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§ I. Introduction 

It will be shown in this paper that uniformly packed~ binary codes, with 

e ~ 3, do not exist except for the extended Golay code of length 24. 

For e = I and 2 there are infinite sequences of uniformly packed codes 

known (see [2J, tables I and II). 

§ 2. Notations and definitions 

e 

n 

d 

e 

a code in a binary vectorspace V, 

length of the code (= dimension of V), 

minimum distance of e (= min{d(~I'~2) I ~l E e, ~2 E e, 91 # ~2})' 

error correcting capability (= [d ; I J), 

:- {x E V I d(x,e) = k}, 0 ~ k ~ n, - -
:= I{,S.€ C I d(~.c) = ill, ~€ V, O:s; i :s;n, 

A code e is called unifo~ly paoked with parameters (A,~) if for all x E V 

with p(~) ~ e the following holds: either 

B (~, e) = 1 and B (~t e + 1) = A , 

(2.1) or 

(2.2) 

B. 
J 

N(e) 

(2.3) 

r 

ct· 1. 

p(n) (x) 
k 

o and B (~. e + I) = ~ • 

k 
:= I 

i=O 

characteristic numbers of the code C, 0 :s; j :s; n, (see [2J), 

:= {j I 1 :s; j ~ n, B. # OJ, 
J 

oharaoteristio polynomial of e defined by 

external distanoe of e := degree 

(i = O,l, ••• ,r) defined by Fe(X) 
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§ 3. Known results 

Lemma 3.1. For every code C one has 

(3.1) 

Proof. [2J, corollary 1.1, page 7. 

Theorem 3.2. (Lloyd). C is uniformly packed with parameters (A,~) iff 

(3.2) 

Proof. [2J, theorem 12. page 17. 

Corollary 3.3. Necessary conditions for the existence of a uniformly packed 

code with parameters (A,~) are 

(3.3) i) 

(3 •. 4) ii) Q(x) 

has e + 1 dis tinct in teger zeros in [1, nJ • 

o 

o 

Proof. Substitution of x = 0 in (3.2) and (2.3) yields i), while ii) follows 

from (3.2) and the definition of Fc(x) in (2.3). 0 

Theorem 3.5. For the parameters (At~) of an uniformly paCKed code, the fol­

lowing inequalities hold 

(3.5) 

(3.6) 

n-e 
<-

e + 1 ' 

1 <_ 1 , < !!...:!:..!.. 
.. - e+l • 

Proof. See [2J, page 20, formula (28) and (29). o 
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Lennna 3.7. 

(3.7) 
k I p~n)(x) = p(n-l)(x - I) • 

i=O 1 k 

Proof. See [3J, corollary 5.4.18, page 110. 

§ 4. Side trip 

The next theorem places this paper in the context in which it should be 

placed. 

o 

Theorem 4.1. Let C be an e-error correcting code. Then C is uniformly packed 

iff its external distance is e + 1 • 

Proof. The implication to the right is covered by (3.2). So assumed that 

r = e+l. It follows from (3.1) that p(,?E.):O; e+J for all x EO V. 

Let x E V with p(,?E.) = e, Le. B(,?E.,O) = ••• = B(,?E.,e -I) = 0 and B(,?E.,e) > O. 

Since d ~ 2e+l, it follows that B(x,e) = 1. Now (3.1) reads 

ile + cte+IB(,?E.,e+l) = I, Le. B(,?E.,e+l) is constant (let us say A, with 

il + Ail 1 = I). Let x E V with p (x) > e. Then it follows from p (x) :0; e + 1, 
e e+ - -

that P(,?E.) = e + I, Le. B(,?E.,O) = B(,?E., l) = ••• = B(x,e) = O. Now (3.1) reads 

il IB(x,e+l) = 1, Le. B(_x,e+l) is constant (let us say j.l). The theorem 
e+ -

follows from definition (2.1). 0 

§ 5. Basic tools 

Let Q(x) be defined as in (3.4). Using lemma (3.7) one can rewrite Q(x) as 

(5.1) .!.{ j.lP (n-l ) (x _ I) + P (n) (x) - AP en) ex) } 
j.l e e+J e 

Theorem 5.2. Let x., i = l, ••• ,e+l be the zeros of Q(x) then 
1 

e+l 
(5.2) i) I 

i=} 
x. = 

1 

(5.3) ii) 

(n + j.l - A)(e + 1) 
2 

x.x. 
1 J 

(e + 1) e 2 
= 24 On +3(2j1-2A-l)n+6j.l+2e-2} 
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2 
(5.4) iii) I 2 (x. - x.) 

