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Computational Issues in
Gradient Plasticity

R. de Borst!, J. Pamin and LJ. Sluys
Delft University of Technology, Faculty of Civil Engineering,

6.1 INTRODUCTION

Failure in cohesive-frictional and quasi-brittle materials involves localization of de-
formation, ie. we observe that at incipient failure small zones of highly strained
material develop rather abruptly, while the remainder of the structure experiences
almost no additional straining. Examples are cracks in concrete, shear bands in
soils and metals, dilatational bands in polymers and rock faults. Experiments show
that these localization phenomena are accompanied by a more or less sharp de-
crease of the load-carrying capacity. This phenomenon is commonly named strain
softening and can lead to ill-posed boundary value problems in standard continu-
um theories, since in quasi-static problems ellipticity of the governing set of differ-
ential equations is no longer assured, while in dynamic problems hyperbolicity can
be lost at least in certain parts of the body. In numerical simulations we observe an
extreme mesh sensitivity in terms of fineness and direction of the grid lines. To rem-
edy this improper behaviour the standard continuum model must be enriched.
Here, various strategies are possible, such as nonlocal approaches, micro-polar con-
tinua, rate-dependent approaches and continuum models enhanced with higher-
order deformation gradients. Most of these approaches are discussed at length in
the other chapters of this volume, and the physical motivations for the various en-
richments are laid out in detail. In this chapter, we shall concentrate on the implica-
tions of using higher-order continuum models in large-scale numerical simulations
of localization and failure. In particular, we consider one such continuum model,
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namely a gradient plasticity model, and we shall demonstrate how effective numer-
ical strategies for this enhanced continuum model can be developed.

This chapter is laid out as follows. First, the essentials of gradient plasticity are
outlined. A weak format of the governing partial differentials is given, which is
amenable to a finite element formulation. Next, two such formulations are given,
whereby particular attention is given to the continuity requirements that are im-
posed by the presence of higher-order deformation gradients. Also, difficulties are
discussed that relate to the integration of the rate equations in gradient plasticity.
Subsequently, a number of finite elements are formulated and assessed in numerical
simulations of shear banding in softening, non-associated plasticity. Finally, issues
are discussed regarding the spatial and temporal discretization in gradient-
plasticity under dynamic loading conditions. The pivotal role of dispersion in set-
ting the band width in enriched continuum models is emphasized.

6.2 GRADIENT PLASTICITY
6.2.1 Essentials

Gradient dependence has first been used within the theory of rigid-plastic materials
for the analysis of persistent slip bands [1-3] and shear bands in metals [4]. The sec-
ond derivative of an accumulated shear strain 7 was included in the shear stress-
strain rate equation [4] following the argument of the material frame indifference:

&7 |7
=T —c— = 6.1
[ F)-c dxg} 7l 6.1)
with 7 the shear stress, 7 the shear strain rate, 7(7) the yield stress and ¢ a positive
phenomenological constant. This approach was used as a localization limiter by
Lasry and Belytschko [5] and the constitutive law has been written in a uniaxial
case as follows:

: d%e
o=E)e+a |, 6.2)

with E, the tangent modulus and & a gradient constant.
In a more general approach the Laplacian of an effective deformation measure 7
has been included in the yield condition [6]

1=%(9)—cV?y, >0, (6.3)

where 7 is the second invariant of the deviatoric stress tensor and 7(y) is the hard-
ening law. Gradients of higher order have been introduced in the yield function in
[6,7]. The dependence of the hardening law on the first-order gradient of an inelas-
tic strain invariant has also been examined [8]. However, it was noted in [7] that
when isotropy is assumed only even-order gradients are relevant.

For the analysis of shear bands in granular materials the gradient dependence
has been postulated in both the flow rule [9}:
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& =B —dViP, d>0, (6.4)

in which &P is the volumetric plastic strain rate, 7P is the plastic shear strain rate
and f is the dilatancy coefficient, and in the Coulomb yield condition:

161

tip=p(y®)-cVyP, >0, 6.5)

where p is the mean pressure and g is the friction coefficient. The modified flow
rule and yield condition are coupled [9] and the constants d and c are related to a
unique internal length, which can be associated with the grain size.

In this chapter we make use of a gradient-dependent plasticity theory {7,10], in
which the yield condition is similar to eq. (6.3):

#o)=5(x)~tV'x, (6.6)

where ¢(&) is an equivalent stress, & is an invariant plastic strain measure, & is the
yield strength and € is a positive coefficient with the dimension of force. It is em-
phasized that the gradient terms disappear from the constitutive equations if a ho-
mogeneous state of strain and stress is analyzed. In this sense they can be treated as
a singular perturbation of the standard equations. The gradient terms are negligi-
ble if strains vary slowly in space, but have a significant influence in presence of
strain localization.

6.2.2 Incremental boundary value problem

For the formulation of the incremental boundary value problem in gradient plastici-
ty [10] we introduce the displacement vector W= (tiy , iy, u,), the strain tensor in a
vector form €=(Exx,Eyys €2z Vay» Vyz> 7.} and the stress tensor in a vector form
6 =(Csx»Opy» Oz 2 Oxy > Oyz» Ozx)e Under the assumption of small deformations
and static loading we have the following equations for an elasto-plastic body occu-
pying a volume V' (Figure 6.1):

Lo +b=0, 6.7)
e=Lu, (6.8)
do=D(de -dim), (6.9)

where the d-symbol denotes a small increment and the superscript T is the trans-
pose symbol. L is a differential operator matrix:

- a- o- d-
T_ A g @
L'=| O 3 0 5= 32 a1\, (6.10)
a- J- 9
00 5 0 5 %

b is a body-force vector and D® is the elastic stiffness matrix. Eq. (6.9) contains the
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definition of the plastic strain increment vector:
deP=dim , (6.11)

in which dA is a plastic multiplier and m a vector, which defines the direction of the
plastic flow. The gradient dependence is included solely in the definition of the
yield function F

F=F(o,x,V*x), (6.12)

in which « is the invariant plastic strain measure introduced before (the hardening
parameter). Together with egs (6.7)-(6.9) the Kuhn-Tucker conditions

diz0, F<0, Fdi=0 (6.13)

must be fuifilled. To complete the incremental boundary value problem we specify
the standard static and kinematic boundary conditions on complementary parts of
the body surface S:

v,=t, u=ug, (6.14)

where X is the stress tensor in a matrix form, v, denotes the outward normal to the
surface S and t is the boundary traction vector.

Henceforth we shall consider the case of isotropic hardening/softening and gra-
dient dependence, so that, in view of eq. (6.6), the yield function can be written as

F=¢(0)-6(x)+cVx . (6.15)

In general the hardening parameter x can be a function of plastic sirains and stress-
es. For algorithmic convenience we limit our discussion to the strain-hardening hy-
pothesis,

dic=\/2/3(dsP)TQd£P (6.16)

with Q=diag[1,1,1,%,%,%)]. For most commonly employed flow rules, this
definition reduces to

de=ndA, (6.17)

with 77 a positive constant, which depends on the adopted flow rule [23].

Evidently, eq. (6.12), or equivalently (6.15), shows the necessity to compute sec-
ond-order gradients of the equivalent plastic strain measure x. One possibility is to
use finite differences [5]. The algorithm is then a sequence of separate solutions of
the equilibrium problem using finite elements and the plastic yielding problem us-
ing finite differences. A more general approach [7,10], is to use only finite elements
and to solve the two (coupled) problems simultaneously. For this purpose, it is nec-
essary to employ a weak satisfaction of the yield condition and to discretize the
plastic strain field in addition to the standard discretization of the displacement
field. Ignoring body forces we obtain;

_[ SuT (LT g}4y) dV =0 (6.18)
v

and

g



R. de Borst, J. Pamin and L. J. Sluys 163

Figure 6.1 Elastic-plastic body with gradient dependence.

[ 62 F@, 5301, Vi) 4V =0, (6.19)
Vi
where the subscript j+1 refers to the current iteration. Unlike in the standard algo-
rithms for plasticity, the yield condition is satisfied in a distributed sense. Further-

more, it is only fulfilled when convergence is reached and not necessarily during
the iterative process.

Eq. (6.18) can be modified using integration by parts, the standard boundary
conditions (6.14), and decomposing 0}y, as o;+dg, where d indicates an incre-

ment, i.e. the difference between the values of a variable at the end of iteration j+1
and iteration j:

jae’fda dv=j' suTt, dS- j 570, dV . (6.20)
v A v

Using eq. (6.9) we obtain
j 57D (de —dAm) dV = _[ suTt;, dS - j 5eTodv . 621)
V4 s v

Now, the yield function F in eq. (6.19) is developed in a Taylor series around
(0i, K; sz-) and truncated after the linear terms:
i L ke ] :

aF
F(O'j-i-l,x:i-l-l,V2Kj+1)=F(0'jﬂfjsV2K'j)+(a_o_) do
oF | JF
251 da V3d) (6.22)
+ax|jd‘+av2x ; dx), Y

where dx = k1 — ;. With the definitions
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oF
n==—, (6.23)
pe a—F=—na—F (6.24)
di ok ox '
and
d« OF _
STV T 629
we obtain the following form of eq. (6.22):
F(0y1  Kia1 » Vo) = F (05,15, V2xj)+ndo — hd2+ gV2(dA) (6.26)

which, after substitution into eq. (6.19), gives the following integral equation:

J' SA[nTD%e — (A +n"D°m)dA + gVA(dA)]dV=- j 8 AF (o3, 53,V x;)dV(6.27)
vy v,
It is noted that the values of n, m, / and g on the left hand side of eq. (6.27) are de-
termined at the end of iteration j, 1.e. for the state defined by (o, &js Vzi('j).

