

Evaluation of (unstable) non-causal systems applied to
iterative learning control
Citation for published version (APA):
Schneiders, M. G. E. (2001). Evaluation of (unstable) non-causal systems applied to iterative learning control.
(DCT rapporten; Vol. 2001.008). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/0bae4a7b-ae21-41db-b255-5b1c9211768d

Technische Universiteit Eindhoven
Faculteit Werktuigbouwkunde
Sectie Systems & Control

Stagerapport 200 1.08

Evaluation of (unstable) non-causal
systems applied to iterative learning

control

door Maurice Schneiders

Rapport van een interne stage
uitgevoerd van 10 april2000 tot 29 september 2000

Begeleider: M.J.G. van de Moiengraft
Afstudeerhoogleraar: M. Steinbuch

Evaluation of (unstable) non-causal systems applied to
iterative learning control

M.G.E. Schneiders,
M. J.G. van de Molengraft,

M. Steinbuch

February 14, 2001

Abstract

This paper presents a new approach towards the design of iterative learning control. In
linear motion control systems the design is often complicated by the inverse plant sensitivity
being non-causal and unstable. To overcome these problems we apply high-performance
differentiating filters together with a numerical collocation technique to compute the control
signal. This allows for an accurate approximation of the theoretical solution. Moreover, the
new approach offers the advantage of control over the boundary conditions of the learnt signal.
It will be demonstrated with an example, i.e. an industrial H-drive.

1 Introduction

In this paper an algorithm for ILC (Iterative Learning Control) design is proposed that can deal
with both non-causal and unstable inverse plant sensitivities. Because the presented algorithm is ,------------------

1

Figure 1: iterative learning setup

designed for use in learning control, some comment on ILC is made (for more information i.e. see
[I]). Iterative learning control improves the tracking accuracy of a (closed-loop) control system by
learning from previous experience prescribing the same trajectory. This is done by updating the
feedforward signal u f f in an iterative way according to a learning law. If we have a SISO loop with

plant P and feedback-controller C, we can measure the frequency response function belonging to
the process (or plant) sensitivity:

where P is the plant transfer function, C the controller transfer function and S is the sensitivity
of the closed loop. The learning filter L(s) translates the tracking error e(t) into the necessary
feedforward action, which is then added to the existing feedforward signal uff(t) (see [I] for more
details). Q is a so-called robustness filter.

u;:' (t) = Q{u!~ (t) + Lek (t)} (2)

The best choice for L(s) is therefore the inverse systerr? (J'S)-'. TO guarantee convergence of
the learning process a robustification filter Q(s) is added to cope with model imperfections and
measurement noise. Usually Q(s) is a lowpass filter. For the learning filter L the inverse model of
the process sensitivity PS must be determined. Because closed-loop control systems are (at least
designed to be) causal stable system, the inverse system cannot be evaluated directly. There are
two reasons why this evaluation is not straightforward:

0 inversion of a causal system leads to a non-causal system

0 if the system is non-minimum phase, the inverse system will have unstable poles

A commonly used method is ZPETC [2]. ZPETC needs a system description in discrete time
(transfer function) form. In discrete time, the non-causality is canceled by a simple time shift.
For unstable zeros, which would become unstable poles of the inverse system, the method cancels
the phase shift induced by them. This phase cancellation assures that the frequency response of
the exact inverse system and the calculated one exhibits zero phase shift for all frequencies. The
method is fast, but not always accurate because we do not get the exact amplitude behaviour of
the inverse system. Especially for non-minimum phase systems a bad (but stable) approximation
of the inverse model using ZPETC is obtained (see results in section 5). The next sections will
discuss another approach towards evaluating an inverse dynamic system H-l, not yet encountered
in ILC practice.

We assume that we have a reliable (linear) model of system H in transfer function form H(s). To
avoid numerical problems with higher order systems we prefer the use of zero-pole-gain notation
instead of the polynomial transfer function form. For non-causal systems, as H-'(s) in general
will be, the number of zeros is higher than the number of poles (M f L > K Eq. 3). It is also
assumed that H(s) is a minimal realization of the system H .

We can split up Num(s) in two (real) parts, and if we satisfy the inequality L 5 K, the system is
split up in a causal (but probably unstable) part H,(s) and a true non-causal part H,,(s):

As we see (Eq. 4, our non-causal system Hn,(s) can be written as a linear combination of dif-
ferentiators of different order. Since the whole discrete time input series e(t) is known, we must

Evaluation of (unstable) non-causal systems applied to iterative learning control 2

Differentiatina filters

design decent non-causal discrete time differentiating filters, as we will see in the next section.
The output of this evaluation y,,(t) serves as an input for solving the causal part (section 4).
In spite of the fact that H,(s) can be unstable we are able to evaluate such system in a finite
time interval. We only need an accurate ODE solver to reduce numerical errors to the minimum.
Solvers using a shooting or collocation method seemed to be most appropriate. By choosing a
solver for mixed boundary value problems we can put extra constraints on begin and end values
of the output signal. Section 5 will show the advantages of this new approach over the existing
techniques in an example. Conclusions are given in section 6.

