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P O R O E L A S T I C I T Y  O F  S A T U R A T E D  S O L I D S  W I T H  A N  

A P P L I C A T I O N  T O  B L O O D  P E R F U S I O N  

W. J. VANKANt, J. M. HUYGHE$, J. D. JANSSEN* and A. HUSON$ 
Department of Mechanical Engineering, Eindhoven University of Technology, The Netherlands 

Abslract--A description of finite deformation of, and fluid flow through, a hierarchically arranged 
porous solid has been developed using the theory of mixtures. This hierarchical mixture consists of 
one solid constituent and a fluid constituent that is subdivided into a continuous series of 
intercommunicating compartments. Conservation laws for mass and momentum have been derived 
and appropriate formulations for the constitutive behaviour of the constituents are proposed. A finite 
element description of the hierarchical mixture model has been implemented in the software package 
DIANA. qrwo-dimensional, axisymmetric and three-dimensional elements can be used in finite 
deformation analysis. An example of application is blood perfused biological tissue. A simulation of a 
blood perfused contracting skeletal muscle is presented. Copyright © 1996 Elsevier Science Ltd 

1. I N T R O D U C T I O N  

The mixture theory has proven to be a valuable means to model the mechanical behaviour of 
biological tissue [1-3]. In this theory the various solid and fluid components of the tissue are 
modelled as interacting continua. An important fluid component in biological tissue is blood. It 
is responsible for the nutrition and drainage processes that are essential for the tissue. Blood 
flows through a hierarchical system of blood vessels: the vascular tree. This tree consists of one 
or a few large arterial vessels from which smaller vessels bifurcate (Fig. 1) and diverge into 
numerous capillaries which assemble to converging venous vessels. Because of this hierarchical 
architecture blood flow cannot be adequately described by biphasic mixture theory: the state of 
the blood depends strongly on the position in the hierarchy. For example, the velocity and 
pressure of the: capillary blood are much lower than of the arterial blood. The pressure 
difference between arterial and venous vessels is essential as the driving force for the blood 
flow. Huyghe et al. [4, 5] developed an extended form of Darcy's equation in which this 
dependency of the fluid flow on hierarchical position was included. They verified their model 
for Newtonian flow through a rigid vascular tree. Because in biological tissue alterations in 
blood perfusion can occur due to deformations of the tissue [6], the focus of this study is to 
integrate the concepts developed in [4] into a finite deformation theory of saturated porous 
media. 

Aifantis [7] introduced the concept of multiporosity for deforming media that are 
characterized by several distinct families of diffusion or flow paths. A special case of this 
concept, in which only two degrees of diffusivity were included, was applied to fissured rock 
formations, in which most of the fluid volume is located in the low permeability pores of the 
rock, and most of the permeability is associated with the fissures [8]. An important aspect of 
blood perfused biological tissue, which is not covered by Aifantis' multiporosity concept, is the 
vessel wall, which can be regarded as an elastic interface between solid (tissue) and fluid 
(blood). In [9, 10] Huyghe and van Campen derived a description of finite deformation of 
hierarchical porous media, in which they used a formal averaging procedure. Unlike the 
previous authors, they included the concept of a vessel wall, and they derived an extended 
Darcy equation for the case of anisotropic orientation of the interface between compartments 
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Fig. 1. Scanning electron micrograph of a polymer cast of the arterial part of a vascular tree. A large 
supplying arterial vessel (d ~ 0.5 mm) can be observed, from which many smaller vessels bifurcate. 
The smallest vessels that were reached by the polymer are arterioles with diameters of about 50/zm. 
In reality, from these vessels smaller and smaller vessels bifurcate, with diameters down to 5 ~m 
(capillaries), after which the converging venous bed is reached. The small white line on the lower 

right-hand side of the photograph represents a distance of 1 mm. 

from the assumption of validity of a Poiseuille-type equation on the level of the individual pore. 

Moreover, they used a continuous spectrum of porosities. 

In this paper, mixture theory is used to derive the same equations as presented in [9, 10], in a 

more general context of hierarchical porous media. The tissue is modelled as a mixture of one 
solid and one fluid where the fluid represents the blood. The fluid is subdivided into a number 

of compartments, each of which represents the blood on a different hierarchical position in the 

vascular tree. Blood flow through the vasculature is described as communication between the 

fluid compartments, which corresponds with the physiological definition of perfusion: the 

volume of blood passing a given level in the vascular hierarchy per unit of time and per volume 

of tissue. Vessel walls, modelled as an elastic solid-fluid interface, are included as a local 

contribution of the pressure difference between solid and fluid to the mixture's elastic energy. 

