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Summary 

Many control problems are formulated as designing a stabilising controller, which minimises the H, 
norm of a closed-loop transfer function. This is called H, control. The common solution to this problem 
solves two algebraic Riccati equations and will in this paper be referred to as ARE-method. Another 
solution to this H, control problem involves solving convex optimisation problems in the form of 
Linear Matrix inequdiiics ( abbïevvizted LMI-method 1. 

Both the solution methods use state-space data, the difference between the ARE-method and LMI- 
method is that the assumptions ( on the state-space data ) for the ARE-method are more restrictive than 
the assumptions for the LMI-method. In this paper both methods will be studied with respect to 
computation time and numerical reliability. 

The main conclusion with respect to numerical problems is: we should not use small perturbations to 
meet the assumptions on the ARE-method. Instead, it is better to use the LMI-method in that case. 
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Chapter 1. 

Introduction 

In the last fifteen years there has been much research on designing H, controllers for linear systems. In 
the 70’s the design of controllers was mainly focused on the LQG optimal control method. It was in 
1981 that Zames formulated the H, optimal control theory. In this theory, the design of a feedback 
controller is based on minimising the H, norm of the closed-loop transfer function. In the last years 
there came a iot of simpiifications and improvements, which lead to the siatespace foïmdas ~f G ! G ~  
and Doyle [i]. This method shows that the existence of an H, control!er depends on satisfying certain 
assumptions and conditions on the solutions to two algebraic Riccati Equations ( abbreviated ARE ). 
Although this H, control problem has an analytical solution, another method was developed in the last 
five years. This method uses linear matrix inequalities. This method is still based on the H, norm of the 
closed-loop transfer function and also requires a stable closed-loop system. These two things together 
can be expressed via the bounded real lemma into a linear matrix inequality ( abbreviated LMI ). The 
reason for this other approach of the EE, control problem is to circumvent a part of the restrictive 
assumptions for the design method using the ARE. To be more precise, the LMI approach even works 
when the state-space matrices Dlz and Dzl are rank-deficient or when the pIant has transmission zeros 
on the imaginary axis. In these cases the ARE-method cannot be used. 

This paper is divided into three parts. The first five chapters contain the theory. Chapter six and seven 
contain the experiences and results with the examples. Chapter eight will give some conclusions and 
recommendations. In chapter two, H, control in general will be discussed. It is seen, that it is possible 
to make a general state-space representation of the plant. The plant can also be augmented by filters 
which specify performance. In the following chapters we will have a look at the two different ways to 
analyse the H, suboptimal control problem. The ‘standard method’ is called the Algebraic Riccati 
Equality -method and the other method is called the Linear Matrix Inequality-method. The ARES and 
the LMIs can only be used when a number of assumptions on the state-space representation hold. These 
assumptions will be presented and explained. At first sight the ARES and LMIs seem to differ a lot, but 
when the assumptions needed for the ARE method are met and a few other simpliijkg assumptions are 
met, then the controllers designed by the ARE method and LMI method are equivalent. In chapter six, 
two examples will be prescribed and in chapter seven we will see what happens if some assumptions are 
violated. 

The aim of this traineeship is to compare the LMI and ARE methods in a few respects. We will look to 
the general applicability, because for the LMI method there are fewer assumptions. So the LMI method 
will be more generally applicable. We will study numerical problems, because they may occur when the 
plant is a bit manipulated to satisfy the assumptions on the ARE method, as is often done in practice. 
We will also compare the computation time needed for both methods. 
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Chapter 2. 

u i  b 

H, Control 

; Y  k 

In this chapter, the H, control theory for linear time-invariant systems will be explained with the aim to 
present a global idea of this control theory. 

The first step in a control theory is to give a clear representation of the control problem. This leads to 
the next figure, where Vie probiem is Îormuiated in a Hock diagí=arrn [ 10, r> 415j. 

Figure 2-1 Generalised plant G with controller K 

In this figure, G stands for the generalised plant, which will be explained below. K stands for a 
controller that has to be designed. The inputs of G are the exogenous input w, i.e. disturbances or 
reference signals, and the output from the controller u. The outputs of G are the output to be controlled 
z and the measured output y, which is available for the controller. The outputs to be controlled are 
formulated such that they are ideally zero, i.e. tracking errors. 

The generalised plant G does not only contain the nominal model, but also weighting functions to 
penalise the outputs to be controlled and weighting functions characterising the exogenous inputs. 
These filters give the possibility to characterise the important frequencies in signals. For instance, they 
can penalise the high frequencies in u to avoid that K generates high-frequency control inputs supplied 
to an actuator with limited bandwidth. 

............................................................... 

Figure 2-2 Nominal plant with filters 

A more detailed look on G is presented in figure 2-2. In this figure w and w stands for the unweighted 
and weighted exogenous input respectively and u are the signals that are generated by the controller. On 
the right hand side, z and z are the weighted and unweighted output to be controlled respectively and the 
signal y is fed back to the controller. 
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The aim of controller design is to manipulate the transfer from w to z so a certain norm ( the H, norm in 
this report ) of this transfer function is achieved. V and W are used to express the design specifications. 
The effect of the input weighting V can be explained with the next example. Suppose that the 
exogenous input is a signal representing a road-disturbance. The controller design accounts for all 
frequencies, but if this road-disturbance is better modelled as a low frequency signal, the design should 
emphasise the lower frequencies. To get a better controller design the input signal w can be shaped by 
using a filter which takes the information of the spectral contents into account. For the road-disturbance 
this may give a filter in the form of V = a ( l+s@ )-' , with a gain a and a cut-off frequency j3. The 
result of this will be that the controller focuses on suppression of low-frequency ( o < f3 ) disturbance 
inputs. To be complete, it has to be mentioned that the exogenous input usually also contains 
measurement noises for the output y.  