Using integration by parts for the last term on the left hand side of eq. (6.27) we
obtain

_[5,1 (n"D°de — (h +nTDm)dA] dV — j g(V5)T(Vda)dv
Va

Vi
= — j SAF(oy, x5, Vox;) dV (6.28)
Vi
provided the non-standard boundary conditions
§2=0 or (VdA)'v;=0 (6.29)

are fulfilled on the whole boundary §;; of the plastic part of the body. The first con-
dition is delicate for finite increments, since the elastic-plastic boundary moves
when the plastic zone in. the body evolves. During this process the boundary condi-
tion 2 =0 on the momentary elastic-plastic boundary may be not true and (6.29),
must hold. If the same mesh is used for both the equilibrium and yield condition,
ie. if integrals over the whole volume V appear in eqs (6.27) and (6.28), either the
admissible 61 must vanish in the elastic part of the body, which would set con-
straints on the shape functions to be used, or we must enforce there F =0, n=0 and
dA=0.

In the elastic elements 1 =0, so that for spreading of the plastic zone it is impor-
tant that the numerical solution allows V>4 > 0 at the elastic-plastic boundary. The
dependence of the yield function on the Laplacian of the plastic strain measure is
thus essential for the plastification condition and for the determination of the non-
standard residual forces on the right hand side of eqs (6.27)/(6.28). The boundary
conditions (6.29), call for the existence of derivatives of A as nodal degrees of free-

dom. Therefore C'-continuous interpolation functions are necessary for 4 whether
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eq. (6.27) or eq. (6.28) is discretized. This issue has raised some doubts in the past
[10], since the formulation of the variational principle for gradient plasticity {7] sug-

gests that the use of a standard CC-interpolation for the plastic multiplier is suffi-
cient.

However, it has become clear that it is not enough to symmetrize the tangent
stiffness operator to reduce the continuity requirements, but that the residual terms
must also be reformulated. For example the yield condition (6.12) in the form

F=f(o,5)+gV*2 (6.30)

must be recast in an integral form at an element level. To this end F js multiplied
by A and integrated over the element volume. The Laplacian is then eliminated up-
on integration by parts:

F= _[ Af(o,x)dV - j g(VAOT(VA)dV + J'gﬂ.(v,t)Tve ds . (631)
v, v, 5,

Unfortunately, this integral condition cannot perform well in elastic elements, since,
numerically, A is zero there and the second integral gives a negative contribution
preventing the yield condition from being violated. It seems that in the standard
CP-approach, without a Laplacian-dependent yield condition, a method of distin-
guishing the elastic and plastic state is lost, and, consequently, the plastic zone does
not spread from the imperfect elements.

If we reformulate the right hand side of eq. (6.28) using the form (6.30) of the
yield function as follows

- [ 8170y k) + gV 214V =— |525(;, 590V
A v,

+ [ eV ATV Aav - [esavayTvaas, 632)
Vi S

numerical experiments give incorrect values of the two last terms, since they are

equivalent to the Laplacian term which is not well defined if C!-continuity is not
fulfilled.

6.3 C1-CONTINUOUS ELEMENT FORMULATION

In the field equations (6.21) and (6.27)/(6.28) there appear at most first-order
derivatives of the displacements and second-order derivatives of the plastic multi-
plier. Therefore the discretization procedure for the displacement field u requires
C°-continuous interpolation functions assembled in N:

u=Na, (6.33)

where a is a nodal displacement vector, and the discretization of the plastic multi-
plier A requires C 1_continuous shape functions contained in h
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A=hTA, (6.34)

where A denotes a vector of nodal degrees of freedom for the plastic multiplier
field.

According to the linear kinematic relation (6.8) the discretization of strains has
the form:

e=Ba, (6.35)

where B=LN. Substitution of the above identities into eq. (6.21) gives the dis-
cretized equilibrium condition:

saT j[BTD"Bda —B"D°mh’dA] dV =5aT j NTt,; dS - 5aT j B5; dV. (6.36)
vV S 12

Introducing a matrix q which contains the derivatives of the shape functions in h
we obtain the discretization of the gradient of the plastic multiplier:
Vi=q"A, q'=Vh'. (6.37)

Introducing a vector p which contains the Laplacians of the shape functions in h we
find the discretization formula for the Laplacian of the plastic multiplier:

V22=p'A. (639)

Substitution of egs (6.34), (6.35) and (6.38) into eq. (6.27) gives the discretized yield
condition in the following form:

SAT j [~hnDBda+ (% + nTD*m)hh”dA — ghpTdA]dV
\4
=8AT I F(oy, x5, V2xphdV . (6.39)
v

Egs (6.36) and (6.39) must hold for any admissible variation of 6a and A, so
that we obtain the following set of algebraic equations {10}:

Ko Ky|[da]_[f+f] 640
Kia K || dA £
with the elastic stiffness matrix:
K, = j BTD°BdV , (6.41)
v
the off-diagonal matrices:
K,, = _[ BTD*mhTdV, Kg=- J‘ hn'D*BdV , (6.42)
v v

the nonsymmetric gradient-dependent matrix:
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Ky = J'[(h +n"D*m)hhT — ghp™1dV , (6.43)
1'4

the external force vector and the vector of nodal forces equivalent to internal stress-
es:

f,= j N, dS, f=— J' BTo,dv , (6.44)
by \'s

and the vector of residual forces emerging from the inexact fulfilment of the yield
conditioru

f,= | Floj. 55, V')V . (6.45)
v

Tf we make use of eq. (6.28) instead of eq. (6.27), substitution of egs (6.34), (6.35) and
(6.37) gives the second form of the discretized yield condition:

6AT [(-bn"D"Bda+(h-+ TD*m)bhTdA + gqg dA1dV
v

=6AT _[ F(oj, 53, Vo xhdV, (6.46)
v
which leads to a similar matrix problem as in eq. (6.40), but now the nonsymmetry
due to the Laplacian term vanishes, i.e. the matrix K;; is nonsymmetric only for
non-associated flow:

Ky = j{(h +nTD"m)hbT +gqq"1dV . (6.47)
v

However, the additional boundary conditions (6.29) have to be enforced in this case.

The set of equations (6.40) governs the element behaviour during the plastic
flow. We will now consider the actual problem of a structure which is initially elas-
tic and then, due fo an inhomogeneous stress distribution, exhibits a partial plastifi-
cation. If all elements are elastic, we have K, =0 and X, =0 since the gradient
vectors m and n are set to zero. We obtain from eq. (6.40) the classical set of equa-
tions in da

K, da=f.+f, (6.48)
and the additional set of equations in dA
K5, dA=f; . (6.49)

For the elastic state we have F <0 and the residual forces f; are set equal to zero.
Eq. (6:49) then yields the desired solution dA.=0 if the global matrix K is non-
singular after the element assembly and after the introduction of boundary condi-
tions for the A degrees of freedom. The explicit introduction of boundary condi-
tions is always necessary for the symmetric formulation, and may be necessary for
the nonsymmetric formulation.
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When plastic elements appear in the structure, then in elastic elements adjacent
to the plastic zone we have f; #( and we obtain non-zero dA from eq. (6.49). The
le -continuous finite elements have the feature, that these nodal values of plastic
multiplier dA yield dA=0 and V2(dA)>0 at the integration points. As a result the
gradient-dependent yield strength =6 — gV?4 is reduced and new elastic ele-
ments can enter the plastic regime.

It is noted that it is not necessary to set the value of hardening modulus / equal
to a large number in the formula (6.43) to constrain the value of 1 to zero for elastic
elements (cf. [10]). In fact, this substitution adversely affects the conditioning of the
global tangential operator, which affects the accuracy of the stress point algorithm
to be discussed in a subsequent section. For some elements it may cause contain-
ment of the plastic flow in the initially imperfect zones and prevent the regulariza-
tion effect. Based on recent experience, it is suggested to set 2 equal to Young’s
modulus E for elastic elements. The gradient term may be neglected in the matrix
KS; for elastic elements, since its inclusion only slightly influences the results. Us-
ing numerical integration the matrix K5 ; is then determined as:

np
¢ = _):1 Ehyhyy" Vi, (6.50)
ip=

where Vy;, is the volume contribution of an integration point.

It is useful to examine the rank of submatrices K, and K3, in order to deter-
mirie the number of integration points and extra boundary conditions sufficient to
avoid spurious modes for both the displacement and plastic multiplier fields. The
elastic stiffness matrix K,, should have zero eigenvalues associated only with the
rigid body modes. The matrix Kj; should have a number of non-zero eigenvalues
which is equal to the number of integration points (matrix hh' has only one non-
zero eigenvalue). As we will see in the following, some elements do not satisfy
these requirements.

It should also be taken into account, that a high-order integration scheme and
too many additional boundary conditions for 4, even if they comply with the theo-
ry, can lead to an overconstrained plastic fiow problem and have a negative influ-
ence on the accuracy of finite element predictions. Since the yield condition can be
conceived as a differential constraint to the equilibrium condition of a nonlinear sol-
id, the number of constraints for the plastic multiplier field must be limited, other-
wise the solution will be inaccurate or will lock, just as can happen for some stan-
dard elements under the isochoric deformations. In other words, we now have a
two-field theory similar to the mixed formulation with independent displacement
and pressure interpolations. A proper constraint ratio between the A degrees of
freedom and the displacement degrees of freedom must therefore be maintained.

