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The selective use of emergency shipments for service-

contract differentiation 

E. M. Alvarez, M.C. van der Heijden, and W. H. M. Zijm 

University of Twente, School of Management and Governance 

  

Abstract: Suppliers of capital goods increasingly offer performance-based service contracts 

with customer-specific service levels. We use selective emergency shipments of spare parts to 

differentiate logistic performance: We apply emergency shipments in out-of-stock situations for 

combinations of parts and customer classes that yield service levels close to the class-specific targets. 

We develop two heuristics to solve this problem. An extensive numerical experiment reveals average 

cost savings of 4.4% compared to the one-size-fits-all approach that is often used in practice. It is best 

to combine our policy with critical levels, which yields an average cost saving of 13.9%. 

Key words: Inventory, customer differentiation, emergency shipments, service contracts, critical levels  

1. Introduction 
To service advanced capital goods - such as defense systems or medical 

systems - suppliers increasingly offer performance-based service contracts to their 

customers. This particularly applies in business situations where system downtime 

can have very serious consequences. For example, downtime of military equipment 

can lead to failed missions and downtime of medical equipment creates delay in the 

diagnosis and treatment of patients. Therefore, service contracts for such capital 

goods typically contain quantified targets for key performance measures such as a 

maximum response time in case of a system failure or a minimum system availability. 

Penalty regimes may apply if the supplier is unable to meet the target service levels. 

Because users typically value downtime differently, the service levels in contracts 
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may differ between customer groups. For example, the maximum on-site response 

time may be 4 hours or the next day. 

Because it is hard to handle these different service levels, many companies 

use the so-called one-size-fits-all approach, in which a uniform logistics fulfillment 

process is used irrespective of the contractual service level agreements (cf. Cohen et 

al [3]). This approach can result in excessive costs if a supplier uses the premium 

service level to design the fulfillment process. Also, standard customers have no 

incentive to switch to premium contracts. Therefore, it seems better for the service 

provider to differentiate the logistics fulfillment process such that the actual service 

levels reflect the contractual agreements. While this can be accomplished in several 

ways (e.g. by prioritizing the assignment of service engineers to service calls or 

varying preventive maintenance frequencies), the emphasis in the literature is on 

differentiation in spare parts supply. One approach is to design separate supply 

chains per customer segment, such as stocking parts close to the customer site for 

premium customers and supplying non-premium customers from a central location 

with longer lead times (cf. Deshpande et al. [5]). A drawback of this separation is that 

the supplier can take less advantage of risk pooling (Eppen and Schrage [6]). 

In the literature, a common approach for service differentiation is the use of 

critical level policies that reserve spare parts for premium customers once the 

inventory level drops below a certain threshold. Then, demand from non-premium 

customers is either backordered or satisfied from a secondary source that is usually 

assumed to have infinite supply (e.g. a central stock point upstream in the supply 

chain). Although shown to be effective and efficient, there are barriers for 

implementation in practice. First, customers may have access to stock information. In 

that case, suppliers are reluctant to refuse a spare part to a non-premium customer. 
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Second, service engineers responsible for system repair are usually unwilling to 

postpone their work waiting for a spare part when they are primarily accountable for 

the speed of repair and they know that the part is actually in stock. 

These drawbacks prompted us to investigate the selective use of emergency 

shipments as an alternative. That is, a supplier uses on-hand stock to meet demand 

first-come-first-served. In case of a stock-out, he can request an emergency 

shipment from a secondary source (e.g. a central depot). As emergency shipments 

are both faster and more expensive than regular replenishments, the supplier can 

select combinations of customer segments and item types for which he applies 

emergency shipments. As main advantage, this approach is easier to implement in 

practice than critical level policies, while still giving the option to apply differentiation. 

We will show that our approach leads to clear savings over using simple one-size-fits 

all strategies. Furthermore, we will show that the combination of selective emergency 

shipments and critical level policies is clearly most efficient and effective. 

The remainder of this paper is structured as follows. In Section 2, we give an 

overview of the literature and we state our contribution. Next, we introduce the 

optimization problem in Section 3 and we outline our solution approach in Section 4. 

It will become clear that we need to analyze various single-item models as building 

blocks. In Section 5, we analyze these models for the special case of two customer 

classes. We describe the results of an extensive numerical experiment in Section 6. 

In Section 7 we present our conclusions and suggest directions for further research.  

2. Literature overview 
Our research is related to two main literature streams: service differentiation 

and the use of emergency shipments in spare parts networks. In the service 
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differentiation stream, the focus particularly lies on the use of critical level policies 

that have been introduced by Veinott [19]. The optimality of this policy under periodic 

review has been proven by Topkis [17], for both backordering and lost sales. Under 

continuous review, the optimality has been proven assuming Poisson demand and 

either exponential or Erlang lead times, both for lost sales (Ha [9], [11]) and 

backordering (Ha [10], De Véricourt et al. [20], Gayon [7]).  

Several approaches have been developed to find (near-) optimal base stock 

levels and critical levels. For fast movers, the focus is on continuous demand 

distributions where unmet requests are usually backordered. When a replenishment 

order arrives, it appears to be optimal to clear non-premium backorders if and only if 

the inventory level is above the critical level for premium demand (Ha [10]). 

