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Nomenclature

Only those symbols are included that are used in more than one section. Symbols that are
not included in this list are defined in the same section where they were encountered. Defi-
nitions were taken from [Francis 87, Zhou et al. 90, Sznaier 94, Dahleh and Diaz-Bobillo 95,
Lancaster and Rodman 95].
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space containing all discrete-time signals that have a finite p-norm (p =
1,2,00)

space containing all continuous-time signals that have a finite p-norm (p =
1,2,00)

space containing all signals that have a bounded ‘power-norm’

space containing all signals that have a bounded ‘spectrum-norm’

set of all integers

the real numbers

the positive real numbers

the complex numbers

the Hardy space of all complex-valued functions which are analytic in the
open right half plane—Re(s) > 0— (or for discrete-time: analytic outside
the unit disc) and satisfy ||.||, < oo

the Hardy space of all complex-valued functions which are analytic in the
open right half plane—Re(s) > 0— (or for discrete-time: analytic outside
the unit disc) and satisfy ||.||_, < oo

space of real rational functions in H,,

subspace of functions in RH,, which are analytic outside the disc of radius
6 (0 < 6 < 1), equipped with the norm || G(2)||,, ; = SUPy<p<r T(G(6e19))
time (discrete or continuous) o

time-shift

Laplace transform variable

shift-operator or z-transform variable

dimension of x, the states

dimension of u, the control actions

dimension of y, the measurements

dimension of z;y, the regulated outputs (7 = 1,2)

dimension of w;), the exogenous disturbances (z = 1,2)

‘plant’ with state-space realization (A, B,C, D)

observability Gramian
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controllability Gramian

maximum singular value

phase-shift

transfer function from w;) to 2y (4 = 1,2)

impulse response element (¢,7) of system with transfer function matrix G
controller matrix

the two norms of a two-norm optimization problem, where usually the p;-
norm of some transfer matrix is minimized and the p,-norm of a second
(possibly the same) transfer function is constrained

po-norm bound, v € RY

norm-bounded uncertainty

transfer matrix 7T,,_,,

linear operator from Kg:‘d to £rpxme

linear operator representing the admissible K’s

the free parameter which is used in the Youla-parameterization

the nominal controller (: K for @ = 0)

dimension of z., the states of the fixed-order controller

state-space realization of the fixed-order controller

dimension of %, the states of the closed-loop system

dimension of Z, the regulated outputs of the closed-loop system

state-space realization of the closed-loop system, where B =: [ b, b, } ,
~ El B jll d~12
C = - d D —: ~ -

[ C2 ] o [ da1 di }

H, performance functional, defined in (4.10)

expectation operator

= Cchl

:= DT, Dy,

:= DE,Dy5

= CT Dy,

= C?Dlg

:= DT, D4

solution to Lyapunov equation (4.12) of the closed-loop system

= &/f ¢,

:= BBT

solution to Lyapunov equation (4.14) of the auxiliary minimization
problem

unitary matrices € R%*% ¢ R%*%_ respectively

1= 1, =772 D3 D3,

1= Ig, =772 D3, D

auxiliary cost, defined in (4.20)

lower linear fractional transformation

controller, estimator matrices

matrices used in Youla-parameterization of Ty, ., 1= Vi1 + V12Q Vo
matrices used in Youla-parameterization of Ty, := 111 + 112072
autocorrelation matrix

cross-correlation matrix
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MT
M*
MN

M_L

tr(M)
stab.
stabil.

AME
AMI
ARE
ARI
CARE
DA
DARE
ESPR
FME
FMV
LBR
LME
LMI
LP
LQG
MI
MIMO
QMI
RMS
SISO

spectral density

cross-spectral density

= {dla‘g[Ala A?a IR Ap]7 ” A; “ < 1}
scaling matrix

the transpose of M

the complex-conjugate transpose of M = the complex-conjugate of M7T
:= M* for Re(s) = 0 (|z| = 1 for discrete-time); for Re(s) # 0 (]z| # 1) it
is defined as M~(s) := MT(—s) (M~(z) := M7 (1))

the orthogonal complement to a nonempty set M C C" : M+ = {z ¢
C"|(z,y) =0 for all y € M} where (z,y) is the inner product of z and y
trace of M

:=stable

:=stabilizing

Affine Matrix Equation

Affine Matrix Inequality

Algebraic Riccati Equation
Algebraic Riccati Inequality
Continuous Algebraic Riccati Equation
Delay Augmentation

Discrete Algebraic Riccati Equation
Extended Strictly Positive Real
Finitely Many Equations

Finitely Many Variables

Lossless Bounded Real

Linear Matrix Equation

Linear Matrix Inequality

Linear Programming

Linear Quadratic Gaussian

Matrix Inequality

Multi Input Multi Output
Quadratic Matrix Inequality

Root Mean Square

Single Input Single Output



Summary

In this report we survey a number of approaches to the multiobjective optimization problem.
In practice, this usually boils down to a mixed-norm optimization problem, where traditionally
the norms of interest are Ha, Ho, and ¢;. Specifications such as simultaneous rejection of
disturbances having different characteristics (white noise, bounded energy, persistent); good
tracking of classes of inputs; satisfaction of bounds on the peak values of some outputs;
closed-loop bandwidth etc. cannot be cast into a single-norm form and therefore a mixed-
norm formalism combining the H,, H., and £, norm can be expected to be of considerable
interest. Although it would be nice to have all three norms present, most approaches focus on
the two-norm problem. Most frequently encountered is the H,/Ho, mixed norm optimization
problem, but combinations of £; and the other two norms are starting to get attention as well.
Semi-norm formulations, using the ‘power-norm’ or the ‘spectrum-norm’ (see Section 2.1) as
well as the Extended Strictly Positive Real (ESPR, see Chapter 3) stability criterion are
sometimes used as an alternative.

The approaches investigated will be categorized into seven groups (Chapter 5), based on
their problem setting (Chapter 3) as well as some techniques (Chapter 4) that are frequently
used. An important feature in the problem statement is the number of sets of inputs and
outputs respectively. If either one of these is less than the number of norms considered (which
is usually two), the class of problems that can be handled is restricted considerably: most
problems are not stated with the same sets of inputs (or dually outputs) for, say, the H, per-
formance measures as for (say) the H,, norm-bounded uncertainties. Some of the techniques
that are utilized are the Youla-parameterization, the auxiliary cost functional (‘of Bernstein
and Haddad’), Lagrange multiplier techniques, convex optimization and Linear (sometimes
called Affine) or alternatively Quadratic Matrix Inequalities (LMI, AMI, QMI). Other meth-
ods encountered are Linear Programming (LP), duality theory, Delay Augmentation (DA),
homotopy and continuation methods, the entropy cost functional and a lossless bounded real
formulation.

