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Abstract 

This paper presents a new approach towards the design of iterative learning control. In 
linear motion control systems the design is often complicated by the inverse plant sensitivity 
being non-causal and unstable. To overcome these problems we apply high-performance 
differentiating filters together with a numerical collocation technique to compute the control 
signal. This allows for an accurate approximation of the theoretical solution. Moreover, the 
new approach offers the advantage of control over the boundary conditions of the learnt signal. 
It will be demonstrated with an example, i.e. an industrial H-drive. 

1 Introduction 

In this paper an algorithm for ILC (Iterative Learning Control) design is proposed that can deal 
with both non-causal and unstable inverse plant sensitivities. Because the presented algorithm is ,------------------ 
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Figure 1: iterative learning setup 

designed for use in learning control, some comment on ILC is made (for more information i.e. see 
[I]). Iterative learning control improves the tracking accuracy of a (closed-loop) control system by 
learning from previous experience prescribing the same trajectory. This is done by updating the 
feedforward signal u f f  in an iterative way according to a learning law. If we have a SISO loop with 



plant P and feedback-controller C, we can measure the frequency response function belonging to 
the process (or plant) sensitivity: 

where P is the plant transfer function, C the controller transfer function and S is the sensitivity 
of the closed loop. The learning filter L(s) translates the tracking error e(t) into the necessary 
feedforward action, which is then added to the existing feedforward signal uff( t)  (see [I] for more 
details). Q is a so-called robustness filter. 

u;:' (t) = Q{u!~ (t) + Lek ( t)}  (2) 

The best choice for L(s)  is therefore the inverse systerr? (J'S)-'. TO guarantee convergence of 
the learning process a robustification filter Q(s) is added to cope with model imperfections and 
measurement noise. Usually Q(s) is a lowpass filter. For the learning filter L the inverse model of 
the process sensitivity PS must be determined. Because closed-loop control systems are (at least 
designed to be) causal stable system, the inverse system cannot be evaluated directly. There are 
two reasons why this evaluation is not straightforward: 

0 inversion of a causal system leads to a non-causal system 

0 if the system is non-minimum phase, the inverse system will have unstable poles 

A commonly used method is ZPETC [2]. ZPETC needs a system description in discrete time 
(transfer function) form. In discrete time, the non-causality is canceled by a simple time shift. 
For unstable zeros, which would become unstable poles of the inverse system, the method cancels 
the phase shift induced by them. This phase cancellation assures that the frequency response of 
the exact inverse system and the calculated one exhibits zero phase shift for all frequencies. The 
method is fast, but not always accurate because we do not get the exact amplitude behaviour of 
the inverse system. Especially for non-minimum phase systems a bad (but stable) approximation 
of the inverse model using ZPETC is obtained (see results in section 5). The next sections will 
discuss another approach towards evaluating an inverse dynamic system H-l, not yet encountered 
in ILC practice. 

We assume that we have a reliable (linear) model of system H in transfer function form H(s).  To 
avoid numerical problems with higher order systems we prefer the use of zero-pole-gain notation 
instead of the polynomial transfer function form. For non-causal systems, as H-'(s) in general 
will be, the number of zeros is higher than the number of poles (M f L > K Eq. 3). It is also 
assumed that H(s)  is a minimal realization of the system H .  

We can split up Num(s) in two (real) parts, and if we satisfy the inequality L 5 K, the system is 
split up in a causal (but probably unstable) part H,(s) and a true non-causal part H,,(s): 

As we see (Eq. 4, our non-causal system Hn,(s) can be written as a linear combination of dif- 
ferentiators of different order. Since the whole discrete time input series e(t) is known, we must 
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Differentiatina filters 

design decent non-causal discrete time differentiating filters, as we will see in the next section. 
The output of this evaluation y,,(t) serves as an input for solving the causal part (section 4). 
In spite of the fact that H,(s) can be unstable we are able to evaluate such system in a finite 
time interval. We only need an accurate ODE solver to reduce numerical errors to the minimum. 
Solvers using a shooting or collocation method seemed to be most appropriate. By choosing a 
solver for mixed boundary value problems we can put extra constraints on begin and end values 
of the output signal. Section 5 will show the advantages of this new approach over the existing 
techniques in an example. Conclusions are given in section 6. 

Figure 2: schematic representation of the used method 

3 Differentiating filters 

We are looking for digital differentiating filters, as just mentioned. Important work in this field is 
done in [3] and [4], where a number of first order differentiating filters are presented. A Rth-order 
differentiator in Laplace-domain, HR(s) = sR, has $ R  phase-lead and is non-causal. The ideal 
frequency response for a discrete-time differentiator is: 

3.1 A reconstruction problem 

In most cases we don't have the pure continuous signal available to calculate the derivative. All 
measurements yk are noisy and in discrete time. 

yk = SB + vk = s(kT) + v(kT) (6) 

With only yk given, we try to  reconstruct the Rth derivative d: of the signal s(kT): 

d: = HR(q = eiWT)yh (7) 

The design of a differentiating filter is nontrivial for a1 least two reasons: 

o the relation between the sampled-time series s k  and the continuous-time signal s(t) is not 
known in general. 

in general the measurements yk will be corrupted with noise vk. 

