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Summary 

The problem of studying the influence of a latent heat storage on the expenditure of 
energy is considered. Two models are introduced based on the one· dimensional respec· 
tively tw~dimensional heat equation. In the second model the solution is numerically 
obtained using the succesively overrelaxation method. Numerical results are given for 
circumstances in which latent heat storage is ensumed. It is concluded, that latent heat 
storage has a very positive effect on the expenditure of energy, provided the climate is 
rather extreme, viz. with a maximal temperature of 70° C during several hours a day. 

Information on this report 

In 1990, from August 20 until August 28, Dr. W.G. Eschmann from the University of 
Kaiserslautern (Germany) gave a course called "Cases in mathematical modelling" at 
the University of Technology Eindhoven (The Netherlands). This course was given to 
an audience of ECMI·students and faculty staff members. This report treats a prob· 
lem that was presented to us by dr. W.G. Eschmann. We have been working on this 
problem during three months with good support from the staff members. We would 
like to thank Dr. Ir. S.J.L. van Eijndhoven, Dr. J. Molenaar and Dr. S.W. Rienstra 
for their useful contributions. We hope you enjoy reading this report. 
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§1 Introduction 

§1.1 General introduction to the problem 

In Germany the heating of houses gives a major contribution to the household energy 
costs. This fact motivated a producer of bricks to design a new type of brick using a 
special material named texxos. Figures 1.1.a and l.1.b show this new brick, containing 
a cylinder filled with texxos, in more detail. 

Figure l.1.a: New brick containing a texxos cylinder 

outside 

mortl1.r 

lI.ir holes 

fine concrete 

clny 

in!lidc 

Figure 1.1.b: Cross section of the new brick 
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The texxos material has the interesting capability of storing heat, in the form of la
tent heat in a melting process, at a certain critical temperature, say T (!"I'it. Below this 
temperature the cylinder temperature varies proportionally to the supplied heat (en
ergy). At the critical temperature the supplied heat is used to start a melting process, 
which causes the cylinder temperature to stay at a constant level. After the melting 
process is completed the supplied energy is again used for heating up the cylinder. 
Evidently, texxos is not the only material with this behaviour. However, texxos has 
the convenient property of melting at a temperature just above room temperature. So 
at daytime, when the sun is shining, the bricks store the supplied energy of the sun to 
release it later to the room behind. Although the mechanism is known in principle, it 
is hard to estimate whether there will be any gain, because various effects interact in 
a subtle way. The present study is meant to analyse to what extent and under which 
circumstances the new brick reduces the heating costs. 

§1.2 Typical data 

In .this section we summarize the typical data concerning this problem. 

L = 0.20 [m]; thickness of the wall 
T(!"I'it = 300 [K]j critical temperature of texxos 

Material constants for fine concrete 

a2 = 8.75 X 10-7 [m2 / sec] 
p = 1.2 X 103 [kg/m3 ] 

c = 1.05 X 103 [J/kg ]<] 
k = 1.1025 [W/m K] 

§1.3 The results 

j diffusivity constant 
; mass density 
; specific heat 
j thermal conductivity 

The texxos cylinder has a very positive effect on the energy costs, if we are in a position 
that it functions during a long period of time. The texxos cylinder, however, will only 
function during a long period of time, when the climate is rather extreme, with enough 
sun radiation to yield a maximum outer wall temperature of 70° C during several hours 
a day. 
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§2 The instationary 1 - D model 

2.1 Mathematical formulation 

To describe the heat flux through a brick wall, we have to formulate: 

- heat diffusion in the material 
- boundary conditions at the interfaces 
- initial conditions 

As we study the influence of latent heat storage on the heat flux through a wall we 
want the texxos layer to actually store supplied heat. 
Therefore, we assume the texxos cylinder to remain at its critical temperature T Cf"it. 