Unfortunately, the mathematical analysis of such a model is intractable, since we 

must keep track of the non-premium backorders. Therefore, heuristic are often used, 

see e.g. Möllering and Thonemann ([15]) for two customer classes, and Arslan et al. 

[2] for an arbitrary number of classes. For slow movers, as are common in service 

logistics, the focus is on Poisson demand and one-for-one replenishment (Dekker et 

al. [4]). Our work shows most similarity to Kranenburg and Van Houtum [15], who 

analyze critical level policies in a multi-item model with the objective to minimize 

spare part holding and shipment costs under waiting time restrictions per customer 

class. Emergency shipments are used if a request cannot be met by on-hand stock. 

The authors find a lower bound on the minimum costs using decomposition and 

column generation. Next, they use a heuristic to obtain a near-optimal solution. 

The second relevant literature stream is the use of emergency shipments in 

spare parts networks, which is in some cases combined with lateral transshipments 

between local warehouses at the same echelon level. Most authors consider a 
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single- or two-echelon model in which there is some central location with ample 

supply (see e.g. Muckstadt and Thomas [16], Hausman and Erkip [12]). Alfredsson 

and Verrijdt [1] combine lateral shipments with emergency shipments for a two-

echelon single-item network. Other recent contributions in this area include Van 

Utterbeeck et al. [18] and Wong et al. [21]. We have not yet found any literature in 

which emergency shipments are used for customer differentiation.  

The contribution of our paper is fourfold: First, we present a new approach to 

service differentiation in spare parts supply using selective emergency shipments. 

Second, we develop two efficient and effective heuristics to determine near-optimal 

base stock levels and shipment strategies. Third, we show the added value of 

selective emergency shipments compared to both one-size-fits-all policies and critical 

level policies. Finally, we show the added value of combining selective emergency 

shipments and critical level policies for service differentiation. 

3. Model 
We first give an outline of our model. Next, we discuss the validity of our 

selection of shipment policies (Section 3.2). In Section 3.3, we present our model 

assumptions and notation. We give the formal optimization problem in Section 3.4. 

3.1 Model outline 

We consider a local warehouse supplying multiple types of spare parts to 

multiple customer groups, and a central depot with ample supply that replenishes the 

local warehouse. We assume that all items are critical, i.e., any item failure causes a 

system failure. Each customer group has a distinct target service level, defined as a 

maximum on the mean waiting time for spares. Such a restriction reflects the 

downtime caused by lack of spares (see also Kranenburg and Van Houtum [14]).  
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The local warehouse fills all customer requests on a first-come-first-served 

basis, regardless of the customer’s class. If the warehouse is out of stock, it may 

either backorder the demand, or request an emergency shipment from the central 

depot. Service differentiation is accomplished by only using emergency shipments for 

customer classes with tight waiting time restrictions. We expect that this is particularly 

advantageous for expensive slow movers that usually have relatively low fill rates, 

which makes the difference between regular and emergency shipment time crucial. In 

some cases, we may find that it is better to apply emergency shipments for all 

customer classes, avoiding stocks as much as possible. For cheap fast movers, we 

expect that it will be better to keep large inventories avoiding expensive emergency 

shipments and to backorder demand for all customer classes. Hence, the choice for 

backordering or emergency shipments depends both on the item characteristics and 

the service requirements of the demand classes.  

Our objective is to minimize the total relevant system costs, consisting of 

holding and shipment costs, under restrictions on the mean aggregate waiting per 

class. Our decision variables are the shipment mode (regular, emergency) and the 

stock levels for each combination of item and customer class.  

3.2 Selection of shipment policies 

In fact, we only consider a limited number of shipment policies: if we apply 

emergency shipments, we always do so if we are out-of-stock. However, if there are 

plenty of items in the pipeline, the waiting time for a backorder may well be 

comparable to – or even lower than – the emergency shipment time. Then, it is better 

to backorder the item instead of using an expensive emergency shipment. The 

backorder waiting time for a customer depends both on the number of items in the 

pipeline and the number of earlier backorders that must be cleared before the 



7 

 

customer’s backorder. So, the decision when to use emergency shipments for an 

item should ideally not only depend on the customer class, but also on the number of 

items in the pipeline and the composition of the backorder queue. In principle, we can 

include such more advanced policies in our model. Still, we ignore this refinement in 

this paper to keep notation transparent and the number of item policies within 

reasonable limits. In the end, the basic research question is whether and when it 

makes sense to apply selective emergency shipments for service differentiation 

compared to critical level policies and the “one-size-fits-all” approach. 

3.3 Assumptions and notation 

3.3.1 Main assumptions 

1. Demand for each item occurs according to a Poisson process.  

2. An ( )SS ,1−  base stock policy is applied for all items. In practice, spares often 

tend to be expensive slow movers. Therefore, holding costs usually dominate 

ordering costs and hence the optimal ordering quantity is usually 1.  

3. Regular shipment times from depot to warehouse are exponentially distributed. 

We use this assumption to facilitate Markov chain analysis. Alfredsson and 

Verrijdt [1] show that inventory models for slow moving spare parts tend to be 

quite insensitive to lead time variability. 