Because in learning control a preceding filter Q will bother about the noise-pollution of the signal 
in a decent way, the differentiating filter doesn't have to cope with noise-reduction in the first 
place. The reconstruction problem mentioned is a much bigger problem. There are two main 
methods to reconstruct a continuous signal out of discrete-time data: 
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Differentiating filters 

Shannon reconstruction 

polynomial interpolation/fitting 

Differentiating filters based on both methods will be briefly discussed in the next subsection. 

3.2 Filter selection 

The most accurate differentiating filters presented in [4] use one of these two reconstruction meth- 
ods and are both non-causal FIR filters. Digital filters with Finite-duration Impulse Response 
(all-zero, or FIR filters) have both advantages and disadvantages compared to Infinite-duration 
Impulse Response (IIR) filters. FIR filters have the following primary advantages: 

can have exactly linear phase 

always stable 

filter startup transients have finite duration 

The primary disadvantage of FIR filters is that they often require a much higher filter order than 
IIR filters to achieve a given level of performance. Because linear phase-behaviour of IIR filters 
cannot be guaranteed (except using (forward-backward) non-causal zero(!)-phase filtering), they 
are no good way to design accurate differentiating filters. The basic digital FIR filter looks like: 

Where q is the shift operator: xk+l = qxk. Since all filtering occur off-line, computation time 
is no restriction and we can use a non-causal filter (Nl > 0). A general layout for a Nth order 
differentiating FIR filter to  calculate the Rth derivative (see appendix A) looks like: 

With this layout we guarantee the right phase behaviour (as in Eq. 5), and we calculate filter 
coefficients which are independent of the sample time T. In [4], a design criterion is suggested 
which covers both reconstruction methods. We calculate our filter coefficients minimizing the 
following cost function: 

subject to the constraint 

with E = [co cl . . . cNIT. The constraints in Eq. 11 (which can be zero up to  N in number) 
will be further specified in the next subsections. Mostly they represent constraints on the filters 
derivatives for w = 0. 

3.3 S hannon-based differentiators 

We can reconstruct our continuous-time signal using Shannon reconstruction (see [3]). Differenti- 
ating filters based on this method let N -+ co (as the Shannon reconstruction does), so they are 

Evaluation of (unstable) non-causal systems applied to iterative learning control 4 



Differentiating filters 

unrealizable. We can proof that using this method is the same as constructing a filter by only 
optimizing the cost function from Eq. 10. We can truncate the filter order to make a realizable 
filter. We will get a wide-band (up to w + 5) differentiator. The disadvantage of truncating the 
filter to order N are oscillations in the amplitude response of the filter, due to the discontinuity 
around w = 5 (known as the Gibb7s phenomenon). Another approach based on the Shannon re- 
construction using the cost function (but now optimizing the integral up to a? instead of $) and 

a one extra constraint %HR(q = eiwT)lW,o = 0 is called the Usui & Amidror approach (according 
to [4]). Other methods that reduce these oscillations use modified forms of the ideal differentiator 
(Eq. 5) in the cost function. For first order derivative filters all these methods have been discussed 
earlier in [3] and [4]. These Shannon-based methods all retain some oscillatory behaviour in their 
amplitude response (e.g. see fig. 3). Some of the above mentioned methods were expanded for 

frecuency [Hz] 

Figure 3: Amplitude response for a truncated ideal Shannon-based differentiator (R=3 N=15 
T=10W3 s) 

higher order derivatives. All these methods bring wide band differentiators but the price we pay 
are the Gibb's oscillations. These oscillations give big relative errors, especially for low frequencies 
in higher order derivative filters. Therefore these methods are not very suited for our goal; we 
need very accurate higher order differentiators, especially for the low frequency range. 

3.4 Polynomial int erpolat ion/fitt ing 

Another approach only uses the constraints from Eq.11. 

If we take the derivative of the basic filter (Eq. 9), for the lefthand side we get: 
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Differentiating filters 

if R + p is even 
i p ~ p - ~  ~r= ,  cnnp if R + p is odd 

The righthand side prescribes the values for the derivatives using the values of the ideal differen- 
tiator of Eq. 5: 

Combining the results of Eq.13 and Eq.14 in the set of constraints (Eq.12, we get: 

Because of the zeros in Eq.13 if R + p  is even, we need p = 1 , .  . . , 2N to get N usable equations to 
compute the N coefficients el, .  . . , c~ (solving a determined set of equations). For even derivative 
filters, we optionally use HR(q = eiWT)lw=o = 0 to calculate co (for odd derivatives co = 0). It can 
be proved [4] that this approach gives the same filter as one based on polynomial interpolation. 
A filter based on polynomial interpolation: 

determines the (unique) interpolating polynomial of degree 2N from 2N + 1 data points 

0 estimates the Rth derivative by differentiating the polynomial 

As expected from the set of constraints, this method has extremely low error in the low-frequency 
range and a little low-pass behaviour for higher frequencies. Note that 2N > R to obtain a usable 
filter. 