Figure 2: schematic representation of the used method

3 Differentiating filters

We are looking for digital differentiating filters, as just mentioned. Important work in this field is
done in [3] and [4], where a number of first order differentiating filters are presented. A Rth-order
differentiator in Laplace-domain, HR(s) = sR, has $ R phase-lead and is non-causal. The ideal
frequency response for a discrete-time differentiator is:

3.1 A reconstruction problem

In most cases we don't have the pure continuous signal available to calculate the derivative. All
measurements yk are noisy and in discrete time.

yk = SB + vk = s(kT) + v(kT) (6)

With only yk given, we try to reconstruct the Rth derivative d: of the signal s(kT):

d: = HR(q = eiWT)yh (7)

The design of a differentiating filter is nontrivial for a1 least two reasons:

o the relation between the sampled-time series s k and the continuous-time signal s(t) is not
known in general.

in general the measurements yk will be corrupted with noise vk.

Because in learning control a preceding filter Q will bother about the noise-pollution of the signal
in a decent way, the differentiating filter doesn't have to cope with noise-reduction in the first
place. The reconstruction problem mentioned is a much bigger problem. There are two main
methods to reconstruct a continuous signal out of discrete-time data:

Evaluation of (unstable) non-causal systems applied to iterative learning control 3

Differentiating filters

Shannon reconstruction

polynomial interpolation/fitting

Differentiating filters based on both methods will be briefly discussed in the next subsection.

3.2 Filter selection

The most accurate differentiating filters presented in [4] use one of these two reconstruction meth-
ods and are both non-causal FIR filters. Digital filters with Finite-duration Impulse Response
(all-zero, or FIR filters) have both advantages and disadvantages compared to Infinite-duration
Impulse Response (IIR) filters. FIR filters have the following primary advantages:

can have exactly linear phase

always stable

filter startup transients have finite duration

The primary disadvantage of FIR filters is that they often require a much higher filter order than
IIR filters to achieve a given level of performance. Because linear phase-behaviour of IIR filters
cannot be guaranteed (except using (forward-backward) non-causal zero(!)-phase filtering), they
are no good way to design accurate differentiating filters. The basic digital FIR filter looks like:

Where q is the shift operator: xk+l = qxk. Since all filtering occur off-line, computation time
is no restriction and we can use a non-causal filter (Nl > 0). A general layout for a Nth order
differentiating FIR filter to calculate the Rth derivative (see appendix A) looks like:

With this layout we guarantee the right phase behaviour (as in Eq. 5), and we calculate filter
coefficients which are independent of the sample time T. In [4], a design criterion is suggested
which covers both reconstruction methods. We calculate our filter coefficients minimizing the
following cost function:

subject to the constraint

with E = [co cl . . . cNIT. The constraints in Eq. 11 (which can be zero up to N in number)
will be further specified in the next subsections. Mostly they represent constraints on the filters
derivatives for w = 0.

3.3 S hannon-based differentiators

We can reconstruct our continuous-time signal using Shannon reconstruction (see [3]). Differenti-
ating filters based on this method let N -+ co (as the Shannon reconstruction does), so they are

Evaluation of (unstable) non-causal systems applied to iterative learning control 4

Differentiating filters

unrealizable. We can proof that using this method is the same as constructing a filter by only
optimizing the cost function from Eq. 10. We can truncate the filter order to make a realizable
filter. We will get a wide-band (up to w + 5) differentiator. The disadvantage of truncating the
filter to order N are oscillations in the amplitude response of the filter, due to the discontinuity
around w = 5 (known as the Gibb7s phenomenon). Another approach based on the Shannon re-
construction using the cost function (but now optimizing the integral up to a? instead of $) and

a one extra constraint %HR(q = eiwT)lW,o = 0 is called the Usui & Amidror approach (according
to [4]). Other methods that reduce these oscillations use modified forms of the ideal differentiator
(Eq. 5) in the cost function. For first order derivative filters all these methods have been discussed
earlier in [3] and [4]. These Shannon-based methods all retain some oscillatory behaviour in their
amplitude response (e.g. see fig. 3). Some of the above mentioned methods were expanded for

frecuency [Hz]

Figure 3: Amplitude response for a truncated ideal Shannon-based differentiator (R=3 N=15
T=10W3 s)

higher order derivatives. All these methods bring wide band differentiators but the price we pay
are the Gibb's oscillations. These oscillations give big relative errors, especially for low frequencies
in higher order derivative filters. Therefore these methods are not very suited for our goal; we
need very accurate higher order differentiators, especially for the low frequency range.

3.4 Polynomial int erpolat ion/fitt ing

Another approach only uses the constraints from Eq.11.