4. The shipment time from the local warehouse to the customer is negligible.  

5. An emergency shipment is directly shipped from central depot to customer.  

3.3.2 Notation 

The local warehouse carries stock of stock-keeping unit (SKU) Ii ,...,2,1= . We 

denote the corresponding mean replenishment lead time from depot to local 

warehouse by 
reg

iT , the mean emergency shipment time by 
em

iT , the holding costs 
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per time unit by ih  and the additional costs for an emergency shipment instead of a 

normal replenishment by 
em

ic . The latter cost factor is sufficient, since each request 

triggers either a normal replenishment or an emergency shipment. The target service 

level for customer class 1,2,...,j J=  is a maximum on the mean waiting time for 

spares, denoted by 
max

jW . We order the J  classes according to an increasing target 

service level 
max

jW . Demand from class j  for SKU i  occurs at rate ijm ( 0> ). 

1

I

j ij

i

M m•
=

=∑  and ∑
=

• =
J

j

iji mM
1

 denote the total class j  demand and the total demand 

for SKU i , respectively. The decision variables for SKU i  are: (1) the base stock 

level iS  (2) the shipment strategy iD , denoting the highest customer class index for 

which emergency shipments are used in a stock-out situation. Because it does not 

make sense to use emergency shipments for low priority customers only, iD  is an 

integer between 0 and J . We combine iS  and iD  to an item policy ( )ii DS , . The 

relevant performance indicators are the mean waiting time ( )iiij DSEW ,  of class j  for 

SKU i  and the fill rate ( )iii DS ,β  for SKU i .  

3.4 Formal optimization problem  

We express the formal optimization problem ( )P  as follows:  

( )( ) { }

( )

{ }

1..
,

1 1

max

1

0

( 1) min 1 , ( )

s.t. , 1.. ( 1.1)

, 0,1,..., 1..  and 1.. ( 1.2)

i
i i

I J
em

i i i ij i i i D
S D

i j

I
ij

ij i i j

i J

i i

P h S c m S D I j

m
EW S D W j J P

M

S N D J i I j J P

β
= =

= •

 
+ − 

 

≤ =

∈ ∈ = =

∑ ∑

∑
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We minimize the sum of holding costs and emergency shipment costs under 

the restriction that the weighted mean waiting time for class j  (with the demand rates 

as weights) does not exceed the target 
max

jW  for that class. We calculate the holding 

costs over the total stock iS . If needed, we can easily replace this by the on-hand 

stock (Kranenburg and Van Houtum [14]). Emergency shipment costs arise if a 

request cannot be filled from stock on-hand and an emergency shipment is used 

under shipment strategy iD . We denote the latter by the indicator function {1.. } ( )iDI j  

that equals 1 if { }iDj ..1∈  and 0 otherwise. The index set { }iD..1  is empty if 0=iD . 

To include critical level policies in our model, we replace the fill rate by 

( ), ,ij i i iS D cβ  and the mean waiting time by ( ), ,ij i i iEW S D c , where ic  is the critical 

level for item i . Note that the fill rate also depends on the customer class j  now. 

4. Solution approach 
Problem ( )P  is a nonlinear integer problem that we cannot decompose into 

separate single-item problems because of the aggregate waiting time restriction 

( )1.1P . We therefore use an approach similar to Dantzig-Wolfe decomposition, i.e. we 

reformulate ( )P  to a linear integer programming problem, where binary decision 

variables specify whether a specific item policy is selected for SKU i  or not. We 

obtain a lower bound on the system costs by solving the LP-relaxation of the 

reformulated problem. To determine the set of relevant item policies ( )ii DS ,  to 

consider, we use column generation, see Section 4.1 for details. In the optimal 

solution to the LP-relaxation, a linear combination of two item policies may be 

selected for an SKU. In that case, we also require a method to obtain a near-optimal 

integer solution from the lower bound. We describe two heuristics in Section 4.2  
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4.1 Using decomposition and column generation to find a lower bound 

In Section 4.1.1, we first elaborate on reformulating ( )P  to a linear problem. 

Next, we describe in Section 4.1.2 how we solve the LP-relaxation.  

4.1.1 Problem reformulation 

Let us use ib  as a shorthand notation for item policy ),( ii DS . The binary 

variable 
ibx  denotes whether policy ib  is selected for SKU i  ( )1=

ibx  or not ( )0=
ibx . 

Let iB  denote the set of item policies that we consider for SKU i . We then obtain the 

integer program ( )2P : 

1

max

1

( 2) min  ( )

s.t. ( ) 1.. ( 2.1)

1 1.. ( 2.2)

{0,1} ,  1..

i

i i

i

i i

i

i i

i

I

i i b

i b B

I
ij

ij i b j

i b B j

b

b B

b i i

P TC b x

m
EW b x W j J P

M

x i I P

x b B i I

= ∈

= ∈ •

∈

≤ =

= =

∈ ∀ ∈ =

∑∑

∑∑

∑
 

Here, ( )i iTC b  is a shorthand notation for the total relevant costs related to SKU 

i , so ( ) ( ) ( )( ) { }( )jIDSmcShDSTCbTC
iD

J

j

iiiij

em

iiiiiiii ..1

1

,1, ∑
=

−+== β  

The optimal solution to the LP-relaxation may consist of linear combinations of 

item policies for at most J  SKUs: ( )2P  has JI +  restrictions, so at most JI +  

decision variables have nonzero values. Since we must select at least I  item 

policies, we have at most J  SKUs for which additional item policies can be selected. 