Besides polynomial interpolation, we can use polynomial fitting to design a differentiating filter. 
This fitting technique determines a polynomial fit of degree 2N from 2 P  + 1 data points (P > N). 
We can calculate the filter coefficients by using equation 15 but now using P (usable) equations 
instead of N. We obtain an overdetermined set of equations, which we can solve by a least squares 
minimalisation. Such filter smoothes out some high frequencies so this method has more lowpass 
behaviour than the interpolation technique. The low frequency accuracy is almost the same for 
both methods. Since the filter does not have to deal with (high frequency) noise, we choose 
polynomial interpolation as the best method to design differentiating filter for this particular 
purpose. 
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An accurate ODE solver 

Figure 4: Amplitude response for a differentiator based on polynomial interpolation (R=3 N=6 
T = ~ o - ~  S) 

3.5 Cancelling border distortions 

Since we use finite time series, we have to take special care to the borders of our signal. The 
chosen filter is non-causal so we have to do some data-expansion on begin and the end of our data 
to minimize border distortions. Looking at the good characteristics of polynomials in the filter 
design, we chose to expand our data using polynomial extrapolation. If we want to determine the 
R~~ derivative of a data series, the polynomial order of the expansion must be > R. We get the 
best overall results if we use a polynomial of order R, fitted on R + 1 border points. 

Figure 5 :  example of data expansion: 2nd order expansion based on 3 data points 

4 An accurate ODE solver 

Now that we are able to calculate the non-causal system Hnc(s) (from Eq. 3, we denote the 
discrete-time output data as y,,(lc), we can use this as an input to evaluate the causal system 
H,(s) of order K (Eq. 3). To evaluate this system, we use a ODE-solver from the NAG foundation. 
This routine calculates the solution of a two-point boundary value problem for a regular linear 
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An accurate ODE solver 

nth order system of first order ordinary differential equations in Chebyshev-series in a specified 
range. The n boundary conditions can by specified on begin Z(to) or end Z(t1) points (no mixed 
problems can be solved). 

i (t) = A(t)Z (t) + u(t) (16) 

The boundary conditions are solved exactly, and the remaining equations resulting from the system 
of Chebyshev polynomials are then solved by a least-squares method. The algorithm is fast but 
cannot handle (very) stiff problems. To ensure accuracy we used scaling: the time-constants of 
the system Hc(s) are scaled back and the time-scale is elongated. 

To solve system H,(s) we use this NAG routine because of two specific properties: 

0 it can solve unstable ODE'S in an accurate way 

we can evaluate the system as a two-point boundary value problem (BVP) 

The first property is strictIy needed since system H,(s) can have unstable poles (because the 
total system can be non-minimum phase). The second property let's us prescribe K boundary 
conditions like: 

Most ODE-solvers just ask to prescribe initial conditions: Z(to) = ZO. Eq. 17 gives much more 
freedom in choosing boundary conditions on begin (to) and end (tl) time. Especially in this 
case where y(t) is a feedforward signal in a motion system we can prescribe the signal (and 
his derivatives) to be zero at  the starting and the end points, which is a desirable property in 
controlling motion systems. To use the algorithm we have to transcribe the system H,(s) into 
state-space notation: 

Note that the system has order K and is still SISO. Since the order of HnC(s) (in Eq. 3) is restricted 
due to numerical problems, the numerator of the causal system Hc(s) will not be a constant in 
general. This means that the states of system in Eq. 18 are not just linear combinations of the 
output y(t) and its derivatives. These states are now combinations of input u(t) and the output 
y (t) and their derivatives. We can write the system in the observable canonical form: 

We can state the state-conditions at  a certain moment t* in terms of the input and output values 
and their derivatives at  moment t* as: 

in which yT(t*) is defined as the rth time-derivative of y at  moment t* and 
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D 0 0 0 0 ... 0 

CB D 0 0 0 . - .  0 C 

CAB CB D 0 0 . - .  0 
CA 

CA2B CAB CB D 0 - . -  

C A ~ - ' B  C A ~ - ~ B  - - + -  CAB CB D - - 



Applications 

Note that O is the lower triangular observability matrix. If we want to prescribe the output and 
its derivatives up to  a certain order at t*, we don't need to know the whole state-vector at  t*. 
Since both R and O are lower triangular matrices, for 1 < p < K, the first p states will prescribe 
y(t*), y(t*) up to yp-l(t*) if u(t*),u(t*) up to up-'(t*) are given. Since the input signal is given 
(ytnc(t)), we can calculate the derivatives a t  every moment using a filter based on polynomial 
expansion as presented in section 3. Now we can convert the boundary conditions given in Eq. 17 
to initial and end conditions on the output y(t): 

5 Applications 

First this new approach is applied on an academic non-minimum phase system. Some systems 
in process industry as boiler systems consist of combinations of opposing effects between first- or 
second-order subsystems (see Fig. 6 and Eq. 23). If we choose ,I~;& > 0 the system becomes 
non-minimum phase. The system is controlled with a very mild tuned PD-controller. We want to 
track the trajectory from Fig. 7. 