J ~ 
e (e ;; I) {n + (ll _ A) 2 _ Zf.\ _ 2 e; I } 

1 $i<j$e+l 

e+l 
(5.5) iv) IT - ll(e + I)! 

i~l xi - Ze+l 

e+l 
(5.6) e+l \ 2 v)2 L. (x.-I)=(n-l)(n-2) ••• (n-e+l){n -en+(e+I)(1l-A-2)n 

i=1 1 

(5.7) vi) 
e+l 

2e+1 I 
i=1 

- e(e + I)(ll - 2;\ - 2)} 

(x. -2) = (n-Z)(n-3) ••• (n-p.+l) x 
~ 

x {n(n - I)(n - e - A - eA) + (e + l)(n -I) «lJ - 4)(n - e) +4Ae) 

- 2e(e+I)«1l-2)(n-e) + ZA(e-I»} 

+1 (_2)e+l 
Proof. Since the coefficient of x

e 
in Q(x) equals ll(e+ I)! it follows that 

(5.8) Q(x) 
(_2)e+1 e+l 

ll(e + I): II 
i=1 

(x - x.) • 
~ 

Now (5.2) and (5.3) are easily derivable by regarding the coefficients of 
e+1 d e e+1 d e-I . Q()' h f 1 (5 I) x an x, resp. x an x ~n x, us~ng of course t e ormu as • 

and (2.2). Now (5.4) is easily computed, s~nce 

I (x. - x.)Z = e I x~ - 2 
.• 1 J . ~ 
~<J ~ 

I x.x. • 
~ J i<j 

The formulas (5.5), (5.6) and (5.7) follow directly, if one substitutes x = 0, 

x = 1 resp. x = 2 in (5.1) and (5.8). 0 

It turns out that we need more information on the distribution of the zeros 

of Q(x). 

Since Krawtchouk polynomials (after the right normalization) belong to the 

classical polynomials ([4J, section 2.82), we may apply the standard results 

in this theory. 

Lemma 5.9. The zeros of p~n)(x) are real, distinct and located ~n the inte­

rior of [t ,nJ. 

Proof. [4J, theorem 3.3.1, page 44. o 
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Lemma 5.10. Let u 1 < Uz < ••• < uk be the zeros of p~n)(x) and 

Vj < v2 < ••• < vk+1 the zeros of p~~i(x). Then 

Proof. [4J, theorem 3.3.Z, page 46. 

Lemma 5.11. The poiynomials p~n)(x) satisfy the relation 

(5.11) (k+I)P~~?(X) == (n-Zx)p~n)(x) - (n-k+l)p~~i(x) 

Proof. [I], formula (4.11), page 59. 

We remark that (5.10) follows from (5.11) and an induction argument. 

Lemma 5.1Z. Let u l < Uz < ••• < uk be the zeros of p~n)(x) then 

(5.12) U. + uk . == n, 
1 -1 

i == 1,2, ••• ,k 

Proof. From (Z.Z) it follows that p~n)(x) == (_1)~~n)(n-x). 

o 

o 

o 

The lemmas above enable us to prove a theorem, which turns out to be essen­

tial in this paper. 