Consequently, we do not need any equation to describe the effectively instantaneous 
heat diffusion in the texxos cylinder. The heat diffusion through the fine concrete in 
the wall is assumed to be described by the heat equation 

(2.1) 
au 

pc-=V·(kVu) at 

where u(x, t) is the temperature at position x in the wall at time t. 

Since the thermal conductivity k will only vary slightly in the range of temperatures 
considered, and since the fine concrete will be approximately homogeneous it seems 
reasonable to assume k to be constant in place and time. So Equation (2.1) reduces to 

(2.2) 
au 
- =a2~u at 

where a 2 = k/ pc is the diffusivity constant for fine concrete. 
By neglecting geometrical effects, that we expect to have only small influence on the 
net heat flux through the wall, we are able to simplify this three dimensional equation 
further. 
First, we note that the clay and the airholes within it only delay the heat diffusion. 
Therefore, we omit the clay parts of the wall, as its influence could well be modelled by 
a thicker wall of fine concrete. Next we assume the texxos to be contained in a layer 
instead of a cylinder as indicated in Figure 2.1. 
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outside 

texxoslayer 

fine concrete 

inside 

Figure 2.1: Cross section of the brick in top view 

The validity of these assumptions compared with a 2 - D model will be discussed in 
Section 4. Since the heat diffusion in the texxos cylinder is effectively instantaneous 
the heat flux through the wall depends on the amount of fine concrete that is present 
in a brick. Therefore, we choose the layer volume to be equal to the cylinder volume. 
However, one can also argue to choose the surface of the layer equal to the surface of 
the cylinder. Because we are not interested in side effects at the corners of houses at 
the moment, we assume that the walls are infinitely long. In addition, we do not take 
into account the influence of wind and hot air circulation along the wall, because we 
think that these effects do not play an important role when comparing the net heat flux 
through a classical wall and through a wall consisting of new bricks. So we assume no 
convection of air at both interfaces. Owing to the assumptions made, Equation (2.3) 
reduces to the one-dimensional heat equation 

(2.3) 
8u 2 82u 
8t (x,t) = a 8x' (x,t) . 

It is clear that we need boundary conditions at both interfaces and an initial tem
perature distribution through the walL At the outside we give the temperature as a 
function of time, Tout(t), as we want to subject the wall to a known type of weather. 
In practice, the supplied or withdrawn heat will modify the inside temperature. For 
convenience we assume that these temperature changes do not occur owing to either 
heating or cooling the room properly. So we also give the desired inside temperature 
as a function of time, Tin(t). 
As the initial condition, we take some temperature distribution ¢(x). 
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In conclusion our model is: 

a wall of infinite length with given thickness, structure (with or without a 
texxos layer), prescribed time-dependent temperature profiles at both sides 
and a given initial temperature distribution. 

As the texxos temperature is constant, the 1 - D brick with texxos is effectively split 
up into two parts which may be considered independently. 
So the mathematical formulation of our model may be given generically as follows: 

8u 2 82u 
O<x<L, O<t<oo -=0' - , 

8t 8x2 

u(O, t) = Tout(t) , O<t<oo 
(2.4) 

u(L, t) = Tin(t) , O<t<oo 

u(x,O) = qS(x) O~x~L 

where L denotes the thickness of each fine concrete part of the wall, so we deal with 
two different thicknesses L. As a matter of fact, we need to solve Equation (2.4) twice: 
once with Tin(t) = Tef'it and once with Tout(t) = Tef'it. 
By definition, the heat flux F at position x and at time t is given by 

(2.5) 
8u 

F(x, t) = -k 8x (x, t) 

where k is the thermal conductivity of fine concrete (a measure for the ability to conduct 
heat). 