Finally, in Chapter 6 a comparison of these approaches will be made in an overview of pros
and cons, although it will not be possible to decide which approach would qualify as most
promising. This, of course, also depends on what application (number of sets of inputs/outputs
etc.) one has in mind. The chapter concludes with mentioning some of the latest publications
on this subject.



Chapter 1

Introduction

During the past years, much progress has been made on many single objective control prob-
lems. Several important controller synthesis problems have been formulated as optimization
problems. In particular, the LQG or Hs, Ho and £;! control theories have provided some
basic synthesis tools. The underlying premise behind these theories is that all the design ob-
jectives can be translated into minimizing a suitably weighted norm of a closed-loop transfer
function matrix.

The LQG approach proved particularly suited to meet performance constraints while guaran-
teeing closed-loop stability in the presence of disturbances. Despite of this, LQG control was
shown to possess no guaranteed robustness margins if applied in conjunction with an observer
or Kalman filter. This resulted in the development of H,, control theory which could deal
with the problem of robust stability: obtaining closed-loop stability in the presence of system
uncertainty. For systems with structured uncertainty the H,, framework can be refined to u-
analysis which has been successfully applied to a number of hard practical control problems
(see e.g. [Skogestad et al. 88]).

However, despite its significance, H,., control—being a frequency domain method—cannot

addressed, where the signals involved are bounded in magnitude. This presents a method to
accommodate the time domain specifications, although of course it cannot directly accommo-
date some common classes of frequency domain specifications (such as Hy or Ho, bounds).

Clearly, a single norm is usually not enough to capture different, often conflicting, design
specifications. In an attempt to cast the specifications into a single norm form, designers are
forced to choose weighting functions, which remains essentially an art. It is therefore natural
to expect a mixed-norm formalism to be of considerable interest. Although it would be nice to
have all three norms present in a mixed-norm formalism, so far most efforts have been focussed

14, denotes the discrete-time case, whereas £; is used for continuous-time. In the following, whenever £, is
mentioned, the same can be assumed to be true for the continuous-time case, unless stated otherwise (where
p can be 1,2 or o). This means that whenever £, is mentioned, only the continuous-time case is referred to.



on solving the two-norm problem, mostly being the mixed Hs/Heo, or the £1/H,, problem.
One exception to this is formed by the approach followed by [Dahleh and Diaz-Bobillo 95]
which makes it possible to minimize the £, norm subject to H, and/or H., constraints (or
even other combinations, such as Hs/¢;). The Hy/H, problem received by far the greatest
deal of attention, due to the simple fact that both the single-norm problems which it combines
have been around much longer than the £; problem. It is in this H,/He setting where the
problem of designing fixed-order controllers is addressed, yielding a possibly non-convex and
therefore complex problem.

The report is organized as follows: In Chapter 2 the notation to be used is introduced, whereas
the possible problem statements are given in Chapter 3. Then, in Chapter 4, several methods
are listed which are then combined to form the many approaches to solving the problem that
are discussed in Chapter 5. Finally, Chapter 6 concludes with a brief comparison of the several
approaches and some final remarks.

Throughout this report, the time ¢, the shift-operator z, and the Laplace transform variable
s will often be omitted for clarity.



Chapter 2

Preliminaries

2.1 Signal spaces

e (,(L,) denotes the space that contains all the discrete-time (continuous-time) signals
that have a finite p-norm, which for z(t) € R”, is defined by [Dahleh and Diaz-Bobillo
95]:

Iz, = ( i Xn:lwi(t)lp) - ( i Ix(t)li) ,, (2.1)

t=—c0 §=1 t=—00

for discrete-time and

el = ( /> lxiu)vdt)% = ([ o)’ (22)

for continuous-time. Here we adopted the notation |.|p to denote the p-norm on R"
(where |.| denotes the (usual) absolute value). In case p = 1,2 the appropriate expres-
sions can be easily derived from this. For p = oo this is not so obvious; then the norm
is defined as

12 ]leo = sup max |2:(?)] (2.3)
and
12 1lo = sup max Jo:(1)] (2.4)

for continuous-time and discrete-time respectively. This norm is sometimes referred to
as the peak of a signal [Boyd and Barratt 91].

This means e.g. that an {»-signal contains a finite amount of energy and an {.,-signal
attains a finite maximum magnitude; the £; space doesn’t have such an obvious physical
interpretation. The 2-norm is sometimes referred to as the energy-norm, whereas the

10



2.1. SIGNAL SPACES 11

energy of a signal actually is defined to be the square of its 2-norm. The 1-norm is
sometimes called the action of a signal. The following two signal spaces are defined here
for continuous-time only.

¢ Bounded power signals (P): signals that have a bounded ‘power-norm’ ||.||, defined
by [Zhou et al. 90]:

r 1/2
ol = (Th'_r,r;o | lxml;dt) = (e RO (25)

where
Roo(7) = Jim 2_1:? _i 2(t + 7)2* (1)dt (2.6)

is the autocorrelation matrix. Here z*(¢) denotes the complex conjugate transpose
of z(t). If » € P it can be shown that ||z|l, < +/n|lz|,, where n is the di-
mension of z. This ‘power-norm’ is the square root of the average power (also de-
noted average-absolute value; || 2 ||,, [Boyd and Barratt 91]) of z. Other terms used for
this (semi-)norm are Root-Mean-Square (RMS)-norm [Boyd and Barratt 91] and power
semi-norm [Zhou et al. 96]. In [Doyle et al. 92] it is denoted by pow(z).

¢ Bounded spectrum signals (S): signals that are in P and have a bounded ‘spectrum-
norm’ ||.||s, defined by

2|5 == | Sea(gw) I1* (2.7)
where
Suuljoo) = /_ Z Run(r)ei*7dr (2.8)

is the Fourier transform of R, and is called the spectral density of . Another term for
this norm is spectral density norm [Zhou et al. 96].

Although, strictly speaking, white noise is not in § it can be thought of as the limit of a
sequence of signals in & whose spectra in the limit approaches a constant matrix. In the
following S is therefore assumed (as was done in [Zhou et al. 90]) to include white noise,
where the term white noise will be used to describe the case where Sy, = 1. Both the
bounded power and the bounded spectrum norm are semi-norms (since they can be zero
for a nonzero (£,) signal) and were especially used by K. Zhou et al. in [Zhou et al. 90].
With the definition of 5,, we can also write

ol = 5= [ tlSea(ioNds (2.9)

In case of the continuous-time signal spaces, we have the set inclusions, depicted in Figure
A (see [Doyle et al. 92]), whereas for the discrete-time case the £,(Z)-spaces are nested with
£(Z) as the largest, depicted in Figure B (see [Dahleh and Diaz-Bobillo 95]):
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pow oy

Lo 2

41

£y

Figure A. Figure B.