Theorem 5 13 Let u < u < < u be ,the zeros of p(n-l)(x_l) and ---.;........;........ 1 2 ••• e e' 

vI < Vz < ••• < ve+1 the zeros of p~~~t)(x-l). Then 

Q(x) = 

has distinct real zeros xl < x2 < ••• 

i) o < xl < u l < x2 < u 2 
< ... 

ii) xI > vI if II - A -
x < v 1 if 11 - A -e+l e+ 

< X I' such that e+ 

< x < u < xe+1 e e 

~ 0 

::; 0 

< n 
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Proof. By virtue of lemma (5.12), we rewrite Q(x) 

(5.14) Q(x) =.!.{p(n-I)(x_1) + (lJ-A-l)p(n-I)(x-l) + AP(n-II)(X_I)}. 
lJ e+l e e-

According to (5.11) 

(e+l)p(n-lJ)(U.-I) = -(n-e)p(n-Il)(n.-O • 
e+ ~ e- ~ 

Hence 

Q(u.) = .!.{p(n-I)(u. -I) +AP(n-l) (u. -l)} =.!.{t, _n-e)p(n-I) (u. -1). 
J. ]..l e+ I]. e-I ~ lJ e + Ie-I ]. 

Since p(n-I)(x) 
e-I 

(5.10) that the 

(n-I) and P (x) are both positive in x = 0, we can deduce from 
e (n-I) i+1 

that the 

sign of p I (u. - I) is (-I) and consequently, by (3.5), e- ~ 

sign of Q(u.) is (_I)i. Moreover, 
]. 

since 

e 
+ 1 n Q(O) = I (~) _ A (n» > 0 

i-O ~ jl«e+ I) e 

and 

e+l 
Q(n) (-I) {(n)+ n nne n } = A ( ) - ( ) + ( I) - ••• + (-I) (0) 

].l e+1 e e e- , 

i.e. the sign of Q(n) is (-I) e+ I , it follows that part i) of this theorem 

is proved. 

Since, by lennna (5.10), p(n-II)(x-l), p(n-I)(x-l) and p(n-11)(x-J) are po-
e+ e e-

sitive on [O,V I], Xl > VI for ].l - A-I ~ O. Similarly these polynomials 
I e e-I have sign (-l)e+ , (-1) , resp. (-1) on [v l,nJ. Consequently, for 

I e+ 
].l - A - ISO, Q(x) has sign (_l)e+ on [ve+1,nJ, i.e. xe+t < ve+l' 0 

There is one more crucial theorem in this paper. In order to state this, we 

need a definition. 

Definition 5.15. For any n € N, A(n) := the largest odd factor of n, i.e. 

n = A(n).2t for some t. 
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Theorem 5.16. Let C be a uniformly packed code with parameters (A,U). Then 

(5.16) i) 
e+J 

A(u)A«e + I)!) 
IT A(xi ) = ACICI) 

i=l 

e+l 
(5.17) ii) IT A(x.) s 

1 
A«e + ) Dn + 1 

e + 1 • i=l 

Proof. Statement (5.16) follows directly from the first equality in (5.5), 

while, in turn, it self implies (5.17), since 

A(Il)A«e+l)D< () « )')< « ),)<n+1 A« 1)') A(ICi) -A)l A e+ 1 • -IlA e+l • -e+T e+ • , 

(here use (3.6». 

Lemma 5.18. The zeros of p~n)(x) all lie in the interior of the interval 

(5.19) [n - v'k(k - 1 )n/2 
2 

n + v'k(k - ) )n/2] 
2 

for k ~ 2 • 

o 

Proof. Let ul < Uz < ••• < uk be the zeros of p~n)(x). Since Q(x) in (5.1) 
(n-l) equals Pe+1 (x-I) for A = O,)l = 1, we deduce from (5.4), after replacing 

e + 1 by k and n - 1 by n, that 

Now 

Hence 

L Cu. - u.)2 
lsi<jsk' J 1 

z (u. -u.) 
J 1 

( _ )2 < k(k - I){ _ 2(k - 2)} k(k - I)n 
uk u 1 - 2 n 3 < 2 • 

The lemma now follows from the observation that u1 + uk ::: n (by (5.12». 0 
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Lemma 5.19. Let f < m be integers. Consider f distinct integers z .• 
~ 

i = 1,2 •••• ,f. Let F(m,f) be the product of the powers of 2 in these numbers. 