§2.2 Dimensionless model 

We non-dimensionalize Equation (2.4) by scaling as follows 

x = Lx* , 

t = Et* , 

(2.6) 
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where E is the typical time scale of 24 hours, Uout is the average outside temperature 
and Uin is the average inside temperature. Substituting Equation (2.6) in Equation 
(2.4) and dropping the stars we get the following non-dimensional model: 

ou _ 2 02U 

ot -, ox2 
O<x<l, O<t<oo 

u(O, t) = Tout(t) , O<t<oo 
(2.7) 

u(1, t) = Tin(t) , O<t<oo 

u(x,O) = ¢(x) , O<x::;l 

where ,2 = 'i", the Fourier number [3]. In a physical sence, the Fourier number is 
the ratio of the rate of heat transfer by conduction to the rate of energy storage in the 
system. In order to see what solution we may expect, we consider the extreme values 
of the Fourier number. 
- For,2 > 1 we get the quasi-stationary solution (Tin(t) - Tout(t)) x + Tout(t), as 
the heat diffusion is almost instantaneous. Consequently, the texxos cylinder will have 
hardly any effect on the heat flux through the wall. 
- For,2 <:: 1 the heat diffusion through the wall is very slow and the solution will 
only vary in time in the small boundary layers of x = 1 + 0(,) and x = 0(,) at the 
interfaces. 
Conclusion: for the texxos cylinder to function, , = 0(1). In our case indeed ,2 ~ 2. 

§2.3 Formal analytical solution 

It seems advantageous to write the solution as a perturbation of the quasi-stationary 
solution, since this yields homogeneous boundary conditions, which are slightly easier 
to handle. 
So we write our solution as: 

(2.8) u(x, t) = Sex, t) + vex, t) 

where sex, t) = Tou.t(t) (1 - x) + Tin(t) x satisfies the boundary conditions. 
Substituting Equation (2.8) in Equation (2.7) gives for the perturbation U(x, t): 

(2.9) 

oS 
DV(x, t) = -at (x, t) 

U(O,t) = 0 

U(l, t) = 0 

V(x,O) = J;(x) 

8 



where 

as ( t) _ dTout(t) ( ) dTin(t) 
at x, - dt 1 - x + dt x 

¢(x) = ¢(x) - S(x,O) 

au 2a2u 
DU(x, t) = at (x, t) - 'Y ax2 (x, t). 

Equation (2.9) is non homogeneous, has homogenous boundary conditions and a non 
homogeneous initial condition. 
We will write the position dependent part of the solution in terms of a carefully cho
sen orthogonal basis. For the basisfunctions we take the eigenvectors of the position 
dependent part of the operator DU. 
Solving the problem then reduces to finding the time dependent coefficients of the 
basisfunctions. First we determine the eigenvectors which are solutions of the Sturm
Liouville problem we get when solving (by separation of variables): 

DU(x,t) = ° 
(2.10) U(O, t) = ° 

U(l,t) = ° . 
More precisely we substitute U(x, t) = X(x) T(t) in Equation (2.10) and then get for 
X(x) the Sturm-Liouville problem 

[ 

X"(X) + A2 X(x) = ° 
(2.11 ) 

X(O) = X(l) = 0 . 

Only for)' = mr, n E IN+ there exist non-trivial solutions to this problem, namely 
sin (mrx). 
So we can take Xn(x) = sin(mrx), n ~ 1 as basisvectors, which form an L2 [0, 1]
orthogonal basis [1]. 

Next we write ~~ (x, t) and the solution U(x, t) in terms of the eigenvectors Xn(x), i.e. 

00 

(2.12) U(x, t) = 2: Tn(t) sin(mrx) 
n=1 

as 00 

(2.13) -a (x,t) = 2: Sn{t) sin(ml'x) . 
t n=1 
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Using the orthogonality of the eigenvectors, the coefficients Sn(t) can be calculated. 