2.2 System norms

Before we define system norms, we first define some (standard) properties:

A system G(s) is called proper if

‘G(o0) is finite or, equivalently,

degree numerator < degree denominator.
A system G(s) is called strictly proper if

G(o) = 0 or, equivalently,

degree numerator < degree denominator.
A system G(s) is called biproper if

G and G~! are both proper or, equivalently,

degree numerator = degree denominator.
A system G(s) is called non-proper (or improper) if

it is not restricted to be proper and thus G(o0) may be infinite or, equivalently,
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degree numerator > degree denominator may be true.

A system is called causal (or non-anticipative) if the output at a certain time instant only
depends on the input up to that time instant, including the time instant itself.
If the time instant is excluded, the system is called sirictly causal.

i1 =Y @il LItLLy L

A system is called non-causal (or acausal) if it not restricted to be causal and thus the output
at a certain time instant may depend on the input after that time instant.

Given a stable strictly proper (in order to keep the norms finite, see e.g. [Doyle et al. 92,
p. 16]) transfer function matrix G(s) with state space realization (A, B,C, D), the following
performance measures can be defined.

e The H, norm of a transfer function G(s) is defined as:

1/2

. 1 [ . .
NG|, = (%/_ tr[GT(—]w)G(Jw)]dw> (2.10)
for the continuous-time case and
1 /7 . . 1/2
161 = (55 [ l6E@)6 (e )ias) (211)
for the discrete-time case.
The 2-norm can be computed with Lyapunov equations:
| Gl, = tr[SCTC] = tz[PBBT] (= t2[CSCT] = tx[BT PB]) (2.12)

where § is the controllability Gramian and P is the observability Gramian solving

AS+SAT+BBT =0 ATP+PA+CTC =0 (2.13)
e The H,, norm of a transfer function G(s) is defined as:
16G(G@) llos = supa (G(jw)) (2.14)
(where 7 is the maximum singular value) for the continuous-time case and

1G(2) o = Oiggf(G(e“)) (2.15)

for the discrete-time case.
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o The ¢, norm of a transfer function G(s) is not as easy to define as the other two:

2.3

2.4

Recall the 1-norm of a sequence z(t) being || z ||, = See _ o |2(2)| (from (2.2) with n = 1).
Then, given a matrix g with elements g;;, representing a linear operator defined by the
usual discrete-time convolution y = g * u (and with a corresponding transfer function
matrix G), its 1-norm is defined as:

161, = max g (2,10

1<i<m

for the discrete-time case. The definition for the continuous-time case requires some
more notational aspects and can be found in e.g. [Sznaier and Blanchini 94]. Since the
interpretation of the 1-norm (see section 2.4) is of much more use to us than the formal
definition this will not be repeated here.

The induced norm

The induced norm of an operator 7 is given by:

1T, = sup Ll = oy 72y, (2.17)

w20 ||zll,  pel<t

We say: the p-norm is the induced norm from £, to £, or the £,/{; gain.

Norm interpretations

¢ The H, norm:

1. The induced norm from £, to £

2. The square root of the average power (=RMS-value or ‘power-norm’) of the re-
sponse to a white input signal of unit spectral density or the spectrum/power
gain.

3. The square root of the energy contained in the impulse response.

e The H,., norm:

. The induced norm from £, to 4.
. The power/power gain.
. The spectrum/spectrum gain.

O S

. An upper bound on the £, /power gain, assuming that the input is restricted to
be a persistent sinusoidal signal.

5. The peak gain of the Bode singular value plot.

e The /; norm:

1. The induced norm from £, to £.,.



Chapter 3

Statement of the problem

The general problem can be posed as follows. Suppose the plant is given by its transfer
function matrix G(s) with three sets of inputs and outputs:

w — e e |
w o G(s) bz
% Y
K(s)
with

T = AZL’—I— Blwl + Bg’ll)2+ Bg'U/ (31)
Zy = leE + Dllwl + D12w2 + D13U (32)
2y = Cox + Dayywy + Daypws + Dasu (3.3)
y = Cs2 + Da1wy + Dasws + Dasu (3.4)

or equivalently, using packed notation

15



16 CHAPTER 3. STATEMENT OF THE PROBLEM

G = 3.5
Co|Dax Dy D (3:5)

| C3| D31 D3z Dass
Here ‘=" means that both representations (G and the packed notation) describe the same

system, but of course they are not identical. In the following, it is assumed that, whenever
two different representations are said to be ‘equal’, the reader is aware of this.

Furthermore

n =dim(z) ¢ =dim(z) d; =dim(w;) !=dim(y)
m = dim(u) ¢ = dim(z;) dy = dim(w,) (3.6)

In the system equations (3.1)—(3.4) u represent the control actions, w (= [wy, w2]) the exoge-
nous disturbances, y the measurements and z (= [z1, 22]) the regulated outputs. The signal
sets [w1, 21] are related to performance criteria (measured by what we will call the p;-norm),
whereas [ws, 2] are related to (‘ps-’) norm constraints. These two norms will usually be either
H, and Heo, £, and Hy, or H, and £; (seldom used).

In control problems involving H, minimization, D;; is always taken to be zero to prevent the
H, norm from growing infinitely.

For the system as defined above the mixed two-norm problem, as encountered in the literature,
can be written as (when T,,,_,,, denotes the transfer function from w; to z; (i=1,2) and y € R
is the positive ps-norm bound):

1. Find an internally stabilizing controller which minimizes || Ty, ||, while maintaining

” Tw2—>z2 ||p2 S Y

P1

where p; (=2 or 1) can denote either the H, or {; norm and p, (=00 or 2) denotes the
Hoo or the Hs norm.

Another formulation, used by [Steinbuch and Bosgra 94, Stoorvogel 93], is the following:
2. Minimize the p,-norm of the transfer function from wy to z; using the internally sta-

bilizing controller K(s), while mazimizing the pi-norm of that same transfer function
over the allowable uncertainties:

su min || Ty, - (K, A
nAnmzl/vK@)” U6 AT

where, in case of the problem addressed by [Steinbuch and Bosgra 94, Stoorvogel 93]
p; = 2 and ps = o0.
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Finally, [Elia et al. 93, Dahleh and Diaz-Bobillo 95, Voulgaris 94| use the following for-
mulation, where ® = T,_,,*:

3. Find an internally stabilizing controller K(s) which minimizes || @||, and satisfies a
set of linear constraints given by A and b:

I\
QN

LI o 1 a1 ¥ AR
mi @ such that AP
K(s)stabil. P1

with A a linear operator from £1%¢ to {7oX™s qand b € £2*™> g fized element (possibly
P P1 P2 P2
containing the “y-bound’).

