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1. Introduction 

In order to estimate the static and dynamic behaviour of machine tool 

structures a number of methods are used. Some methods well known are: 

a. making a topological model of beamlike elements, including 

the use of rigid beams, hinges, springs etc. 

b. dividing the structure into a great number of finite elements 

as beams, plate- and cubic elements. 

Especially for machine tools built up out of parts which are rather 

slender the first method mentioned is often used succesfully (1), (2), 

(3), (4). The number of elements used for the model is small, so the 

cost of preparation and computations is low. 

But many machine tools are built up out of boxtype parts with the hight 

of the same order or smaller as the dimensions of the cross-section. 

For these machine tools the beam method most times will lead to unsatis

factory results. The main causes for this are local deformations at 

connection points and the difficulty to obtain the right values for the 

properties of the beam element. Also the properties of the beam elements 

for columns with internal ribbing, apertures and transv'erse partitions 

are hard to obtain. 

1. 

In order to overcome most of these difficulties the finite element method 

can be used. This method will lead to more accurate results, but the 

number of elements and certainly the number of degrees of freedom will be 

much higher and the cost of preparation and computing will rise even more. 

An approach in between the two methods is the calculation of some difficult 

elements with the help of a finite element program after which the computed 

characteristics are fed into a beam-element program. 



2. The beam element 

In order to give values for the strength and the stiffness of elastic 

beams approximation theories are used. The theory of Bernoulli-Navier 

is well known for bending. For torsion the theory of Bredt is used 

for beams with closed cross-sections and the theory of De Saint-Venant 

for beams with open cross-sections. 

In many beam-element programs only the displacements and rotations of 

the centre of gravity are calculated. In fig. 2.1 the local coordinates 

and forces are shown. The normal force Nt shear-forces Dy and DZ' the 

torsional moment M and bending moments M an M can act at either end x y z 
of the element. Fig. 2.2 shows the definition of the local displacements 

and rotations. 

From each element the following characteristics must be known 

1 = length of the element 

A = cross-sectional area 

I = moment of inertia about the Y-axis y 
I = moment of z inertia about the Z-axis 

J = torsional constant for the cross-section 

K y = shear distribution factor in 

K = shear z distribution factor in 

and the material constants 

E = Youngs modulus of elasticity 

G = shear modulus. 

Y-direction 

Z-direction. 

For the calculation of A, the centre of gravity, I and I the formulae y z 
are well known for simple cross-sections. In the case of more intricate 

cross-sections one can use a program as described by Dopper (5). 

According to De Saint-Venant the torsional constant for an open thin 

walled cross-section will be 

J = (2.1) 

where t = the local wall thickness. 

The torsional constant for a closed thin walled cross section 1S according 

to the theory of Bredt 

4 A 2 
J t 

=f~s 
(2.2) 

where At = the total area closed by the profile 1 

2. 



In order to tell something about the influence of the shear, its 

distribution factor K can be found from 

A 
K=-. D (2.3) 

where T = shear tension. 

Dreyer (6) gives an approximation for K as follows 

f dA (2.4) 

A 

where S (y) = moment of area about the z-axis and b is the total thickness z 
of the walls in z-direction. 

About the Z~axis 

K. 
Z 

A -;z (2.5) 

Y 
A 

In the table below the value for K is given for some cross sections 

full square 1.2 

full circular 1.1 

full elliptical 1.15 

circular tube 1.9 

square tube 2.4 

Schlemper (7) wrote a program to compute the approximate value of 

for closed cross sections. 

3. 



3. Calculation of the displacements of a beam element. 

The following displacements can be calculated for a beam clamped 

at one end and loaded at the other end: 

3.1. Elongation of the beam due to a normal force N 

N 1 
u = E F 

3.2. Deflections and rotations due to the 

- M 12 
W - Y 

- 2 E I 

q> = y 

v = 

Y 

M 1 
x 

E I 
Y 

M 12 
z 

2E I 
z 

M 1 
z 

<P z = 'ET""" 
z 

moments M and M 
y z 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

3.3. Deflections and rotations due to the shear forces D and D • 
Y z 

Theshear'force Dy causes a deflection vb due to bending and an 

additional deflection v due to shear 
s 

D 13 
K 

v = vb + v = y 
+ l 

s 3 E I 

The rotation IPz 
will be 

Due to the shear force D 
z 

D 13 
z w = + 

3 El2 

D 12 
z 

!py = 
2 EL z 

D 1 
Y.. 

GA 

D 12 

!Pz = Y 
2 E I 

K D 1 
z z 
GA 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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5. 

Fig.3.1 shows for a certain shearfactor the influence of the length 

of the beam on the ratio between wand w. 
s 

Shear only causes a displacement 

but no rotation, therefore the influence of shear will decrease with the 

length of the coupled element. Fig.3.2 shows the ratio between wand w s 
when an element of a certain length is:coupled to the loaded element. 

3.4. Rotation due to the torsional moment M 
x 

A moment M causes: 
x 

a) rotation 

b) warping and 

c) distortion of the cross-rection (see fig.3.3 ). 

ad a: The rotation of the cross-section S is given by 
x 

cp 
x 

M I 
x 

:a:I 

In this formule J is calculated by the formules (2.1) or 

(3.10) 

(2.2) according to the theory of Bredt or De Saint-Venant. 

In these theories there is no axial normal tension and the 

cross section is free to warp. Further more it is assumed that 

~he shape of the cross-section does not change. 

ad.b: Warping does not seem to influence the rotation or displace

ment of the centre of gravity of the cross-section. Depending 

on the shape of the cross-section warping causes a relative 

axial displacement of one point to an other. 

ad c: The distortion of the cross section is indicated by the change 

of the angle 1P between two adjacent walls. Distortion causes 

extra displacements of points within the cross-sectional area. 