1 as 
(2.14) Sn(t) = 2 J at (x, t) sin(mrx) dx . 

o 

Finally, we determine the coefficients Tn(t), in Equation (2.12), which will give us the 
solution U(x, t). Substituting Equation (2.12) and (2.14) in (2.9) we get 

co co 

L T~(t) sin(mrx) = -'Y2 L (mr? Tn(t) sin(mrx) 
n=l n=l 

co 

(2.15) - L sn(t) sin(mrx) 
n=l 

co 

L Tn(O) sin(mrx) = ~(x). 
n=l 

Note, that our choice of the basisfunctions gives expressions in terms of sin(mrx) only. 
In addition, it causes the homogeneous boundary conditions to be satisfied for any 
coefficients Tn(t), provided E:=l Tn(t) sin(mrx) converges uniformly. Again using 
the orthogonality of the basisfunctions we see that Tn(t) will satisfy the initial value 
problem 

1 

Tn(O) = 2 J ~(e) sin(mre) de 
o 

with solution: 

t -! exp{ -(mr'Y)2 (t - Tn Sn(T) dT, n ~ 1 . 
o 

Hence the solution to problem (2.9) is 

co 

(2.18) U(x, t) = L Tn(O) exp{ -(ml"'Y)2 t} sin(mrx) 
n=l 

co t 

- L sin(mrx) J exp{-(mr'Y)2 (t - Tn Sn(T)dT 
n=l 0 
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The solution to or original problem, Equation (2.7) is: 

(2.19) U(x, t) = Tout(t) + x(Tin(t) - Tout(t)) 

00 

+L: Tn(O) exp{(-mri?t} sin(mrx) 
n=1 

00 t 

- L: sin(mrx) J exp{-(mri? (t - Tn sn(T)dT 
n=1 0 

where 

1 

Tn(O) = 2 J ?>(e) sin(mre) de 
o 

1 8S 
= 2 J at (x,t) sin(mrx)dx 

o 
2 = - [T~t(t) - T!n(t) cos(mr)] . 

n1l" 

The three different parts of the solution (2.19) can be interpreted as follows. The second 
term represents the effect of the initial condition, since it contains Tn(O) and with that 
the initial temperature distribution 4>. Note that this is only a transient phenomenon, 
because its influence fades away with time. As mentioned before the first term is the 
quasi-stationary solution: Sex, t). This is the temperature distribution when taking 
constant (time independent) boundary conditions Tout and :lin together with a corre
sponding initial condition u(x,O) = S(x,O). When the boundary temperatures do not 
change for a long time the third term tends to zero. Therefore, this term mainly repre
sents the deviation from the quasi-stationary solution, caused by temperature changes 
at the boundaries. It includes delayed responses, since it contains an integration from 
the switch-on time to time t. 
Finally we give an expression for the heat :flux F. 

8u 
F(x, t) = -k 8x (x, t) 

-k [Tin(t) - Tout(t)] 

(2.20) 00 

-k1l" L: Tn(O) exp{-(n1l"i?t} cos(n1l"x) 
nc1 

00 t 

+k1l" L: n cos(n1l"x) J exp{-(n1l""'r)2 (t - Tn sn(T)dT 
n=l 0 
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In this equation we recognize the same effects as in the solution for the temperature, 
see Equation (2.19). 

§2.4 Initial and boundary conditions 

To investigate the model by numerical experiments we have to choose typical initial 
and boundary values ¢, Tgut and Tin. As already mentioned before, the second term 
in Equation (2.19) only affects the solution shortly after the switch-on time. When we 
assume for convenience this switch-on time at minus infinity, so ¢(x) = u(x, -00) we 
can neglect this transient phenomenon. Of course we have to shift the lower integration 
boundary in the third term. So we get the solution 

(2.21) u(x, t) = Tgut(t) + x[Tin(t) - Tgut(t)] 