This is convenient, since the number of customer classes J  is typically small. 

4.1.2 Solving the LP-relaxation 

We must specify which policies to include in iB  for each SKU i . Initially, we 

choose { }ii bB = , where ib  is an item policy guaranteeing that all waiting time 
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restrictions are satisfied. We then find 1=
ibx  for all i  as the only feasible solution to 

the LP-relaxation. A simple choice for the initial item policy is 0iD =  (backorder all 

demand) combined with the smallest stock level iS  such that ( ) max

1WbEW iij ≤  for all 

classes Jj ...1= . Since max max

1 jW W<  for j >1, all waiting time restrictions are satisfied.  

Next, we use column generation to find any item policies that improve the 

objective value if added (Gilmore and Gomory [8]). Those policies have negative 

reduced costs. If such policies exist for SKU i , we include the one with minimum 

reduced costs to iB . Given an optimal solution to the LP-relaxation, let ju and iv  be 

the shadow prices for constraints ( )1.2P  and ( )2.2P , respectively. Note that 

0≤ju and 0≥iv . Then the column generation problem for SKU i  boils down to: 

( )( )iSUB  
ib

min ( ) ( ) i

J

j

iij

J

ij

jiii vbEW
M

m
ubTCbRED −−= ∑

= •1

)(  

For each shipment strategy iD , we determine the iS  that minimizes 

( )iii DSREDbRED ,)( = . Let 
d

ib denote the resulting policy for dDi = . We select the 

policy with the lowest reduced costs from the set { }Jdb
d

i ..0| = . A complication in 

determining the optimal iS  for a given shipment strategy is that the objective function 

is only convex if we use emergency shipments for all demand classes (Kranenburg 

and Van Houtum [13]). If emergency shipments are used for class 1 requests only, 

we can find a function for the expected waiting time for class 1 as shown in Figure 

4.1. The figure shows the expected waiting time for an item with a high demand rate. 

For such items, the waiting time function might initially be concave in the base stock 

level: keeping little stock of these items has a small impact on the waiting time. As 

the stock level increases, the marginal decrease in the waiting time becomes larger.  
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Figure 4.1 An example expected waiting time function for class 1.  

 

We expect the objective function to become convex from some base stock 

level 
conv

iS  onwards: for high base stock levels, the costs increase almost linearly, 

whereas the waiting time decreases convexly. This suggests to select the base stock 

level with smallest reduced costs from the set of (i) all stock levels conv

i iS S≤ , plus (ii) 

all stock levels conv

i iS S>   until the reduced costs no longer decrease.  

4.2 Methods for finding a near-optimal integer solution  

Below, we discuss two methods for finding a near-optimal integer solution from 

the solution of the LP-relaxation: (1) we solve the integer problem ( )2P  using all 

policies generated when solving the LP-relaxation; (2) we use the (non-integer) 

solution of the LP relaxation as a starting point of a local search algorithm.  

4.2.1 Method 1: use of Integer Programming (IP) 

We empirically found that we usually generate only 4-7 item policies for each 

SKU in the LP-relaxation. Therefore, we should be able to solve the corresponding IP 

problem with a commercial solver (we used CPLEX) for most problems of realistic 

size. However, the set of policies for certain items – particularly those with large 

demand rates – might be completely unrelated. For instance, we have found policies 

)1,0(  (i.e. keep no stock and use emergency shipments for premium customers only), 
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)0,9(  and )0,10(  (i.e. high base stock levels and backordering for all classes). If we 

use IP, we must choose between an inexpensive policy with high waiting times and 

an expensive policy with low waiting times, while a better, but unconsidered, policy 

might exist. Therefore, we tested our approach by generating many additional 

columns (item policies) bridging the gap between distinct scenarios as shown above 

and including them in the IP problem1. We found that these additional columns 

significantly increase the computation time, while they improve the final solution only 

marginally: the average gap with the lower bound drops from 0.041 to 0.038, and the 

maximum gap drops from 0.259 to 0.258. Therefore, we conclude that it is sufficient 

to use the columns as generated when solving the LP relaxation only.  

4.2.2 Method 2: use a local search algorithm 

Simply rounding the LP relaxation solution to integer values may give a poor 

solution to the corresponding IP problem. We therefore develop a local search 

algorithm to find a near-optimal solution for the original problem. First, we round the 

fractional variables in the LP-relaxation solution to obtain an infeasible, low cost 

solution. We then use local search to move to a feasible solution with minimum cost 

increase2. To this end, we need (i) an initial solution, (ii) a neighborhood structure, (iii) 

a criterion to select the “best” neighbor.  

A simple initial solution is the least expensive item policy ib  for each SKU i  

with 0>
ibx . This solution is infeasible, since such policies have high waiting times.  