W is called the weighting filter and is used to weight the frequencies of the output signal to be 
controlled which have to fulfil certain control targets. To be more precise, the filter W could be used as 
the reciprocal of the upper bound of the controlled output signal. So, when the controlled output signal 
has to be very small for a certain frequency, than W should be large for that frequency. 

The problem presented in figure 2-1 can also be denoted using a transfer function matrix. 

For the closed loped system from figure 2-1 this leads to the next transfer function matrix. 

relating w to z according to z = T, w. 

Back to the H, control theory, there are two cases in this control design. 

The first case is the H, optimal control problem. This is to design a stabilising controller K which 
minimises the H, norm of the closed-loop transfer function from w to z : 

Here, o,,,= denotes the maximum singular value of a matrix and sup stands for supremum. The H, norm 
requires a search for T, (io) over o for the supremum. For SISO T,,, an interpretation of the H- nom- 
is the peak value from the magnitude plot. 

The H, optimal control problem gives the theoretical minimum of what can be achieved, but this is not 
always necessary. In some cases, it satisfies to use a controller which achieves a norm which is smaller 
than a specified value. This second case will be called H, suboptimal control. We define H, suboptimal 
control as the problem of finding a stabilising controller K , if there is any, such that II T,, (G,K) 11, < y, 
with y > O. 

Whether the H, optimal control or the H, suboptimal control is used, the controllers found are actually 
dependent on the state-space data from the generalised plant and on the value y .  
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Chapter 3. 

Algebraic Riccati Equality (ARE) 

In the previous section, the set-up to design a H, controller has been shown. In the next chapters , the 
tools to derive the solution to the suboptimal problem will be shown. There are two methods to handle 
this. The first is known as the Algebraic Riccati Equality (ARE) -method and the second is known as 
the Linear Matrix Inequality (LMI) -method. In this chapter the ARE method will be presented. 

First the generalised plant presented in figure 2-1 has to be put in state-space format: 

x = Ax + B,w + B2u 
z = C,X + D,,w+ DI2u ; X E  Rnx ,W E Rnw ,U E R"' ,Z E RnZ,y  E R"' (4.) 

y = C2x + D2,w + D22u 

For the ARE controller design, the next assumptions must hold for the state-space formulation to 
guarantee that an H, controller can be constructed [ 2 1. 

1. ( A, B2 ) is stabilizable and ( A, Cz ) is detectable. 
The former states that the uncontrollable eigenvalues of A are asymptotically stable and the latter 
states that the unobservable eigenvalues of A are asymptotically stable. These assumptions are 
necessary for the existence of a stabilising controller. It also implies that the weighting functions V 
and W have to be stable, because they are uncontrollable from u and unobservable from y 
respectively. 

2. Dl2 has full column rank (rank ( Dlz )= nu ) en Dz, has full row rank ( rank ( D21 ) = ny ). 
The condition on D12 implies that all control signals have to be weighted even at infinite frequency, 
to avoid non-proper controllers which are physically not realisable. The rank condition on Dz1 
implies that all measurements are noisy at infinite frequency. According to [ 2 1, this is sufficient to 
ensure proper controllers. 

, so Cl(w) has full column rank for all WE R. 

This assumption has the following implications, the first and second are equivalent [ 11, app. BI. 
rank ( G1z ( j w  ))= nu for all w ER, 
GI2 ( j w  ) has no transmission zeros on the imaginary axis, 
n ,2nu .  

This is to ensure that T,, is asymptotically stable. 

4. rank ( &(U)  = [ A  i:u1 = n, + ny , so Cz(w) has a full row rank for all E R. 

This assumption has the following implications, the first and second are equivalent [ 1 1, app. BI. 
rank ( G21( j w  ))= ny for all w ER, 

0 Gzi (ja ) has no transmission zeros on the imaginary axis, 
n,2:ny. 

This is to ensure that T,, is asymptotically stable. 

If the assumptions are satisfied there are two ARES that have to be solved to find K. These are the full 
information ARE and the full control ARE. 

An Algebraic Riccati Equality (ARE) has the following structure: 
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X + rTX - X R X + Q = O, ( 5 . )  

with î, Q and R real matrices with dimension n x n and Q and R symmetric. X is the matrix which has 
to be computed and will need some properties to give a stabilising solution for ( 5 ) [ 10, p 333-341 1. 

Associated with the ARE ( 5 ) is a 2n x 2n matrix 

This H is called an Hamiltonian matrix. We assume that H has no eigenvalues on the imaginary axis. 
Then it has n eigenvalues with real part s < O and n with real part s > O, which are symmetric with 
respect to the imaginary axis. A subspace x. ( H ) can be defined corresponding to the eigenvalues with 
negative real parts, and a subspace x+ ( H ) can be defined corresponding to the eigenvalues with 
positive real parts s > O. x. ( H ) is called the stable eigenspace of the Hamiltonian . By finding a basis 
for this subspace, stacking the basis vectors up to form a matrix, and partitioning the matrix we get: 

Here, XI and Xz are real n x n matrices and Im stands for image or range. If X1 is non-singular or, 
equivalently, if the two subspaces 

are complementary, the solution to the ARE ( 4 ) is obtained via X = Xz XI-' . The solution X is 
symmetric and is called stabilising, because h( r - RX ) is stable. Since X is uniquely determined by H ,  
it is denoted as a function 'Ric' of H: X = Ric( H ). Hamiltonians belonging to the domain of Ric 
( H E dom. ( Ric )) have two properties, which were employed in the above [ 10 , chap. 13 1: 

1. H has no eigenvalues on the imaginary axis ( stability property ) and 
2. X1 is non-singular , i.e. rank ( XI) = n ( complementary property ). 