6.4 CO-CONTINUOUS ELEMENT FORMULATION

In order to be able to use C’-continuous interpolation functions for the plastic mul-
tiplier field, we introduce new variables ¢, ¢, and ¢;:
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LR S
Pr= ax ’ @y"’ ay L] qoz_ aZ (651)

and collect them in a vector ¢ =(p, , @y 92)- In this way we can write the gradient
of the plastic muitiplier as

Vi=¢ (6.52)
and represent the Laplacian of 2 as

v23=%0, 9% 90 o1

=3 + 3y 9z ¢, (6.53)

where the scalar product of the operator V1 and the vector field ¢ denotes the di-
vergence operator. The result of eq. (6.53) can be substituted in eq. (6.27) or (6.28),
but the constraint {6.52) must be added to the formulation.

Since the first version of our problem is nonsymmetric and since we want to
avoid the introduction of a Lagrangian multiplier field in addition to the already
defined three fields u, 1 and ¢, we will make use of the penalty approach. We can
include the constraint by means of an additional variational equation:

J‘ K(VA-¢)T [V(6A)—5¢]1dV =0, (6.54)
14

where k is a penalty factor. In computations we use k=E>, where E is Young'’s
modulus. Using the incremental form of eq. (6.54) together with eqs (6.21) and
(6.27) we obtain a set of three integral equations:

JJETDe(de~d}tm) dv = j sut,; dS - j 5&70;dv (6.55)
vV S vV

j 54 [n™D%de — (h+n"D°m)di+gVT dgldV =- [ 64F (o, x: , V2x:))dW6.56)
J 1o Rj i
v |4
where according to egs (6.17) and (6.53) we calculate Vik= nVTgb and

k J' SAVIV(dA)~dg]1dV —k _[ 5¢T[V(dA)—dg]dV =0 . (6.57)
1% v

The above equations are discretized using the formulas (6.34), (6.35) and (6.37), but

now with C%continuous shape functions in h, and the following interpolation for
the new variables in ¢:

o=P® (6.58)

where @ contains the nodal values of @, ¢, and ¢, and P is a matrix of shape func-
tions, similar to N. Upon the discretization of eqs (6.55)-(6.57) and the usual argu-
ment that the resulting equations
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sal j[BTDeBda _B"D°mh"dA]dV = 5aT J' Nt dV —da” j B0, dV (6.59)
14 S v

SAT J.{—hnTD“‘Bda+ (h+n"D°m)hhTdA — ghVTP d®] dV =
V

= 5AT J' F(o},x;, Vx)hdV (6.60)
and Y
kAT _[ 9(q dA—Pd®)dV —k 5®7 j PT(q"dA—P d®)dV =0 (6.61)
v v

must hold for any admissible §a, A and §®, we obtain the following set of alge-
braic equations in a matrix form:

Ko Ky 0 ¢ 0 0 da | [f,+f,
K;ta K,’u K/'lq? +k{ 0 Ki}!, Kiq, dA |= f;{ . (6.62)
0o 0 0 0 Kj, K5, |||d® 0

In eq. (6.62) the submatrices K,,, K,;; and K, are given in eqs (6.41) and (6.42).
K, and K, are defined as

K;,= _[(h+nTD"’m)hhT v, K,,=- J'[ghVTP] av, (6.63)
14 v

and the submatrices with the superscript ¢ in the additional (symmetric) matrix in-
troducing the constraint (6.52) are defined as

o= [adTdv, Ki,=[PTPav, Kj=[-qPav. (6.64)
v 14 v ’
In this formulation all the interpolation functions in N, h and P are CP-continuous.
If we substitute the new variables from eq. (6.52) into eq. (6.28), which is the

starting point for the symmetric formulation, we obtain the weak form of the yield
condition:

J' SAITD%de — (h+nTD°m)dA]AV ~ J' g54dgdv (6.65)
v vV

=- [ 84F (0}, 15, V*x)aV, 6.66)
|4

in which the derivatives of ¢ appear only on the right hand side. Substitution of

the discretization formulas (6.34), (6.35) and (6.58) gives the symmetric form of the
discretized vield condition:

.,1.;,_.‘},5%,3_;&
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SAT _[ [~hn"D°Bda+ (% +n"D°m)bhTdA] dV + _[ g6®TPTP @AV =
v 14

=6AT [ F(0},15, Vi hdV . 667
14
The (symmetric) tangent operator now reads:
K. Kz 0 ¢ o 0 da f.+f,
K;,, K;; 0 |[+k|O Kiﬂ. K?lgo dA |= fz_ , {6.68)
0 0 K, 0 Ki Ko 1||d® 0
where
Koo = J' gPTPaV (6.69)
v

and all the other submatrices have been defined previously. With the set (6.68) the
additional boundary conditions (6.29), now written as:

§dA=0 or d¢'v,=0 (6.70)

must be fulfilled on the boundary S of the plastic part of the body.

It is important that for the penalty method to be successful the penalty subma-
trix K® must be singular, Otherwise non-zero @ values are not admitted. To achieve
this goal reduced numerical integration should be used (cf. [11]). Since the penalty
constraint assures the satisfaction of eq. (6.52) only in the sampling points, the best
results are expected when uniformly reduced integration is employed for all the
matrices.

As explained in the previous section, the sets of equations (6.62} and (6.68) are
also required to hold in the elastic subdomain. We should have a sufficient rank of
the elastic stiffness matrix K, to prevent the presence of spurious deformation
modes. Simultaneously we should have a sufficient rank of the matrix Kj; from
eq. (6.50) to prevent the presence of the spurious non-zero modes of both 2 and ¢ in
the elastic elements. This suggests the use of a full integration scheme, but in view
of the argument that the penalty submatrix K® must be singular, we must then re-
sort to extra boundary conditions. It also turns out advantageous to inchude the gra-
dient submatrix K ;, (or K,,) in the tangent operator for the elastic elements, since
it perturbs the singularity of the tangent operator in eqs (6.62) and (6.68), making
the emergence of the spurious modes more difficult.

It is noted that for a two-dimensional case the element structure in this approach
shows similarities with the Reissner-Mindlin plate bending elements [12] and that
the penalty method has been also used within the context of plate bending to intro-
duce the Kirchhoff constraints in the formulation [13].
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6.5 STRESS-STRAIN RELATION AND TANGENT OPERATOR

As in standard elasto-plasticity the stress update is computed as an integral along a
given path from the initial state defined by (&, o) to the final state:

£
o=co+ [D? de ©71)
£y
where the continuous tangent operator is defined as
do
DeP = . (6.72)
de
£

Algorithmically, the stress is updated according to:

g, =0p+ S(ep, AEJ) s {6.73)

where 8 is a nonlinear mapping operator, which depends on the numerical method
of plastic strain integration within the increment (e.g. generalized midpoint rule),
and A denotes a ‘total’ increment, which is a sum of “‘delta’ increments in the itera-
tions:

i
AEj :'21 d£i . (6.74)
1=
The consistent (algorithmic) tangent operator is then defined as [14,15]:
d0; aS
DS (g, Ag)= —3 = 6.75
(€0, Aey) =5 dhe ©.75)
£g, A& £0; Ag;

and is in general nonsymmetric. For finite, especially large, steps the operator D®™
differs significantly from the continuous operator D*. To achieve a quadratic con-
vergence rate of Newton's algorithum used for the solution of the set of incremental
equations the consistent linearization as above must be performed.

The Euler backward algorithm

oi=oy+ DeAﬁ'j ——A/’LjDemj , {6.76)

used in the gradient plasticity algorithm to calculate oj at an integration point, falls
within the format (6.73). Therefore, the algorithmic tangent operator can be derived
according to (6.75) and reads:
Hmn"H 677
h+nTHm ’ '
with H a pseudo-elastic stiffness operator:
-1

1
H:{(D"‘)‘I +AL a—m-J , (6.78)
do

Dcons =

i i




R. de Borst, J. Pamin and L. J. Sluys 173

Box 6.1. An algorithm for gradient plasticity.

1. Compute Ky, Koz, K, Kz £ £ B2
2. Solve for da and dA and update Aa; = Aa;; +da, AN=AA; +dA.
3. For each integration point compute:

AEj = BAaj,

A2j=h"AA;,

V2(A/1j) = ]_)TAAj,

K‘j =Kg+ ﬂAﬂ.' ,

V2Kj =Vio+ nVZ(A}lj),

o, = 0y + D Ag; (trial stress).

If F(oy, K ,szj)z—e',

then plastic state: ~ 0j =0y —A4;D°m,

else elastic state:  0=0t.

4. Check global convergence critetion. If not converged, goto 1.

where the subscript j has been skipped for convenience. In the present gradient
plasticity algorithm the elastic stiffness matrix D® is thus replaced by the algorith-
mic operator H in the equilibrium equation (6.21) and in the consistency condition
(6.27)/(6.28).