Our neighborhood must contain solutions that have lower waiting times than 

the given solution and require little additional cost. To obtain a feasible solution, the 

                                            

1
 This was a mid-sized experiment of 100 problem instances with 25, 100 and 400 SKUs. 

2
 Another approach is to round the variables to obtain a costly feasible solution and apply local search 
to find alternatives with lower costs. There is no reason a priori to prefer one method over the other. 
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waiting times must decrease for those demand classes j  for which the aggregate 

waiting time is higher than 
max

jW . Let the term distance to the feasible region denote 

the total amount by which the aggregate waiting times exceed the targets. Each 

solution in the neighborhood has exactly one SKU for which the item policy is 

modified such that the solution is “closer” to the feasible region according to the 

distance measure above. We can reduce this distance either by using emergency 

shipments for more demand classes (increase iD ), or by increasing the stock levels 

iS . If we increase iD , we combine this with all values of iS  smaller than or equal to 

the current stock level insofar the policy is closer to the feasible region. Similarly, 

when we increase iS , we combine this with all values of iD  smaller than or equal to 

the current value insofar the policy is closer to the feasible region. This gives us 

several neighbors for each SKU i , and hence many neighbors in the neighborhood.  

We use as selection criterion the weighted reduction in waiting time per euro. 

This is the quotient of the weighted reduction in distance to the feasible region 

compared to solution b  ( 'bM ) and the additional investment needed ( 'bN ), where: 

[ ] { }

( )

max max

' max
1 1 1

'

1

1
( ) ( ') ,  max 0,

( ')

J I I
ij ij

ij i j ij i j

j i ij J J

I

i i i i

i

m m
M EW b W EW b W a a

W M M

N TC b TC b

+ +
+

= = =• •

=

     
= − − − =    

     

= −

∑ ∑ ∑

∑

b

b

 

Note that the inverse of 
max

jW  acts as a weight for class j  in 'bM : in general, we 

expect that a larger marginal investment is needed to reduce a small waiting time by 

the amount ∆  compared to reducing a large waiting time by that same amount. We 

therefore assign a high weight to demand classes with tight waiting time restrictions. 
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We may find neighbors with lower costs than b  (and thus a negative value for 

' 'M N
b b

). From the neighbors with a negative value for ' 'M N
b b

, we then select the 

one with the largest ' 'M N
b b

. Otherwise, we choose the neighbor with the largest 

' 'M N
b b

 from the entire neighborhood. 

5. Performance evaluation of single-item policies with two 
demand classes 

We use continuous-time Markov chain analysis to find the average waiting time 

and fill rate per customer class for each policy. Both performance indicators are 

functions of the state probabilities. For simplicity, we limit ourselves to two demand 

classes. We thus consider three shipment strategies: emergency shipments for both 

classes ( 2=iD ), backorder class 2 demand only ( 1=iD ), or backorder all demand 

( 0=iD ). The backorder clearing mechanism depends on the shipment strategy and 

whether critical levels are used. In subsections 5.1 and 5.2, we analyze the strategies 

for the selective emergency shipment model and the critical level model, respectively. 

For simplicity, we omit the item index i . We denote the normal replenishment rate by 

1 regTµ = and the critical level by c .  

5.1 Building blocks for the selective emergency shipment model 

In this case, the fill rate is identical for all customer classes. We use Little’s Law to 

compute waiting times when requests for a class are backordered.  

Emergency shipments for both classes ( 2=iD  ) 

The state k  represents the number of items in the pipeline. We find the state 

probabilities from the nnMM |||  loss system with Sn =  (Kranenburg and van 

Houtum [13]): 
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( )

( )
0

/ / !
,  0..

/ / !

k

k S
l

l

M k
p k S

M l

µ

µ
=

= =

∑
 

Hence, the fill rate and the average waiting time per class equal: 

( )
( ) ( )
,

, ,

S

em

j

S D p

EW S D S D T

β

β

=

=
 

Backorder class 2 demand only ( 1=iD ) 

Again, we represent the state by the number of items in the pipeline k .The 

number of class 2 backorders then equals [ ]+− Sk . Figure 5.1 displays the 

corresponding Markov chain, which yields the state probabilities kp  and the 

performance indicators as given below.  
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Figure 5.1 The transition diagram of the Markov chain 
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We can derive the following expression for the expected backorders of class 2:  
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Backorder demand from all classes ( 0=iD ) 

For this policy, we do not need the fill rate, since there are no emergency 

shipments. In this case, it is best to use priority clearing: class 1 backorders are 

cleared before class 2 backorders, even if a class 2 customer has been waiting 

longer. As a result, the number of items in the pipeline is not sufficient to describe the 

system state, since the waiting time depends on the number of backorders per class. 

Therefore, we describe the system state as ( )lk, , with k =number of items in the 

pipeline and l =number of class 2 backorders. Then, the number of class 1 

backorders equals [ ][ ]++ −− lSk . Figure 5.2 depicts the corresponding Markov chain. 

Replenishment flows usually go from state ( , )k l  to state ( 1, )k l− , since we clear 

class 1 backorders first. Hence, the pipeline decreases while the number of class 2 

backorders remains the same. Replenishment flows from state ( , )k l  to state 

( 1, 1)k l− −  only take place if the system contains class 2 backorders only in ( , )k l . 
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Figure 5.2 The transition diagram of the Markov chain.  