ï h e  €uil information ARE is given by the following formula. Full information refers to the case that the 
controller is provided with the states x and the exogenous input w. 

The Hamiltonian Hx associated to this ARE follows by careful comparison of ( 7 ) with ( 5 ) and ( 6 ). 

The full control ARE is given by the following formula. Full control refers to the situation that the 
controller has full access to the states x and to the controlled output z. 
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There is also an Hamiltonian H y  associated to this ARE, it follows by comparison ( 8 ) with ( 5 ) and 
( 6 ) .  
In ( 7  )and ( 8 ): 

We denote the solution of ( 7 ) as X, and the solution of ( 8 ) as Y, . Then there exists an internally 
stabilising controller K (ja) such that II F, ( G, K ) Il, < yif and only if : 

1. the Hamiltonians Hx and Hu E dom. ( Ric ) and 
2. there exist L 2 O and Y, 2 O satisfying formula ( 7 ) and ( 8 ) 
3. such that p ( L Y, ) < f , 

In 3 p denotes the maximal modulus of the eigenvalues from matrix ( L Y, ) and is called the spectral 
radius. 

When these three conditions are satisfied then a controller can be derived using X, and Y,, see [ 2 1. 
From ( 7 ) and ( 8 ), it is obvious that the controller K depends on the state-space data in ( 5 ) and 
on the required performance level y. 
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Chapter 4. 

Linear Matrix Inequality (LMI). 

In this chapter we will examine the other solution method ( LMI-method ) mentioned in chapter 3. 

Linear Matrix Inequalities have the following structure [ 12 1: 

j=l 

where x E R" is the variable and the symmetric matrices Fi = F: E R"*" , i=O, ..., m, are given data. The 
strict inequality symbol means that F( x ) is positive definite, i.e. uT F( x ) u > O for all u # O. Nonstrict 
LMIs have the form F(x) 2 O. 

According to [ 4 1, the constraint that the H, norm of the closed-loop ( 2 ) must be smaller than y and 
that the closed-loop system must be internally stable, can be converted into a matrix inequality via the 
bounded real lemma. This means for a closed-loop like in figure 2-1: 

This is an LMI with the variable SI with dimensions 2n x 2n . If and only if the matrix inequality ( 10 ) 
is feasible and the variable Zl O, then there are internally stabilising controllers satisfying 
II T,, (G,K) 11- < y. The subscript 'cl' denotes closed-loop. The closed-loop matrices depend on the 
state-space matrices of the open loop G and on the state-space matrices of the controller K 
xk = Ak xk + Bk y ; u = Ck xk + Dk y .The closed-loop state space matrices are then given by: 

A +  BzDKC2 B2CK Bl + ' Z D K D Z I  . 
Ac1 = AK ];"' =(  BKD2, (11.) 

In ( 10 ) the controller matrices Ak, Bk ,ck , Dk enter Acl, Bcl , Ccl and Dcl . So, for controller 
construction is ( 10 ) not directly useful. Instead, for a given controller, this LMI in SI could be used to 
check if the controller achieves internally stability and a H, norm requirement. For the purpose of 
controller construction, ( 10 ) is first rewritten as another LMI in the variable Xcl [ 6, p 1008 1, with the 
unknown controller matrices Ak, Bk ,ck and Dk stored in !& . 

The reason for this other notation is that the matrices ZxCl, PxC1 and Q do not depend anymore on the 
controller matrices Ak, Bk ,ck and Dk . The matrix Q only depends on the open loop plant data. The 
matrices Pxcl and Zxci depend on the variable SI and the open loop plant data. The exact contents of the 
matsices Zxcl , Pxcl and Q can be found in [ 4, p 426-4271. Because the matrix 
not solve (12). However [ 4 ] shows that Qk can be eliminated from ( 12 ) to obtain necessary and 
sufficient conditions for solvability of ( 12 ). These conditions only depend on XI and on the plant 
matrices. It appears that ( 12 ) is solvable, if and only if there is a KI > O such that : 

is not known we can 
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Here Wp and WQ denote any bases of the nullspaces of P and Q respectively, which only contain plant 
data, see [ 4 I. The reason for the introduction of (13) is that the formulas are independent of the 
controller matrices. The first formula from (13) is rearranged from a formula with the nullspace of 
matrix Pxcl and matrix Z ( which depends on Xci ) to a formula which depends on the nullspace of 
matrix P and on matrix Y í which depends on &<' ) [ 441 426j. Tn obtain a s i q l e r  sdvzbi!itjr 
requirement in terms of LMIs, the following 

are used, with R, S, M and N with dimensions n x n. Now, the matrix inequalities ( 13 ) can be 
rearranged to the two LMIs ( 15 ) and (16) and XC1 > O can be rearranged to the LMI ( 17 ). The three 
LMIs only depend on the plant data and variables R , S. 