The solution procedure that ensues from this algorithm is presented in Box 6.1
for Cl-continuous gradient plasticity elements The algorithm for CP-elements is
similar. For integration poinis in an elastic state an artificial hardening modulus
h=E is substituted in submatrix K;; of the tangent operator to avoid singularity.
The flow diréction m is approximated by m; =m(oy), its value in the irial stress
state o, = 0 + D Ag;.

The update of the nodal variables is done in a “total-incremental’ way, i.e. in ev-
ery iteration total increments from the equilibrium state at the end of the previous
loading step are calculated. The values of x; and V? k; are also updated using “total’
increments. The advantage of this approach is that spurious unloading is avoided.
The increment of plastic multiplier A4 is directly determined from the nodal values
of AA. The stresses are computed starting from the equilibrium state oo. For inte-
gration points in a plastic state the idea of elastic predictor (trial stress o) and plas-
tic corrector (return mapping) —AADm is followed. The updated values of the
hardening parameter x; and its Laplacian sz'j are already available at the trial
stress state and are used in the yield condition. Alternatively, the memorized val-
ues from the previous increment xg and V2, can be used, which results in a slight-
ly delayed plastification. The relation of the present algorithm to the tangent-
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cutting-plane algorithm [16] is not so close as in the ‘delta-incremental’ algorithm
used by de Borst and Miihlhaus {10].

Because the plastic multiplier is an independent variable determined in the solu-
tion of the global set of equations, the weak form of the yield condition (6.19) is not
satisfied until convergence is achieved. It can happen that, due to stress redistribu-
tion or nonlinear softening, the increment A2 results in a return mapping to the in-
side of the yield surface. In the present total-incremental algorithm this does not
cause the detection of unloading, but changes sign of the residual forces, which re-
sults further in a proper correction (decrease) of AA. However, difficulties may
arise, if the value of the yield function has different signs at the integration points
within one element. The respective coniributions to residual force f; are then aver-
aged because of the weak formulation and improper values of corrections dA are
obtained from the global set of equations. Therefore, the best convergence is found
for those finite elements in which, at the sampling points, the value of the yield
function F converges to zero with the decrease of the residual force norm.

6.6 SOME ELEMENTS FOR GRADIENT PLASTICITY
6.6.1 One-dimensional elements
Figure 6.2 shows the simplest one-dimensional gradient plasticity elements with

C'-continuity. The axial displacement u is interpolated linearly or quadratically
and for the plastic multiplier 2 the cubic hermitian shape functions are used,

2 1 3 2 !

° L6G —° L6

e ! _ -] 0 a,A A,
I—————-—-;: o g

Figure 6.2 One-dimensional C'-elements.

For element L6G two-point Gaussian integration is employed. Matrix K,
includes polynomials of the 6™-order and is not integrated accurately. Translation
in the x-direction must be prevented and two additional constraints (e.g. symme-
try) or boundary conditions for the A field must be introduced in a model. The
number of extra constraints is determined as follows: 2x2 degrees of freedom for 4
minus 2X1 relations in Gauss points equals 2. The element yields an exact fulfil-
ment of the yield condition at the integration points, which means that when
f; =0, then Fj; — 0, but stress oscillations are observed. This phenomenon may
cause a failure of convergence at an early stage of softening as soon as the oscillat-
ing stresses reach a state with 5, = 0.

For element L7G with two-point integration the balance between the interpola-
tion for # and A is optimal, i.e. the stress integration in eq. (6.76) gives a stress state
0, which is constant within an element and which fulfils exactly the yield condi-
tion. Convergence in one iteration is observed unless the softening zone spreads or
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nonlinear softening is used. This behaviour is attributed to the special qualities of
the integration stations, so-called Barlow points [17], in which higher order accu-
racy of interpolated field derivatives is obtained. In fact, these are the only points,
in which the third-order terms in F (a7, xj, sz'j) cancel the first-order terms, so that
the yield function equals zero.

The above properties are exhibited by the nonsymmetric formulation with K;;
from eq. (6.43). If the symmetric format for K;; according to eq. (6.47) is used
together with the required boundary conditions and two-point (reduced) integra-
tion, convergence is lost. This behaviour is attributed to an unfavourable numerical
integration error, since for three-point integration the symmetric and nonsymmetric
formulation give the same results. However, for the three-point integration too
many constraints are introduced and the results are inaccurate. The stresses at one
or more points are then mapped to the inside of the yield surface (Fj<0), which
violates the Kuhn-Tucker conditions (6.13) and results in a disturbance of conver-
gence. _

Figure 6.3 shows the one-dimensional CP-¢lements with separate Lagrange
interpolation of the longitudinal displacement u, the plastic multiplier 4 and the
additional variable @. Element L6C uses linear shape functions and one integra-
tion point. It is the point, in which the constraint ¢ = 4,, is fulfilled. The longitudi-
nal translation must be prevented and two boundary conditions for A or ¢ should
be introduced in a model: 2X3 degrees of freedom minus 3 relations in the Gauss
point equals 3; the tangent operator for an elastic element has 3 zero eigenvalues.
The element is perfectly convergent since the integration station is a Barlow point
[17). Element LIC uses quadratic shape functions and two Gauss points, which are
again optimal for convergence. Boundary conditions similar to the L6C element
must be introduced and the return mapping is also exact. In presence of the addi-
tional boundary conditions (6.70) the symmetric and nonsymmetric formulations
give the same results for the one-dimensional C 0_clements, because the employed
numerical integration schemes are sufficient for an exact integration of the shape
function polynomials.

) 1 3 2 1
o= — o o— O —0
L6C LoC
I
I — o a,A,®
| —

Figure 6.3 One-dimensional C’-elements with constraint.

6.6.2 Quadrilateral elements

Figure 6.4 shows a family of rectangular elements with a varying interpolation of
the displacements and the same bi-hermitian shape functions for the plastic strain
field. ‘The elements are formulated in a Cartesian global reference system and carn-
not be transformed because of the presence of the mixed derivative degrees of
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freedom Ay in the C Linterpolation of A. Only the nonsymmetric formulation of
the problem yields fully convergent results.

Element R24_G [18] employs bilinear interpolation of displacements and 2x2
point integration (notice that the names of the plane stress and plane strain versions
of the elements are obtained by substitution of M and E, respectively, for the
underscore mark). To avoid volumetric locking in plane strain problems,
B-enhancement is used [11]. To avoid shear locking, the shear terms are integrated
using only one Gauss point. Matrix K,, possesses the correct rank, see also the dis-
cussion after eq. (6.50). The matrix K3 ; requires 12 additional constraints (4x4 - 4x1
= 12) and they can be introduced by extra boundary conditions for derivatives of A.
For an arbitrary assembly the conditions A,=0 and A, =0 on the whole model
boundary supply exactly the required number of constraints. Element R24_G
gives Fi, — 0, but as the one-dimensional element L6G it shows stress oscillations
due to the lack of balance between the employed interpolations.

4 3 7 6 5 7 6 5
-t - 0 o o -0
2b 8 4 8 =0 4
R24_ G l R32 G R34 G
¥ O ol o} -0
1 2 1 2 3 1 2 3
¥ 2
! b ¢ = 0 ap.a,, A AL A LA
x ° ay

Figure 6.4 Rectangular C'-elements.

Element R32_G employs eight-noded serendipity interpolation of displace-
ments and 2X2 Gauss integration. The matrix K,, possesses one zero-energy mode
that disappears in an assembly of elements. With the matrix K, described above,
this element shows proper convergence to a state with Fy, — 0 and vanishing stress
oscillations and is the most reliable of C'-elements.

Element R34_G employs bi-quadratic lagrangian interpolation of displacements
and 2X2 numerical integration. The element shows excellent behaviour, but only in
sufficiently constrained configurations, since the matrix K,; possesses three zero-
energy modes, two of which propagate in an assembly of elements. With 3x3 inte-
gration the rank of K, is correct and in an assembly no extra boundary conditions
for A are necessary. However, these sampling points are not optimal for our prob-
lem (cf. the description of element L7G), mapping of stresses to the inside of the
yield surface takes place at some Gauss points and convergence is gradually lost.
Selective (3x3/2x2) mtegration of matrices K, and K;; is not easily achieved
because of the presence of the coupling matrices K, in eq. (6.40). To preserve the
optimal integration scheme for the yield condition and remove zero-energy defor-
mation modes from element R34_G, hourglass control techniques could be used
(cf. [19,20]), but the addition of a stabilization matrix to K,, affects the consistency

L“i;% e s
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of linearization and the presence of incompatible modes affects the accuracy of the
return mapping, which leads to convergence deterioration.

Figure 6.5 shows three quadrilateral penalty-enhanced C%-continuous elements
with linear, quadratic serendipity and quadratic lagrange interpolation functions
for the unknowns. The elements are formulated in a Cartesian global reference sys-
tem, but they can be transformed. As is the case for the one-dimensional CPele-
ments the nonsymmetric and symmetric formulation both yield convergent results.

0 a,,a,,A,0,, P,

Figure 6.5 Quadiilateral penalty-enhanced C'-elements.

All shape functions for element 020_C are linear. Because of the penalty con-
straint this element can yield proper convergence only if one-point integration is
used. With 2x2 Gauss integration the element locks: no zero eigenvalues exist in
K¢, the constraint ¢, = 2 , is true everywhere and as a result the Laplacian is zero.
However, a large number of spurious modes are present if one-point integration is
employed: 2 hourglass modes for the displacement field u and 9 spurious modes
for the A field unless extra boundary conditions are introduced. The hourglass
modes can be controlled, but, again, the anti-hourglass stiffness interferes with the
gradient plasticity algorithm. No satisfactory way of controlling the spurious
modes for A has been found and the number of available boundary conditions is in
general insufficient.