 

We could not find analytical expressions for the state probabilities, so we 

solved the balance equations numerically, assuming that the probability of having 

more than maxk  items in the pipeline is negligible. We find maxk  by aggregating all 
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customer demand into a single class and analyzing the resulting model exactly. Note 

that this model gives the same distribution for the number in the pipeline as the two-

class model, since the demand and replenishment rates are the same. We find maxk  

such that ∑
∞

+=

≤
1maxkk

kp ε , where ε  denotes some small number, say 810−=ε . Then, the 

expected backorders ( )DSEBO j ,  are given by:  

( ) ( )

( )

max

max

1

1 0

2

1 0

,

,

k k S

kl

k S l

k k S

kl

k S l

EBO S D k S l p

EBO S D l p

−

= + =

−

= + =

= − −

= ⋅

∑ ∑

∑ ∑
 

5.2 Building blocks for the critical level model 

For the case of a critical level and emergency shipments for both classes 

( 0iD = ), we refer to Kranenburg and Van Houtum [14]. Below, we give the 

performance analysis for critical level policies under (partial) backordering. We use 

Little’s law to find the average waiting time from the expected backorders. 

 

Critical level and backorder class 2 demand only ( 1=iD  ) 

When the on-hand stock is at most ic , it is optimal to increase the on-hand 

stock to ic  before clearing class 2 backorders (cf. Ha [10]). Since we cannot derive 

the number of class 2 backorders from the number in the pipeline, we include the 

class 2 backorders in the state definition. Error! Reference source not found. 

displays the Markov chain. Note that we have no states with class 1 backorders: 

once there is no more stock on-hand, the pipeline is only increased further by class 2 

requests.  
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Figure 5.3 The transition diagram of the Markov chain 

 

We solve the balance equations numerically assuming that the probability of 

more than maxk  items in the pipeline is negligible. We determine maxk  as shown in 

Section 5.1, although we overestimate maxk  then (we assume that all demand is 

backordered). Then, we find for the class 2 backorders and the class 1 fill rate: 
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Critical level and backorder demands from all classes ( 0=iD ) 

We only need expressions for the mean waiting time per class, since there are 

no emergency shipments. The optimal backorder clearing mechanism is to clear 

class 2 backorders only if all class 1 backorders (if present) have been cleared and 

the on-hand stock is at least ic  (Ha [10]). Then we find a  Markov chain similar to 

Figure 5.2. The main difference is that the Markov chain now branches out once 

ii cS −  items are in the pipeline. We can thus use a similar approach to that of 

Section 5.3. Once we have calculated the state probabilities for a certain value of 

ii cS − , we can immediately find the performance characteristics for all other polices 
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with the same value of ii cS − , since the state probabilities are derived from the same 

set of equations. This significantly reduces the computational burden when 

generating and analyzing item policies. We find the following the expressions for the 

expected backorders ( )cDSEBO j ,, :  

( ) ( )

( ) ∑ ∑

∑ ∑

+−=

+−

=

+−=

+−

=
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−−=
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max
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6. Computational experiment 
We conducted a numerical experiment, for which we state the objectives in 

Section 6.1. Section 6.2 covers the problem instances and Section 6.3 the results. 

6.1 Objectives 

The objectives of the experiment are: (i) to evaluate the two methods for 

obtaining a near-optimal solution (i.e. IP and local search) in terms of solution quality 

and computation time, (ii) to find out whether and when selective emergency 

shipments are efficient and effective for service differentiation, (iii) to determine how 

well selective emergency shipments perform compared to critical level policies, (iv) to 

find the added value of combining selective emergency shipments and critical level 

policies into an aggregate policy.  

6.2 Experiment design 

Table 6.1 shows the parameters we varied in our experiment and their values.  

We base our parameter values on Kranenburg and Van Houtum [14], who use values 

based on observations from practice. In all instances, we choose a 
em

iC  of 1000 as 

cost normalization. For each combination of parameters 1, 3, 4, 6 and 7, we generate 

4 random sets of instances as follows: per SKU, the demand rate is randomly drawn 
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from a uniform distribution on the specified interval. The holding costs are selected 

from the holding cost interval such that the correlation between demand rates and 

holding costs is -0.8. We do so, because in practice high demand items tend to have 

low (holding) costs and vice versa. Note that the holding cost range (i.e. the quotient 

between the upper and lower bound) remains the same in all cases, namely 999. 

Such a large range is common in practice. With the exception of the item demand 

rates and holding costs, we choose the same parameter values for all SKUs in a 

problem instance. In total, we test 3456 problem instances: we have 

3*2*3*4*3*4=864 parameter combinations and we test each combination with 4 

samples of demand rates and holding costs.  