In these LMIs R and S are the unknown ( we will see later, that under certain assumptions R = y L-' 
and S = y Y:' ), N12 and Nzl denote orthonormal bases of the nulispaces of ( B?, ill? ) and 
( C2 , Dzi ) respectively. These orthonormal bases can be spanned by the vectors belonging to the 
singular values which are equal to zero. The computation of the vectors and singular values can be done 
by using the singular value decomposition. 

For the LMIs there is only one assumption on the plant state-space representation, which is the first 
assumption from the previous chapter. When this assumption holds, two things have to be done to 
construct a suboptimal controller [ 6 1. 

1. Solve the above system of three LMIs, where the unknown variables are two symmetric matrices R 
and S, with the dimensions equal to the size of the plant order. 

2. Given R, S and the plant state-space data compute the controller by solving another LMI called the 
'controller LMI'. This will not be detailed here, see [ 4 ] for the solution. 

The result is a suboptimal stabilising controller fulfilling I I  T,, II- < y [ 6, p 1010 1, 
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Chapter 5. 

Resemblance between Algebraic Riccati Equalities and Linear Matrix 
Inequalities 

In this chapter we will see that in certain cases H, suboptimal controller design using the ARE-method 
or the LMI-method is similar. 

We start with the formulas ( 7 ) , ( 8 ) from the ARE-method and use the next assumptions [ 1, p 834 1: 

0 ( A, B1 ) is stabilizable, ( A, C1 ) is detectable. This assumption is made for a technical reason. 
Together with the assumption that ( A, Bz ,CZ ) is detectable and stabilizable it guarantees that the 
Hamiltonians associated with the ARES ( 7 ) and ( 8 ) belong to dom ( Ric ) [ 1, p834 ] 

In short DI*= 0 means that there is no direct influence from the exogenous input w, to the output to be 
controlled z.  The last two assumptions in ( 18 ) mean that in the state representation ( 4 ) C1 x and D12 u 
are orthogonal so that the penalty on z ( = C1 x + D12 u ) includes a non-singular normalised penalty on 
the controller output u. Under these more restrictive assumptions, ARE ( 7 ) reduces to: 

X, A + A X ,  + X, (y2 B, B: - B, B;)x, + c: c, = o (19.) 

and ARE ( 8 ) to: 

(20.) Y , A ~  +AY_ +Y,(Y- 2 T  c, c, -C;C,)Y, +B,B: = o  

If we solve these ARES, with X, and Y, we can form a controller [ 1 ] by algebraic manipulation. With 
the notation Tom xk = Ak xk + Bk y ; u = Ck xk + Dk y , this gives the following controller: 

Ak =A+y-ZB,B,TX_+B2F,+Z,L,C2;Bk =-Z,Lm;Ck =F,;Dk = O .  
T (21.1 

with F, =-B:X, L, =-Y& z, = ( I  - y-2y,x_)l. 

The H, controller Ksub displayed in ( 21 ) is called the central or the minimum entropy controller 
[ 10, p 419 1. 

Next we consider the formulas ( 15 ) ,( 16 ) from the LMI-method and use the restrictive assumptions 
above. First, we will transform ( 15 ) and ( 16 ) 1 4, pp 427-428 ] into 

with the following shorthands: 
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B2 = B2DL Â = A - B2Cl i, = B, - k,D,, 
and el = ( I  - D,,D:,)c, D,, = ( I  - D,,D;,)D,, 

(24.) 

EZ = DAC2 

El = B,(I - D;D~,)C, 

A = A -  B,C, Cl = C, - D,,C~ 
(25.) D,, = D,,(I - D ; D ~ ~ )  

Here, + denotes the pseudo-inverse of a matrix and WIZ and Wzl denote the bases of the nullspaces of 
( I - D12D12 ) B T  and of ( I - D12D12 ) B? . 

The restrictive assumptions on the formulas ( 22 ) - ( 25 ) will give us, with the simplification where 
W12 and Wzl are identity matrices: 

I {AR +  RA^ + ( ~ - , B , B ;  - y B,B;) + ~ - W T C , R } I  < o 
I { A ~ S  + SA + (y-lc:cl - y c;c,) + y - l ~ ~ , ~ ; ~ } ~  < o 

(26.1 

(27.) 

With the substitutes R = y L-' and S = y Y:' it is shown in [ 6, p 1012 3 that the left hand sides of 
these inequalities are the same as the left hand sides of the ARES in ( 19 ) and ( 20 ). 

Now we can derive a suboptimal controller satisfying the restrictive assumptions and by simplifying 
'controller LMI' formula [ 6, p1010 ] we take Dk = O and then it follows that 

A, = A + ( ~ - , B , B ;  - B,B;)x, + (y2yy_x_ - I ) - ' Y ~ C ; C ~ ,  
(28.). 

B, = - (Y-~Y_X_ -I) 'Yy_C;,  C,  = -B:Xy_ 

With a few changes we can rewrite this to: 

A, = A+Y-~B,B;X_ +B,F, +Z,L,C2 B, =-Z,L, 

C, = F, D, = O with (29.) 

F, = -B2 T X ,  L, = -Y,C, 2, = ( I  - y-2Y,xJ1 
We see that the computed H, suboptimal controllers in ( 21 ) and ( 29 ) are the same under the 
simplifying assumptions from ( 18 ) and the one above ( 18 ). 
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Chapter 6. 