If we take the derivative of the basic filter (Eq. 9), for the lefthand side we get:

Evaluation of (unstable) non-causal systems applied to iterative learning control 5

Differentiating filters

if R + p is even
i p ~ p - ~ ~r= , cnnp if R + p is odd

The righthand side prescribes the values for the derivatives using the values of the ideal differen-
tiator of Eq. 5:

Combining the results of Eq.13 and Eq.14 in the set of constraints (Eq.12, we get:

Because of the zeros in Eq.13 if R + p is even, we need p = 1 , . . . , 2N to get N usable equations to
compute the N coefficients el, . . . , c~ (solving a determined set of equations). For even derivative
filters, we optionally use HR(q = eiWT)lw=o = 0 to calculate co (for odd derivatives co = 0). It can
be proved [4] that this approach gives the same filter as one based on polynomial interpolation.
A filter based on polynomial interpolation:

determines the (unique) interpolating polynomial of degree 2N from 2N + 1 data points

0 estimates the Rth derivative by differentiating the polynomial

As expected from the set of constraints, this method has extremely low error in the low-frequency
range and a little low-pass behaviour for higher frequencies. Note that 2N > R to obtain a usable
filter.

Besides polynomial interpolation, we can use polynomial fitting to design a differentiating filter.
This fitting technique determines a polynomial fit of degree 2N from 2 P + 1 data points (P > N).
We can calculate the filter coefficients by using equation 15 but now using P (usable) equations
instead of N. We obtain an overdetermined set of equations, which we can solve by a least squares
minimalisation. Such filter smoothes out some high frequencies so this method has more lowpass
behaviour than the interpolation technique. The low frequency accuracy is almost the same for
both methods. Since the filter does not have to deal with (high frequency) noise, we choose
polynomial interpolation as the best method to design differentiating filter for this particular
purpose.

Evaluation of (unstable) non-causal systems applied to iterative learning control 6

An accurate ODE solver

Figure 4: Amplitude response for a differentiator based on polynomial interpolation (R=3 N=6
T = ~ o - ~ S)

3.5 Cancelling border distortions

Since we use finite time series, we have to take special care to the borders of our signal. The
chosen filter is non-causal so we have to do some data-expansion on begin and the end of our data
to minimize border distortions. Looking at the good characteristics of polynomials in the filter
design, we chose to expand our data using polynomial extrapolation. If we want to determine the
R~~ derivative of a data series, the polynomial order of the expansion must be > R. We get the
best overall results if we use a polynomial of order R, fitted on R + 1 border points.

Figure 5 : example of data expansion: 2nd order expansion based on 3 data points

4 An accurate ODE solver

Now that we are able to calculate the non-causal system Hnc(s) (from Eq. 3, we denote the
discrete-time output data as y,,(lc), we can use this as an input to evaluate the causal system
H,(s) of order K (Eq. 3). To evaluate this system, we use a ODE-solver from the NAG foundation.
This routine calculates the solution of a two-point boundary value problem for a regular linear

Evaluation of (unstable) non-causal systems applied to iterative learning control 7

An accurate ODE solver

nth order system of first order ordinary differential equations in Chebyshev-series in a specified
range. The n boundary conditions can by specified on begin Z(to) or end Z(t1) points (no mixed
problems can be solved).

i (t) = A(t)Z (t) + u(t) (16)

The boundary conditions are solved exactly, and the remaining equations resulting from the system
of Chebyshev polynomials are then solved by a least-squares method. The algorithm is fast but
cannot handle (very) stiff problems. To ensure accuracy we used scaling: the time-constants of
the system Hc(s) are scaled back and the time-scale is elongated.

To solve system H,(s) we use this NAG routine because of two specific properties:

0 it can solve unstable ODE'S in an accurate way

we can evaluate the system as a two-point boundary value problem (BVP)

The first property is strictIy needed since system H,(s) can have unstable poles (because the
total system can be non-minimum phase). The second property let's us prescribe K boundary
conditions like:

Most ODE-solvers just ask to prescribe initial conditions: Z(to) = ZO. Eq. 17 gives much more
freedom in choosing boundary conditions on begin (to) and end (tl) time. Especially in this
case where y(t) is a feedforward signal in a motion system we can prescribe the signal (and
his derivatives) to be zero at the starting and the end points, which is a desirable property in
controlling motion systems. To use the algorithm we have to transcribe the system H,(s) into
state-space notation:

Note that the system has order K and is still SISO. Since the order of HnC(s) (in Eq. 3) is restricted
due to numerical problems, the numerator of the causal system Hc(s) will not be a constant in
general. This means that the states of system in Eq. 18 are not just linear combinations of the
output y(t) and its derivatives. These states are now combinations of input u(t) and the output
y (t) and their derivatives. We can write the system in the observable canonical form:

We can state the state-conditions at a certain moment t* in terms of the input and output values
and their derivatives at moment t* as:

in which yT(t*) is defined as the rth time-derivative of y at moment t* and

Evaluation of (unstable) non-causal systems applied to iterative learning control 8

R =

- -
D 0 0 0 0 ... 0

CB D 0 0 0 . - . 0 C

CAB CB D 0 0 . - . 0
CA

CA2B CAB CB D 0 - . -

C A ~ - ' B C A ~ - ~ B - - + - CAB CB D - -

Applications

Note that O is the lower triangular observability matrix. If we want to prescribe the output and
its derivatives up to a certain order at t*, we don't need to know the whole state-vector at t*.
Since both R and O are lower triangular matrices, for 1 < p < K, the first p states will prescribe
y(t*), y(t*) up to yp-l(t*) if u(t*),u(t*) up to up-'(t*) are given. Since the input signal is given
(ytnc(t)), we can calculate the derivatives a t every moment using a filter based on polynomial
expansion as presented in section 3. Now we can convert the boundary conditions given in Eq. 17
to initial and end conditions on the output y(t):

5 Applications

First this new approach is applied on an academic non-minimum phase system. Some systems
in process industry as boiler systems consist of combinations of opposing effects between first- or
second-order subsystems (see Fig. 6 and Eq. 23). If we choose ,I~;& > 0 the system becomes
non-minimum phase. The system is controlled with a very mild tuned PD-controller. We want to
track the trajectory from Fig. 7.