The quadratic lagrange element 945_C with 2x2 integration converges per-
fectly. However, element 045_C possesses zero-energy modes for n and also spuri-
ous modes for A. In an arbitrary mesh the boundary conditions for ¢ or ¢, are not
sufficient to assure the correct rank of the K3 ; matrix and additional conditions for
A itself on part of the boundary are necessary to obtain a correct solution.

The quadratic serendipity element 040_C with 2X2 integration does not con-
verge very well, since the return mapping in eq. {6.76) 1s inaccurate for this element.
Apparently the quadratic terms missing in the serendipity interpolation are impor-
tant for interpolation compatibility. Since an assembly of elements 040_C does not
possess hourglass deformation modes, a combination of 8-noded interpolation of
displacements and 9-noded interpolation of the A and ¢ fields is suggested and
gives rise to element 043_C, quite similar to the heterosis’ plate bending elements
(cf. [21]). This element converges better and isa C 0 equivalent of the eight-noded
element R32_G.
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6.6.3 Triangular elements

For a triangular element geometry the problem of choosing well-balanced interpo-
lations of displacements and plastic multiplier as well as an optimal integration
scheme becomes even more difficult. Experience with rectangles suggests the use
of the lowest possible interpolation order and reduced integration. Figure 6.6
shows two iriangular elements, which have a quadratic interpolation of displace-
ments. The elements are formulated in area coordinates and, to avoid transforma-
tions, are referred to the global axes.

Element 721_G has a cubic interpolation of 4 based on a non-conforming plate
bending triangle [21]. The element does not fulfil the continuity requirements for 4,
on its boundary and is included in the present group because of the presence of A,
and A, degrees of freedom. Integration with three Gauss points is used, as well as
3-point Hammer integration at the midsides of the triangle. Neither of these inte-
gration schemes are optimal: stresses are mapped inside the yield surface and stress
oscillations are found. Additional boundary conditions for the plastic multiplier
field are necessary to prevent the existence of non-zero 4 modes in the elastic ele-
ments.

Element T30_G employs the shape functions derived in [22] and is fully
C!-compatible, has a quintic interpolation of A and cubic distribution of 1, along
the sides. To prevent spurious 2 modes 6 integration points and extra boundary
conditions, involving A, or A, and sometimes also second-order derivatives of the
plastic multiplier are necessary.

It seems that for the above elements it is not possible to find sampling points, in
which higher order accuracy of stress approximation and convergence of Fy, to zero
is obtained. Consequently neither of them exhibits a fast convergence and stress
oscillations are observed that may lead to violation of the positive yield strength
condition and sometimes also to local unloading. Nevertheless, in numerical tests
they give reasonable predictions of the global response and shear banding.

It is also difficult to construct C%-continuous triangular elements which satisfy
the requirements for interpolation and numerical integration mentioned in Section
6.3. We have limited our research to a low order interpolation. Figure 6.7 shows the
three tested elements. The elements are formulated in area coordinates and referred
to the global axes.

Element T15_C has a linear interpolation of all fields and uses one-point inte-
gration. The element has foo many constraints in both standard and crossed diago-
nal meshes and does not converge.

Element T30_C has a uniform quadratic interpolation and is integrated using 3
Gauss points. Although full convergence is not achieved - mapping of stresses to
the inside of the yield surface is observed and stress oscillations are found - this ele-
ment gives acceptable results. In constrained configurations the use of one-point
integration yields fast convergence and three integration points may cause locking.

In an arbitrary configuration the tangent operator determined using only one
Gauss point is strongly rank-deficient and a solution cannot be obtained. This sug-
gests the implementation of element T24_C, with a linear interpolation of displace-
ments and quadratic shape functions for the other fields, to be used with one-point
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Figure 6.6 Triangular C'-elements.
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Figure 6.7 Triangular penalty-enhanced C"-elements.

integration. However, this element shows an acceptable performance only in
strongly constrained configurations, but fails otherwise as the previous one.

6.7 LOCALIZATION ANALYSES USING GRADIENT PLASTICITY
é.7.1 One-dimensional elemenfs

Next we will present some results of one-dimensional and two-dimensional local-
ization tests to demonstrate that the present formulation removes the spurious
mesh sensitivity of finite element simulations. We will also compare the perfor-
mance of the formulated gradient plasticity elements. We will limit our considera-
tion to associated, gradient-enhanced J,-plasticity (for other criteria, see [23]):

F=+31,-5(x, V%), (6.79)
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Figure 6.8 Imperfect bar in pure tension.
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Figure 6.9 Load-displacement diagrams for C* one-dimensional elements.

where J, is the second invariant of the deviatoric stress tensor and & is the yield
strength.

We will first analyze an imperfect bar in tension, see Figure 6.8 {10]. For this

one-dimensional problem the following simple yield function holds:
&«
F=g-6(x)+g—5, (6.80)
dx?2

with ¢ the axial stress. The hardening parameter x is now equal to the plastic mul-
tiplier A and the axial plastic strain £P. According to the analytical solution derived
in [10] the width of the localization zone w is given by:

w=2xl, (6.81)
with [ the internal length scale defined as

/ 3
=a[-5 6.82
[=~f-= (6.82)

In eq. (6.82) h=d&/deP is the hardening/softening modulus.
The following data are used in the numerical calculations: length of the bar
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L=100mm, Young's modulus E=20,000 N /mm?, tensile strength oy =2 N/ mm?.
The one-dimensional elements described in Sections 6.3 and 6.4 have been used.
Two meshes of 20 and 80 elements have been used to examine the mesh-
dependence of results. The elements in the middle of the bar {d =10 mm) have a
10% smaller value of oy. The derivative of the plastic multiplier is set to zero at
both ends of the bar, Linear softening has been used with the softening modulus
h=—0.1E. Aninternal length [ =5 mm is assumed, yielding g =~ [*h=50,000 N.
The corresponding width of the localization zone is w=31.4 mm.

We begin the comparison with C ®_continuous penalty-enhanced elements. The
left diagram in Figure 6.9 shows load-displacement paths obtained using elements
L6C and L9C with the (optimal} one-point and two-point Gauss integration,
respectively. Immediate convergence has been observed in the calculations. While
the coarse mesh with 20 linear elements L6C gives a slightly too stiff response and
a disturbed A distribution (Figure 6.10), the fine mesh and both meshes for the
quadratic L9C element yield identical results. When all the inelastic points are in
the softening regime, the slope of the load-displacement diagram is equal to the
analytical value derived in {10]. The calculations are also stable when the strain in
the centre elements exits the softening branch (x > k). The load-displacement dia-
grams then bend upwards and the localization zone broadens. This behaviour is a
result of the fact that, when the softening modulus k& goes to zero, while g is kept

x107 A x107% A
15 1.5
1.2 4 1.2
0.9 - 0.9
0.6 0.6
0.3 4 -0.3

Q4
0 100 20 40 60 80 100
x — coordinate [mm] x — coordinate [mm]
Figure 6.10 Evolution of the plastic strain distribution in the bar for 20 (left) and 80 (right)
elements LoC.

constant, the internal length [ locally increases to infinity.

Next, we apply the C !_continuous elements L7G with quadratic interpolation
of the displacement and hermitian interpolation of the plastic multiplier. Two dif-
ferent values of the internal length [ are assumed: [=3 mm (giving g=50,000 N
and w=31.4mm) and [=2.5mm (g=12,500N and w=15.7mm). Figure 611
shows the load-displacement diagrams for these cases. As long as all the points in
the structure remain in the softening regime, the results for the two meshes with 20



182 Computational Issues in Gradient Plasticity

200 [N/mm®]
1.6 20/80 elements
1.2 5
g=50,000 N
0.8 S
0.4 g=12,500 N
0 I T T T T T
0 001 002 003 004 005 006 007

it [mm]

Figure 6.11 Mesh-sensitivity of load-displacement diagrams (elements L7G).
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Figure 6.12 Evolution of plastic strains for g =50,000 N (left) and g=12,500 ¥ (right).

and 80 elements are practically the same, and equal to those for the CV-elements.
This is not the case for the linear-hermitian element L6G [10}, for which the orders
of interpolation are not balanced properly. When in the centre points the softening
branch is exited the calculations are stable, if a dense enough discretization is used.
In Figure 6.11 the resulis for both meshes are similar for the larger regularization
coefficient g=50,000 N, but for g=12,500 N and for the coarse mesh oscillations
are observed.

The comparison of the two diagrams in Figure 6.12 shows that the internal
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length / governs the width of localization zone in the linear softening regime.
When for an increasing number of Gauss points / equals zero, the width of the
localization zone increases {(Figure 6.12).

6.7.2 Quadrilateral elements

To demonstrate the potential of two-dimensional elements we consider a biaxially
compressed specimen, in which strain localization into a shear band takes place at
the onset of softening. The dimensions of the specimen are B=60mm and
H=120mm. The specimen is placed on a smooth rigid plane and its upper edge is
constrained to remain horizontal while a vertical deformation equivalent to a com-
pressive force is applied. The following parameter values are adopted: elastic shear
modulus G=4000 N/mm? and Poisson’s ratio v=0.49. The gradient-dependent
Huber-Mises yleld function is adopted with an initial yield strength
oy=100N fmm?, a constant softening modulus h=-0.1G and a gradient constant
g=3600N, w}uch corresponds to an internal length scale /=3 mm for pure shear.
In the present calculations an imperfect zone with a 10% reduction of oy is intro-
duced in the bottom left-hand corner of the specimen.