To increase performance ILC is applied in 5 iterations. The results are clear: ZPETC cannot deal 

Figure 6: block diagram of a non-minimum phase system (H1 = -& and Hz = -&) 

Figure 7: Designed trajectory. This can be a prescribed step in the temperature of a boiler system 
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with such non-minimum phase system, where the new approach shows convergence and succeeds 
in suppressing the tracking error 

05 1 1 5  0  0 5  1 
rime [rn,"] rim [mi"] 

(a) before and after first iteration (b) after fourth iteration 

Figure 8: Tracking error after several iterations using the new method 

Figure 9: feedforward signal after four iterations 

Also the new approach and standard ZPETC are 
both applied to  an industrial motion system, i.e. 
an H-drive. This robot uses 3 linear motion mo- 
tor systems (LIMMs) to drive the 2 main sliders. 
Only the X-slide is considered in the learning pro- 
cess (the most horizontal slider in fig. 5). The 
control loop is implemented with a dSPACE sys- 
tem. We used an loth order model of the process 
sensitivity. A PID with lowpass D controller is 
used, resulting in a bandwidth of 30 Hz. ILC 
is used with a lowpass robustification filter with 
a cutoff frequency at  250 Xz. After 7 iteratinns 
both methods converge. The resulting tracking 
error is of the same order. 

Figure 10: Industrial H-drive 
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Applications 

(a) Before ILC; no feedforward 

(c) after two iterations 

(e) after four iterations 

(b) after one iteration 

(d) after three iterations 

(g) after six iterations 

(f) after five iterations 

(h) after seven iterations 

Figure 11: Resulting error after ILC iterations using ZPETC and the new method 
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6 Conclusions 

At this point, contrary to ZPETC, the new approach succeeds in calculating inverse responses of 
non-minimum phase systems. For minimum phase systems of higher order the implementation 
of this new method is not competitive to ZPETC-method [2] in sense of computation time. One 
major advantage is that we can put restrictions on begin and end values of the feedforward signal, 
which is very admirable in motion control. Furhter optimizing the numerical implementation can 
make this method more efficient and probably competing with ZPETC for higher-order (minimum 
phase) real world systems. 
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Truncated Shannon-based filter 

A Basic differentiating FIR filter 

Phase-properties determine the quality of differentiating filters especially for higher order deriva- 
tives. To guarantee linear phase, filter H(q) (Eq. 8) gets some constraints. First we make the 
filter symmetric: Nl = N2 = N .  For odd derivative (R = 1,3 , .  . .) filters we set h, = -h-,. The 
filter becomes: 

This filter has an anti-symmetric impulse response. Note that we get the exact phase-shift as in 
Eq. 5. Filter coefficient ho = 0, so the discrete data point itself isn't responsible for its own odd 
derivatives. 

For even derivative (R = 2,4,.  . .) filters we set hn = h-,, so: 

Now we get a pure real tranfer function of the filter and again the phase properties as in Eq. 5 
are guaranteed. Note this FIR filter has an symmetric impulse response. Because sample time T 
is not mentioned yet, the filter coefficients ho, . . . , hN will depend on this sample time. We can 
present a general differentiating FIR filter (as in [4]) with filter coefficients which don't include 
sample time T :  

B Truncated Shannon-based filter 

According to the sampling theorem we can reconstruct a continuous-time series sc(t) exactIy from 
the discrete-time values s(k) (also called Shannon reconstruction): 

where 

This function is also known as the Dirichlet, periodic sinc or aliased sinc function. By differenti- 
ating Eq. 27 we get: 

We are only interested in values of the derivatives in the sampling points, so Eq. 29 becomes: 
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Truncated Shannon-based filter 

Differentiating Gj (t) (Eq. 28) 

and evaluating the result in the sample-points kT gives: 

So the first-order derivative signal becomes 

Now we substitute n = k - j: 

Because &j(t) is odd symmetric around t = kT (which means &j(-n) = -&j(n)) we can write: 

- - g (-::+I (s(k + n) - s(k - n))  

n=l 

Denoted as filter 8 with shift-operator q, we can denote the ideal reconstructive differentiating 
filter: 

The filter coefficients become: 

By replacing q = eiWT we can calculate the frequency response of the filter. We can proof (found 
in [4]) that this frequency response equals the response of the ideal differentiator (Eq. 5 with 
R=l), expanding it into a Fourier series. 