In this last formulation the constraints consist of performance constraints and feasibility
constraints, the latter representing the conditions for ® so it can be written as Gi; +
G2 K(I — G22K)_1G21 (i-e. ® is feasible) where G is partitioned according to

HEERAIH

This approach can also handle the three-norm problem. The description of this problem can
be found in Section 5.1 and will not be treated here any further. In the ps-norm constraint
some approaches instead of using || Ty, ., [|,, < 7 use the strict inequality, but this doesn’t
influence the rest of the approach essentially.

As mentioned before, most approaches focus on solving the mixed H,/H., control prob-
lem, while the other two problems ({i/H., and Hy/{;) so far have received little at-
tention. The (H,/¢;) problem actually is a special case of the approach followed by
[Dahleh and Diaz-Bobillo 95, Voulgaris 94, Elia et al. 93] which provides a method (originat-
ing from £; optimal control theory) that either minimizes or constrains the ¢; norm com-
bined with H, and/or H,, norm minimization or constraints. Apart from this, only Sznaier
[Sznaier 94, Sznaier and Blanchini 94, Sznaier 93] addresses the mixed £; /H., problem, both
for the discrete-time and the continuous-time case. The widest variety can be found in the
approaches to the H;/H. problem, eventually to be divided into 5 categories. One other
distinction can be made based on the number of sets of in- and outputs used in the statement
of the problem. The distinction discrete-time versus continuous-time, however non-trivial it
might be, will not be made explicitly since it doesn’t essentially alter the approach used.

Finally, as a counterpart of the H,, norm constraint can be mentioned the Extended Strictly
Positive Real (ESPR) stability criterion (see e.g. [Shim 94]). Positive realness is an old, but
very important concept in system and control theory and is used in various areas, like network
analysis, adaptive control, nonlinear control and robust control. It is well-known that positive
realness is closely related to absolute stability. This criterion will however not be treated here.

1Since in their formulation w; = we =: w and z = 2z =: z, although different linear constraints can be
defined for different closed-loop maps ® = Tuw;—;, i.e. on the map between the jth input set and the it
output set.
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Another, totally different, approach to the mixed norm problem, is based on the so-called
‘behavioral setting’. This methodology can be characterized by the fact that all variables are
considered a priori on an equal footing, without a distinction between inputs and outputs,
and the behavior is defined as a subset of the possible time trajectories. Because of the fact
that this setting, which is so unlike the others, is hardly ever encountered (but is becoming
popular), it will not be treated here, but can be found in e.g. [Paganini et al. 94] and references
therein.



Chapter 4

Solution of the problem

While in the statement of the problem we could write down a generalized formulation, in
the problem solution the various approaches followed differ too much to cast them into one
setting. However, different approaches sometimes appear to be more or less related and often
make use of the same methodologies. This enables us to (partly) describe these approaches as
combinations of a number of the following methods (which will be done in the next chapter):

4.1 The Youla- or ()-parameterization

The set of all stabilizing controllers can be parameterized in terms of a free stable parameter

Q as
K= E(I{nom7 Q)

where K, ., is depicted in the following picture:

Knom

The design objective is to minimize the transfer function from w to z:

min_ ||G1 + G2 K (I - GzzK)—le | < Qﬂgalb. | T2+ T12QTo ||

K stabil.

19
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So now the optimization problem is parameterized in terms of ¢} as well: this is the ¢)- or
Youla-parameterization.

This parameterization can be used to cast the problem into a convex optimization problem
(see Section 4.5), although this might be an infinite-dimensional problem which, in order to
obtain a tractable problem requires several approximations (see [Dahleh and Diaz-Bobillo 95,
pp. 43,44]).

4.2 Fixed-order controllers versus full-order controllers

The problem of synthesizing full-order controllers is a well-studied problem. However, these
approaches cannot handle a constraint such as fixed or reduced controller order. To describe
this problem we have to consider n,"-order dynamic compensators

.= Az, + B.y (4.1)
u=C,z.+ Dcy (4'2)

With this the closed-loop system (3.1)-(3.4)+(4.1)~(4.2) can be written as
%= A% + B (4.3)
5=C%+ Dw (4.4)

where
j:lw],w:[w1]7g:[z1j|,ﬁ:n+nc, (4.5)
T, Wy 23
Ao | A+Bs(I~ D,Ds3) ' D.Cs Bs(I — D, Ds3) ' C, (4.6)
B(I = DgD.)"'Cs  Ac+ Bo(I = DssD.)” DasC. | '

|

By + By(I = D.D33) 'D.Ds; By + Bs(I — D.Ds3) ' D.Dss
B.(I — D33sD,) ' D

B.(I — D33D.) ™" Day

-1



4.3. THE AUXILIARY COST 21

5 C1 + Dis(I - DcD33)_chcs Dys(1 - Dcpss)—lcc ¢
C = _ _ = _ and (4.8
{ Cs + Das(I — D Dss) chcs Dos(I = DcD3s) lcc (48)

5 _ [ Du+Dis(I = DeDs3) *D.Day Diy+ Dis(I = D.Dss)” D.Ds
i Dy + Dzs(I - DcD33)_1DcD31 Dy + D23(I - Dchs)_chDsz
- (4.9)
_ [dn di }
B i d?l d22

4.3 The auxiliary cost

Since the auxiliary cost or performance measure of Bernstein and Haddad is used only in the
H» /Mo control problem, this section will be specialized to this particular problem.

With the closed-loop system given by (4.3)-(4.4) the LQG controller synthesis problem with
an H., constraint can be stated as follows:

Find an n.** order dynamic compensator described by (4.1)—(4.2) which satisfies the following
criteria

1. the closed-loop system (4.3)—(4.4) is asymptotically stable, i.e. A is asymptotically sta-
ble;

2. the closed-loop transfer function T, ., := é(slz — /i)_li)z + dao
satisfies the constraint || Ty,—z, |0 <Y
where v > 0 is a given constant, and

3. the performance functional

1
J(A., B.,C.y D) := lim E{/ [2T Rz + 22T Rizu + u” Rau
0

t—00

is minimized, where E is the expected value, R, = CTC, € R™", Ry = Df;Dy5 €
R™™ Ry = CTDyy € R™™ By = DT,Dyy € R%¥%, Ry, = CT Dy, € R and
Rys = DT,Dy5 € R%2xm,

Then, for a given compensator the performance (4.10) is given by

J(A., B, C., D,) = tr[SRy] (4.11)
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where R; = éT¢, and S satisfies the Lyapunov equation
AS+SAT +V =0 (4.12)

with V = BBT. Note that (4.11) and (4.12) are similar to (2.12) and (2.13).