Problem formulations 

A tractor-semitrailer 

In the next two chapters, we will study some examples to see what can happen when some assumptions 
are violated. In this chapter, we will present two examples. The first example is an active suspension 
controi problem for a tractor-semitrailer model [ 8 1. This model has degrees of freedom in the vertical 
plane and gravity is eliminated. The four degrees of freedom are the displacement of the front axle sI , 
the displacement of the rear axle s 2 ,  the displacement of the Centre Of Mass ( COM ) of the truck- 
chassis s3 and the rotation around the COM of the truck-chassis s4. The vector x from the state-space 
representation ( 4 consists of x = s s" I'. 

Figure 6-1 The tractor-semitrailer with 4 degrees of freedom 

The aim of the controller design is to achieve an improvement of performance in comparison to a 
passive suspension concerning drive comfort and handling. With respect to the driver-comfort the 
accelerations of the truck must be kept small. Which frequencies have to be weighted depends on the 
human sensitivity to certain frequencies. To achieve this goal the suspension of the truck is supplied 
with two actuators. This makes it possible to get a better grip on the behaviour of the suspension, as 
well as on suspension deflections ( which must be limited due to the space limitation ) and on the 
dynamic tire deflections ( which must be kept low to get a good handling). 

The model has four sensors and two actuators. Sensors yl and y2 measure the suspension deflections, y3 
and y4 measure the chassis accelerations. The actuators u1 and u2 are placed between the axles and the 
truck-chassis. The exogenous input w contains two signals representing the road-disturbance and four 
signals representing the measurement-noises. The output to be controlled z contains eight signals 
including two signals which are used to weight the controller output ( i.e. to avoid actuator saturation ). 
The other six controlled outputs are the vertical chassis acceleration zl, rotational chassis acceleration 
z2, front and rear suspension deflection 23 and a, and front and rear tire deflection z5 and zg. The model 
does not have tire-damping. 
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The filter V which specifies the road-disturbance is a low pass bandfilter and the filters shaping the 
white measurement-noises with zero-mean are constant gains. The filter W weighting the vertical 
chassis accelerations and rotational chassis accelerations are emphasise the lower frequencies 10' to lo2 
[ radls 1. The filters concerning the deflections are chosen as constant over the frequency-range. The 
parameters of the truck-model and the other filters can be found in appendix I, while the filters V and 
W and their parameters can be found in appendix 11. 

Mass-spring-damper system 

Because the nominal plant of the truck together with the filters is a complex model, we will also use the 
simple model in Fig. 6-2 to get a clear idea of the problems concerning the transmission zeros. This 
model can be interpreted as the front or rear of the truck. 
This simplified model is a system with two masses m, two springs with stiffness k, one damper with 
damping b and an actuator u. In this system w, x1 and xz are the displacements. Here w is the exogenous 
input and u is the output from a controller. We are interested in the acceleration of mass 2. 
Minimisation of this acceleration is the control target z. The measurement y is the acceleration of mass 
1, which is not disturbed with measurement noises. We use the representation according to the state 
space representation ( 4 ). 

V W  

Figure 
U 

6-2 System with two masses, two springs and one damper and actuator 

The shaping filter V and weighting filter W are identity matrices, so this will result in the following 
state-space matrices for the generalised plant: 

This system can be abbreviated to ( A, B, C, D ), with B=[BI ,Bzl, C=[C1 &I, D=[D11 ,D12 ;DZI ,Dzz]. 
In the next chapter we will have a better look on the Glz transfer from u to z and Gzl from w to y .  With 
the parameters ( m=l, b=l, k=l ) the eigenvalues of A are -0.9567f1.2272J and -0.0433+0.6412j , so 
there are no unstable poles. What we also can see is that there are transmission zeros for G12 and Gzl . 
The transmission zeros for Glz are [ O f j; O; O ] , the transmission zeros for G21 are [ O; O; -0.500 
f 0.8660 j 1, so there are transmission zeros on the imaginary axis. Except for the transmission zeros 
there are no further violations on the assumptions for the ARE-method. 
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Chapter 7. 

& 

Difference between Algebraic Riccati Equalities and Linear Matrix Inequalities 

hinfsyn hinfric hinfmi 
Y time Y time Y time 

It was shown in chapters 3 and 4 that there are more assumptions on the state-space representation for a 
design using the AREs than there are for a design using the LMIs. In this chapter we will see the 
differences between the ARE-method and the LMI-method. To start with, the 'active suspension control 
problem' presented in the previous chapter will be studied. 

We will exâmine what happens when one of îhe assumptions for the ARE-method is violated. The 
second assumption from chapter 3 will be used as an example. It says that D12 must have full column 
rank and that Dz1 must have full row rank. If we take a look at the state-space representation we see that 
matrix Dlz represents about the direct coupling between the control input u and the output to be 
controlled z and Dzl represents the direct coupling between the exogenous input w and the 
measurements y. 

We are going to manipulate the matrices Dzl and D12 so they don't have a full rank. For instance, take 
Dzi as [ 04x4 E 14x4 ] and decrease the value of E to zero. As long as E is not zero then Dzl has a full row 
rank. The decrease of E can be interpreted as a reduction of the sensor noise, so there will be better 
measurements and this will result in a lower H, norm of the closed-loop T,, , which is an improvement 
of performance. Whenever E becomes zero the second assumption on the ARE is violated. The LMI- 
method is not sensitive to the violation of the second assumption from the ARE. 

From MATLAB we use two routines which can compute the H, suboptimal controller by using the 
AREs. They are called hinfsyn from the Mu-Analysis & Synthesis-toolbox and hinfric from the LMI 
Control-toolbox. There is one routine which computes the H, suboptimal controller by using the LMIs, 
which is called hinflmi, also from the LMI Control-toolbox. These three routines are used to analyse the 
possible differences between the LMIs and the ARES. 