We can build higher derivative filters by differentiating Gj ( t)  (Eq. 28) several times. If we evaluate 
these derivatives of the Dirichlet function only in the sample points (as in Eq. 31) we get for odd 
derivatives: 

For even derivative filters: 
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function u=invsim(z,p,k,y,t) 
% INVSIM evaluates the inverse of the SISO system H(s), specified 
% by the continuous-time zero-pole-gain (ZPK) model SYS with zeros Z, 
% poles P, and gain K. The ouput series of the system H(s) , which 
% now is the input, is specified by Y and time series T, which must 
be equally spaced. 

We can prescribe initial and end values of the input U and it's 
derivatives in columnvectors U1 and U2. Since the number of boundary 
conditions is 1, the order of the numerator, U1 and U2 have length 1/2. 
If 1 is odd, length U1 must be round(1) and length U2 round(1)-I. U1 and 
U2 may be longer but the redundant values won't be used. If U2 or U1 is an 
empty matrix, we only get contraints on respectively begin or end values of 
the input U. 

RELTOL and ABSTOL prescribe the relative and absolute error tolerance 
for solving the differential equations. Defaults are respectively le-11 
and le-6. 
The optional parameter RES sets the root resolution: all coefficients 
smaller than res will be neglected (set to 0). The default value of 
RES is le-14. 

First the transfer function is split up in a true non-causal (tnc) 
and a (unstable) causal part. The true non-causal part can be 
seen as a summation of several differentiators of different 
degrees. Some decentbon-causal) discrete time differentiating 
filters are used to evaluate the system. Since the causal part 
may be unstable, a shooting method (MUS) is used to evaluate the 
system in an accurate way. By using MUS, a two-point boundary value 
solver, we can put extra constrains on begin and end values of the 
output signal. 

Author: Maurice Schneiders 
Date : July 2000 

global A B t-y y-tnc bcv 

% check input dimensions 
if size (z,l) "=1 & size (z,2) "=1 

error('Z has to be a vector') 
elseif size(?,?) "=1 & size(p,2) "=I 

error('P has to be a vector') 
elseif size(k,l) "=1 I size (k,2) "=I 

error('K has to be a scalar') 
elseif size (t , 1) "=l & size (t ,2) "=l 

error('Timeseries T has to be a vector') 
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elseif size(y ,2)-=l 
error('Dataseries Y has to be a rowvector') 

end 

if size (z,2) ==l 
z=z' ; 

end 

if size(p,2)==1 

p=p7 ; 
end 

if size (y, l)==l 

y=y' ; 
end 

% Check equidistanceness of timeseries 
if max(diff (diff (t) ) )  >lO*eps 

error('Timeseries T has no equidistantial spacing') 
end 

% Check for causal system 
if length(z) >length(p) 

error('Zer0-pole-gain (ZPK) system is not causal') 
end 

% calculate inverse model 
z-inv = p; 
p-inv = Z; 

% split up causal and non-causal part (causal part (just) proper if possible) 
% use smallest (absolute value) zeros for non-causal part 
m=length(z-inv) -length(p-inv) ; 
z-inv=z-inv+eps*i; 
z-inv=sort (z-inv) ; 
z-inv=z-inv-eps*i; 

if imag(z-inv (m) ) ==0 
z-tnc=z-inv (1 :m) ; 
z-c=z-inv(m+l:end); 

else 
if m==l 

z_tnc=z_inv(l:2); 
z-c=z-inv (3: end) ; 

elseif abs (z-inv (m) ) ==abs (z-inv(m-1) ) 
z-tnc=z-inv(1:m); 
z-c=z-inv(m+i: end) ; 

else 
z-tnc=z-inv (1 :m+l) ; 
z-c=z-inv (m+2 : end) ; 

end 
end 

tnc=poly (2-tnc) ; 
% evaluate true non-causal part 
y-tnc=tncsim(tnc, y ,T) ; 
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% evaluate cuasal part 

% scaling system 
scale=round(loglO(mean(abs(p~inv)))); 
c=l0- (-scale) ; 
z-c=z-c*c; 
p-inv=p-inv*c; 
t-y=t/c; 
% to state space notation 
[A ,B ,C,D] =zp2ss (z-c ,p-inv, 1) ; 
% instead of this we can use tf2ssic if we want to prescribe 
% initial conditions out of begin and end conditions of the system 

ii=size(A,?) ; 
boundary conditions 

bcv=[-[1:n]' zeros(n,l)]; 