Fig.3.4. shows that for some points these displacements can be 

much higher in comparison with displacements without 

distortion. 



4. Influence of ribbina and transverse fartitions. 

In order to research the influence of ribbing and transverse partitions, 

many practical and theoretical work has been done. 

Dreyer (6) has measured these influences on a column as shown in fig. 4.1. 

The results of the measurements for bending are given in fi$. 4.2. 

The figure shows the relative bending stiffness and the bending stiffness 

weight ratio. The results are also compared with the relative difference 

of I and the ratio I/A. From these results it can be seen that for this 

column there is a fair agreement between measurements and the bending 

theory of Bernoulli-Navier. 

The measurements for the torsional moment do not give values for the 

rotation but for the displacements of one corner point. In those cases 

where there is a coverplate on the column, this displacement gives a good 

indication for the rotation of the cross-section. In fig. 4.3 and fig. 4.4 

the results of the measurements are shown. The discrepancies between the 

theoretical value according to De Saint-Venant and the measurements 18 

clear. This is due to the assumption that the cross-section is free to warp 

and particuraly that there is no distortion. 

Based on the Vlasov theory Janssen and Veldpaus (8), (9), (10) analysed 

the strength and stiffness of rectangular box-ginders with transverse 

partitions. Veldpaus (11) evaluated this theory for all kinds of open and 

closed cylindrical thin walled cross-sections. with the help of a special 

program the characteristics can be calculated. In fig. 4.5 the analysis of 

the column of a milling machine is shown with and without a topplate. The 

influence of ribbing and topplate can be clearly seen. 

5. Apertures. 

In many column elements of machine tool structures apertures in wall 

and transverse partitions are present. To know the influence of these 

apertures Dreyer (6) and Bielefeld (12) did a number of experiments. 

In fig. 5.1 the influence of an aperture in a transverse partition 

is shown. One can see that for A'/A > 0,3 the torsional stiffness decreases 

rapidly. The influence of apertures in the wall is shown in fig. 5.2. 

These apertures too have a remarkable influence on the stiffness even after 

been closed by a cover. 

6. 



6. Finite elements. 

To overcome the problems which occur at points with local deformations, 

torsion and bending of columns with internal ribbing. partitions and 

apertures the displacements can be calculated by dividing the column 

into a number of finite elements. 

Typical basic elements include beam elements, thin plate elements of 

triangular, rectangular or general quadrilateral form and prismatic 

elements (see fig. 6.1). By connecting such finite elements to another 

at a definite number of nodal points a construction can be formed. 

7. 

The deformation of the finite elements is constrained to a prescribed 

pattern which is expressed in mathematical form by a "displacement func

tion". With these displacement functions the stiffness matrix of an 

element can be formed. For thin plate elements there are displacement 

functions describi:g separately the deformations of the plate under plane 

stress and the deformations of the plate when subjected to bending forces. 

These two situations are asumed to be independent. 

In'fig. 6.2 for a number of frequently used plate elements the displace

ment functions are given. It is obvious that for all these elements the 

displacement functions for the in plane deformations differ from the dis

placement functions for the out of plane displacements. This makes that 

the elements are not fully compatible when connected to each other under 

an out of plane angle and to calculate the characteristics of columns 

properly a fine mesh is necessary. 

Hinduja and Cowley (13)t (141. did compute the displacements of the 

column of fig. 4.1, which was used by Dreyer (6). A number of different 

plate elements were used to see the influence of the displacement functions 

and the division of the elements. In fig. 6.3 the meshes used to compute 

the column with rectangular elements are shown. Some of the computed and 

measured results are shown in fig. 6.4. By refining the mesh the results 

converge to a certain value. 

Hinduja and Cowley (13) also computed the influence of the bending stiff

ness of the element on the total torsional stiffness of the column. 

They ,found that, depending of the hight of the colu-mn, there was a difference 

varying from 14 to 24 % between the deflections computed with elements 

having only a membrane (in plane) stiffness and elements having a membrane 

and flexural (bending) stiffness. So even for a thin walled column as used 

by Dreyer the bending stiffness of the plates have a remarkable influence. 



Some examples of computing column structures are given by Noppen (15), 

Hoshi (16) and Sato (17) (see figs. 6.5, 6.6 and 6.7). 

They all use in their programs beam and plate elements together. The 

number of elements used is large and with it the preparation time to 

make the computer input. The use of mesh generators seems to be neces

sary to reduce this preparation time and the possibility of making 

mistakes. Sata (18) has developped a system in which a construction 

can be built up with some basic elements (fig. 6.8) combined with modi

fication by rib, window or massive volume (fig. 6.9). The basic elements 

are automatically divided into a number of finite elements. Fig. 6.10 

8. 

and fig. 6.]1 show the idealization and static deformations of a vertical 

jig boring machine built up out of these basic elements. 

7. Conclusions. 

Slender columns can be calculated by using beam elements. When shear has 

to be taken into account, the calculation of the shear distribution factor 

is approximatively done in most cases. There is a need for further inves

tigation in this field. 

Many experiments have been done in order to get insight into the problems 

of ribbing, transverse partitions and apertures in columns. The findings 

of thes~ experiments can be succesfully used in applying beam elements 

for actual columns. 

Finally, the finite elements method can be used for the calculation of 

columns. In order to diminish time and costs to an acceptable level, the 

use of mesh generators and standard elements is necessary. 

Both subjects - mesh generators and standard elements - need further 

investigations. 
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