LEmMMA 4.3.1: Let (A.,B.,C.,D.) be given and assume there exists an S € R™"

satisfying
S is positive-semidefinite (S > 0), (4.13)
and
AS + SAT 4 y~X(BDL, + SEYM (BDL, + S&) +V =0 (4.14)

where M, := I,, — v72D,, D, is positive-definite. Then

(A, B) is stabilizable (4.15)
if and only if
A is asymptotically stable. (4.16)
In this case
[ Twomsza loo 7 (4.17)
§ <S8 (S-S5 is nonnegative-definite). (4.18)
Consequently
J(A.,B.,C., D)< J(A.,B.C.,D.S) (4.19)
where
J(A,,B,,C,, D,,S) := tr[SR,] (4.20)

Hence, the satisfaction of (4.13) and (4.14) along with the generic condition (4.15) leads to:

1. closed-loop stability
2. pre-specified H,, attenuation

3. an upper bound for the H, performance criterion which is known as the auziliary cost
or performance measure (or indez) of Bernstein and Haddad.

This leads to the following optimization problem:
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¢ Auxiliary minimization problem:

Determine (4., B,,C., D.,S) which minimizes the auxiliary cost J(A., B.,C., D.,S)
subject to (4.14) with S € R**" nonnegative-definite.

REMARK 4.3.1: The notation used in this section and the previous one can be eas-
ily converted to the notation in [Haddad and Bernstein 90|, keeping in mind that
in [Haddad and Bernstein 90] w; = wy =: w' (and z; =: z and 2z, =: z,,) and therefore,
if we leave out wy, B; = 0, Dy; = 0 and D3, = 0. Furthermore, D, and D, (and D)
are taken to be zero. If in addition to this we set B, DL, =0, R13 =0, D33 =0, D3y =0
and C7 M1 Dy = 0 the results from [Bernstein and Haddad 89] can be obtained. Be
aware that some notations used here are similar to the ones there, but may have a
totally different definition. Although for the problem stated above no solution is given,
it was formulated this way to allow for all existing approaches using the performance
measure of Bernstein and Haddad to derive the appropriate expressions.

4.4 Lagrange multipliers

One way of solving the auxiliary minimization problem posed in Section 4.3 is by using
Lagrange multipliers as was done in [Haddad and Bernstein 90, Bernstein and Haddad 89].
Likewise, we will take D, to be zero from now on. Derivation of the necessary conditions
requires technical assumptions: Specifically, we restrict (4., B., C., S) to the open set

X = {(4.,B.,C.,S): S is positive-definite,
A+ ’y'QBD;’;Mg';lEQ + fy_ZS&qu‘zléz is asymptotically stable,
and (4., B.,C.) is controllable and observable} (4.21)

Then, to optimize J(A., B, C.,S) over the open set X subject to the constraint that positive-

definite S satisfies (4.14), the following Lagrangian is formed:

L(A,, B.,C.,S,M) := tr{SR; + [AS + SA” (4.29)
+972(BDY, + SE)M;H(BDE, + ) +VIM) T
where M € R™*% is a Lagrange multiplier.

Setting % = 0 yields

. ~ T - ~ .
0= (A+y72 S M;e + BDLM'e]) M+ M (A+y7[SE M5 + BDLM'e]) + By
(4.23)

*This w has a dual interpretation being standard white noise as well as an £ signal.
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The partial derivatives 25, 2%

2L 2% and Z& are then set to zero yielding three matrix equa-
tions that one way or another can lead to the final results (see [Bernstein and Haddad 89,

Haddad and Bernstein 90, Ge et al. 94]).

There are more approaches utilizing Lagrange multiplier techniques, not necessarily in this
setting. The concept of forming the Lagrangian and then setting its partial derivatives to
zero, however, is used frequently and this section should therefore serve as an example.

4.5 Convex optimization

DEFINITION 4.5.1: A set C is convex if for every z; and z, in €, az, + (1 — a)zy is
alsoin C for all 0 < @ < 1.

e Convex optimization:

An optimization of the form

i%f | @(K) || subject to K € Aconsir

is called convex if the set A.,,,:» representing the admissible K’s is a convex one. If this
set is characterized by linear constraints A® < b, it is always convex.

The solution to many convex optimization problems can be computed in a time which is
comparable to the time required to evaluate a ‘closed-form’ solution for a similar problem.
Nowadays, a control engineering problem that reduces to solving two Algebraic Riccati Equa-
tions (ARE’s) is generally regarded as ‘solved’. When a control engineering problem reduces
to solving even a large number of convex Algebraic Riccati Inequalities (ARI’s) the growing
belief is this should also be regarded as ‘solved’, even though there is no ‘analytic’ solution
(see [Boyd et al. 93]). Hence a large number of approaches focuses on making the optimization
a convex one, mostly by using some suitable parameterization.

There are effective and powerful algorithms for the solution of these problems, that is, algo-
rithms that compute the global optimum, with non-heuristic? stopping criteria. A number of
general algorithms exist, for example the ellipsoid algorithm (see e.g. [Boyd and Barratt 91,
Bland et al. 81]) and the more recently developed extremely efficient interior point methods
for solving LMI (Linear Matrix Inequality)-based problems, based on the work of Nesterov
and Nemirovsky [Nesterov and Nemirovsky 93].

4.6 Matrix Inequalities versus Algebraic Riccati Equations

The Algebraic Riccati Equations we consider have the general form:

XDX+XA+BX+C=0 (4.24)

?Not using informal methods or reasoning from experience in case no precise algorithm was known.
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where the coefficients A, B, C, D are real or complex n xn matrices and n X n matrix solutions
X are to be found.

In control theory, they take a symmetric form:
XDX+ XA+ AX+C=0 (4.25)

where C and D are hermitian matrices (C* = C, D* = D).

For discrete systems, equation (4.25) takes the form:
X =AXA+FE -~ A*XB(BPXB+E,) 'B"XA (4.26)

Here A and E; have the size of X, say n X m, but Fy; may have size m X m, say, in which
case B is n x m. Equation (4.25) is described as a ‘continuous algebraic Riccati equation’, or
CARE, and equation (4.26) is known as a ‘discrete algebraic Riccati equation’, or DARE.

When we make special choices for the matrices A, B, C' and D we can obtain the Sylvester
and Stein equations:

XA—-BX=C (4.27)
and
X-BXA=C (4.28)

respectively. Their symmetric forms (when B = A*, C* = (') are most important. Another
special form of the Sylvester equation is the Lyapunov equation:

XA+ AX=C (4.29)

where C is hermitian.