Then 

(5.19) 

Proof. Let a := r210g 11 and 1 = 2
a

-
e, 0 ~ e < I, (here rx1 denotes the smal­

lest integer k such that k ~ x). These are exactly t mUltiples of 2
a

, which 

are at less then or equal to mt where ~ = l~J ~ ~ . 
Za Zo 

F(m,f) is maximal if one takes for zl,ZZt""zf these ~ mUltiples of Za and 
a-I f - ~ mul tiples of 2 • Hence 

2log F(m,f) ~ (f - t)(a - I) + ta + l~J + lrJ + ••• ~ 

]-8 
f(a-I) + 2):, - 1 ~ f(a-l +2 )-] ~ f(a-8+1)-1 

(since 2x - x ~ 1 for 0 ~ x ~ I). 0 

§ 6. Main theorem 

Theorem 6.1. There are no uniformly packed codes for e ~ 3 except for the 

extended Golay of length 24. 

Proof A. Upper bounds on n for e ~ 4. According to theorem (5.13) there are 

at least e roots of Q(x) in the interval (V],V I)' where vI and v 1 are 
( 1) e+ e+ 

the smallest, resp. largest, zero of p
n-

I 
(x-I). According to (5.18) this e+ 

implies that all these zeros lie in 

(6.2) 

n + I _ le(e + l~(n - I) 

[--------~2~---------
a. 

1. Let a. be defined by x. = A(x.)2 • 
1. 1. 1. 

n + I +!e(e + ])(n - I) 
2 

--------~2----------J · 

We renumber the zeros xi as Yl'Y2""'Ye+I' in such a way that Yl""'Ye are 

all in the interval given by (6.2) and that at ~ aZ ~ ••• ~ ae • 
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By lemma (5.19) 

(6.3) A(Y 1.Y2.···. Ye_I) 

_ Ieee + l)(n -
n + 

~ 
YI Y2 ••• Y 1 ~ • • e-

:?: 2 
al +a2 +. • • +ae_ 1 F( tH,e + Inn - I) 

2 t e 2 

_n_+_.,..,._.I.e""'( .. e ..... + .1..;)2;.c.n,...-_I_)] e-I 
:?: 2 (.:....;.2.) e-I 

4 le(e + ij{n - !) 
2 

substituting (6.3) in (5.17) results in 

(6.4) 
u+l_/e(e+l)(n-

2(e - I) e-I 2 
---r jete 3" J)(n - J) 

2 

I) e-I 

~n+l1 A«e+I)!) 
e+ 

which implies 

(6.5) 

(6.6) 

I I 
e-I(/2(n-l) _ I)~( 1)e=T(A«e+I)!»e-I ---r e(e + 1) n + 2(e + 1) 

/2(n-l) 
e(e + 1) 

I I 

/ 2(n - 1) ~ -L ( I )e=T(1 ,)e-I 
e(e+1) e-1 n+ 2e • , 

2 
16e(e + I) e=T 2 

(n - 1) ~ e _ 1 (n + 1) (e + 1) , 

-2 
e=T 3 (n-I)(n+I) ~ 24(e+l) , e :?: 3 • 

I) e-I 

- I ) 

9 For n :?: '! e(e + 1) + 5, it follows from (6.2) that at least e zeros of Q(x) 
1 2 

are in (3 n '3 n). This implies that all these zeros have different odd 

part. 

Hence by (5. 17) 

Since the asymptotic behavior of this lower bound roughly behaves like 2
e 

(or more), it is easy to verify that this lower bound contradicts (6.6) for 

e :?: 13. 

:?: 
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9 Hence n ~ 2 e(e + 1) + 5 for e ~ 13. 

For e = 4,5, ••• ,12, we repeat this whole argument, except that we use (6.4) 

instead of (6.6). 

It turns out that for e = 7,8, ••• ,12 we obtain again a contradiction with 

(6.7). 

Hence 

(6.8) 9 n ~ 2 e(e + 1) + 5 for e ~ 7 • 

For e = 4,5.6. we find respectively. 