Although this mixture description is specifically developed for biological materials, its 

applicability to technical materials is not excluded. 

In the derivation of the hierarchical mixture model conservation laws of mass and 

momentum have been formulated and corresponding constitutive behaviour has been derived 
from constitutive theory. An integrated finite element description of the total mixture model 

has been developed and implemented in the D I A N A  software package [11]. The implementa- 

tion was subjected to several test procedures, one of which was comparison of the finite 
element solution with the analytical solution for a confined compression test. As an illustration 

of the possibilities of the model a simulation of contraction of a perfused skeletal muscle has 
been performed. 

2. C O N S E R V A T I O N  LAWS 

In the technical literature we find porous media theories dealing with solids saturated with 
different fluid constituents [12]. Bowen [13] has derived equations from mixture theory for v 
incompressible immiscible fluids saturating one incompressible solid. The equations of 
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conservation of mass and momentum for such mixtures are formulated for each phase and in 
the case of intrinsic incompressibility of each constituent, their quasi-static local form can be 

denoted as: 

On ,~ 
- -  + V "  ( n ' ~ v  " )  = 0 " ,  a = 1 . . . . .  v ( 1 )  

Ot 

V.  ¢r'~ + ~'~ = O, a = l  . . . . .  v (2) 

where n ~ is the volume fraction, v '~ the velocity, o-" the Cauchy stress tensor and 0" and "n ~ are 
the volume and momentum interactions of phase a. The exponent  a refers to the constituent 
number and t is time. Balance of mass for the total mixture requires: 

0 o = 0. (3 )  
ot 

Likewise for the balance of momentum: 

~'~ = O. (4) 

Furthermore,  no moment  of momentum interaction between the constituents is assumed, so 
that or" is symmetric. 

A hierarchical mixture can be thought of to consist of one solid constituent and a fluid 
constituent that is divided into a continuous series of fluid compartments. Each fluid 
compartment  resides on a specific position in the hierarchy of pores of the solid. The fluid in a 
compartment  flows spatially through the solid (spatial flow) and communicates with compart- 
ments on neighbouring hierarchical positions (hierarchical flow). The position in the hierarchy 
is quantified by a dimensionless parameter  Xo, which is assumed to run from zero to one, and 
the communication between the fluid compartments is described by the fluid volume interaction 
term O f appearing in equation (1). A fluid compartment  defined by the hierarchical range 
[xo, xo + dxo] has a volume fraction ~fdxo in which ~f represents the fluid volume fraction per 
unit hierarchical parameter  Xo. Generally, in this paper a tilde will be used to indicate that a 
quantity depends on Xo and, if the quantity is volume specific, is defined per unit Xo. The 
exponents s antt f refer to solid and fluid, respectively. The mass balance for this fluid 
compartment  is: 

0~ f 
- - d x  0 -.[- V • ( / ,~fvf )  d x  0 - ~ f  ~ f  - , f  ,~f  - n ¢~,,)Vo(~,,) - n (~,,+,u,,) o¢~,,+w¢,,) ( 5 )  
Ot 

in which the right-hand side represents the volume interaction with the neighbouring 
compartments,  ffl0 is a measure of the rate at which fluid flows from one compartment  to the 
next, and is defined as the material time derivative of Xo with respect to the fluid: 

Dfx0 
of = (6) 

Dt 

It can be shown that ~ f ~  corresponds to the traditional, physiological definition of regional 
blood perfusion [4, 14]. Dividing equation (5) by dxo yields for infinitesimal dxo the local fluid 
mass balance: 

+ v . = (7)  
Ot 8Xo 

Assuming no mass interaction between solid and fluid, the mass balance for the total 
hierarchical mixture (3) can be rewritten as: 

o '  = 0f  dx,, = 0. (8)  
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Because the actual hierarchical fluid volume fraction ~f is defined per unit Xo, saturation of the 
mixture is expressed as: 

£ n~+ f i f d x o = n ~ + n f =  1, (9) 

which can be used in combination with equations (7) and (8) to rewrite solid, fluid and total 
mass conservation as: 