To increase performance ILC is applied in 5 iterations. The results are clear: ZPETC cannot deal

Figure 6: block diagram of a non-minimum phase system (H1 = -& and Hz = -&)

Figure 7: Designed trajectory. This can be a prescribed step in the temperature of a boiler system

Evaluation of (unstable) non-causal systems applied to iterative learning control 9

with such non-minimum phase system, where the new approach shows convergence and succeeds
in suppressing the tracking error

05 1 1 5 0 0 5 1
rime [rn,"] rim [mi"]

(a) before and after first iteration (b) after fourth iteration

Figure 8: Tracking error after several iterations using the new method

Figure 9: feedforward signal after four iterations

Also the new approach and standard ZPETC are
both applied to an industrial motion system, i.e.
an H-drive. This robot uses 3 linear motion mo-
tor systems (LIMMs) to drive the 2 main sliders.
Only the X-slide is considered in the learning pro-
cess (the most horizontal slider in fig. 5). The
control loop is implemented with a dSPACE sys-
tem. We used an loth order model of the process
sensitivity. A PID with lowpass D controller is
used, resulting in a bandwidth of 30 Hz. ILC
is used with a lowpass robustification filter with
a cutoff frequency at 250 Xz. After 7 iteratinns
both methods converge. The resulting tracking
error is of the same order.

Figure 10: Industrial H-drive

Evaluation of (unstable) non-causal systems applied to iterative learning control 10

Applications

(a) Before ILC; no feedforward

(c) after two iterations

(e) after four iterations

(b) after one iteration

(d) after three iterations

(g) after six iterations

(f) after five iterations

(h) after seven iterations

Figure 11: Resulting error after ILC iterations using ZPETC and the new method

Evaluation o f (unstable) non-causal systems applied t o iterative learning control 11

REFERENCES

6 Conclusions

At this point, contrary to ZPETC, the new approach succeeds in calculating inverse responses of
non-minimum phase systems. For minimum phase systems of higher order the implementation
of this new method is not competitive to ZPETC-method [2] in sense of computation time. One
major advantage is that we can put restrictions on begin and end values of the feedforward signal,
which is very admirable in motion control. Furhter optimizing the numerical implementation can
make this method more efficient and probably competing with ZPETC for higher-order (minimum
phase) real world systems.

References

[I] Chang F (1997)
Learning Control and Setpoint Design (Application to a Wafer Stepper)
Delft University of Technology, Department of Mechanical Engineering and Marine
technology, Systems and Control Group, Delft

[2] Tomizuka M (1986)
Zero Phase Error Tracking Algorithm for Digital Control
ASME Journal of Dynamic Systems, Measurement, and Control
Vol. 109, No. 3, pp. 65-68

[3] Carlsson B, Soderstrom T and Ahl6n A (1987)
Digital differentiating filters
Teknikum, Institute of technology, Uppsala University

[4] Carlsson B (1989)
Digital differentiating filters and Model based fault detection
Acta Univ. Ups. Uppsala Dissertations from the Faculty of Science 28, 215pp.,
Uppsala

[5] Bdanger P.R (1995)
Control Engineering: a modern approach
McGill University, Saunders College Publishing

[6] Signal Processing Toolbox Users Guide (1999)
Revised for Version 4.2 (Release 11)
The Mathworks, Inc.

Evaluation of (unstable) non-causal systems applied t o iterative learning control 12

Truncated Shannon-based filter

A Basic differentiating FIR filter

Phase-properties determine the quality of differentiating filters especially for higher order deriva-
tives. To guarantee linear phase, filter H(q) (Eq. 8) gets some constraints. First we make the
filter symmetric: Nl = N2 = N . For odd derivative (R = 1,3 , . . .) filters we set h, = -h-,. The
filter becomes:

This filter has an anti-symmetric impulse response. Note that we get the exact phase-shift as in
Eq. 5. Filter coefficient ho = 0, so the discrete data point itself isn't responsible for its own odd
derivatives.

