this report, it is still impos-
sible to apply it to more realistic systems, (e.g. an 8th order model of a wafer stage.) The
current implementation of the algorithm is numerically not very stable. Because Kronecker
products result in large matrices, small numerical errors are unavoidable. This causes the
realisations of W and vec(R) to be of high order, with lots of repetitive poles, all in slightly
different directions. This again causes the projection on the H2 space to fail. The imple-
mentation of this projection (the standard Matlab routine called stabsep), gives an error
message and the outcome does not make sense.

One possible solution is as follows: thus far, we developed realisation for Wk and vec(Rk)
analytically. It might be possible to derive an analytical expression for the inner/outer fac-
torisation of W in terms of the partitioned matrices of the standard plant P . Maybe, it
is even possible to go even further towards the final closed form expression analytically. By
doing this, the algorithm would become more stable, and (maybe) applicable to more realistic
systems.

Another recommendation that can be made is more general about H2 control. Although
sufficient literature is available on solving a H2 optimal control problem, little is written
about formulating a correct standard plant. The frequency domain interpretation of the LQG
problem is still signal based, requiring a lot to be known from the system to be controlled (e.g.
disturbances and its directions). Mixed sensitivity H∞ optimal control is more user-friendly
because it requires desired closed loop transfers to be specified. Moreover, more literature is
available on that subject. Thus, more focus should be on setting up a H2 control problem.
This because of in H2 not just worst case gains in worst case directions are dealt with, like
in H∞, but all gains in all directions.
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Appendix A

Some Extended Derivations

A.1 The infinum as a projection on the H2 space

By definition, H2 and H⊥2 are both closed subspaces of L2, such that L2 = H2 ⊕H⊥2 , where
⊕ stands for direct external sum (see [10]). If we define:

X = U∼kλ(R̂kλ − UkλQ̂oVk)V ∼k ∈ L2 (A.1)

Then, X can be written as X = XH2 +XH⊥2
, with XH2 ∈ H2 and XH⊥2

∈ H⊥2 . For simplicity,
we can now rewrite (2.12) as:

〈X, Q̂〉 = 0 (A.2)

Because the inner product is a linear operation:

〈XH2 + XH⊥2
, Q〉 = 〈XH2 , Q〉+ 〈XH⊥2

, Q〉 = 0 (A.3)

The latter term of this expression 〈XH⊥2
, Q〉 = 0, because XH⊥2

/∈ H2. This means that
〈X, Q〉 = 0 is equivalent to the following orthogonal projection:

PH2(X) =
∑

i

{〈XH2 , Qi〉Qi} = 0 (A.4)

where {Qi} denotes an orthonormal basis for Q. This proves that (2.12) is equivalent to the
following projection on the H2 space:

PH2

(
s∑

k=1

U∼kλ

(
R̂kλ − UkλQ̂Vk

)
V ∼k

)
= 0 (A.5)

where PH2 denotes an orthogonal projection on the H2 space.

A.2 Kronecker algebraic manipulations

If the rule ‘vec(ADB) = BT ⊗A vec(D)’ is applied to (2.13), we get:

PH2

(
s∑

k=1

(VkV
∼
k )T ⊗ (U∼kλUkλ) vec(Q̂)

)
= PH2

(
s∑

k=1

V ∼T
k ⊗ U∼kλ vec(R̂kλ)

)
(A.6)

31



Using the so-called mixed-product rule, we get:

PH2

(
s∑

k=1

(V ∼T
k ⊗ U∼kλ)(V T

k ⊗ Ukλ) vec(Q̂)

)
= PH2

(
s∑

k=1

V ∼T
k ⊗ U∼kλ vec(R̂kλ)

)
(A.7)

Then, we define Wkλ = V T
k ⊗ Ukλ. This results in:

PH2

(
s∑

k=1

W∼
kλWkλ vec(Q̂)

)
= PH2

(
s∑

k=1

W∼
kλ vec(R̂kλ)

)
(A.8)

This can be written more conveniently using matrix multiplications:

PH2

(
(W∼

1λW2λ + . . . + W∼
sλWsλ) vec(Q̂)

)
= PH2

(
W∼

1λ vec(R̂1λ) + . . . + W∼
sλ vec(R̂sλ)

)
⇔

PH2(

W1λ
...