On f 
- - - +  v .  ( (1  - n f ) ¢ )  = 0 (10)  

Ot 

Off f 
- -  + 4V" (fi f4~f) = 0 (11 )  
Ot 

V.  ((1 - nf)v ~) + (4 v °  (/~f4vf)) d x  0 = O, (12) 

where 4V is a four-dimensional operator  and 4v f a four-dimensional vector: 

4 V  ~- ' 4vf = L ¢ J" 

Because the fluid related quantities depend on Xo, the momentum balance of the total 
hierarchical mixture is written as: 

ji 1 
V ° {] I's + V ° 0 f d x  0 = 0 (14) 

where the balance condition for momentum interaction, equation (4), has been used: 

~n "s + ~'[f dXo = O. (15) 

3. C O N S T I T U T I V E  B E H A V I O U R  

In the derivation of requirements for the constitutive behaviour of the hierarchical mixture 
use is made of the first and second laws of thermodynamics. The first law, conservation of total 
energy, reads for constituent a of a unit volume of hierarchical mixture [13]: 

C ~ = V¢~ + O ~ + / ~  (16) 

where U" is the total internal energy, W ~ is the external work, Q~ is the heat supply of phase 
and E"  is the energy gain of a due to phase interaction. The dots above the variables denote 
their material time derivatives. Assuming intrinsic incompressibility and quasi-stationarity for 
each constituent, equation (16) can be written for the solid and fluid constituents in a volume V 
of hierarchical mixture with surrounding surface A: 

O (fvnWs dV) + fAnSUSvS'ndA solid: Ot 

=f,,,s.,,S.ndA+fvn rSdV+f,W.n +fv, dV+fv',', .vsdV, (17) 

-(fv ) fA f O 0 /~ f/~zf OV + /~ fu fv f  • n OA + - -  (t~ fOf~g )  d V  
fluid: at Oxo 

= fA¢'Of'naA+ f fvnr 'dV+ OXo 

fv fv + ( h ~ ) d V +  g . t d V +  ,~f.~fdV, (18) 
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where r" is the imernal heat supply, h ~ the external heat supply and ¢~ the direct energy supply 
of constituent a due to phase interaction. 6"fo is the fluid stress at the interface between 
neighbouring hierarchical levels and hfo the heat supply between neighbouring hierarchical 
levels. Note that equation (18) is expressed per unit of Xo, and that internal energy variation of 
the fluid due to w)lume interaction is included in the third term. Applying Gauss' theorem gives 
for the local conservation of total energy of the solid and the fluid: 

solid: (n~U ~) = - V .  (nSU~v ~) + V.  (v s. ¢r ~) + n~r ~ + V.  h ~ + E ~ + (~r s. v~), (19) 

fluid: Ot ~ (/~ f~]f) = - V ,  (/~fufv f) - Ox---oO (nfOf~fo) -~ V ,  (vf° 0 f) -q- ~ x  0 (uflTf) 

OXo 
(20) 

which can be rewritten by using the material time derivative of U, and the local mass and 
momentum balances equations (10) and (11): 

D s U s 
solid: n ~ =~r~:(VvS)+n~rS+V.h~+~ ~, (21) 

Dt 

Df/7/f ~Xo - fluid: f i f - - = 0 " f : ( V ~ T f ) +  ((Tfo~f)--[-/~fr'f-l-4Vo4hf-~- ~ f. 
Dt 

(22) 

In equation (22) use has also been made of the four-dimensional gradient operator 4 ~7 and fluid 
ve loc i ty  4 ~f [equation (13)] and the analogously defined external heat supply 4hf: 

~ r/~f°l (23) 4hf = L ~r j" 

The local balance condition of the energy interaction of the total mixture requires that no 
energy is created by the interaction: 

fo 
~ + ~s.  v ~ + (U + "~f. ~t) dxo = 0. (24) 

At this point the second law of thermodynamics, the entropy inequality, is introduced: 

dS - - - >  dQ (25) 
T 

which relates the change of entropy of the total hierarchical mixture, dS, to the supplied heat 
dQ at a temperature T. For a volume V of mixture with surrounding surface A and constant 
temperature T in each constituent this can be written as: 