For C'-elements extra boundary conditions for 4 (A, =0 and A, =0) are intro-
duced on the whole circiimference of the specimen. For the most reliable element
R32EG fast convergence is observed during the entire analysis, also when the yield
strength in the most heavily strained elements goes to zero. The response is practi-
cally insensitive to mesh refinement (left part of Figure 6.13). Element R34EG
shows an even faster convergence and results for the coarse mesh are better, but the
solution is spoiled by spurious hourglass deformation modes. The four-noded ele-
ment R24EG gives stiffer results (right part of Figure 6,13), but shows good conver-
gence in spite of a poor match between the interpolations.

A performance similar to that of the R34EG element is found for element
Q45EC. However, for this element, the available boundary conditions for @, and
®, are not sufficient to assure the correct rank of the Kj; matrix, negative pivots
are found and spurious modes are observed for the plastic multiplier field. They
can be prevented by setting the A degrees of freedom to zero on the upper edge of
the model. The results are then similar to the two previous elements. Similar con-
vergence and results are also exhibited by the ‘heterosis” element Q43EC, where
the spurious modes must be prevented only for the 4 field. Stiffer results and poor
convergence are found for element O45EC with 33 numerical integration, which
supplies a sufficient rank of the matrices in elastic elements and prevents zero-
energy modes, but introduces too many internal constraints and destroys the satis-
faction of the yield condition, since optimal sampling points are not used. Element
Q20EC with 2x2 integration locks and shows no localization. The eight-noded ele-
ment Q40EC with 2x2 integration gives an acceptable load-deformation response,
but, quite unexpectedly, does not converge well.

Figure 6.14 presents the deformation patterns obtained using element R32EG
Figure 6.15 presents contour lines of equal plastic multiplier values. Both figures
show about the same width of the shear band for the three used meshes, especially
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Figure 6.13 Load-displacement diagrams for three discretizations using element R32EG
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Figure 6,14 Deformation patterns for three discretizations (R32EG, v;p/H =0.02).

for the medium and fine meshes. Figure 6.16 shows the evolution of the equivalent
plastic strain field along the vertical symmetry axis of the specimen. For the coarse
mesh spurious negative values of 4 are visible next to the localization band. For the

finer meshes 2 profiles are similar to each other and smooth as expected.
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Figure 6.15 Contour plots of equivalent plastic strain (R32EG, v,,,/H =0.02).
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Figure 6.16 Evolution of the equivalent plastic strain along the vertical symmetry axis x=0
(from the left: coarse, medium and fine mesh, elements Q45EC).

6.7.3 Triangular elements

The same biaxial compression test has been analyzed using three six-noded triangu-
lar elements: the Cl-element T30EG, the non-conforming element 721 EG and the
C® penaltyzenhanced element T30EC. Attention has been focused on the compari-
son of their sensitivity to mesh alignment. Figure 6.17 shows the load-displacement
diagrams obtained for the discretization 12x24x4 (crossed diagonal) and 12x24x2
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(with directional bias, i.e. with the elements aligned perpendicularly to the expected
direction of a shear band). For element T21EG 3 integration points and boundary
conditions A, =0 are used (the solution without the boundary conditions is similar,
but exhibits a few negative pivots). For element T30EG 6 integration points and
boundary conditions as for the previous element are employed (if additionally
A,,=0 on the specimen edges, results are similar). For element T30EC 3 integra-
tion points and boundary conditions for ®, (normal to the boundary) are used.
Despite the fact that none of the analyzed triangular elements ensures fast and
full convergence, because the used integration stations are not Barlow points, for
crossed-diagonal meshes all of them give a similar inclination of the post-peak equi-
librium path and prediction of the shear band width and position (see Figure 6.18).

Pl(Ba,, Pi(Ba,,
12
1.0- IR 1.0
R, e
S Ny
0.8- 10.8
0.6 L0.6
0.4 ---T30EG(6) —T30EC(3) 0.4
—T30EC(3) ~=T21EG(3)
0.2 —T21EG(3) ---T30EG(6) 0.2
---R32EG(4) «--R32EG(4)
0 0
0 0003 0.006 0.009 0.012 0.015 0 0.003 0.006 0.d09 0.012 0.015
Viopl H Vil H

Figure 6.17 Comparison of the behaviour of C! and C° continuous triangular elements in
crossed diagonal meshes (left) and in biased meshes (right).

The results are close to the results of element R32EG.

Figure 6.19 presents the deformation patterns obtained for the biased meshes.
Although the shear bands extend from the weaker spot in the bottom left-hand cor-
ner of the specimen, the biased mesh makes the response stiffer, especially for the
CP.¢lement T30EC, which also predicts a too broad shear band. For the C Lele-
ments the results are acceptable and the slight mesh alignment sensitivity is
expected to vanish upon further mesh refinement.

6.8 WAVE DISPERSION IN A GRADIENT-DEPENDENT MEDIUM

We continue with a discussion on wave propagation in gradient plasticity and the
effects of temporal and spatial discretization. In particular, we shall discuss the
numerical dispersion introduced by the discretization, which adds fo the already
existing physical dispersion in gradient-dependent media.

We consider the one-dimensional bar of Figure 6.7, now loaded by an impact
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)

Figure 6.18 Deformation patterns for the crossed diagonal meshes 12x24x4 (T21EG on the
left, T30EG in the middle, T30EC on the right).

[ i s

Figure 619 Sensitivity to mesh alignment exhibited by the triangular elements
(T21EG on the left, T30EG in the middle, T30EC on the right).

load. In this dynamic context the governing equations for motion and continuity
read

QE_ o’u

9P (6.83)

and
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Figure 6,20 Continuum dispersion curves for linear-elastic, standard softening and gradient-
dependent softening system. Left: Frequency versus wave number. Right: Phase
velocity versus wave number.

_du 6.84)
8_ax’ ®.

with p the mass density, u the axial displacement, & and € stress and strain and x
and ¢ spatial and temporal variables, respectively. With the strain decomposition

e=g"+eP, (6.85)
and the bijective relation between stress o and elastic strain £°
o =E¢, (6.86)

the wave equation for one-dimensional gradient-dependent softening plasticity is
derived as

¢ [ o 8" Fu  HE F
8 |pd¥_, %K | 08 2 TX.y, (6.87)
h+E| ox* 7 ox202 012 h+E 9x?
For a dispersion analysis we consider a single harmonic wave which propagates

through a one-dimensional element

u(x, 1) = Aci®s o (6.88)
The frequency @ is a function of the wave number k

o= fk), (6.89)

and the function f(k) is determined by the particular system under consideration.
A system is considered to be dispersive if [24]

fr&k)y#0, (6.90)
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in which a prime denotes differentiation with respect to k. In this case, the phase
speed

@
c= T (6.91)

is not the same for every wave number k and modes represented by its wave num-
ber travel at different speeds and will therefore disperse. Finally, we adopt the stan-
dard definitions for the wave length

2z

A== :
. (6.92)
and the period
2
T=" (6.93)
o

We substitute the harmonic wave solution (6.88) into eq. (6.87). The dispersion
relation for the gradient-dependent softening plasticity system is then elaborated as

h+ gk?
=c. k — .
O N ETh o2 694

with ¢, =[E/ p the so-called bar wave velocity. Now, the frequency is a real func-
tion of wave number k if

A
k>Al- . (6.95)

or using eq. (6.92)
AL2xl, (6.96)

with [ the internal length scale defined in eq. (6.82). Eq. (6.96) states that there
exists a cut-off value for k. This vatue of k corresponds to the mode with the largest
wave length that the gradient-dependent softening system can transmit. Above
this value for % all frequencies are real.

Eq. (6.94) shows that for a non-zero gradient constant g, f ”(k) # 0, so that wave
propagation in the gradient-dependent plasticity system is dispersive. The disper-
sion curves have been plotted in Figure 6.20 for a linear-elastic system (@ = c k), a
standard _ softening  plasticity =~ system (with imaginary = frequencies
w=ic kN—h/E + b)), and the gradient-dependent softening plasticity system. In
the right part of Figure 6.20 the corresponding phase velocity - wave number (¢ — k)
curve is shown. In Figures 6.20 the bar wave velocity ¢, = 1000 m/s, the Young’s
modulus E = 20,000 N/mm?, the softening modulus i =—0.1E and the gradient
constant g =50,000 N. The values for & and g imply a length scale parameter
[=5.0mm.

Dispersion in a softening system is closely related to the problem of localization
of deformation. As a result of softening localization of deformation may occur and
the behavior of localized zones is very much dependent on the dispersive
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characteristics of the material [25-27]. For a standard softening plasticity system the
inability of the material to transmit waves with a real frequency (and phase veloc-
ity) causes the strains to localize in zones of zero thickness. However, the dispersion
contribution due to spatial discretization causes the frequency to reach a real zero
value, and numerically a stationary wave with frequency and phase velocity equal
to zero is computed in the localization zone [25]. The solution is now mesh depen-
dent and corresponds to this stationary wave. Its wave length A is equal to the
width of the zone, namely a one finite element wide zone (for constant strain ele-
ments).