 Parameter Values 

1 Number of SKUs I  25, 100, 400 

2 Daily demand rate per SKU •iM  [ ]1.0,0U , [ ]5.0,0U  

3 Fractions of class demand per item 1 2; i i i im M m M• •  ( )0.2;0.8 , ( )0.5;0.5 , ( )0.8;0.2  

4 ( );reg em

i iT T (in days) ( )4;1 , ( )8;1 , ( )8;2 , ( )16;2  

5 Item holding cost interval (per unit per day) [ ]98.19,02.0 , [ ]8.199,2.0 , [ ]1998,2  

6 em

ic  (per shipment) 1000  

7 
Target service levels ( )max max

1 2;W W (in hours) ( )2,5.0 , ( )4,5.0 , ( )12,3 , ( )24,3  

Table 6.1 Parameter values of the tested instances 

 

6.3 Results 

We evaluate the performance of the two methods for obtaining near-optimal 

integer solutions in Section 6.3.1. In Section 6.3.2, we investigate whether and when 

the emergency shipment strategy has added value over one-size-fits-all strategies. In 

Section 6.3.3, we compare the emergency shipment policy to the critical level policy 

and we determine the added value of combining both policies.  
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6.3.1 Performance of the heuristics 

To evaluate the solution quality, we compare the integer solutions constructed 

to the lower bounds found by solving the LP-relaxation. For each heuristic, we 

express the solution quality in terms of a relative gap to the lower bound, defined as 

100 ( ) /H LB LBTC TC TC⋅ − . Here, HTC  denotes the solution value for the heuristic 

(Integer Programming or Local Search). Table 6.2 displays the average and 

maximum gap for different numbers of SKUs, which is the parameter with the largest 

impact on the gaps. Overall, both solutions perform well in terms of solution quality: 

the average gap to the lower bound is well below 1%. Integer programming gives the 

best results: the gap to the lower bound is generally less than half that of local 

search. We observe that the gap clearly decreases with the number of SKUs. This 

result is relevant, because practical instances typically contain hundreds of items.  

 

Values

average maximum average maximum

25 0.25 2.16 0.51 3.81

100 0.02 0.11 0.05 0.35

400 0.00 0.02 0.00 0.08

Overall 0.09 2.16 0.19 3.81

Number of 

SKUs

gap integer programming (%) gap local search (%)Parameter

 

Table 6.2 Gap of integer programming and local search to the lower bound 

 

Table 6.3 shows the heuristic calculation times on a Dell optiplex 760 computer 

with Intel quad core, 2.83 GHz processor. Both methods require little computation 

time, although the run times of IP increase substantially with the problem size. 

Parameter Values

average maximum average maximum

25 0.10 0.64 0.01 0.06

100 0.14 0.73 0.03 0.73

400 1.48 10.34 0.50 2.66

Overall 0.58 10.34 0.18 2.66

Number of 

SKUs

computation time IP (sec) computation time LS (sec)
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Table 6.3 Calculation times for the problem instances (IP=Integer Programming, LS = Local Search) 

 

6.3.2 The added value of using emergency shipments  

We compare our selective emergency shipment policy to two one-size-fits-all 

policies: one with emergency shipments (OSFA ES), and one where we can choose 

for every item whether we backorder or use emergency shipments (OSFA BO+ES). 

In the latter policy, we differentiate between items, but not between customer 

classes. Backorder clearing is done first-come-first-served. Both policies aggregate 

all customers into a single demand class with maximum waiting time 
max

1W .  

We use OSFA ES as a benchmark, since it has often been used in literature to 

measure the added value of critical level policies (see, e.g. Kranenburg and Van 

Houtum [14]). Table 6.4 shows the average and maximum percentage savings of 

OSFA BO+ES and our policy to OSFA ES. We also show the results for different 

holding cost intervals, because this parameter has most influence on the savings. 

Parameter Values

average maximum average maximum

holding cost range interval [0.02, 19.98] 7.9 38.9 11.7 45.8

[0.2 - 199.8] 0.2 2.7 1.2 12.6

[2 - 1998] 0.1 1.9 0.3 3.0

Overall 2.7 38.9 4.4 45.8

savings over OSFA ES (%)

OSFA BO+ES Selective em shipments

 

Table 6.4 Savings of selective emergency shipments over OSFA BO+ES and the division of items 
over shipment strategies 

 

OSFA BO+ES leads to average savings of 2.7% over OSFA ES. Selective 

emergency shipments yield additional average savings of 1.7%, resulting in average 

savings of 4.4% over OSFA ES with a maximum of 45.8%. The savings are largest 

when the holding costs are low, because emergency shipments are less appealing 

then: it is cheaper to keep high stocks and to reserve emergency shipments for 
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requests from premium customers. We also obtain large savings when waiting time 

restrictions for class 1 demand are loose (7.4% on average). 

Figure 6.1 displays on the left the fraction of items assigned to each shipment 

strategy for OSFA BO+ES and our policy (SES). The figure to the right shows the 

division of items over shipment strategies per holding cost interval for our policy.  

Item fractions per holding cost interval
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Figure 6.1 Fraction of items per shipment strategy for selective emergency shipments and OSFA BO 
+ ES (left) and fraction of items per holding cost interval (right)  

 

The left side of Figure 6.1 shows that the fraction of items for which all demand 

is backordered ( 0=iD ) is similar for both policies. We make the same observation 

for distinct parameter settings. Hence, we clearly use the selective shipment strategy 

( 1=iD ) to limit using expensive emergency shipments for both classes ( 2=iD ). On 

average, 1=iD  for 20% of the items. This fraction increases to more than 40% when 

the holding costs are low (see figure on the right).  