O(fvnSS~dV' fA o5 ,)+ ,,,s,,, s. n,tA 

+ ~l [~(fvn'SfdV)+ fAa'Sf~"'ndA + fvO-~o(nrSfOfo)dV]dxo 
1 + 0 r rf r (26) 
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By applying Gauss' theorem and making use of the material time derivative of S, the local form 
of equation (26) can be written as: 

D ~ S  ~ 1 D f ~ r  i 
nS--Dft -~- fo (nf--~t t- t )dx°~ 1 (nSrS + V,  ItS+ fo (J~fr'f~- 4v° 4~f) dx0)" (27) 

Substituting the local energy equations for solid and fluid, equations (21) and (22), into the 
local entropy inequality, equation (27), yields: 

D ' ~  f f ' /~ f  DfSf" 

D ~ ~_ (1 [ ~f Dr(jr 
>-l(n~T\ DtU ° ' ~ : ( r v S ) + ~ ' v ~ + J o  In Dt - -  -- ~l'f : ( v v f )  -- --~0 (o ' f~  f)  + ~'f • vf]  dXo) 

0Xo 
(28) 

in which the total energy interaction e~+ f~ ~fdx0 was eliminated by means of equation (24). 
Introducing Helmholtz' free energy F = U - TS for each constituent, and substituting momen- 
tum balance equation (14) yields: 

1 - n  ~ 

T Dt 
- -  + or': ( r e )  + ¢ .  ( V .  ¢r s) 

+ - #  +e~:(w ' )+~/ . (v .e~)+-- (e~ ,~ ,~)  dxo >-0. 
Dt Oxo 

(29) 

Expressing equation (29) per unit of undeformed volume of mixture and transforming the 
material time derivative of F f yields: 

-Jn*  Dt +J V ' (~ r~ ' v~ )+  - J n f  Dt +J4V'(4~rf '4~f)-Jtif(4~f-4v~)-a~'F ' dxo->0. (30) 

For compactness of notation, the four-dimensional fluid stress t e n s o r  4 ~rf and solid velocity 
vector 4v ~ have been used, which can be written in matrix notation as: 

,, ° 1 [ °] ~rf ; 4 vs = vS • 

Again rewriting the material time derivatives of F gives: 

D~jnSF~ s DSJn~ 
t-F + J V . ( ~ # . v  ~) 

Dt Dt 

' [  D~JfitP ' pfDVr~' j/~f(4~f 4vS) o4V/~f+J4Vo(4l~rf.4~f)]dxo~0. (32) 
+ Dt ~- Dt 

Because of incompressibility of the solid, D~(Jn~)/Dt = 0. Substituting the Lagrangian form of 
the equation of conservation of fluid mass [equation (11)] 

D~(Jfi f) 

Dt 
- -  -1- J4 v °  (n f(4 ~f -- 4vS)) = 0 (33) 

in equation (32) yields: 

f [  ] - + J  V.  (tr s. v ~) - PfJ4V(~r(4~ f -  4v~)) -- J/~f(4vf -- 4vS) ° 4VFf + J4V • (46J- 4~ f) dxo-> 0, 
Dt 

(34) 
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where the strain energy function # =JnSP +JrTr/~ has been introduced. By using the total 
stress defined as o = e~ + f~o O f dxo, equation (34) can be written as: 

~01[ Ds~v j 4V . (r~ f(4~f 4vs)~f) + j V  o ((4~f _ 4vS) . 4~.f)] dxo ~ 0. Jo-:  (Vv9  + - D--'7"- (35) 

Expressing the free energy of the fluid per unit mixture volume as ~f=  ~f~,  introducing the 
well-known effective stress tr "rt= ~r + p l  [15] and adding the total mass balance equation (12) 
with a Lagrange multiplier p, equation (35) can be written as: 

, sff, 
Jcrefr: (Vv~) + f0 [-- DDt + J  (41~f - I~f41 -- p~ f41):4V(4 vf -- 4vS) 

+ 1(4 ~f -- 4vS) ° (4 v °  4 o f  -- 4V,[~ f + p 4v/~f)] dx 0 ~--- 0 (36) 

where 4 | represents the four-dimensional unity tensor. We choose as independent variables the 
Green-Lagrange strain tensor E, the Lagrangian form of the fluid volume fraction Jaf and the 
relative velocity 4vfS=4 F - I .  (4Vf--aVS). For convenience of notation we introduced the 
four-dimensional tensor 4F: 

in which F is the deformation tensor. Applying the principle of equipresence and the chain rule 
for time differentiation of I~ and defining W = f~ g¢ dxo, yields the inequality: 