00 t 

- L sin(mrx) f exp{-(n7l'')'? (t-Tn sn(T)dT. 
n=l -00 

Note, that we do not need to specify the initial condition ¢ anymore because it has 
dissappeared out of the solution. 
For the inside temperature Tin we choose a desired room temperature, that is obtained 
by either heating or cooling the room, independent of Tgut. 
Next we try to model some typical autumn type of weather in Germany. As mentioned 
before in Section 2.1, we assume the texxos layer to remain at its critical temperature 
T erit. 
Therefore, the outside temperature at day time is taken high enough to ensure an 
energy balance between the heat supplied during the day and withdrawn during the 
night from the texxos. It turns out that the outside temperature has to be quite high. 
Since there is absolutely no need to specify Tgut(t) and Tin(t) in great detail, Tgut(t) 
and Tin(t) are taken piecewise linear and periodic with a period equal to one day. 
Both temperature profiles are shown in Figure 2.2a and 2.2b. 

--/ \'-----

Figure 2.2a: Boundary condition Tgut(t) 
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T.· 2 " 
T.· l '. 

ti,l 

Figure 2.2b: Boundary condition Tin(t) 
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§3 Results from the 1 - D model 

§3.1 Data 

Before we give the results for the 1 - D model we summarize the data used in the 
calculations. 

Parameter in the boundary conditions Tout(t) and T,n(t) 

to.l = 7.00 h 
to•2 = 12.30 h 
t03 = 17.30 h • 
to.4 = 20.30 h 

ti.l = 8.00 h 
t'.2 = 9.00 h 
ti3 = 22.00 h . 
t,4 = 23.00 h . 

TOl = 5°C . 
TO•2 = 70°C 
11.1 = 15° C 
Ti.2 = 20° C 

Brick dimensions 
Summarizing the previous discussion in §2.1 on the brick size, we have drawn in Figure 
3.1a a brick including a texxos layer and in Figure 3.1b a common brick. 

outside 

texxoslayer 

fine concrete 

inside 

Figure 3.1a: New brick 

outside 

fine concrete 

inside 

Figure 3.1b: Common brick 
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The brick dimensions we have used are: 

Ll - 11 em 
L2 - 5 em 
Ls - 4 em 
L - 20 em 

Further, we have used the typical data mentioned in Section 1.2. 

§3.2 Numerical results 

First we give some remarks on the (numerical) calculations 

(i) An integration interval of (-72, t) turned out to be sufficient to approximate 
the infinite integral in (2.22). 

(ii) The infinite summation in (2.22) could be restricted to about 250 terms, de
pending on x and t. 

(iii) The Sn(t)'S as well as the integral in (2.22) could be calculated analytically as 
we have chosen piecewise linear boundary conditions. 

Next we shall show several diagrams. 

In Figure 3.2 (resp. Figure 3.3) the flux at the inside (resp. outside) of a normal 
wall is plotted against time, while in Figure 3.4 (resp. Figure 3.5) the flux is plotted 
against the position in the brick with (resp. without) a texxos layer. In Figure 3.6 
(resp. Figure 3.7) the temperature is plotted as a function of the position in the brick. 
The numbers in Figures 3.4-7 correspond to different times in the following way: 

Table I: Number-Time relation 

Number Time (h) 
1 7.00 
2 8.30 
3 10.30 
4 12.30 
5 17.30 
6 19.30 
7 20.30 
8 22.30 
9 2.00 
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Figure 3.2: Flux on the inside of the wall during a day without a texxos Iflyer 

0.6.-----------------------------------------~ 

0.4 

0.2 

o 

-0.2 

-0.4 

-0.6~-~~~_+_r~~~~~~_r4_~~~_4~_r~~ 

o 5 10 15 20 25 

Figure 3.3: Flux on the outside of the wall during a day without a texxos layer 
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3.------------------------------------------. 

456 7 S 

-~+_--~--_r--~--~----r_--+_--,_--_r--~--~ 

e 0.2 0.4 0.6 0.B 1 

Figure 3.4: Flux in the brick with latent heat storage at some times 

0.6.------------------------------------------. 