(6.9) n ~ 11.000, n ~ 1450 and n ~ 1050 • 

B. Lower bound on n. All cases e ~ 4. We define P2(n) and P3(n) as the second, 

resp. third degree polynomial, between the brackets in the right hand side 

of (5.6), resp. (5.7). 

Making use of (3.5) and (3.6) it immediately follows that P2(n) ~ 2n2 and 

P3 (n) s; 2n3• Let n - i be the factor in (n - l)(n - 2) ••• (n - e + 1) divisible 

by the highest power of 2, say 2a • Let 2b and 2c be the powers of 2 in PZ(n) 

resp. P3 (n). We denote this by 2'1 (n - i), etc... Clearly 

(6.10) 7 2 3 a abc Za+b+c 4.n = n.n.Zn .2n ~ 2 .Z .Z.2 = Z • 

Since Zan (n - i) and (n - i) contains the highest power of 2, it follows that 

ZXn (n - 1) (n - Z) ••• (n - i-I) (n - i + 1) ••• (n - e + 1) where 

e-2 e-Z e-Z 
x ~ l-;r-J + l~J + L-,r-J + ••• , 

which is at most e - 3. 

Hence 2Yn (n - 1) (n - 2) ••• (n - e + I) • Pz (n) where y S a + b + e - 3 and simi­
z larly 2 II (n - Z) (n - 3) ••• (n - e + 1) • P3 (n) where z S a + c + e - 3. However 

e+l 
Z2(e+l) n (x. - 1 )(x. - 2) is clearly divisible by 23(e+I). We therefore ob-

• 1 1. 1. 
1.= 

tain the inequality 3(e + I) < 2a + b + c + 2(e - 3). Together with (6.10) 

this yields 

4n7 > Ze+9 . 
, 1..e. 

(6. II) 

n ~ 

e+7 

2' 
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For e ~ 103 this inequality contradicts (6.8). which proves the theorem for 

e ~ 103. 

For e = 4,5,6, ••• ,102, we still have a finite number of possibilities given 

by (6.8) and (6.9). These possibilities were all checked on a computer. It 

turned out that none of them satisfied the necessary conditions. This means 

that the theorem is proved for all e ~ 4. The total computer time was rough­

ly Ii hour on a Burroughs B6700. 

Remark. In [2J (theorem 8 and corollary 12.2) it is shown that the code words 

of fixed weight in an uniformly packed code, containing £, form an e-design. 

In the computer program we used the divisibility conditions for designs as 

the most powerfull tool to reject possibilities. 

C. The case e = 3. For n s 2300 we have checked all possibilities on a com­

puter and it turned out that only the extended Golay code of length 24 exists. 

In the sequel we have n > 2300. 

By lemma (5.13) there are at least 3 roots in the interval (v
l
,u3) or (u

l
,v4). 

For this small value of e it is easy to calculate these zeros explicitly. 

(6.12) 

(6.13) 

I n + II 1/ ~ VI - 2 < ~ 3n + nv3 

IU
3 

- n 2 I I = lUI - n 2 1 I < !l3n • 

Applying (5.16) and (5.19) as in part A one finds 

(6.14) A(y )A(y ) • ~ [n + 1 - n(3 + 13) 2 ::;; 3A(11) • 
3 4 !rn(13 + h + 13) 

We first treat the case that 11 is even. Then by (3.6) 

(6.15) 

For n ~ 2300 we now deduce from (6.14) A(Y3)A(Y4) < 3, i.e. 

(6.16) 

Suppose Y3 = 22k+l. Since IY3 - n 2 I I ::;; ~~(3 + 1:3), it follows that 

n < 22k+2 + Zk+3 and rn < 2k+l + 1. Consequently ~rn(13 + /3 + 13) < 2k+2. 
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, 2k+J k+1 2k+1 k+1 
Hence as posslble values of YI and Y2 one has 2 + 2 or 2 - 2 

(at most one of these), with an odd factor 2k + 1 or 2k - 1; further possi-

b 'l' , 22k+1 ± 2k, 22k+1 3 2k . h dd f 2k+1 + ) 1 ltles are ± • t Wlt 0 actor -. resp. 

2k+1 ± 3, etc. 