1 
1 o-1 
1 o-2 
1 
1 
10.~ 
1 o-6 
1 
lo-* 
10.' 

O 

Û.7151 
0.7135 
0.7132 
0.7132 
0.7131 
0.7131 
0.7131 

inf. 
inf. 
inf. 
inf. 

D21 has 
not full 

row rank 

23.4 
26.2 
26.9 
30.0 
33.8 
25.6 
27.0 

0.7151 
0.7135 
0.7132 
0.7 132 
0.7131 

inf. 
inf. 
inf. 
inf. 
inf. 
inf. 
inf. 

32.6 
30.2 
29.0 
29.5 
30.0 

0.7151 
0.7135 
0.7132 
0.7132 
0.7132 
0.7132 
0.7132 
0.7132 
0.7132 
0.7132 
0.7132 
0.7132 

í4í.o 
146.0 
174.0 
163.9 
176.0 
171.1 
165.1 
164.0 
164.0 
164.0 
164.0 
164.0 

~ ~ ~ 

Table 7-1 Performance levels and computation times for decreasing E values. 

We see in Fig. 7- 1 that the performance of T,, improves for reduced E, because the value y decreases 
for all routines in the beginning. However below a certain E the value y becomes infinite for the Riccati 
methods. In the table, this is denoted as inf.. Theoretically the rank from matrix Dzl at that moment is 
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full and it will only loose its rank when the value of E becomes exactly zero. So, this phenomenon is due 
to numerical problems. 

I I :-* 
:: 0.71 55 

0.71 45 

0.7140 

0.71 35 

- 

- 

- 

0.71 30 ‘ I I I I I I I 
O 2 4 6 8 10 12 14 

& 

x ---> 
Figure 7-1 the closed-loop performance y of the generalised plant when decreasing pivot of Dzi to 
E * 

hinfsyn hinfric hinfZmi 
Y time Y time Y time 

We can also look at D12, which represents the direct coupling between the control input u and the 
output to be controlled z.  There is an analogy between checking D11 and Dlz. In this case we have to 
assure that Dl2 has full column rank. We use for Dl2 the matrix [ 06” ; E 1’’’ ] and decrease the value of 
E from one to zero. 

1 
10-1 
1 O-’ 
10” 
1 
1 

1 
lo-* 
1 

O 

0.7151 31.6 0.7151 32.6 0.7151 141.0 
0.4569 33.7 0.4569 40.1 0.4569 133.9 
0.45 14 30.2 0.4514 37.0 0.45 14 138.3 
0.45 1 1 30.1 0.45 1 1 37.7 0.4512 288.4 
0.45 10 29.9 0.45 10 37.3 0.45 1 1 348.4 
0.4510 30.5 0.45 10 36.4 0.45 1 1 35 1.2 

inf. 0.45 10 36.5 0.45 10 266.1 
inf. 0.5863 147.2 0.45 10 528.2 
inf. 0.5863 148.0 0.45 10 150.8 
inf. 0.5863 147.4 0.4510 145.3 
inf. 0.5863 147.0 0.45 10 61.3 

D21 has 0.5863 147.2 0.4510 62.1 
not full 

row rank 

Table 7-2 shows the relation between decreasing E and performance y while the routines worked with 
tolerance le-5 and shows also the computation time in seconds needed to solve the problem 
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The result from this case shows similar trends to the result from the case before. The LMI-method 
shows better results than the ARE-method. We can see that by decreasing E, the performance y becomes 
worse. The reason why this happens is that by decreasing E, we say that the controller is allowed to 
manipulate the closed-loop transfer with larger amplitudes. This will make it easier to control the 
closed-loop transfer and this will result in a smaller closed-loop H, norm. With respect to the 
computation time we can say that in the first case ( Dz1 ) the LMI-method is six times slower than the 
ARE-methods. In the second case ( D12 ) the hinfsyn routine is about seven times faster than the hinflmi 
routine and the hinfric routine is about three times faster than the hinflmi routine. 

The other assumptions on the state space representation which must hold for the ARE are assumption 3 
and 4 from chapter 3. For the generalised plant this means that the transfer functions Glz and Gzl don’t 
have transmission zeros on the imaginary axis. For the active suspension problem there are no 
transmission zeros for Giz and Gz1 . To observe what can happen in situations where there are 
transmission zeros, the mass-spring-damper example is studied. 

In the case of the two mass-spring-damper there are transmission zeros. To see what can happen due to 
this transmission zeros this system is also changed with a small number. We have manipulated the 
system to ( A + E I, B, C, D ) and we varied E in the range between E = -1 and E = 1. 

When E = 1 the system is unstable, because all the poles are shifted into the right half space. When E 
decreases to the absolute value of the real part of the eigenvalue closest to the imaginary axis the system 
remains unstable. When E is smaller than this value the system becomes stable. ( i.e. E < 0.0433 ) 
The following will happen when we use the hinfsyn routine in the situation where E is smaller than 
the y is equal to zero until E reaches - 
y is not steady and changes between zero and infinity. In the situation that E is larger than 1 .O0 x 
will increase from zero to a value of 480: 
For the hinfric routine almost the same things happen. When E is in the range from - 
will change from zero to infinity. In the range 
E is between zero and the y changes from zero to infinity. When E is bigger then 
increase from zero to 480. 
For the hinflmi routine, y will be zero when E is smaller 
constant 1.00 x 

. In the range from -1 .O0 x lo4 to 1 .O0 x lo4 the performance 
, y 

to - the y 
to zero y will be of a constant value which is 8.9 . If 

, y will 

to zero will be , then in the range 
When E passes zero the value of ywill also increase to 480. 