For the gradient—dependent softening system the fact that waves with real phase
velocities disperse has the advantageous consequence that the localization zone can
extend and that the strain profile in the localization zone can be transformed
because different modes travel at different speeds. These features are of pivotal
importance for simulating zones of localized deformation with a finite size instead
of the zero-thickness solution as obtained for the softening plasticity system. Also
for the gradient model the localization zone acts as a stationary wave with fre-
quency and phase velocity equal to zero. For this reason the width of the localiza-
tion zone w is equal to the lowest-order wave that the gradient-dependent soften-
ing system can transmit, ie. w =27 [. The width of the localization zone apppears
as a consequence of the length scale effect and the spurious mesh dependence is
removed [26].

In finite element formulations the governing equation for one-dimensional gra-
dient-dependent softening plasticity (6.87) is discretized with respect to spatial and
temporal variables. Discretization is another source of dispersion [27,28] and is
introduced irrespective of the fact whether the underlying material exhibits disper-
sion of waves (gradient-dependent softening system) or not (standard softening
system). The dispersion contribution of temporal and spatial discretization on a
one-dimensional gradient-dependent plasticity system will be assessed next.

6.8.1 Dispersion coniribution by femporal discretization

A general family of time integration algorithms is considered that contains the
Hilber-Hughes-Taylor a-method [29] as well as the Newmark-method family [11]

M 4 (1 + a)Ka™*™ — aKa' =0, (6.97)
at* = gl + Arl + AP[(y - BYA' + FA"HT (6.98)
AP = af 4 AL[(1 — )i + yATYY, (6.99)

with &, 4 and a the nodal accelerations, velocities and displacements, respectively.
Egs. (6.97)-(6.99) represent a semi-discrete system with mass matrix M and stiffness
matrix K, which is assumed to be constant over Af. In this section spatial discretiza-
tion is ignored and the continuum values for M and K will be substituted. The
infegration parameters c, § and ¥ determine the stability, accuracy and dissipative
properties of the system. Moreover, these parameters have an influence on disper-
sion, which will be demonstrated in this paper for softening materials. Taking
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@ =0 the scheme reduces to the Newmark-method family with y = and g =¥,
the average acceleration method, 7 = %2 and g = Y2 the Fox-Goodwin method and
y =Y, and B = O the central difference method. Numerical dissipation can be intro-
duced when y > Y. However, from linear-elastic considerations [11] it is known
that second-order accuracy is then lost. For this reason the a-method was devel-
oped [29] in which numerical dissipation is introduced for -1 < o < (0 while sec-
ond-order accuracy can be preserved if y = ¥ — @ and § = Yg(1 - ).

A gradient-dependent soffening system exhibits physical wave dispersion as
well as numerical dispersion. By carrying out a dispersion analysis, the interaction
between physical and numerical dispersion is now assessed. For the problem gov-
erned by eq. (6.87) a solution according to

ulx , H)=i(r)e™ (6.100)
is assumed. Substitution of this equation into eq. (6.87) eliminates the spatial
derivative terms, and leads to

i EK*(gk*+h)
—F ———i=0. 6.101
P 3 gk2+h+Eu ( )

Discrete nodal values are now substituted for the displacement function, i.e.,
ii(t)=a, so that

Ma+Ka=0, (6.102)
with
M=p (6.103)
EX*(gk® + k)
=8 T2 6.104
gk> +h+E (6109

By considering the set of equations (6.97)-(6.99) at t—2At, t—At, t and t+At the
time derivatives a"A‘, &, h”"A', i and & can be eliminated and a temporally
discretized equation of motion can be derived according to

K (coad™ — ¢1a' — c0" ™ — c3a M) = A7 (g™ + 24" — a'™), (6.105)
with

co=pl+a), (6.106)

c1=Pa+1+a)2B—7 ) (6.107)

ca=(1+a)y - - —a@f-rv-") (6.108)

cz=—a(y —f-1%) (6.109)

Harmonic solutions are now assumed, as follows

+

¢ imt
a = Ae™ , (6.110)
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Figure 6.21 Dispersion curve for temporally discretized gradient-plasticity system. Varia-
tion of time integration scheme using At =2 107 5.
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Figure 6.22 Convergence of time stepping schemes.

gt = AelOCHD = A(cos wAt + isin wAr) e (6.111)
o' = AP0 = A(cos At — isinwAr) el (6.112)
2’28 = Aei®U2A = A(cos 2wAt — 1sin 20A1) el (6.113)

which, after substitution into eq. (6.105), gives the dispersion relation with real and
imaginary components. It appears that the real part offers the non-trivial solution
by
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1
D, kD, D} KDY 2QF + m)DyD,
k* =Y. -—|+V + .
2 [c%AtZ ) 2\ ciart T g2 ciArlg » 1
in which
Dy =2(1 - cos @A), (6.115)
Dy = (cg — c3) cos AL — ¢3 08 20At ~ ¢y , (6.116)

and the real phase velocity follows from c® = 0?1 K2

In Figure 6.21 the dispersion curve has been plotted for different time integra-
tion schemes. The Fox-Goodwin method shows the best performance for gradient-
dependent softening plasticity. It is remarkable that the Fox-Goodwin method,
although the method is implicit on the basis of linear elastic considerations, gives
an upper bound approximation of the continuum dispersion curve just like the cen-
tral difference scheme. The average acceleration method and the ¢-method under-
estimate the frequency w leading to elongated periods T In Figure 6.22 the rate of
convergence is plotted for the time integration schemes by means of the difference
with the continuum solution at &, = 1.0 1/mm. The results show that the Fox-
Goodwin method exactly reaches O(At*) accuracy while the average acceleration
method, the z-method and the central difference scheme perform O(A#?) accurate.

Softening is the driving force for localization of deformation and the localization
zone is represented by a stationary wave with frequency @ and phase velocity ¢
both equal to zero. In Figures 6.21 and 6.23, in which the phase velocity is plotted
against the wave number for the average acceleration scheme, the stationary wave

is reflected by the cut-off value for wave number k = \-h/g. It appears that this
value is not affected by the time integration scheme (Figure 6.21) or the time step
(Figure 6.23).

6.8.2 Dispersion confribution by spatial discretization
To assess the effects of spatial discretization on the dispersive behaviour we con-

sider the Cl-continuous two-noded bar element with two-point Gaussian quadra-
ture (L6G) and we assume harmonic solutions of the form

u(x, 1) = i(x) e (6.117)
P(x,1) = 2P e (6.118)
We now substitute eqs (6.117)-(6.118) into the weak forms of the equation of motion
—pmzjaﬁ-ﬁdx+j5§-E(E-§")dx=0, (6.119)
L L

and the consistency condition
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Figure 6.23 Influence on phase velocities of a variation of the time step for the average accel-
eration method.

5 .

P
j SEPEE-E)—-hétP + ¢ %1 dx=0 (6.120)

where the identity & = E(& — &%) has been used. If we discretize @i, &, & and
o%&" /9x* according to egs (6.33)-(6.35) and (6.38) we obtain

(Kp— oM, )a - K ;A=0, (6.121)
K, a+K;;A=0, (6.122)
where
M,, = p j HTHdV (6.123)
14

is the mass matrix, and the stiffness matrices K, and K,;, and K, and K;; have
been defined before (6.41)-(6.43). We assume a mesh with elements of constant
length 4 and consider egs (6.121) and (6.122) for node j, which results in the follow-
ing three equations with the unknowns 4, A and A,

pwzd

E
16 (30.1_1 + 10(1; + 3a_,+1) + — (—a]_l + 2(11 (ij+1) -

5 Ajor —Ajp) — 'ﬁ (3Ax, 1= 6A; i +3A, ) =0, (6.124)
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E . . (+Bd, ... . .
= (dj ) - _16% (135A 1 +754A; + 135K 1) -

(h+ E)d* . .

W (63Ax‘j_1 - 63Ax,j+1) +

8 (33, +66A;+33Au0) + S Ay js ~ Ay ) =0, (6.125)
32d 64

Ed .. L (h+E)d® .. ,

E (Saj_1 - 6aj + 3aj.,.1) - m—é— (—63Aj_1 + 63AJ+1) -

(h+E)d® . , -

-ng* ("_27Ax,j—1 + 90A:c,j - 27Ax,j+1) +

g . . gd _; ; \ _

a (—9Aj_1 + 9Aj+1) + m (SAx,j—I - 42Ax,j + ?’Ax,j-i-l) =0, (6.126)

in which a consistent mass matrix has been used. We can find a consistent set of
harmonic solutions of the form

a;= A 6.127)

Aj=ikBe* , (6.128)

Ay ;=K Ce™ . (6.129)
The set of solutions at the neighbouring nodes j £ 1 is then

d sy = AeHED (6.130)

Ay =ikBe*0ED) (6.131)

Ay a1 = KPCFED (6.132)

Substitution of the complete solution (egs (6.127)-(6.132)) in the spatially discretized
equations of motion (6.124)-(6.126) gives a system of three equations for which the
non-trivial solution reads

_ 2 3k2K42 (I—COSkd) del sin kd
m—ce'\ﬁzﬁ+ T } 7 vt (6.133)

The parameter M, is dependent on the mass distribution. For a consistent, a
lumped and a higher-order mass matrix, respectively, we derive

M, =13(5+3coskd), (6.134)
My=1 (6.135)
M;=Y6{(13 +3coskd) . (6.136)

The values K45 and K4, in eq. (6.133) are defined by

D, . 3d D,
=E|= - - —_— 6.
K1 E(Dz sin kd T (cos kd I)J(DZDS ~ DIDJ (6.137)
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1 :
K =—D—(Esmka'+D1Kd1) s {6.138)
2
with the functions
33g  135(h+ E)d 33g  377(h + E)d
D=k - -== .
! ((16d 512 )COSM 16d 52 ) OB
g  63(h+E)d* | |
D=k |- 42 77 .
2=k { T RTY sinkd , (6.140)
9¢ 63(h+ E)d? | |
Dy=k{-—=+—_— " .
3 { 5 + 1024 sinkd , (6.141)
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Figure 6.2¢ Influence of spatial discretization on the dispersion: Variation of element length
d using a consistent mass matrix.