OW Fc ] i cqW DS4 ~fs 
04~ fs _ _  _[.. 1(4 ~-f -]- (~  fnf _ i~tf)41): 4V(4 ~f - 4 vs) 

+ 1(4 ~f -- 4vS) " (--4VI~ f "~- ~LL f4Vn f + 4 v °  4of ) ]  dx 0 ~ 0 (38) 

which should be true for any value of the state variables. Here use has been made of the 
definition of the c, hemical potential of the fluid: 

a g '  
/2 r -  +p. (39) a(Jn f) 

The fourth term of the left-hand side of equation (38) represents the dissipation due to fluid 
flow. The first term is linear in the solid velocity gradient, the second linear in the accelerations 
and the third linear in the relative velocity gradients. Therefore, by a standard argument, we 
find the constitutive relations: 

1 0 W  
er '~ff = ~ F .  -o--E-" F~ (4o) 

a4~fs--40 (41) 

leaving as inequality: 

4 O f =  (1~ f -  ~ f/~f)41 (42) 

L 
I 

J [(4v f - 4~rS) ° ( - - 4 ~  f "[- ~[~ f 4V/~ f "a t- 4V" 40"f)] dx 0 ~ 0. (43) 
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If we assume that dissipation associated with fluid flow is a quadratic function of the fluid 
velocities we find: 

- - 4 ~ 0 ~ f  ÷ ~t£ f 4~70/~ f ÷ 4~0 " 4t]'1 " f=  4 ~ f °  4 ~fs. (44) 

Substituting the constitutive expression equation (42) of the fluid stress 4@ f into equation (44), 
yields the extended Darcy equation: 

-/~f 4Vo/2 f=  4B f° 4~ fs (45) 

which can be written in a more common form [4]: 

t~ f4~ f~ = - 4K" 4Vo/2' (46) 

in which the four-dimensional permeability tensor 4K reads: 

4K ~-~- (/~ f)24"f- ' = [ ~0°° ~ ] .  (47) 

4. N U M E R I C A L  I M P L E M E N T A T I O N  

The hierarchical mixture model has been implemented in the finite element software package 
DIANA.  The displacement of the solid u S, the hydrostatic pressure p and the fluid pressure/2 f 
have been chosen as the degrees of freedom. Three equations are used (i) the momentum 
balance (2), in which the constitutive equation for the effective stress (40) is substituted; (ii) the 
solid mass balance (10); and (iii) the fluid mass balance (11), in which the extended Darcy 
equation (46) is substituted. The weighted residual method has been applied to the resulting 
system of non-linear coupled differential equations. After spatial discretization of the degrees 
of freedom the weighting functions are chosen according to Galerkin's method. Special 
attention was paid to the discretization of the fluid pressure/2 f, which depends on both spatial 
position x and Xo. Its spatial discretization was achieved analogously to the hydrostatic 
pressure's discretization, while an extra linear discretization in the Xo direction was used. A 
more detailed description of the finite element formulation and implementation is given in [16]. 
The resulting total element matrix equation is: 

UB;' rB T M  0 0 0 / 
K K 0 FB~ M f'~u~N//~'~f~/ok, j i u ~ .  j 0 0 fu'~"KN//~'~f~/.-~. ~ _ 0 ~ .  i L,R0x~J L~R~°,J 

(48) 

where 6u~ ~ is the iterative correction of displacement component in direction j of node L, ~pM 
~ f,v is the iterative correction of hydrostatic pressure in node M, 6p~,, is the iterative correction of 

fluid pressure at hierarchical level n is node N, and a dot above a variable denotes its material 
time derivative. In this matrix equation symmetry is found in the submatrices ~B, f B, ~K, ~"K 
and moreover ~'B~ M = s~"UM~'~k and s~jURJl" = m~/p k '~ '  Thus a fully symmetric matrix equation can be 
obtained after time integration of the damping contribution. This time integration is achieved 
by a third-order Houbol t  scheme [17]: 

3 
~(t) = hos(t)  + ~ his(t - "t'i); s = u~,p,/2 f. (49) 

i=1 

Linear and quadratic two-dimensional, axi-symmetric and three-dimensional isoparametric 
elements of the serendipity family can be used [18]. The non-linear equations can be solved by 
several regular and modified Newton-Raphson  iteration techniques and a direct Gauss 
decomposition [19]. The implementation has been tested for several problems. Rigid body 
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Fig. 2. Finite element model geometry. The mesh consists of 112 six-node wedge-shaped three- 
dimensional elements for the muscle belly, 22 three-node triangular plane stress elements for each 

aponeurosis and two three-node triangular plane stress elements for each tendon. 

rotations and translations and analytical solutions of a one-dimensional confined compression 
experiment and ~L four-dimensional Laplace equation have been successfully computed [16]. 