Wsλ


∼W1λ

...
Wsλ

 vec(Q̂)) = PH2(

W1λ
...

Wsλ


∼

vec

R1λ
...

Rsλ

) ⇔

PH2

(
W∼W vec(Q̂)

)
= PH2

(
W∼ vec(R̂)

)
(A.9)
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Appendix B

State-Space Formulae

B.1 Realisations for Rk, Vk, and Uk

According to [12], realisations of Rk, Vk, and Uk are as follows:

(
Rk Uk

Vk 0

)
=


A + BuF −BuF Bk −Bu

0 A + HCy Bk + HDyk 0
Ck + DkuF −DkuF Dkk −Dku

0 Cy Dyk 0

 (B.1)

where A, Bk, Bu, Ck, Cy, Dkk, Dku, Dyk are correctly partitioned matrices from the realisation
of the plant P . Subscript k denotes the exogenous input and output (channel), and subscript
u and y denote the controlled input and measured output, respectively. Matrices F and H
are stabilising solutions to state-feedback and observer Ricatti equations, respectively.

B.2 Realisations for vec(Rkλ) and Wkλ

Under similarity, the Rk part of (B.1) can be transformed:

T =
[
I −I
0 I

]
⇒ Rk =

[
TAT−1 TB

CT−1 D

]
=

 A + BuF −HCy −HDyk

0 A + HCy Bk + HDyk

Ck + DkuF Ck Dkk


This system can be partitioned in the following factors:

Rk = RαRβ =
[

A + BuF 0 −H

Ck + DkuF I 0

] A + HCy Bk + HDyk

Ck Dkk

Cy Dyk


If we then apply some Kronecker algebra (see [2]):

vec(Rk) =vec(RαRβ) = vec(Ip1RαRβ) = (RT
β ⊗ Ip1) vec(Rα) ⇔

=
[

(A + HCy)T ⊗ Ip1 CT
k ⊗ Ip1 CT

y ⊗ Ip1

(Bk + HDyk)T ⊗ Ip1 DT
kk ⊗ Ip1 Dyk ⊗ Ip1

] [
Ip2 ⊗ (A + BuF ) vec(−H)

Ip2 ⊗ (Ck + DkuF ) vec(Ip1

]

=

 (A + HCy)T ⊗ Ip1 CT
y ⊗ (Ck + DkuF ) vec(C1)

0 Ip2 ⊗ (A + BuF ) vec(−H)
(Bk + HDyk)T ⊗ Ip1 DT

yk ⊗ (Ck + DkuF ) vec(Dkk

 (B.2)
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The realisation of Wk = V T
k ⊗ Uk is obtained using the mixed product rule from Kronecker

algebra [2]:

Wk = V T
k ⊗ Uk = (V T

k Ip2)⊗ (Ip1Uk) = (V T
k ⊗ Ip1)(Ip2 ⊗ Uk) ⇔

=
[

(A + HCy)T ⊗ Ip1 CT
y ⊗ Ip1

(Bk + HDyk)T ⊗ Ip1 DT
yk ⊗ Ip1

] [
Ip2 ⊗ (A + BuF ) −Ip2 ⊗Bu

Ip2 ⊗ (Ck + DkuF ) −Ip2 ⊗Dku

]
⇔

=

 (A + HCy)T ⊗ Ip1 CT
y ⊗ (Ck + DkuF ) −CT

y ⊗Dku

0 Ip2 ⊗ (A + BuF ) −Ip2 ⊗Bu

(Bk + HDyk)T ⊗ Ip1 DT
yk ⊗ (Ck + DkuF ) −DT

yk ⊗Dku

 (B.3)

If we now put the two realisations of vec(Rk) and Wk together, and apply (2.6), we get:(
vec(Rkλ) Wkλ

)
= (A + HCy)T ⊗ Ip1 CT

y ⊗ (Ck + DkuF ) vec(C1) −CT
y ⊗Dku

0 Ip2 ⊗ (A + BuF ) vec(−H) −Ip2 ⊗Bu√
λk

(
(Bk + HDyk)T ⊗ Ip1

) √
λk

(
DT

yk ⊗ (Ck + DkuF )
) √

λk vec(Dkk)
√

λk

(
−DT

yk ⊗Dku

)


where Ip1 and Ip2 are identity matrices with the sizes according to the vector length of k and
y, respectively.
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Appendix C