% run the NAG-algorithm 
% order of pol.app. is kl-1 
% try different orders and compare results! 
kl=44 ; 
% number of collocation points 
kp=1000; 
% number of output points 
npoints=length(t-y) ; 
% initial time 
xO=t-y (1) ; 
% final time 
xl=t-y (end) ; 
nsamp=length(t-y) ; 
save bvpdat.mat n k1 kp npoints xO xl A B t-y y-tnc bcv nsamp 
tic 
! bvp 
toc 
load bvpsol.mat 
u = [C*y + D*y-tnc'] '; 
u=u*c-(length(p-inv) -length(z-c) ) /k; 

function y=tncsim(tnc,u,T,N,method,method~parameters) 
% TNCSIM simulates true non-causal system H(s). 
% 
% Y=TNCSIM(TNC,U,T,N,METHOD,METHUD-PARAMETERS) 
% 
% m m- 1 
% H(s) = TNC(S) = c s + c s + ... + c 
% m m- 1 0 
% 
%TNC=[c c... c] 
% m m-1 0 
% 
% T is the sampletime of the inputseries U (a columvector). 
% Optional we can set the filter order N for each differentiating 
% filter. We can also set METHOD and corresponding METHOD-PARAMETERS 
% for each differentiation. 
% That's why N, METHOD and METHOD-PARAMETERS are all columvectors 
% with size (NTC) -1. 
% 
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% m m- I 
% N = [filter-order-s ; filter order-s ; . . . . . . ; filter-order-s] 
% 
% 
% m m- I 
% METHOD = [method-s ; method-s ; ......; method-sl 
% 
% 
% m m- I 
% METHOD-PARAMETERS = [meth-para-s ; meth-para-s ; . . . . . . ; meth-para-s] 
% 
% For information on these options see function BDIFF1LT.M. Default filter 
% order for all filters Is 8. Defa~lt method is Polynomtal Interpclztion 'PInt' 
% ('PInt7 has no method-parmeters). 

% Author: Maurice Schneiders 
% Date: Julye 2000 

if nargin<6 
if narginc5 

if nargin(4 
N = 8*ones(size(tnc,2)-I, 1) ; 

end 
method = [I; 
for k=l:length(tnc)-I 

method= [method; 'PInt '1 ; 
end 

end 
method-parameters = zeros(size(tnc,2)-1,l); 

end 

% check inputdimensions 
if size (tnc, I) "=I 

error('TNC has to be a rowvector') 
elseif size(u,2) "=l 

error('U has to be a columvector') 
elseif size(T,l)"=l I size(T,2) "=I 1 T(1,1)<=0 

error('Inva1id value of sampletime T') 
elseif size (N,2)>1 

error('N must be a columvector') 
elseif size (N, 1) "=length (tnc) -1 

error('Vector N must have length(TNC)-1') 
elseif size (method, 2) -=4 

error('METH0D must be a columvector and method must hold 4 characters') 
elseif size(method,l)"=length(tnc)-I 

error ('Vector METHOD must have length(TNC1-I ' ) 
elseif size (method-parameters ,2) >I 

error('METH0D-PARAMETERS must be a columvector') 
elseif size(method~parameters,l)"=length(tnc)-I 

error('Vector METHOD-PARAMETERS must have length(TNC)-1') 
end 

y = zeros (size (u) ) ; 

for m=l : length(tnc) -1 
R = length(tnc1-m; 
C = bdiffilt (R,N(m) ,method(m, :) ,method-~arameters(rn, : ) )  ; 
y = y+tnc (m) *diffilt (u,C,R,T) ; 

end 

y = y+tnc (end) *u; 
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function C=bdif f ilt (R,N ,METHOD ,method-parameters) 
% BDIFFILT calculates filtercoefficients C to build a non-causal 
% differentiating N-th order filter. R sets the order of the derivative 
% which can be calculated with the filter. Use the filtercoefficients 
% with function DIFF1LT.M. 
% 
% C=BDIFFILT(R,N,METHOD,METHOD-PARAMETERS) 
% 
% C= [cO cl c2 c3. . . . cN! ' , used in f iltes H (a) : 
% 
% 
% R 1 N n -n 
% H (z) = ------ sum cn(z - z ) for odd-derivatives, and 

% 2 T-R n=l 
% 
% 
% 
% R 1 N n -n 
2 H (z) = ------ ( sum cn(z + z ) + cO) for even-derivatives. 
% 2 TAR n=l 
% 
% 
% Phase-shift is as the ideal R-th order differentiatingfilter +9O*R degrees. 
% Amplitude can be optimized with the following cost-function: 
% 
% pi/T R R 2 
% E = int I Hd (iw) - H (z) I dw 
% 0 
% 
% Hd(iw) is the 'ideal' R-th order differentiator. This function will be minimized 
% respect to the 
% 
% W*C=e; 
% 
% 
% METHOD 'TISD': 
% 
% 
% 
% 
% 
% 
% METHOD 'PIntJ: 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% METHOD 'LSPF': 
% 
% 
% 
% 

constraints: 

Truncated Ideal (Shannon-reconstruction) Differentiator (no method-parameters) 
R R 

This method minimizes E with Hd (iw)= (iw) for O<w<pi/T. This means the same 
as using the R-th order derivative of the Dirichlet-funtion to calculate the 
derivative. 
No supplemental constraints are used. 