0.4 

0.2 

-e.6+---,_--_r--~--~~--~--+_--~--_+--~--~ 
o 0.2 0.4 0.6 0.8 1 

Figure 3.5: Flux in the brick without latent heat storage at some times 
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70 

0+---~---+--~--~r---~--4----.---+---.r-~ 
o 0.2 0.4 0.6 0.8 1 

Figure 3.6: Temperature in the brick with latent heat storage at some times 

0~~-L-L~~L-~~~-L~~+-~~~-i_~~~~ 

o 0.2 8.4 e.6 e.B 1 

Figure 3.7: Temperature in the brick without latent heat st.orage at some times 
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Finally we have compared the amount of energy needed to heat up the room with or 
without latent heat storage. We have compared two situations as drawn in Figure 3.8 
and Figure 3.9. 

=== zzzzzzzzzzzz=== texxoslayer in southern wall 

room 

northern wall 

Figure 3.8: Situation 1 

southern wall 

room 

northern wall 

Figure 3.9: Situation 2 

The temperature profile at the north side of the house is chosen at the same way as 
Tout{t) except in this case TO,l = 10° C and To,2 = 15° C. 

The northern walls in Figure 3.8 and 3.9 are considerably thinner than the south 
ones. This is done to take into account the energy losses via the floor approximately, 
the ceiling and open doors to the neighbouring rooms and hall. One should realize that 
the heat flux through the northern walls is the same in both situations, so that com
parison remains reliable. Since the inside temperature is kept fixed, it may also occur 
that we have to cool the room. This may happen when the loss of energy through the 
northern wall is less than the amount of energy entering the room through the south 
wall. In that case the house should be cooled by, for example, opening a window, so 
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that we may neglect costs for cooling. 
Finally, we arrive, with the above assumption, at the following numbers: 

The amount of energy needed in situation 1, without latent heat storage is 2.738 kWh/m2. 

The amount of energy needed in situation 2, with latent heat storage is 1,054 kWh/m2. 

So we may conclude that the one-dimensional model shows that the influence of latent 
heat storage on the expenditure of energy is rather big. 
Before we give the final conclusions we first want to exploit the two-dimensional case. 
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§4 The stationary 2 - D model 

In this section we study the reliability of the 1 - D model by looking at a less reduced 
model. 

§4.1 The 2 - D problem 

There are two types of heat flux through a wall with a latent heat storage. There is 
heat flow through the wall via the cylinder filled with texxos. All the other heat flux, 
that is the heat flux directly from the outside to the inside or vice versa, we shall call 
leakage. It is this leakage that amongst other effects of minor importance we have 
excluded in our 1 - D model. 
Our goal now is to find out to what extent the possibility of leakage influences the 
temperature distribution at the innerside of the wall and the heat flux through the 
wall. This will provide us a check on the reliability of the results from the 1 - D model. 

§4.2 Mathematical formulation 

We will restrict ourselves to a stationary temperature distribution in the wall because 
the temperature varies relatively slow in time. 
In our 2 - D model for numerical convenience we model the texxos cylinder as a block 
as indicated in Figure 4.1. 

Figure 4.1: Brick with rectangular block filled with texxos 
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Further we make the following additional assumptions: 

(i) The intensity of the sunshine will be the same everywhere at the outer side of the 
wall. This implies that the flux into the wall is uniform over the outer surface, 
say F ou.t. 

(ii) The inside temperature will be kept on a constant level by either heating or 
ventilating the house. 

The assumptions cause the temperature distribution to be independent of time and 
height. So the temperature T will satisfy the two-dimensional heat equation. 