To analyze the types of items for which differentiation is used most frequently, 

we determine the average holding costs and item demand rates associated with each 

strategy, see Figure 6.2. It appears that the differentiation strategy is generally used 

for expensive slow movers: little or no stock is kept for this type of item. The shipment 

strategy is thus essential for meeting waiting time restrictions: we use emergency 

shipments for premium customers, but backorder class 2 requests.    
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Figure 6.2 Average holding costs and demand rates per shipment strategy over all problem instances  

 

6.3.3 Comparison to the critical level policy and a combined policy 

We compare selective emergency shipments to a well-known critical level 

policy with emergency shipments (referred to as CLP ES) and we investigate the 

added value of combining both policies (referred to as CLP+SES). Table 6.5 shows 

the relative savings of the policies compared to OSFA ES.   

Parameter Values

Treg - Tem 4-1 7.6 5.8 16.1

(days) 8-1 4.5 8.5 14.3

8-2 4.1 7.5 13.1

16-2 1.5 9.7 12.1

holding cost range interval [0.02, 19.98] 11.7 0.5 16.2

[0.2 - 199.8] 1.2 8.3 10.5

[2 - 1998] 0.3 14.8 15.0

W1-max - W2-max 0.5 - 2 1.4 4.4 6.2

(hours) 0.5 - 4 1.4 7.6 10.4

3 - 12 7.4 8.4 16.7

3 - 24 7.5 11.1 22.4

Overall 4.4 7.9 13.9

Em ship policies CLP ES CLP + SES

savings over OSFA ES (%)

 

Table 6.5 Savings of different policies over OSFA ES 

 

Critical level policies generally perform better than selective emergency 

shipments, with average savings of 7.9%. This is caused by the mode of 

differentiation: critical level policies reserve stock for premium customers, who thus 
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often obtain a part right away. In contrast, customers need to wait at least 
em

iT  time 

units for an emergency shipment. The selective emergency shipment policy is also 

less sensitive to the waiting time restrictions than the critical level policy: the waiting 

time restriction for class 1 is usually dominant. Then,  increasing 
max

2W has little 

impact on the solutions found.  

Selective emergency shipments outperform critical level policies when regular 

shipment times are short, holding costs are low, and waiting time restrictions for class 

1 requests are loose. Then it is viable to meet (a part of) the requests through regular 

replenishment instead of expensive emergency shipments. Indeed, the fraction of 

items for which iD  is 0 or 1 is relatively high then (for the holding costs we can see 

this in Figure 6.1). Note that selective emergency shipments do not outperform CLP 

ES for the given waiting time restrictions, but this happens if we further increase 

max

1W . Under the mentioned conditions, the base stock levels with CLP ES tend to be 

high in order to avoid expensive emergency shipments.  

It is obvious that the combined policy yields the best results, but the size of the 

additional gain is surprising: it is more than the combined savings of the individual 

policies. The key reason is that under CLP ES, the actual average waiting time tends 

to be considerably below the target for class 2 customers. The waiting time for class 

1 customers is usually the bottleneck. If we include selective emergency shipments, 

we are able to push the actual performance of low priority customers closer to the 

target (0.04% instead of 29% in the experiments with 100 SKUs). 

7. Conclusions and directions for further research 
Based on the research, we draw the following key conclusions.  
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1. Both methods for finding a near-optimal solution yield an average gap to 

the lower bound of less than 1% and require little computation time. Greedy 

approaches are not always necessary to find a near-optimal solution: integer 

programming with the columns from the LP-relaxation works well and is simple.  

2. Selective emergency shipments may have significant added value 

compared to one-size-fits-all approaches. The average savings are 4.4% 

compared to a one-size-fits-all strategy with emergency shipments.  

3. Differentiation through emergency shipments is most useful for expensive 

slow-movers. It has most impact if little or no stock is kept.  

4. The selective emergency shipment strategy outperforms critical level 

policies when item holding costs are low, regular shipment times are short, 

or class 1 target waiting times are loose. Then, emergency shipments are very 

expensive compared to regular replenishments.  

5. We can achieve large savings by combining critical levels and selective 

emergency shipments (13.9% on average). The combined policy enables us to 

effectively differentiate in spare parts supply.  

 

We see the following opportunities for further research.  

1. Extend the model to more than two demand classes. It is not straightforward 

to do so under priority backorder clearing, because we then obtain a multi-

dimensional Markov chain with the number of classes as dimension. Analysis is 

simple under FCFS backorder clearing, but the performance will be clearly 

suboptimal then. Further research is thus needed in this area.   

2. Use better shipment strategies. We expect further savings if the decision when 

to use emergency shipments also depends on the system state (see Section 3.2).  
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3. Consider a multi-echelon system. We need to stock items somewhere to meet 

emergency shipment requests, resulting in costs that we have not considered yet.   

4. Include lateral transshipments between local warehouses. This flexibility 

option may yield another interesting source of customer differentiation.  
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