Polynomial Interpolation (degree 2N from 2N+1 data-points) 

Note that N >= 0.5R in order to get a working filter. Fitting a polynomial 
of degree 2N is the same as using W*C=e with the following 2*N equations: 

r r 
d R I d R I 
-- r H (2) I = -- r (iw) I for r=0,1, ..., 2*N 
d w Iw=O d w I w=O 

This leads to N usable equations (or N+l in case R is even to calculate cO) 

Least Squares Polynomial Fitting (degree 2P from 2N+1 data-points) 
(method-parameters: P) 

The same as polynomial interpolations, but now P < N. So some smoothing through 
the samplepoints uccur which minimizes noise-transmission. A good choice of P has 

- 
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to be made to get a working filter. Note that N >= 0.5R still holds. Using the 
following 2P equations: 

r r 
d R I d R I 
-- r H (2) I = -- r (iw) I for r=0,1, ..., 2*P 
d w Iw=O d w I w=O 

T T -1 

gives P usable equations with rank(W)=N, so C = W *(W*W ) * e, to calculate the 
least squares polynomial fit of polynomial with degree 2P. 

% Author: Maurice Schneiders 
% Date: July 2000 

if nargin==3 
method-parameters = 0; 

end 

% check input dimensions 
if size(R,l)"=I I size(R,2)"=l I R(1,1)<=0 

error('Inva1id value for derivative order R') 
elseif size(N,l)-=I I size(N,2)"=l I N(1,1)<=0 

error('Inva1id value for filter order N') 
elseif size (METHOD, 2)-=4 I size (METHOD, I) "=I 

error('METH0D must hold 4 characters') 
elseif size(method-parameters,I)"=l 

error('METH0D-PARAMETERS must be a scalar or rowvector') 
end 

if R/2==round(R/2) 
% r is even 
r-max = R - 2; 

else 
% r is odd 
r-max = R - 1 ; 

end 

% calculate the R-th order Dirichlet(sinc)-function in N samplepoints 

for r=0:2:r_max 
C(l:N,l)=C(l:N,I)+2*(-1)~(R+1+0.5*r) *factorial(R)/f actorial(r+l)*(-I) . %./(pi-(-r)*n. -(R-r)) ; 

end 
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if R > 2*N 
error('Fi1ter order is too small to calculate a R-th derivative filter (N >= 0.5R)') 

end 

if R/2==round(R/2) % r is even 

for r = 0:2:2*N 
if r==R 

e = [e; factorial(r)]; 
else 

e = Ce; 01; 
end 
W = CW; [I:Nl.^rl; 

end 
W = [[I; zeros(size(W,I)-1,l)l Wl; 
C = W\e; 

else % r is odd 

for r = 1:2: (2*N-1) 
if r==R 

e = [e; factorial(rl1; 
else 

e = Ce; 01; 
end 
W = CW; [l:Nl.-rl; 

end 
C =  W\e; 
c =  co; Cl; 

end 

P = method-parameters; 
e = [I; 
w = [ I ;  

if R > 2*P 
error('Fi1ter order is too small to calculate a R-th derivative filter (P >= 0.5R)') 

end 

if R/2==round(R/2) % r is even 

for r = 0:2:2*P 
if r==R 

e = [e; factorial(r)] ; 

else 
e = [e; 01; 

end 
W = CW; C1:NI.-r]; 

end 
W = [Cl; zeros (size(W, 1) -1,111 W1; 
C = W'*inv(W*W')*e; 
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else % r is odd 

f o r r =  1:2:(2*P-1) 
if r==R 

e = [e; factorial(r)l ; 
else 

e = [e; 01; 
end 
W = [W; C1:Nl .Yl; 

end 
C = W'*inv(W*WJ)*e; 
c =  CO; CI; 

end 
else 

error('Settign for METHOD is not correct') 
end 

C.4 diffi1t.m 

function ~=diffilt(x,C,R,T) 
DIFFILT calculates the R-th order derivative Y of signal X, 
using filtercoefficients C assuming that 
sampled with sampletime T 

C= CcO cl c2 c3. . . . cN1' , used in filter H 

R 1 N n -n 
H (z) = ------ sum cn(z - z for 

2 T-R n=l 

R 1 N n -n 
H (z) = ------ (sum cn(z + z ) + 

2 T-R n= 1 

See BDIFF1LT.M for more information. 

To cancel border distortions, polynomial 
N is the filter order so also the length 
R is the derivative to be determined, so 

- 

signal X was 

odd-derivatives, and 

cO) for even-derivatives. 

expansion is used. 
of the expansion. 
a polynomial of order of the 

expansion must be >=R. We get the best overall results if we use a polynomial 
of order R. 