The dispersion curve of the discretized bar for a consistent mass distribution is
plotted in Figure 6.24 for different sizes d of the finite element. We observe that
refinement of the mesh (d — 0) leads to convergence of the dispersion curve to the
continuum dispersion curve. We obtain an upper bound estimate for the frequency
using consistent mass distribution. The influence of the mass discretization is
shown in Figure 6.25, in which a consistent, a lumped and a higher-order mass
matrix have been used for a finite element with size d = 2.0 mm. The lumped mass
matrix provides lower bound values, while the higher-order mass matrix leads to
the best result. In Figure 6.26, where @ is calculated for k£ = 1.0 1/mm by means of
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Figure 6.25 Influence of spatial discretization on the dispersion: Variation of the mass dis-
cretization using d = 2 mm.
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Figure 6.26 Convergence of mass discretization.

egs (6.133)-(6.138) and @, is the exact frequency from the continuum dispersion
analysis, we observe that the higher-order mass matrix gives the best results but
does not increase the order of accuracy. So, a higher-order matrix in a gradient-
dependent softening plasticity context does not imply a higher-order accuracy.
Another result of the variation of mass matrices is that the type of distribution does
not affect the width of a stationary localization zone. The cut-off value for wave
number k and implicitly also for wave length A is the same for the three curves in
Figure 6.25. This result is logical since inertia effects do not play a role in a station-
ary localization zone.
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Figure 6.27 Dispersion curve for spatially discretized gradient-plasticity system - phase
velocities as a function of the element size d using a consistent mass matrix.
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Figure 6.28 Influence of spatial discretization on the width of the localization zone.

An important observatiof from Figure 6.27, in which the phase velocity has
been plotted against the wave number, is that the point that represents the station-
ary localization wave (¢ = 0) gradually moves to a smaller value of k£ when larger
clements are used. This means that the wave length (= 2z/k), which represents the
width of the localization zone, increases. This is exactly what is observed in numer-
ical calculations with gradient-dependent softening plasticity models [26]. This
widening of the localization band can be quantified exactly. If we take ¢ = 0 in the
discretized dispersion relation a dependence can be derived between the width of
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the localization zone in the discretized continuum w, and the element size d. This
result is plotted in Figure 6.28, in which w; is normalized with respect to the exact
width of the localization zone w, =2xl. A criterion for the required number of
finite elements 7,,,, in the localization zone can be derived. For instance, if a 10%
mismatch between discretized and exact value is accepted it follows that the mini-
mum number of finite elements is

etam 2 —— = 11.8. (6143
derix10%

It is noted that the C'-continuous element with a quadratic interpolation for the
velocity field (L7G) results in a much less severe condition. Eq. (6.143} is derived
for a consistent mass distribution while temporal discretization effects were not
considered. However, variation of the mass discretization (see Figure 6.25) and vari-
ation of the time integration scheme (Figure 6.21) confirm that the wave number of
the cut-off mode (and therefore the width of the localization zone) was not affected
and eq. (6.143) will not be different if all discretization influences would have been
taken into account.

BIBLIOGRAPHY

[1] Aifantis, E.C. (1984) On the microstructural origin of certain inelastic models,
J. Engng. Mater. Technol., 106 , 326-334.

[2] Aifantis, E.C. (1987) The physics of plastic deformation, Int. J. Plasticity, 3 ,
211-247,

[3] Aifantis, E.C. (1992) On the role of gradients in the localization of deforma-
tion and fracture, Int. J. Engng. Sci., 30, 1279-1299.

[41 Coleman, B. and Hodgdon, M.L. (1985) On shear bands in ductile materials,
Arch. Ration. Mech. Anal., 90 ,219-247.

[5] Lasry, D. and Belytschko, T. (1988) Localization limiters in transient prob-
lems, Int. J. Solids Structures, 24 , 581-597.

[6] Zbib, H.M. and Aifantis, E.C. (1988) On the localization and postlocalization
behavior of plastic deformation, LILIII, Res Mechanica, 23 , 261-277, 279-292,
293-305.

[71 Miihlhaus, H.-B. and Aifantis, E.C. (1991) A variational principle for gradient
plasticity, Int. ], Solids Structures, 28 , 845-858.

[8] Schreyer, HL. and Chen, Z. (1986) One-dimensional softening with localiza-
tion, ASME J. Appl. Mech. 53 ,791-797.

[9] WVardoulakis, I and Aifantis, E.C. (1991) A gradient flow theory of plasticity
for granular materials, Acta Mechanica, 87 , 197-217.

[10] de Borst, R. and Mithlhaus, F.-B. (1992) Gradient-dependent plasticity: For-
mulation and algorithmic aspects, Int. J. Num. Meth. Eng., 35 , 521-539.

[11] Hughes, TJ.R. (1987) The Finite Element Method. Linear Static and Dynamic
Finite Element Analysis. Prentice-Hall, New Jersey.

[12] Pamin, ]. and de Borst, R. (1994) Gradient plasticity and finite elements in the
simulation of concrete fracture, Proc. EURO-C 1994 Int. Conf. Computer Mod-
elling of Concrete Structures, Eds. F1. Mang, N. Bi¢ani¢ and R. de Borst,




200

[13]
[14]

[15]

{16]

{17}

[18]

[19]
(20]
[21]
{22]
(23]
[24]
[25]

[26]

{27]
[28]

[29]

Computational Issues in Gradient Plasticity

Pineridge Press, Swansea, 393-402.

Ortiz, M. and Morris, G.R. (1988) CP finite element discretization of Kirch-
hoff’s equations of thin plate bending, Int. . Num. Meth. Eng., 26 , 1551-1566,
Simo, J.C. and Taylor R.L. (1985) Consistent tangent operators for rate-
independent elasto-plasticity, Comp. Meth, Appl. Mech. Eng., 48 , 101-118,
Runesson, K., Samuelsson, A. and Bernspang, L. (1986) Numerical technique
in plasticity including solution advancement control, Int. [. Num. Meth. Eng.,
22 ,769-788.

Ortiz, M. and Simo, J.C. (1986) An analysis of a new class of integration algo-
rithms for elastoplastic constitutive relations, Int. J. Num. Meth. Eng., 23 ,
353-366.

Barlow, J. (1976) Optimal stress locations in finite element model, Int. J. Num,
Meth. Eng., 10, 243-251.

Pamin, J. and de Borst, R. (1992) A rectangular element for gradient plastic-
ity, Proc. Third Int. Conf. Computational Plasticity: Fundamentals and Applica-
tions, Eds D.R.J. Owen, E. Onate and E. Hinton, Pineridge Press, Swansea,
2009-2020.

Wong, B.L. and Belytschko T. (1987) Assumed strain stabilization procedure
for the 9-node Lagrange plane and plate elements, Eng, Comput., 4, 229-239.
Liu, WK, Ong, ].5.-J. and Uras, R.A. (1985), Finite element stabilization
matrices - a unification approach, Comp. Meth. Appl. Mech. Eng., 53 , 13-46.
Zienkiewicz, O.C. and Taylor, R.L. (1991) The Finite Element Method, Fourth
edition, Vol. 2, McGraw-Hill, London.

Dasgupta, S. and Sengupta, D. (1990) A higher-order triangular plate bend-
ing element revisited, Int. J. Num. Meth. Eng., 30, 419-430.

Pamin, J. (1994) Gradient-Dependent Plasticity in Numerical Simulation of Local-
ization Phenomena. Dissertation, Delft University of Technology, Delt.
Whitham, G.B. (1974) Linear and Nonlinear Waves. Wiley, London and New
York. .
Sluys, L.J. (1992) Wave Propagation, Localisation and Dispersion in Softening
Solids. Dissertation, Delft University of Technology, Delft.

Sluys, L.J., de Borst, R. and Miihlhaus, H.-B. (1993) Wave propagation, local-
ization and dispersion in a gradient-dependent medium, Inf. J. Solids Struc-
tures, 30, 1153-1171.

Sluys, L.J. and de Borst, R. (1994) Dispersive properties of gradient-
dependent and rate-dependent media, Mechanics of Materials, 18 , 131-149.
Huerta, A. and Pijaudier-Cabot, G. (1994) Discretization influence on the reg-
ularization by two localization limiters, ASCE J. Eng. Mech. 120, 1198-1218.
Hilber, HM., Hughes, T].R. and Taylor, R.L. (1977) Improved numerical dis-
sipation for time integration algorithms in structural dynamics, Earthquake
Engng. and Structural Dynamics, 5 , 283-292.