For even derivative (R = 2,4,. . .) filters we set hn = h-,, so:

Now we get a pure real tranfer function of the filter and again the phase properties as in Eq. 5
are guaranteed. Note this FIR filter has an symmetric impulse response. Because sample time T
is not mentioned yet, the filter coefficients ho, . . . , hN will depend on this sample time. We can
present a general differentiating FIR filter (as in [4]) with filter coefficients which don't include
sample time T :

B Truncated Shannon-based filter

According to the sampling theorem we can reconstruct a continuous-time series sc(t) exactIy from
the discrete-time values s(k) (also called Shannon reconstruction):

where

This function is also known as the Dirichlet, periodic sinc or aliased sinc function. By differenti-
ating Eq. 27 we get:

We are only interested in values of the derivatives in the sampling points, so Eq. 29 becomes:

Evaluation of (unstable) non-causal systems applied to iterative learning control 13

Truncated Shannon-based filter

Differentiating Gj (t) (Eq. 28)

and evaluating the result in the sample-points kT gives:

So the first-order derivative signal becomes

Now we substitute n = k - j:

Because &j(t) is odd symmetric around t = kT (which means &j(-n) = -&j(n)) we can write:

- - g (-::+I (s(k + n) - s(k - n))

n=l

Denoted as filter 8 with shift-operator q, we can denote the ideal reconstructive differentiating
filter:

The filter coefficients become:

By replacing q = eiWT we can calculate the frequency response of the filter. We can proof (found
in [4]) that this frequency response equals the response of the ideal differentiator (Eq. 5 with
R=l), expanding it into a Fourier series.

We can build higher derivative filters by differentiating Gj (t) (Eq. 28) several times. If we evaluate
these derivatives of the Dirichlet function only in the sample points (as in Eq. 31) we get for odd
derivatives:

For even derivative filters:

Evaluation of (unstable) non-causal systems applied to iterative learning control 14

function u=invsim(z,p,k,y,t)
% INVSIM evaluates the inverse of the SISO system H(s), specified
% by the continuous-time zero-pole-gain (ZPK) model SYS with zeros Z,
% poles P, and gain K. The ouput series of the system H(s) , which
% now is the input, is specified by Y and time series T, which must
be equally spaced.

We can prescribe initial and end values of the input U and it's
derivatives in columnvectors U1 and U2. Since the number of boundary
conditions is 1, the order of the numerator, U1 and U2 have length 1/2.
If 1 is odd, length U1 must be round(1) and length U2 round(1)-I. U1 and
U2 may be longer but the redundant values won't be used. If U2 or U1 is an
empty matrix, we only get contraints on respectively begin or end values of
the input U.

RELTOL and ABSTOL prescribe the relative and absolute error tolerance
for solving the differential equations. Defaults are respectively le-11
and le-6.
The optional parameter RES sets the root resolution: all coefficients
smaller than res will be neglected (set to 0). The default value of
RES is le-14.

First the transfer function is split up in a true non-causal (tnc)
and a (unstable) causal part. The true non-causal part can be
seen as a summation of several differentiators of different
degrees. Some decentbon-causal) discrete time differentiating
filters are used to evaluate the system. Since the causal part
may be unstable, a shooting method (MUS) is used to evaluate the
system in an accurate way. By using MUS, a two-point boundary value
solver, we can put extra constrains on begin and end values of the
output signal.

Author: Maurice Schneiders
Date : July 2000

global A B t-y y-tnc bcv

% check input dimensions
if size (z,l) "=1 & size (z,2) "=1

error('Z has to be a vector')
elseif size(?,?) "=1 & size(p,2) "=I

error('P has to be a vector')
elseif size(k,l) "=1 I size (k,2) "=I

error('K has to be a scalar')
elseif size (t , 1) "=l & size (t ,2) "=l

error('Timeseries T has to be a vector')

Evaluation of (unstable) non-causal systems applied to iterative learning control 15

elseif size(y ,2)-=l
error('Dataseries Y has to be a rowvector')

end

if size (z,2) ==l
z=z' ;

end

if size(p,2)==1

p=p7 ;
end

if size (y, l)==l

y=y' ;
end

% Check equidistanceness of timeseries
if max(diff (diff (t))) >lO*eps

error('Timeseries T has no equidistantial spacing')
end

% Check for causal system
if length(z) >length(p)

error('Zer0-pole-gain (ZPK) system is not causal')
end

% calculate inverse model
z-inv = p;
p-inv = Z;

% split up causal and non-causal part (causal part (just) proper if possible)
% use smallest (absolute value) zeros for non-causal part
m=length(z-inv) -length(p-inv) ;
z-inv=z-inv+eps*i;
z-inv=sort (z-inv) ;
z-inv=z-inv-eps*i;

if imag(z-inv (m)) ==0
z-tnc=z-inv (1 :m) ;
z-c=z-inv(m+l:end);

else
if m==l

z_tnc=z_inv(l:2);
z-c=z-inv (3: end) ;

elseif abs (z-inv (m)) ==abs (z-inv(m-1))
z-tnc=z-inv(1:m);
z-c=z-inv(m+i: end) ;

else
z-tnc=z-inv (1 :m+l) ;
z-c=z-inv (m+2 : end) ;

end
end

tnc=poly (2-tnc) ;
% evaluate true non-causal part
y-tnc=tncsim(tnc, y ,T) ;

Evduation o f (unstable) non-causal systems applied t o iterative learning control 16