State Space Realisations of Systems Under Study

System of chapter 3:

P =


−0.628 −4.935 1 0 1

8 0 0 0 0
0 1.25 0 0 0
0 0 0 0 5 · 10−4

0 −1.25 0 5 · 10−4 0

 (C.1)

System of chapter 4:

P =



−2.51 −4.94 0 0 8 0 0 0 8 0
8 0 0 0 0 0 0 0 0 0
0 0 −2.51 −4.94 0 8 0 0 0 8
0 0 8 0 0 0 0 0 0 0
0 15.6 0 0 0 0 0 0 0 0
0 0 0 15.6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 10−3 0
0 0 0 0 0 0 0 0 0 10−3

0 −15.6 0 0 0 0 10−2 0 0 0
0 0 0 −15.6 0 0 0 10−2 0 0


+



−6.28 · 103 −1.54 · 105 8
√

k 8
√

1− k 0 0 8
√

k 8
√

1− k
64 0 0 0 0 0 0 0

−6.19
√

k 0 0 0 0 0 0 0
−6.19

√
1− k 0 0 0 0 0 0 0

0 0 0 0 0 0 10−3 0
0 0 0 0 0 0 0 10−3

6.19
√

k 0 0 0 10−2 0 0 0
6.19

√
1− k 0 0 0 0 10−2 0 0


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System of chapter 5:

Coupled system:

P =
[

A B

C D

]
, with:

A =



−2.51 −4.94 0 0 0 0 0 0
8 0 0 0 0 0 0 0
0 0 −2.51 −4.94 0 0 0 0
0 0 8 0 0 0 0 0
0 0 0 0 −2.51 · 102 −7.71 · 102 0 0
0 0 0 0 5.12 · 102 0 0 0
0 0 0 0 0 0 −3.77 · 102 −8.67 · 102

0 0 0 0 0 0 1.02 · 103 0



B =



2.50 · 10−1 0 0 02.50 · 10−1 0
0 0 0 00 0
0 2.5 · 10−1 0 00 2.5 · 10−1

0 0 0 00 0
1.40 · 10−2 −2.80 · 10−2 0 01.40 · 10−2 −2.80 · 10−2

0 0 0 00 0
1.40 · 10−2 6.99 · 10−3 0 01.40 · 10−2 6.99 · 10−3



C =



0 3.01 · 102 0 3.01 · 102 0 −16.6 0 −11.88
0 −3.01 · 102 0 3.01 · 102 0 33.3 0 −5.94
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −3.01 · 102 0 −3.01 · 102 0 16.6 0 11.88
0 3.01 · 102 0 −3.01 · 102 0 −33.3 0 5.94



D =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 10−3 0
0 0 0 0 0 10−3

0 0 9.5 · 10−3 0 0 0
0 0 0 9.5 · 10−3 0 0


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Decoupled system:

P̃ =
[

A B̃

C̃ D

]

B̃ =



1.64 · 10−1 1.89 · 10 0 0 1.64 · 10 1.89 · 10
0 0 0 0 0 0

1.89 · 10−1 −1.64 · 10 0 0 1.89 · 10 −1.64 · 10
0 0 0 0 0 0

−1.20 · 10−2 2.89 · 102 0 0 −1.20 · 102 2.89 · 102

0 0 0 0 0 0
1.44 · 10−2 5.98 · 103 0 0 1.44 · 102 5.98 · 103

0 0 0 0 0 0



C̃ =



0 2.79 · 102 0 3.21 · 102 0 −1.42 · 10 0 −1.23 · 10
0 3.21 · 102 0 −2.79 · 102 0 −3.44 · 10 0 5.08
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −2.79 · 102 0 −3.21 · 102 0 1.42 · 10 0 1.23 · 10
0 −3.21 · 102 0 2.79 · 102 0 3.44 · 10 0 −5.083


A and D matrix are equal to those of system P .
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