The Sylvester, Stein and Lyapunov equations are Linear Matrix Equations (LME’s). Thére
appears to be some confusion over the terms Affine Matrix Inequality (AMI) and Linear
Matrix Inequality (LMI) (or, alternatively, Equations: AME and LME). Inequalities of the
form .
Flz)=F+> zF;>0 ,zeR" F=F
i=0
that are actually affine in z (and, consequently, are sometimes called AMI), are generally
referred to as LMI’s. Multiple LMI’s Fi(z) > 0,..., F.(z) > 0 can be expressed as the single
LMI
Fl(m) 0
>0
0 Fo(z)

Nonlinear (convex) inequalities are converted to LMI form using Schur complements (see
e.g. [Wortelboer 94, p. 23]). The basic idea is as follows: the LMI

Ue) V(z)
[ VI(z) W(z) } >0 (4.30)
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where U(z) = U (z), W(z) = WT(z), and V(z) depends affinely on z is equivalent to
W(z) >0, U(z)— V(@)W z)VT(z) >0 (4.31)

In other words, the set of nonlinear inequalities (4.31) can be represented as the LMI (4.30).
More practical use of LMI’s can be found in [Boyd et al. 93] and references therein. Finally

chen +h 13+
when the equality in the ARE becomes an inequality we have a Quadratic Matrix Inequality

(QMI). Most of what was treated in this section was taken from [Lancaster and Rodman 95].



Chapter 5

Survey of approaches

As was mentioned in the previous chapter, we will now describe a number of approaches to
the solution of the mixed-norm optimization problem, frequently using methods that were
mentioned in that chapter. This survey can of course not be exhaustive, but an attempt was
made to (briefly) describe the approaches most frequently encountered in the literature.

The following classification was used:

Kl/% £ [ Heo Hs/Hoo
' MTI’s ARE’s
Wy = Wy | Wy = Wy | Wy F W | Wy F W
21=25 | 21 F 2z | ;=20 | 21 F 2
5.1 5.2 5.3 5.4 5.5 5.6 5.7

It must be stressed that this classification is fairly arbitrary and other classifications can be
equally sufficient. In fact, there may be some approaches that don’t actually fit in any
of these classes. However, for the approaches most regularly encountered, this classification
should suffice.

ono
LT

5.1 (/2

a linear programming approach

This approach uses the problem statement (3) from Chapter 3, where most commonly
w; = wy =: w and 2; = 2z, =: z, although different linear constraints can be defined for
different closed-loop maps T,.;, i.e. on the map between the it input set and the j** out-
put set. Using that formulation, either p; or p, is taken to be 1 and the remaining p=1,
2 or oo. Most common is the £; minimization combined with H, and/or H., constraints

27
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[Dahleh and Diaz-Bobillo 95, Elia et al. 93]. The H,/{; problem is not so often encountered
[Voulgaris 94]. All these approaches use the technique of Linear Programming (LP) combined
with duality theory. An LP problem is an optimization problem in R”, where the objective
function is linear in the unknowns, and the unknowns have to satisfy a set of linear equality
and/or inequality constraints. This can be stated in the following standard form:

minclz
T

subject to

z; >0 i=1,...,n (5.1)

where z,c € R?, b € R™ and A € R™*".

It should be noted that any LP problem can be transformed into the above form. To bring
the objective function || @ ||, (from problem statement (3), Chapter 3) into linear form and
to avoid the nonlinearity built into the norm (i.e. the absolute value function), a standard
change of variables is used in LP. Let ® = ®* — &, where ®* and &~ are sequences of
g x d matrices with nonnegative entries. Then, when ¢;;(t) denote the elements of the impulse
response matrix, replace the £, norm of ® by

mgxz 2 [ 50+ ¢Z_J(t)}

which is linear in (®*, ®~). This expression equals the norm only if, for every (¢, 7,1) at least
one of ¢f;(t), ¢7;(t) is zero®. This is illustrated in Figure 5.1.

With this change of variables, the ¢; minimization can be restated as follows:

= inf v
o+,8-

subject to

i[fj(t)‘ﬂbz’_j(t)}ﬁl/ fori=1,...,q

d
j=11=0

® =&t - &~ is feasible (see Chapter 3 for definition).

!From now on, in this section £; refers to the discrete-time case only.
2Since an optimal value of ¢;; = gzﬁ;‘;-—qﬁ;j can always be achieved with q’)?}l = qﬁ;’}—qﬁmm and ¢i_j' = ¢i_j_¢77Zin
. — . . 1 ) — —_
(Where ¢min = mln((b?;'y (/'51J)) resultmg n ¢ijl = ¢;§ - ¢ij = ¢j; - ¢min bt (¢2J - ¢mzn) = ¢;’; — ¢z’j = ¢ij and
thereby reducing the sum of qﬁj; and ¢;; with 2¢min.
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phi(i,j)

Figure 5.1: Change of variables for a scalar-valued sequence ¢, where ¢ = ¢ — ¢~ (= sin(t))

and || ¢ ||, = ¢* + ¢~ (= |sin(t)]).

Finally, a compact representation of the ¢; norm can be obtained by defining an operator
Ay, 1 £9%% = R such that

d oo
(A, ®), = ZZ@J@) fori=1,...,q
j=11t=0

and a vector with all elements equal to one, 1 € R?. It follows that

d oo
NS + o) <y fori=1,...,¢ & A, (dT+@7)<1n

F=11¢=0

Realizing that a large class of specifications can be expressed in terms of linear constraints
leads to the following approach. The idea followed is to simply augment the constraint of
the linear program, derived from the ¢; optimal control, with the linear specifications con-
straints and solve the new linear program. With this we can augment the linear operator Ay,
with somewhat similar linear operators to get one operator constraint, resulting in a typical
augmented operator such as

o } HE { ; o2

-Atemp '—-Atemp btemp

where Aemp and biemp reflect the time domain (template) constraints. If these operators
should apply on different sets of inputs and outputs (which was said to be a possibility,
however unexploited) naturally all dimensions of the appropriate operators and ‘l-vectors’
would change accordingly. The 1-vector in the H,, constraint will generally be of a dimension
far greater than ¢ since the infinite-dimensional constraint has to be approximated by a
finite number of constraints (by sampling the unit circle, see [Dahleh and Diaz-Bobillo 95,
pp. 43,44]).

Eventually, this will be combined with the feasibility- (or interpolation-) constraints
(see [Dahleh and Diaz-Bobillo 95, pp. 123-126]), again using (’similar’) linear operators:

-Afeas _Afeas ¢+ bfeas
l: _-Afeas A_feas :I [ o~ J S [ _bfeas (53)
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which is equivalent to Aj..;® = bs.os apart from the fact that the LP problem size has
doubled. Linear programming problems can be solved using the efficient Simplex method
(see [Dahleh and Diaz-Bobillo 95, pp. 195-200]). Another important issue in linear minimiza-
tion problems (and thus LP) is duality theory. Given the standard form minimization (5.1),
which we will call the ‘primal problem’, it is always possible to define an associated linear
maximization problem, known as the ‘dual problem’. The corresponding primal-dual pair is
given by

(primal) min ¢z (dual) maxn’b
T 7
subject to subject to
Az =b A< (5.4)
z; >0 1=1,...,n

where 7 is the vector of dual variables € R™ (i.e. in ‘dual space’). The equality constraints in the
primal problem can easily be derived from the inequality constraints (5.2) and (5.3) by using
so-called slack-variables®. It can be shown that the primal problem has an optimal solution
if and only if the dual problem has an optimal solution, and further both achieve the same
optimal value. Duality theory is used for instance in the solution of the multiblock problem
(i.e. a problem in which d > [ and/or ¢ > m, whereas for a one-block problem d = I and
g = m). For multiblock problems, both the primal and the dual problem have infinitely many
variables and constraints (whereas one-block problems have finitely many (primal) constraints
but still infinitely many variables; however, the underlying problem can—by looking at the
structure of the dual problem—be shown to be finite-dimensional). In principle, one can
attempt to get approximate solutions by an appropriate truncation of the original problem.
There are basically three approximation methods:

1. Finitely Many Variables (FMV): provides a suboptimal polynomial feasible solution by
constraining the number of (primal) variables to be finite.