% evaluate cuasal part

% scaling system
scale=round(loglO(mean(abs(p~inv))));
c=l0- (-scale) ;
z-c=z-c*c;
p-inv=p-inv*c;
t-y=t/c;
% to state space notation
[A ,B ,C,D] =zp2ss (z-c ,p-inv, 1) ;
% instead of this we can use tf2ssic if we want to prescribe
% initial conditions out of begin and end conditions of the system

ii=size(A,?) ;
boundary conditions

bcv=[-[1:n]' zeros(n,l)];

% run the NAG-algorithm
% order of pol.app. is kl-1
% try different orders and compare results!
kl=44 ;
% number of collocation points
kp=1000;
% number of output points
npoints=length(t-y) ;
% initial time
xO=t-y (1) ;
% final time
xl=t-y (end) ;
nsamp=length(t-y) ;
save bvpdat.mat n k1 kp npoints xO xl A B t-y y-tnc bcv nsamp
tic
! bvp
toc
load bvpsol.mat
u = [C*y + D*y-tnc'] ';
u=u*c-(length(p-inv) -length(z-c)) /k;

function y=tncsim(tnc,u,T,N,method,method~parameters)
% TNCSIM simulates true non-causal system H(s).
%
% Y=TNCSIM(TNC,U,T,N,METHOD,METHUD-PARAMETERS)
%
% m m- 1
% H(s) = TNC(S) = c s + c s + ... + c
% m m- 1 0
%
%TNC=[c c... c]
% m m-1 0
%
% T is the sampletime of the inputseries U (a columvector).
% Optional we can set the filter order N for each differentiating
% filter. We can also set METHOD and corresponding METHOD-PARAMETERS
% for each differentiation.
% That's why N, METHOD and METHOD-PARAMETERS are all columvectors
% with size (NTC) -1.
%

Evaluation of (unstable) non-causal systems applied t o iterative learning control 17

% m m- I
% N = [filter-order-s ; filter order-s ; ; filter-order-s]
%
%
% m m- I
% METHOD = [method-s ; method-s ;; method-sl
%
%
% m m- I
% METHOD-PARAMETERS = [meth-para-s ; meth-para-s ; ; meth-para-s]
%
% For information on these options see function BDIFF1LT.M. Default filter
% order for all filters Is 8. Defa~lt method is Polynomtal Interpclztion 'PInt'
% ('PInt7 has no method-parmeters).

% Author: Maurice Schneiders
% Date: Julye 2000

if nargin<6
if narginc5

if nargin(4
N = 8*ones(size(tnc,2)-I, 1) ;

end
method = [I;
for k=l:length(tnc)-I

method= [method; 'PInt '1 ;
end

end
method-parameters = zeros(size(tnc,2)-1,l);

end

% check inputdimensions
if size (tnc, I) "=I

error('TNC has to be a rowvector')
elseif size(u,2) "=l

error('U has to be a columvector')
elseif size(T,l)"=l I size(T,2) "=I 1 T(1,1)<=0

error('Inva1id value of sampletime T')
elseif size (N,2)>1

error('N must be a columvector')
elseif size (N, 1) "=length (tnc) -1

error('Vector N must have length(TNC)-1')
elseif size (method, 2) -=4

error('METH0D must be a columvector and method must hold 4 characters')
elseif size(method,l)"=length(tnc)-I

error ('Vector METHOD must have length(TNC1-I ')
elseif size (method-parameters ,2) >I

error('METH0D-PARAMETERS must be a columvector')
elseif size(method~parameters,l)"=length(tnc)-I

error('Vector METHOD-PARAMETERS must have length(TNC)-1')
end

y = zeros (size (u)) ;

for m=l : length(tnc) -1
R = length(tnc1-m;
C = bdiffilt (R,N(m) ,method(m, :) ,method-~arameters(rn, :)) ;
y = y+tnc (m) *diffilt (u,C,R,T) ;

end

y = y+tnc (end) *u;

Evaluation of (unstable) non-causal systems applied to iterative learning control 18

function C=bdif f ilt (R,N ,METHOD ,method-parameters)
% BDIFFILT calculates filtercoefficients C to build a non-causal
% differentiating N-th order filter. R sets the order of the derivative
% which can be calculated with the filter. Use the filtercoefficients
% with function DIFF1LT.M.
%
% C=BDIFFILT(R,N,METHOD,METHOD-PARAMETERS)
%
% C= [cO cl c2 c3. . . . cN! ' , used in f iltes H (a) :
%
%
% R 1 N n -n
% H (z) = ------ sum cn(z - z) for odd-derivatives, and

% 2 T-R n=l
%
%
%
% R 1 N n -n
2 H (z) = ------ (sum cn(z + z) + cO) for even-derivatives.
% 2 TAR n=l
%
%
% Phase-shift is as the ideal R-th order differentiatingfilter +9O*R degrees.
% Amplitude can be optimized with the following cost-function:
%
% pi/T R R 2
% E = int I Hd (iw) - H (z) I dw
% 0
%
% Hd(iw) is the 'ideal' R-th order differentiator. This function will be minimized
% respect to the
%
% W*C=e;
%
%
% METHOD 'TISD':
%
%
%
%
%
%
% METHOD 'PIntJ:
%
%
%
%
%
%
%
%
%
%
%
%
% METHOD 'LSPF':
%
%
%
%

constraints:

Truncated Ideal (Shannon-reconstruction) Differentiator (no method-parameters)
R R

This method minimizes E with Hd (iw)= (iw) for O<w<pi/T. This means the same
as using the R-th order derivative of the Dirichlet-funtion to calculate the
derivative.
No supplemental constraints are used.