A part of these observations can be explained. The H, norm of the open loop from the system 
( A, B, C, D ) has a value 3.4. This means that in the manipulated closed-loop system ( i.e. E < 0.0433 ) 
it will be very easy to minimise the output z with respect to the disturbances w. In this closed-loop 
system ( with a controller bounded by the weighting function ) it is possible to achieve that the 
disturbances w have no influence on the output z. The reason why the output from the hinfsyn and the 
hinfric routines change from zero to infinity in a very small range for E is not clear, it can be ciue to 
numerical problems. 
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Chapter 8. 

Conclusions and recommendations 

The H, -controller computation can be accomplished in various manners. One manner is with the use of 
Algebraic Riccati Equations and another method uses Linear Matrix Inequalities. 
In MATLAB there are at the moment several routines which are based on the ARE and one routine 
which is based on the LMIs. The routines based on the ARE are the hinfsyn-routine from the Mu- 
Anaiysis and S ynthesis tooibox , the hinfric-routine from the LIVE Controi-tooi'oox and the hinf-routine 
from the Robwt Control Toolbox. We only used the first and second routine. The routine based on t5e 
LMIs comes also from the LMI Control-toolbox and is called hinflmi. 

With regard to the computation-time all the routines are dependent on the tolerance. The reason for this 
is that the routines use an iteration-algorithm for y .  So with a small tolerance more iterations are needed 
to get the final result for yoYt . Also the value from a greater ymm, has influence on the computation time, 
since the y-iteration starts at a higher value ( yma. ) there are more iterations needed to get the final 
result for the same y,,,= and tolerance . There is a difference between the computation-time for the 
methods based on the ARE and LMIs. The LMI method takes more time. To be more precise, it is two 
to six times slower than the ARE methods. 

With regard to the performance there are two situations. The first situation is that the generalised plant 
fulfils all the assumptions from chapter 3. In this case the performances achieved with the controllers 
from both methods are the same. The second situation is when the generalised plant has rank- 
deficiencies or has transmission zeros on the cross transfer matrices GI2 or Gzi . The performance of 
the closed-loop transfer with the controller designed with the LMIs is more reliable then the 
performance achieved by the controllers designed with ARE routines. This is because the LMI-method 
can handle situations where the assumptions are violated and small manipulations to meet the 
assumptions are not needed. The performance achieved by the controllers designed by the ARE is 
numerically not steady enough when this generalised plant is disturbed with small changes. 

To avoid numerical problems it is better to use the method using the LMIs. The disadvantage of this 
that the computational time is at least three times higher than the time required by the ARE methods. 
On the other hand if the state-space representation data is fulfilling the rank-conditions and there are no 
numerical problems the solution from the ARE-method H, control design is reliable and can reduce a 
lot of computation-time. 

What we recommend for future research is to investigate a wider class of problems. Here, we have only 
looked at the problem of an active suspension for a truck-semitrailer and a simple mass-spring-damper 
system. To honestly compare the ARE and LMI-method, other problems should be studied and 
especially with respect to the assumptions for the ARES. We also have to find out if there are other 
control problems with situations that can give ( numerical ) problems. 

With respect to the computation time the LMI-method is still slower than the ARE-method, it has to be 
checked if there are better algorithms to solve the LMIs. 

When a problem does not meet the assumptions for the ARE controller design, it is better to use the 
LMI-method instead of using small perturbations to meet the assumptions on the state-space matrices. 

17 



References 

[ 11 J.C. Doyle, K. Glover, P. P. Khargonekar, and B.A. Francis. ‘State-space solutions to standard H2 
and H, control problems’. IEEE Trans. Automat. Contr., AC-34(8), pp. 831-847, August 1989. 

[2] K. Glover, J.C. Doyle. ‘State-space formulas for all stabilizing controllers that satisfj an H, norm 
bound and relations to risk sensitivity’. Systems and Control Letters, (1 i), pp.167-172, 1988. 

[3] T. Iwasaki , and R.E. Skelton. ‘A Complete Solution to the General H, Control Problem: LMI 
Existence Conditions and State-space Formulas’. Proc. American Control Con$, pp605-609, June 
1993. 

[4] P. Gahinet, and P. Apkarian. ‘A linear Matrix Inequality Approach to H, Control’. Int. J. Robust 
and Non-linear Control, (4), pp. 421-448, Jan. 1994. 

[5] P. Gahinet, and A.J. Laub. ‘Reliable Computation of -yopt in Singular H, Control’. Proc. Con$ 
Decision and Control, pp.1527-1532, Dec. 1994. 

[6] P. Gahinet. ‘Explicit Controller Formulas for LMI-based H, Synthesis’. Automatica, (32),  
pp.1007-1014, July 1996. 

171 P. Gahinet. ‘Explicit Controller Formulas for LMI-based H, Synthesis’. Proc. American Control 
Con$, pp.2396-2400, June 1994. 

[8] M. van de Wal. ‘Input Output Selection Based on Nominal Performance and Robust Stability 
against Unstructured Uncertainties: An Active Suspension Application’. WFW nr 96.005, Fac. of 
Mech. Engineering, Eindhoven University of Technology, Jan. 1996. 