5. APPLICATION 

A simulation of a perfusion experiment on an isometrically (at constant length) and 
tetanically (sustained) contracting skeletal muscle has been performed, using the finite element 
model. The muscle under consideration is a rat calf muscle (gastrocnemius medialis), of which 
the geometry has been roughly estimated from experimental measurements. This muscle is 
about 30 mm long and 6 mm thick. The model geometry and mesh are given in Fig. 2. The 
tendons and aP0neuroses (tendinous sheets on the muscle surface by which the tendons are 
attached to the muscle belly) are marked by the dark regions in Fig. 2. The tendons, each 
consisting of two triangular three-node plane stress elements, and the aponeuroses, each 
consisting of 22 similar elements, behave isotropically and linearly elastically with a Young's 
modulus of 1.5 × 106 kPa [20] and Poisson's ratio of 0.3. The thickness of the tendons is 0.5 mm. 
The thickness of the aponeuroses runs from 0.5 mm at the tendon to 0.01 mm at the other end. 

The passive material behaviour of the muscle tissue is based on a transverse isotropic, 
non-linearly elastic description of cardiac tissue according to Bovendeerd [21]. The direction of 
anisotropy (el) corresponds with the direction of the muscle fibres (Fig. 2), and the contribution 
of the local Green strain in the tissue to the elastic energy is: 

W E ~- C [ e  a(2E{I+E22+E233+2E{z+2E~+2E~I) - 1] (50)  

where C = 0.7 kPa and a = 5.0. The elastic energy is assumed to depend also on strain in the 
vessel walls, which is associated with changes in vascular volume. The contribution of the vessel 
strain to the elastic energy is expressed as: 

Wc = 1 (jr~ ,) 2 (51) 

where the vessel compliance F represents the relation between the local blood volume fraction 
and local intra-extra vascular pressure difference: 

O(J~ f) 
e -- 0(/2f p ) .  (52)  
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Table 1. Vascular parameters 

- / mm 2 \ /~ 1 

Arterial 100 0.0025 0.001 
Arteriolar 0.05 0.00025 0.01 
Venular 0.02 0.0025 0.1 

The values for ~ that were used in the simulation are listed in Table 1. Thus the total strain 
energy function of the muscle material reads: 

W = We + Wc = C[e "c2E:''+e~'-+e~+2~%+2e~+2e~'~ - 1] + 1 (jrif)2. (53) 
2~ 

Contraction is described as an active second Piola-Kirchhoff stress component in fibre 
direction depending on time: 

Smax (1 -- (( 1 (54) Sf = "-~-f _t_ (-1//fr)4))) 

where Sm,x = 100 kPa, Af is the relative elongation in the direction, t~ = 0.05 s, and t is time (s). 
This contraction function is a rough approximation of the stress generation in tetanic 
contraction of rat gastrocnemius medialis muscle as described by Huijing and Rozendal [22]. 

Discretization of the hierarchical range is achieved by three linear segments, resulting in 
arterial, arteriolar, capillary and venous blood pressures in each spatial nodal point. The 
vascular segments are assumed to represent the arterial bed, arteriolar bed and the 
capillary-venous bed, respectively (Fig. 3). The permeability tensor 4 ~ and the vessel 
compliance ~ are prescribed for each compartment according to Table 1, whereas they are 
constant in the whole geometry. For the sake of simplicity 4K, which is defined according to 
equation (47), is assumed to be diagonal, where K =/~I. 