Polynomial Interpolation (degree 2N from 2N+1 data-points)

Note that N >= 0.5R in order to get a working filter. Fitting a polynomial
of degree 2N is the same as using W*C=e with the following 2*N equations:

r r
d R I d R I
-- r H (2) I = -- r (iw) I for r=0,1, ..., 2*N
d w Iw=O d w I w=O

This leads to N usable equations (or N+l in case R is even to calculate cO)

Least Squares Polynomial Fitting (degree 2P from 2N+1 data-points)
(method-parameters: P)

The same as polynomial interpolations, but now P < N. So some smoothing through
the samplepoints uccur which minimizes noise-transmission. A good choice of P has

-
Evaluation of (unstable) non-causal systems applied to iterative learning control 19

to be made to get a working filter. Note that N >= 0.5R still holds. Using the
following 2P equations:

r r
d R I d R I
-- r H (2) I = -- r (iw) I for r=0,1, ..., 2*P
d w Iw=O d w I w=O

T T -1

gives P usable equations with rank(W)=N, so C = W *(W*W) * e, to calculate the
least squares polynomial fit of polynomial with degree 2P.

% Author: Maurice Schneiders
% Date: July 2000

if nargin==3
method-parameters = 0;

end

% check input dimensions
if size(R,l)"=I I size(R,2)"=l I R(1,1)<=0

error('Inva1id value for derivative order R')
elseif size(N,l)-=I I size(N,2)"=l I N(1,1)<=0

error('Inva1id value for filter order N')
elseif size (METHOD, 2)-=4 I size (METHOD, I) "=I

error('METH0D must hold 4 characters')
elseif size(method-parameters,I)"=l

error('METH0D-PARAMETERS must be a scalar or rowvector')
end

if R/2==round(R/2)
% r is even
r-max = R - 2;

else
% r is odd
r-max = R - 1 ;

end

% calculate the R-th order Dirichlet(sinc)-function in N samplepoints

for r=0:2:r_max
C(l:N,l)=C(l:N,I)+2*(-1)~(R+1+0.5*r) *factorial(R)/f actorial(r+l)*(-I) . %./(pi-(-r)*n. -(R-r)) ;

end

Evaluation of (unstable) non-causal systems applied to iterative learning control 20

if R > 2*N
error('Fi1ter order is too small to calculate a R-th derivative filter (N >= 0.5R)')

end

if R/2==round(R/2) % r is even

for r = 0:2:2*N
if r==R

e = [e; factorial(r)];
else

e = Ce; 01;
end
W = CW; [I:Nl.^rl;

end
W = [[I; zeros(size(W,I)-1,l)l Wl;
C = W\e;

else % r is odd

for r = 1:2: (2*N-1)
if r==R

e = [e; factorial(rl1;
else

e = Ce; 01;
end
W = CW; [l:Nl.-rl;

end
C = W\e;
c = co; Cl;

end

P = method-parameters;
e = [I;
w = [I ;

if R > 2*P
error('Fi1ter order is too small to calculate a R-th derivative filter (P >= 0.5R)')

end

if R/2==round(R/2) % r is even

for r = 0:2:2*P
if r==R

e = [e; factorial(r)] ;

else
e = [e; 01;

end
W = CW; C1:NI.-r];

end
W = [Cl; zeros (size(W, 1) -1,111 W1;
C = W'*inv(W*W')*e;

Evaluation of (unstable) non-causal systems applied to iterative learning control 2 1

else % r is odd

f o r r = 1:2:(2*P-1)
if r==R

e = [e; factorial(r)l ;
else

e = [e; 01;
end
W = [W; C1:Nl .Yl;

end
C = W'*inv(W*WJ)*e;
c = CO; CI;

end
else

error('Settign for METHOD is not correct')
end

C.4 diffi1t.m

function ~=diffilt(x,C,R,T)
DIFFILT calculates the R-th order derivative Y of signal X,
using filtercoefficients C assuming that
sampled with sampletime T

C= CcO cl c2 c3. . . . cN1' , used in filter H

R 1 N n -n
H (z) = ------ sum cn(z - z for

2 T-R n=l

R 1 N n -n
H (z) = ------ (sum cn(z + z) +

2 T-R n= 1

See BDIFF1LT.M for more information.

To cancel border distortions, polynomial
N is the filter order so also the length
R is the derivative to be determined, so

-

signal X was

odd-derivatives, and

cO) for even-derivatives.

expansion is used.
of the expansion.
a polynomial of order of the

expansion must be >=R. We get the best overall results if we use a polynomial
of order R.