2. Finitely Many Equations (FME): provides a superoptimal infeasible solution by includ-
ing only a finite number of (primal) equality constraints. It is to be combined with FMV
to get an idea of the achieved accuracy.

3. Delay Augmentation (DA): provides both a suboptimal and a superoptimal solution
by embedding the problem into a one-block problem through augmenting the opera-
tors U and V with delays (where ® = H — UQV is an equivalent form of the Youla-
parameterization as used in [Dahleh and Diaz-Bobillo 95]).

For a more thorough treatment on these methods the reader is referred to [Dahleh and Diaz-
Bobillo 95, Chapter 12].

The FME/FMYV method does have a few drawbacks:

®In general, given a set of m inequalities of the form Az < b, then ¢ € R” satisfies the set if and only if
there exists a nonnegative vector of slack-variables, y € R™, such that Az +y = b.
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¢ FME/FMYV requires existence of polynomial feasible solutions, and

e FME/FMYV results in controllers of high order, related to the order of the approximation.

The DA method is used much more often since it doesn’t necessarily suffer from order-
inflation when in- and outputs are (rejordered properly (depending on which rows of @ are
‘partially dominant’, see [Dahleh and Diaz-Bobillo 95, p. 302] for definition). Another (earlier
mentioned) drawback of the LP approach, when combined with H,, constraints, is that the
infinite-dimensional H,, constraints have to be replaced by a finite number of constraints by
sampling the unit circle. This may prevent finding a solution if the performance specifications
are tight. Moreover, it has been recently shown [Venkatesh and Dahleh 93] that, for a class
of problems, the approximations obtained by sampling the unit circle will fail to converge to
the solution, even when the number of sampling points tends to infinity. Note that in this
approach, according to [Elia et al. 93], the solution is obtained by solving LP’s instead of
convex or non-convex optimization and neither does it use Lagrange multiplier techniques.

5.2 [{1/Hs: using the Youla-parameterization

This approach considers one of the same problems as the approach mentioned in the previous
section: the £, /H., problem. However, it utilizes the more general description where w; # ws
and z; # 2, in both the discrete-time- and the continuous-time case (see [Sznaier 93](SISO)
and [Sznaier 94](MIMO) for discrete-time and [Sznaier and Blanchini 94|(MIMO) for

continuous-time).

The main result shows that a suboptimal solution to the £, /H., problem, with performance
arbitrarily close to the optimum, can be obtained by solving a finite-dimensional convex
optimization problem and an unconstrained H,, problem. First, a brief description of the
discrete-time problem will be given, after which the continuous-time problem can be solved
using the discrete-time results.

Derivation of these results requires more preliminaries:

By Ho, we denote the space of stable transfer function matrices G(2)(G(8)) € £oo(Loo) Which
are analytic* outside the unit disk (or for continuous-time: analytic in Re(s) > 0). RHo
denotes the subspace of real rational transfer matrices of Ho,. Similarly, RHo,s denotes
the subspace of transfer matrices in RH,, which are analytic outside the disc of radius 4,
0 < § < 1, equipped with the norm

1G(2) lloo,s == sup & (G(8e’”))
0<o<n
(compare this definition to (2.15)).

For the system G with state-space realization (3.5), the following assumptions are made:

*Having a complex derivative at every point of its domain, and in consequence possessing derivatives of all
orders and agreeing with its Taylor series locally.
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1. D3 has full column rank
2. Dg; has full row rank

3. (A, B3) and (C5, A) are stabilizable and detectable, respectively.

Then, the set of all internally stabilizing controllers can be parameterized in terms of a free
parameter @@ € RH,,, resulting in the Youla-parameterization:

K = -Fl(*[(noma Q) (55)

where F; denotes the lower linear fractional transformation: 7, = K,pmii +
K, om12Q(I — KnomzzQ)_lemzl where K, is partitioned according to the following state-
space realization

A+ BsF + LC3+ LD3sF l —L Bs+ LDs;
— Knomll Knomlz
F 0 I = | TR (5.6)
—(Cs + Ds3F) I —Dss nom21  nomaa

and where F' and I are selected such that A + BsF and A + LCj5 are stable. By using this
parameterization, the closed-loop transfer matrices can be written as:

Tor—zy = Vi1 + V2@ Vo (5.7)
Twpmzy = T11 + T12Q T (5.8)

where Vj;, T;; are stable transfer matrices. The discrete-time £;/H,, problem can now be
precisely stated as:

e Problem 1: (Mized ¢, /H., control problem)

1. Find the optimal value of the performance measure:

wo= i N Toalh = nf Vs + VieQVa |, (5:9)

subject to
T+ T12QTs ||, <y
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2. Given £ > 0, synthesize a controller such that

” ng—»zz Hoo S g4 a’nd H Tw1—>Z1 “1 S MO + &

It is known that it is possible to select F and L such that T}, is inner® and T%; is co-inner®. If Ty,
T~

(Ty;) is not square, we can choose T5; (T ) such that Tys, = [T1s Th21] (T53. = [T5 Tsi D)
is a unitary matrix.

This fact can be used to reduce || T,,,_.., ||, to the form:

0 0
| Twsmsz oo = || T11 + Ti2a I: %2 0 ] Toa|| = “ R+ [ g 0 :l (5.10)
where R~ = 173, 11,15, has a state-space realization
A| B, B
RY=:| C, | Dyy Dy (5.11)
Co | Doa Dy

In the sequel for simplicity we will call

Be:[Ba B,,]

Dec =

| Do,
Dba

We will also assume that v = 1 (this does not entail any loss of generality, since it can always
be accomplished by scaling the input matrix B,). It can be shown that problem 1 can be
solved by considering a sequence of modified problems:

¢ Problem 2: (Mized {1 /He s control problem)
1. Given Tj;, V;; € RHe 5, find

o= o dnf Vi + Vi@V lly (5.12)
subject to
Q@ 0

where 6 <1 and R € RHe s

® A square system G is called inner if G~G = I and G is stable, where G~ := G* for Re(s) = 0 (|z| = 1);
for Re(s) # 0 (|z| # 1) the definition is G~ (s) := GT(—s) (G~ (2) := GT(L)). In engineering terminology, an
inner function is stable and all-pass with unit magnitude.