(4.1) 

Here the x and y axes are taken as indicated in Figure 4.2, where a horizontal cross 
section of the wall is drawn. 

outside 
Y I 

I 

D D 
I 

X ----..! 

d I 
d I 

I L 
I 

I 
I 
I 
I -

B 
-, B 

I 

inside 

Figure 4.2: Horizontal cross section of the wall 

Symmetry considerations tell us that the temperature distribution will be the same in 
each brick. Furthermore, the temperature distribution in a brick will be symmetric 
with respect to the dotted line in Figure 4.2. Therefore we may restrict ourselves to 
the following geometry: 
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outside 

y 

x V n 

d L 

B 

inside 

Figure 4.3: Used geometry with axes and parameters 

Notice that we get a one-dimensional problem either if d = 0 (no texxos block) or if 
d = B, because in these cases the y dependence disappears. 
Consequently, we have to solve Equation (4.1) on the domain n, specified in (4.6) with 
boundary conditions 

(4.2) aT 1 
ax = -k Fout , x=O 

(4.3) T=T'n x=L 

(4.4) aT =0 
ay 

, y=B and (x,y) E W 

(4.5) T = Tcrit , (x,y)EV 

where k is the thermal conductivity and 

(4.6) n = {(x,y) 10< x < L1 , 0 < y < B} U 

{(x,y) I L1 ~ X ~ L2 , d < y < B} U 

{(x,y) I L2 < X < L, 0 < y < B} 
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(4.8) v = {(L1,y) 10 < y $; d} U 

Remarks: 

{( L2 , y) I 0 < y $; d} U 

{( x, d) I Ll < X $; L2} • 

(i) Boundary condition (4.4) follows from a symmetry argument. 

(ii) In the two-dimensional case (cf. Equation (2.5)) the heat flux F is related to the 
temperature T as follows: 

(4.9) F = -kVT 

with V = (a/ax a/ay). 
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§5 The results for the 2 - D model 

5.1 Numerical analysis 

The equations in the previous section are discretized in a standard way and solved by 
the successively overrelaxation method (S.O.R.) which is a sophisticated Gauss-Seidel 
method. This standard numerical iteration method uses the newly computed values 
for the temperature as soon as they are available [2]. 
To compare the 1 - D and 2 - D results we use characteristic values for F DVt and Tin 
in (4.2) and (4.3) from our 1- D calculations in §3. To be specific, we take the values 
at 7.00 and 17.30 h. The 1 - D results vary only slightly in time around these time 
points so that a comparison of the dynamical 1 - D results and the stationary 2 - D 
results is possible. 
For the value of F DVt in the 2 - D calculations we cannot simply take the value from 
our 1 - D calculations. 
A realistic choice, followed throughout our 2 - D calculation is, 

with 

T DVt the outside temperature, 

T erst the critical temperature of texxos and 

La the thickness of the wall between the texxos layer and the outside. 

§5.2 Numerical results 

In Figures 5.1a-c we give the temperature distribution through the wall for different 
values of d. In each of these figures we have taken TDVt = 5° C, Tin = 15° C and 
Terit :::: 27° C. The corresponding time in our 1 - D model is 7.00 h. 
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Figure S.le: Temperature distribution through the wall for d = ~ B 

The total heat flux from the wall into the room is a function of d. In Table II we give 
the heat flux and the relative difference with respect to the flux for d = B for some d's 
that is: 

(5.1 ) 
IF(d=B)-F(d=~B}1 2 . 

F(d=B) * 10, for ~=2, ... ,8. 

The parameter values are the same as in Figure 5.1. 

Table II: The heat flux for some d's at 7.00 h (Tout = 5° C, Tin = 15° C) 

d flux [klV/m2] relative difference 
B 54.1 -

8/9 B 54.0 0,2 % 
7/9 B 53.5 1,1 % 
6/9 B 52.2 3,5 % 
5/9 B 49.6 8,3 % 
4/9 B 45.2 16,5 % 
3/9 B 38.7 28,5 % 
2/9 B 29.6 45,3 % 
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Figure 5.2c: Temperature distribution through the wall for d = B 

In the same way as in Table II, we give in Table III the values of the heat flux and the 
relative difference with respect to the flux for d = B for some d's. 