[9] A. Damen, and S. Weiland. ‘Robust Control’. Lecture notes of the Measurement and Control 
group, Dept. of Electrical Engineering, Eindhoven University of Technology.(Draft Version). Oct. 
1995. 

[lo] K. Zhou, J.C. Doyle, and K. Glover. ’Robust and Optimal Control’. Prentice Hall, Upper Saddle 
River, New Jersey 1996. 

[ 111 P. van Groos. ‘Robust Control of a Compact Disc player’. Msc thesis Nat. Lab. technical note 
143/93, Philips Research Laboratories Eindhoven in co-operation with Dept. of Mechanical 
Engineering and Marine Technology, Delft University of Technology. 1993. 

[12] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan. ‘Linear Matrix Inequalities in System and 
Control Theory’. SIAM Philadelphia, Pennsylvania 1994. 

18 



APPENDIX I model of the truck (with y1 y2 y3 y4 and u1 u2) 

% SYSTEM PARAMETERS: 

% Masses and inertias (loaded semitrailer): 
maf=l .Oe3; mar=lSe3; 
Mch=7 .Oe3; Jch= 1.1 e4; Mt=l.2e4; 

% Geometric parameters: 
a=0.46; b=3.04; c=2.44; 

% Suspension stiffness: 
ktf=2.5e6; ktr=5.0e6; 
ksf=5.Oe5; ksr=5.0e5; 

% Suspension damping: 
bsf=5.0e4; bsr=5 .Oe4; 

% MATRICES FOR "MECHANICAL SYSTEM EQUATION" 
% M*sddot+B*sdot+K*s=El *v+E3*u, 

M=[maf O O O 
Omar00 
O O Mch+Mt c*Mt 
O O c*Mt Jch+cA2*Mt]; 

B=[btf+bsf O -bsf a*bsf 
O btr+bsr -bsr -b*bsr 
-bsf -bsr bsf+bsr -a*bsf+b*bsr 
a*bsf -b*bsr -a*bsf+b*bsr aA2*bsf+bA2*bsr]; 

K=[ktf+ksf O -ksf a*ksf 
O ktr+ksr -ksr -b*ksr 
-ksf -ksr ksf+ksr -a*ksr+b*ksr 
a*ksf -b*ksr -a*ksf+b*ksr aA2*ksf+bA2*ksr]; 

El=[ktf O 
O ktr 
zeros(2)I; 

E2=[btf O 
O btr 
zeros(2)l; 

E3=[1 O 
O1 
-1 -1 
a -b]; 
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% STATE DIFFERENTIAL EQUATIONS: 

A=[zeros(4) eye(4) 
-M\K-MlB]; 

B l=[zeros(4,2) zeros(4,4) 
M\E1 zeros(4,4)]; 

B2=[zeros(4,2) 
m 3  I; 

Cl=[A(7,:)-a*A(8,:) 
A@,:) 
- 1 O 1 -a zeros( 1,4) 
O -1 1 b zeros(L4) 
1 O O O zeros(l,4) 
O 1 O O zeros(l,4) 
zeros(2,8) 1; 

D1 l=[B 1(7,:)-a*B1(8,:) 
Bl(8,:) 
zeros(2,2) zeros(2,4) 
-l*eye(2,2) zeros(2,4) 
zeros(2,2) zeros(2,4)]; 

D12=[B2(7,:)-a*B2(8,:) 
B2(8,:) 
zeros(4,2) 
eye(2,2) I; 

C2=[-1 O 1 -a zeros(l,4) 
O -1 1 b zeros(l,4) 
A(7,:)-a*A(8,:) 
A(7,:)+b*A(S,:>]; 

D21=[zeros(2) eye(2,4) 
B1(7,1:2)-a*B1(8,1:2) O O 1 O 
B1(7,1:2)+b*B1(8,1:2) O O O i]; 

D22=[zeros(2) 
B2(7,:)-a*B2(8,:) 
B2(7,:)+b*B2(8,:)1; 

A;B=[B 1 B2];C=[C1; C2];D=[D11 D12;D21 D221; 
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APPENDIX I1 filters for the model y1 y2 y3 y4 and u1 u2 and 2122 23 24 2.5 26 (27 28) and wl  w2 

IO' 

1 on 

values of the variables 
pi = 10 ; p2 = 10 ; p3 = 100 ; p4 = 1 0 0 ; ~ ~  = 5e-5 

00 = .5* 71; ; v = 25; v0 = KOE-3; 5 = 1;0=le-1; 
ml=  20 * 71; ; % = 1 0 " ~ ;  @ =4*  71;; 0 4  = 10" 71;; 05 = 100" 0 4  ; =0.4 ; %o = 1 

- 

% weighting functions wl  .... w6 with wl  w2 y1 y2 y3 y4 

VO 
vwL2 = s / w o  +1 

vW3,, = 2.6 * 
Vw,,, = 15OVw3,, 

% weighting functions z l  .... z8 with z l  22 23 24 z5 26 u1 u2 

s l w ,  +w,, wz, = P 1 4  s 2 +25w1s+wS 

wz2 = p 2  s l a ,  +1 
0 20 

wz3,4 = P3 

wz5,6 = P4 and for ul&u2 

here are the filters 

Filter Vwl,2 
1 o' 

1 O-" 
1 O-' 1 o" lo' 

Frequentie radls 
Filter Wz2,rho2=1 O 

Frequentie radls 

Frequentie radls 
Filter Wz7,8,rho5=5e-5 

1 O-' 

1 o-s ' I 
1 o" 1 o' 1 O" 

Frequentie radJs 
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