Clearly A(YI)A(Y2) is at least (2k - 1)(2k+1 
- 3). However by (6.15) and the 

inequality on n above 

i.e. 2k 
we have established a contradiction with (5.16). The case Y3 = 2 does 

not yield a contradiction, if we treat it the same waY,but two possibilities 

a) YI = 22k+2k, 
Y2 = 22k + Zk+l, ].1 = 2(2k + I)(2k- 1 + 1) 

A( I CI) 3 
(6.17) 

2(Zk _ ) )(2k- 1 , A(ICI) 
b) Yt .. 22k _ 2k 22k _ 2k+l - 1) .. J.l = , Y2 , 

3 

Since 1Y3 - nil I ~ !In(3 + 1:3), one has in both cases 

n - 21n s 22k+1 ~ n + 21n 

n Since 0 ~ A < 4,(3.5), one has by (5.2) 

Consequently, 

II !!....;:; n r 
~ n - ~.n - 3(2 + 2vn) s Y 4 ~ ~ n + tm - 3 (~ - 2m) , 

i.e. 

1 22,- 5 22,-
'3 n - "3vn s Y 4 ~ b n + "3vn • 

On the other hand by (6.16) A(Y4) = 1, and the only power of two between 

these two bounds is Y3 for n ~ 19.000. 

For 2300 s n S 19.000, this leaves us with one possibility Y3 .. 4096, 

= 1 , 

.. 1. 

7840 ~ n ~ 8560. In this case one can compute the two possibilities for Yl'Y2 

and].1 from (6.17). With these more precise figures one now also obtains a 

contradiction, after reasoning as above. 
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n + We conclude that ~ has to be odd. So ~ = A(~) s 4 
Since n ~ 2300 we deduce from (6.14) 

(6.18) 

(6.19) 

Let us assume that Y4 = Xl. Then by (5.5) 

_ 3}.1 2n -1 3~ n -I > 3 nA(x 1) n n + 1 + 2~ -3 
XI - 4 TCT (x2x3x4) ~ 4(3) (x2x3x4) -7; 26 (3) ( 2 ). 

Xl n 
Hence A(x

t
) ~ 30 and therefore X is divisible by 8. If one of the zeros Yi' 

i s 3, is not divisible by 8, then A(y.) ~ !(n + I - 21n). Since at least one 
~ 2 

other zero X has A(x) ~ (n + 1 - 21n), we do get a contradiction with (5.17). 
2.2m 

Since this later argument also applies if Y4 = x4 ' we conclude 

(6.20) all x. are divisible by 8 • 
~ 

By (5.2), (5.4) and (5.6) we have 

(6.21) n + ~ - A :: 0 (mod 4) 

(6.22) 3n + 3(}.I - A)2 - 6~ - 4 :: 0 (mod 16) 

(6.23) (n-l)(n-2){(n-8)(n-3-4A) +4~(n-3) -8A} - 16 (mod 32) • 

As in theorem (5.2) one can easily derive 

(6.24) 

By (6.20) 

(6.25) 

I x.X'X
k 

= !P3(n) = Hn3 + 3 (}.I - A - I )n2 + (3~ + 3A + 4)n + 81l - 2:\}. 
i<j<k ~ J 

Substitution of (6.21) in (6.22) yields 

(6.26) 3n{n + I) - 6~ - 4 :: 0 (mod 8) • 

Since lJ is odd, we deduce from (6.26) n(n+l)::: 2 (mod 4). Suppose n::2 (mod 4). 

Then by (6.21) :\ is odd. However this contradicts (6.25), since 

P3(n) ::: -2A :: 2 (mod 4). Hence n :: 1 (mod 4). Since the expression between 

braces in (6.23) is congruent. to n(n -3) n2 +n ::2 (mod 4). it follows that 
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n - I = 8 (mod 16). Substitution of this result in (6.26) yields ~ = 3 (mod 4). 

By (6.21) A = 0 (mod 4). If one reduces P3(n) (mod 8), one obtains P3(n) 

2 + 6~ = 4 (mod 8), contradicting (6.25). 0 
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