Author: Maurice Schneiders
Date : July 2000

check input dimensions
if size (x,2) "=I

error('Dataseries x has to be a coiuinvectorJ~
elseif size (C ,2)-=I

error('Coefficientvector C has to be a columvector')
elseif size(R,I)-=I I size(R,2)"=1 I R(1,1)<=0

error('Inva1id value for derivative order RJ)
elseif size(T,l)"=l I size(T,2)-=l I T(l,1)<=0

Evaluation o f (unstable) non-causal systems applied t o iterative learning control 22

error('Inva1id value for sampletime T')
end

L = size(x,l) ;
N = size(C,l)-1;

% Polynomial expansion of dataseries

pd-b = polyfit([l:R+l]',x(l:(R+l)),R);
pd-e = ~ o l ~ f it ([l:R+l] ' ,x(end-R:end) ,R) ;

xe-b = polyval (pd-b, [(-N+1) : 01 ' 1 ;
xe-e = polyval (pd-e , CR+2 : R+2+W-?! ') ;

= Cxe-b; x; xe-el ;
= zeros (size(x) > ;
R/2==round(R/2)
% r is even

for 1 = 1:l:L
y (l,l)=sum(C. * (f lipud(xn(1: l+N)) +xn(l+N:1+2*N))) ;

end

else
% r is odd

for 1 = 1:l:L
y(l,l)=sum(C.*(-flipud(xn(l:1+~))+xn(l+~:1+2*~)));
end

end

function [A,B ,C,D,xO] =tf 2ssic(num,den,uO,yO,res ,method)
% TF2SSBC Converts transfer function H(s) to state-space representation.
% Initial state values can be calculated by prescribing initial values of input
% and output and their derivatives.
%
% [A,B,C,D,XO] = TF2SSIC(NUM,DEN,UO,YO,RES,METHOD)
%
% 1 1-1
% b s + b s + . . . + b
% NUM(S) 1 1-1 0
% H(s)=--------- =
% DEN(S) k k- 1
% a s + a s + . . . + a
% k k- 1 0
%
% METHOD specifies the realisation of the state-space model:
%
% 'Ctr' : Controllable canonical f o n (defa-~lt)
% 'Obs' : Obsevable canonical form
%
% uO is a columvector containing the initial conditions
% for the input signal and it's derivatives up to order k-1:
% k-1

Evaluation o f (unstable) non-causal systems applied t o iterative learning control 23

% Cu(t=O) u' (t=0). . .u (t=O)l'
%
% yo is a columvector containing the initial conditions
% for the input signal and it's derivatives up to order 1-1:
% 1-1
% Cy (t=O) y' (t=O). . .y (t=0)1'
%
% The optional parameter RES sets the root resolution: all coefficients
% smaller than res will be neglected (set to 0). The default value of
% RES is le-14.

% Author: Maurice Schneiders
% Date: Jnly 2303

if nargin==6 & size(method,2) '= 3
error('The prescribed method is not specified')

end

if narginc6
if nargin<5

res = le-14;
end
method = 'Ctr';

end

if size (res, I) "=1 I size (res, 2) "=I I res (I, l)<0
error('1nvalid value of RES')

end

% check resolution and strip leading zeros from numerator
for k=l : length (num)

if abs(num(k))<res
num(k)=O;

end
end
inz = find(num "= 0);
num = num(inz(1) :end) ;

% check resolution and strip leading zeros from denominator
for l=l : length(den)

if abs (den (1)) <res
den(l)=O;

end
end
inz = find(den "= 0);
den = den (inz (I) : end) ;

% check input dimensions
if size(u0,2) > I I size(y0,2) > I

error('u0 and yo must both be columnvectors.')
elseif size(num,2)"=size(uO,l)+l I size(den,2)"=size(yO,l)+l

error('Number of initial conditions does not match with order of numerator or denumerator')
elseif den(l,l)==O

error('First element of den must not equal zero.')
elseif size(num,l)"=l I size(den,l)"=l

error('Num and then must both be rowvectors.')
elseif size (num,2) > size(den,2)

error('System is non-causal cannot be converted to a state space model.')
end

num = [zeros (I ,n-length(num1 numl ;

Evaluation of (unstable) non-causal systems applied to iterative learning control 24

uO = [uO; zeros (length(y0) -length(uO), I)] ;

if method=='Ctr'
D = num(l)/den(l);
C = [a - D*b] ;
A = [-b ; eye(n-2,n-I)];
B = Ceyeh-1,l)l ;

elseif method=='Obs'
D = num(l)/den(l);
B = [a-Dzb] ' ;
A = [-b' eye(=-l,n-2):;
C = Ceye(1,n-111;

else
error ('Obsolete method-parameter')

end

% express initial values of y and u (and derivatives) in x:
%
% Obs*xO = yo - L*uO

Obs = zeros (n-1 ,n-1) ;
L = Obs;

for r=O:n-2

for s=l:n-1
if r-s >= 0

L(r+l, s) = C*Aa(r-s)*B;
else

~(r+l,s) = 0;
end

end
end

Evaluation of (unstable) non-causal systems applied to iterative learning control 25