Author: Maurice Schneiders 
Date : July 2000 

check input dimensions 
if size (x,2) "=I 

error('Dataseries x has to be a coiuinvectorJ~ 
elseif size (C ,2)-=I 

error('Coefficientvector C has to be a columvector') 
elseif size(R,I)-=I I size(R,2)"=1 I R(1,1)<=0 

error('Inva1id value for derivative order RJ) 
elseif size(T,l)"=l I size(T,2)-=l I T(l,1)<=0 
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error('Inva1id value for sampletime T') 
end 

L = size(x,l) ; 
N = size(C,l)-1; 

% Polynomial expansion of dataseries 

pd-b = polyfit([l:R+l]',x(l:(R+l)),R); 
pd-e = ~ o l ~ f  it ([l:R+l] ' ,x(end-R:end) ,R) ; 

xe-b = polyval (pd-b, [(-N+1) : 01 ' 1 ; 
xe-e = polyval (pd-e , CR+2 : R+2+W-?! ' ) ; 

= Cxe-b; x; xe-el ; 
= zeros (size(x) > ; 
R/2==round(R/2) 
% r is even 

for 1 = 1:l:L 
y (l,l)=sum(C. * (f lipud(xn(1: l+N)) +xn(l+N:1+2*N) ) )  ; 

end 

else 
% r is odd 

for 1 = 1:l:L 
y(l,l)=sum(C.*(-flipud(xn(l:1+~))+xn(l+~:1+2*~))); 
end 

end 

function [A,B ,C,D,xO] =tf 2ssic(num,den,uO,yO,res ,method) 
% TF2SSBC Converts transfer function H(s) to state-space representation. 
% Initial state values can be calculated by prescribing initial values of input 
% and output and their derivatives. 
% 
% [A,B,C,D,XO] = TF2SSIC(NUM,DEN,UO,YO,RES,METHOD) 
% 
% 1 1-1 
% b s  + b  s + . . . +  b 
% NUM(S) 1 1-1 0 
% H(s)=--------- = ........................ 
% DEN(S) k k- 1 
% a s  + a  s + . . . + a  
% k k- 1 0 
% 
% METHOD specifies the realisation of the state-space model: 
% 
% 'Ctr' : Controllable canonical f o n  (defa-~lt) 
% 'Obs' : Obsevable canonical form 
% 
% uO is a columvector containing the initial conditions 
% for the input signal and it's derivatives up to order k-1: 
% k-1 
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% Cu(t=O) u' (t=0). . .u (t=O)l' 
% 
% yo is a columvector containing the initial conditions 
% for the input signal and it's derivatives up to order 1-1: 
% 1-1 
% Cy (t=O) y' (t=O). . .y (t=0)1' 
% 
% The optional parameter RES sets the root resolution: all coefficients 
% smaller than res will be neglected (set to 0). The default value of 
% RES is le-14. 

% Author: Maurice Schneiders 
% Date: Jnly 2303 

if nargin==6 & size(method,2) '= 3 
error('The prescribed method is not specified') 

end 

if narginc6 
if nargin<5 

res = le-14; 
end 
method = 'Ctr'; 

end 

if size (res, I) "=1 I size (res, 2) "=I I res (I, l)<0 
error('1nvalid value of RES') 

end 

% check resolution and strip leading zeros from numerator 
for k=l : length (num) 

if abs(num(k) )<res 
num(k)=O; 

end 
end 
inz = find(num "= 0); 
num = num(inz(1) :end) ; 

% check resolution and strip leading zeros from denominator 
for l=l : length(den) 

if abs (den (1) ) <res 
den(l)=O; 

end 
end 
inz = find(den "= 0); 
den = den (inz (I) : end) ; 

% check input dimensions 
if size(u0,2) > I I size(y0,2) > I 

error('u0 and yo must both be columnvectors.') 
elseif size(num,2)"=size(uO,l)+l I size(den,2)"=size(yO,l)+l 

error('Number of initial conditions does not match with order of numerator or denumerator') 
elseif den(l,l)==O 

error('First element of den must not equal zero.') 
elseif size(num,l)"=l I size(den,l)"=l 

error('Num and then must both be rowvectors.') 
elseif size (num,2) > size(den,2) 

error('System is non-causal cannot be converted to a state space model.') 
end 

num = [zeros (I ,n-length(num1 numl ; 
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uO = [uO; zeros (length(y0) -length(uO), I)] ; 

if method=='Ctr' 
D = num(l)/den(l); 
C = [a - D*b] ; 
A = [-b ; eye(n-2,n-I)]; 
B = Ceyeh-1,l)l ; 

elseif method=='Obs' 
D = num(l)/den(l); 
B = [a-Dzb] ' ; 
A = [-b' eye(=-l,n-2):; 
C = Ceye(1,n-111; 

else 
error ( 'Obsolete method-parameter' ) 

end 

% express initial values of y and u (and derivatives) in x: 
% 
% Obs*xO = yo - L*uO 

Obs = zeros (n-1 ,n-1) ; 
L = Obs; 

for r=O:n-2 

for s=l:n-1 
if r-s >= 0 

L(r+l, s) = C*Aa(r-s)*B; 
else 

~(r+l,s) = 0; 
end 

end 
end 
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