We assume that the main artery and vein penetrate into the muscle at the tip of one of the 
aponeuroses (Fig. 2). At that position the nodal arterial input pressure is set at 10 kPa, and 
nodal venous outflow pressure at 0 kPa. No force load is applied to the muscle. Due to these 
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• ¢ .~ ,,c ARTERIOLAR SEGMENT 

"', " ' ~  CAPII.LARY PRESSURE 

"< VENOUS SEGMENT 

VENOUS PRESSURE 

Fig. 3. Illustration of the division of the fluid into three segments, from which four blood pressures 
result in each nodal point. 
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Fig. 4. Contours of blood pressures (MPa) and hierarchical flows (1/ms) in passive and contracting 
muscle. (a) Passive arterial blood pressure; (b) passive capillary blood pressure; (c) passive venous 
blood pressure; (d) passive hierarchic capillary flow; (e) arterial blood pressure during contraction; (f) 
capillary blood pressure during contraction; (g) venous blood pressure during contraction; (h) 

hierarchic capillary flow during contraction. 

nodal boundary conditions a stationary blood flow pattern is reached after about 0.3 s. In Fig. 
4 (a-c)  contours of arterial, capillary and venous blood pressures are given. Also,  hierarchic 
capillary flow (~olume averaged blood flow through the capillary compartment, which 
corresponds to the physiological definition of regional capillary perfusion, defined as volume of 
blood passing the capillaries per second and per volume of tissue) is given in Fig. 4(d). The 
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calculated values approximate experimentally measured values, which were found to be about 
2.5 x 10 -3 s- l in resting skeletal muscle [23]. 

When the muscle is in the stationary perfusion state, contraction is started. After 0.1 s the 
contraction stress has reached its maximum value. Due to the contraction, a significant rise in 
interstitial pressure (hydrostatic pressure in the solid) occurs, which is transmitted to the blood 
via the elastic vessel walls. The arterial blood pressure increases slightly [Fig. 4(e)]. Capillary 
and venous pressure, however, increase drastically [Figs 4(f, g)]. Moreover, we find a strongly 
decreased hierarchical flow for the capillary blood [Fig. 4(h)], which is due to the decreased 
pressure difference between the capillary and venous compartments. 

6. DISCUSSION 

In this paper, mixture theory has been applied to finite deformation of incompressible elastic 
porous media saturated with a series of intercommunicating fluid compartments. The resulting 
equations are moulded into a family of finite elements. The finite element model is applied to a 
simulation of blood perfusion of contracting skeletal muscle. Among others, the model predicts 
regional hierarchical flow, a quantity that corresponds to the physiologically relevant quantity 
of regional capillary blood perfusion. 

Finite element analysis often aims at predicting failure of structures. Whereas failure of 
technical materials is mostly associated with excess stress, biological material often fails due to 
disturbance of the supply of nutrients and drainage of waste matter. Finite element analysis of 
technical structures therefore focuses on stress analysis, whereas finite element analysis of 
biological structures ought to pursue a broader scope of mechanical function, including 
remodelling processes and transport phenomena. We believe it is essential to include regional 
capillary blood perfusion, being a key quantity for transport through many biological tissues, as 
a field variable in the analysis of mechanical function of biological tissues. Moreover, tissue 
deformation and blood perfusion are mechanically linked [24, 25]. The model presented in this 
paper specifically describes the mechanical interaction between blood perfusion and deforma- 
tion of the tissue, and as such may provide a better insight into this interaction. 

In the simulation it is shown that in an isometrically contracting skeletal muscle, the rise in 
interstitial pressure is transferred particularly to the capillary and venous blood compartments, 
which results in a decrease of the capillary hierarchical flow (regional capillary perfusion), 
which is consistent with experiments reported in [26]. 

The permeability t e n s o r  4 ~ contains much information about vessel distribution, vessel 
directions and vessel density for each compartment and each mesh element. As no values for 
4K were available, it was made diagonal for the sake of simplicity. However, values for 4 ~ c a n  

be derived from geometrical information of a vascular tree [4, 5]. This information can, for 
example, be obtained by reconstruction of the vasculature by corrosion casting. For the large 
arterial and venous vessels, the vessel density of the tissue is very low and inhomogeneous 
which makes them relatively easy to reconstruct. Accurate simulation of the perfusion in these 
compartments, however, might need special attention, because the model deals with volume 
averaged quantities, which intrinsically assume homogeneity within the averaging volume. On 
the other hand, the small vessels like arterioles and capillaries, which are tedious to reconstruct 
because of their huge density, can be described rather well by the volume averaged relations of 
the model. 
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