Table III: The heat flux for some d's at 17.30 h (Tout = 70° C, Tin = 20° C) 

d flux [klV/m2] relative difference 
B 31.6 -

8/9 B 31.5 0,3 % 
7/9 B 31.4 0,6 % 
6/9 B 31.9 0,9 % 
5/9 B 34.1 7,9 % 
4/9 B 38.9 21,1 % 
3/9 B 47.0 48,7 % 
2/9 B 59.0 86,7 % 

So, we can conclude, from Table II en Table III that when the texxos block is not too 
small (d > 2/3 B), the results for the 1 - D model differ at most 3,5% from the results 
from the 2 - D model. 
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§6 Discussion and conclusions 

We have examined the influence on the household energy costs of a texxos cylinder 
in the wall at the south side of a house. At a given critical temperature this texxos 
material is able to store and release heat without changing its temperature, as this 
heat is used for melting. Evidently, the capacity of the texxos cylinder is finite, since 
the melting process ends. 
Our first thoughts concerned an extensive model in which the temperature of the Ii v
ingroom is calculated for given outside temperatures. Hence we need estimates for the 
heat capacity of the air in the room, the heat exchange with other rooms and the heat 
leakage through the roof and floor. 
On second thought this model is hardly realistic as the temperature in a livingroom is 
usually regulated by heating and ventilating the room. 
So another model was set up with given temperatures at the outside as well as at the 
inside of the house. For the room temperatures we have chosen the following realistic 
values. At day-time we assume a room temperature of 20° C and at night of 15° C. 
The outside temperature at night is estimated at 10° C. Furthermore the outside tem
perature at the northern wall is taken to be 15° C at day-time. 
The texxos cylinder behaves like a normal, though expensive, part of the wall when 
it is not at its critical temperature. So we only expect a significant reduction of the 
energy costs when the texxos cylinder remains at his critical temperature for a long 
time. This will be the case when there exists an energy balance between the supplied 
and withdrawn heat of the texxos cylinder. 
Consequently, the question arises what outside temperature at day-time at the south
ern wall is needed to ensure this energy balance. 
Together with the calculation of the corresponding energy costs this question can be 
answered by making some extra assumptions. 
First we assume that we may change the geometry of a texxos brick as shown in Figure 
2.1. Consequently, the texxos material divides the brick into two seperate parts. 
Furthermore, we assume that the temperature distributions in the wall depend only on 
the space-coordinate perpendicular to the wall. This leaves only one space-coordinate 
in the differential equation, describing the heat flux through a wall, which we have 
called the 1 - D model. 
This allowed us to give an analytical expression for the temperature distribution in the 
wall. 
For the texxos layer to function it turned out that the outside temperature at the 
southern wall needed to be 70° C for several hours a day. 
Moreover, we have calculated the heat fluxes entering the livingroom with classical 
walls at both sides of the house. These results have been compared with the results in 
case of a texxos layer in the southern wall. It appears that in the second case almost 
twice as much heat enters the livingroom during one day, which will cause a consid
erable saving of energy. Of course, this saving depends on the chosen temperature 
profiles, i.e. the climate, and the thickness of the wall, but the positive effect of the 
texxos layer on the energy costs is quite clear. 
However, the needed intensity of the sun is rather unrealistic for most parts of Europe. 
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The results of our 1 - D model have been checked by a 2 - D model, in which the 
structure of the wall is given in more detail. In the 2 - D model the texxos cylinder is 
modelled as a rectangular block as indicated in Figure 4.1 and Figure 4.2. 
When the texxos block is not too small (d > 2/3 B) the results from the 1- D model 
differ at most 3,5% from the results obtained from the 2 - D modeL 

Summarizing we conclude: 

(1) The texxos cylinder has a very positive effect on the energy costs, if we are in a 
position that it functions during a long period of time. 

(2) The texxos cylinder will only function during a long period of time, when the 
climate is rather extreme, with enough sun radiation to yield a maximum outer 
wall temperature of 700 C during several hours a day. 
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