® A matrix G is said to be co-inner if G is inner.
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2. Given ¢ > 0, synthesize a controller yielding a cost p§ such that ps < p§ < us +¢.
LeMMA 5.2.1: Consider an increasing sequence é; — 1. Then p;, — p°.

Next, if (£;/He s) is feasible, it can be shown that a rational suboptimal solution, arbitrarily
close to the optimum, can be found by solving a truncated problem. Moreover, solving this
truncated problem only entails solving a finite-dimensional optimization problem and an
unconstrained 4-block (i.e. d > [ and ¢ > m) H, problem.

THEOREM 5.2.1: Let R~ have a state-space realization as in (5.11). Then, a suboptimal
solution to the mixed ¢; /H s control problem, with cost u§, us < p§ < ps + € is given
by Q° = Q% + 2V Q4 where Q% = YN .t Q(4)z77;

Q(0) 0 .-~ 0
1 0) --- 0

g=| @V o©
QN-1) Q)

solves the following finite-dimensional convex optimization problem

.
Q" = argmin |0 + v12Qun
“lel,<t

and Q% solves the approximation problem

Qr(z) = atemin | T11(2) + T12(2)Q7 Tor(2) + 2~V T13(2)Qr(2) To1(2) |l oo 5

where

[ §AV: §AYN'B, - §AB, #B. §AY'B, §AVN B, “ee G§AB 4By
CoAN™3 C,AN 2B, --- CaBa Daa CoAY 2By C,AY 2By CoBs Das
OaAN_ziiI OQAN—sBa te Daa 0 CG,AN—SBID CaAN_4Bb T Dab 0

Q) = C. Daa 0 .- 0 Das 0 0 e 0

CyAVN's  CAV 2B, -+ CoBa Die CoAY™2B, C,AY%B, ... CoBs -Q%(0)
CvAN=28 AV B, -+ Dee 0 G AV2B, C,AVT'B, ‘e -QT(0) -QT()

ey Dt 0 .- 0 -QT(0) -QT(1) =Q7(2 —-QF(N-1) |

V11(0)
v = :

V(¥ - 1)
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V12(0) o - 0 Va1(0)
Vlg(].) ‘/—12(0) o 0 -‘/21(1)
Vig = . .. Vg3 = .
| Via(V 1) - Vi2(0) | Var(N —1) |

loge(1—6)—logh
log 6

N = [ ] b= (Vi llo s + 1 Va2 llo gll Vor Nl s (1 + 11 B o )

(where Vi3 € R™™1)
4= X1/2 , :&: f/l/Z
where X > 0 and ¥ > 0 are the solutions to the following (uncoupled) ARE’s:

X = AXAT +472B,BT

+(AXCT +4~2B,DLY(I — 472D, DL — C,XCTY (C,X AT + 4~2D., BT)
Y = ATYA+CTC,
+(ATY B, + CTD..)(I — DL.D,, ~ BYVB,)  (BTV A + DLC,)

and where Q(k), V;;(k) denote the k*" element of the impulse response of Q(2), Vi;(2)
respectively.

This is the main result of [Sznaier 94] from which an iterative algorithm can be derived and
can be found in the same article but is omitted here. In [Sznaier 94] v,, vi, and vy are
defined somewhat differently but it is not clear whether this would yield different results. It is
not likely that it should since in [Sznaier 93], which also handles the discrete-time case (but
SISO), definitions similar to those used here are encountered.

For the continuous-time case the proposed method is based upon solving an auxiliary discrete-
time ¢; /H problem, obtained using the simple transformation z = 1+1s and then transform-
ing back the resulting controller to the s-domain. To do this the Euler Approximating System
(EAS) is introduced, which can be shown to have {; and H,, bounds that are upper bounds
of the corresponding continuous-time quantities. Moreover, these bounds are non-increasing
with + and converge to the exact value as ¢ — 0.

DEFINITION 5.2.1: Consider the (continuous-time) system G represented by (3.5). Its
Euler Approximating System (EAS) is defined as the following discrete system:

[+9A| 9B, ¥B, ¢Bs
Cl Dll D12 D13
02 -D21 D22 D23
CB D31 D32 D33

where ¢ > 0.
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THEOREM 5.2.2: Consider a strictly decreasing sequence %; — 0 and the corresponding
EAS(4;).

Let:
. EAS
Hap; = inf HTw1—*21(Z7 ’le) ”
Q € RMo, '
Twpmss lloo <1
and let u° be defined as in Problem 1. Then the sequence p,, is non-increasing and such

that /-L't,b, — /Lo.

Theorem 5.2.2 shows that the £, /H, problem can be solved by solving a sequence of discrete-
time ¢, /H., problems, each one having the form:

E= inf | Vi +V12QV21H1
Q € RH(T)

| T114T12QT21 | <1

where T;;, T;; € RHoo(T). It is not clear from [Sznaier and Blanchini 94] what the ‘7’ in
RHoo(T) stands for. There RH,(T) is defined as the set of real-rational functions in H(T),
where H,(T) denotes the set of stable complex functions G(z) € L(T) and where L,(T’)
denotes the Lebesgue space of complex valued transfer function matrices which are essentially
bounded on the unit circle with the co-norm as defined in (2.15).

LEMMA 5.2.2: A suboptimal rational solution can be obtained by solving a discrete-time
mixed £ /H,, control problem for the corresponding EAS, with § = 1 — 2. Moreover,
if K(z) denotes the controller for the EAS, the suboptimal continuous-time controller
is given by K(¢s+1).

The approach that was presented here is a departure from previous approaches to solving this
type of problems, where several approximations, such as replacing the infinite-dimensional H,
constraint by a finite number of constraints by sampling the unit circle, were required to obtain
a tractable mathematical problem. Perhaps the most severe limitation of the proposed method
is that it may result in very high order controllers (roughly N), necessitating some type of
model reduction. Note however that this disadvantage is shared by some widely used design
methods, such as u-synthesis or £;-optimal control theory, that may also produce controllers
of very high order, the latter method especially. Application of some well established methods
in order reduction (noteworthy, weighted balanced truncation) usually succeed in producing
controllers of manageable order.

5.3 Hy/Hoo: convex optimization using matrix inequalities

The approach described here has received a great deal of attention (see e.g. [Boyd and Barratt
91, Boyd et al. 93, Geromel et al. 92, Khargonekar and Rotea 91, Halikias 94, Scherer 95]).
However, although all these approaches use matrix inequalities (MI’s) to arrive at a convex
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optimization problem there still exists a wide variety among these approaches. For instance,
some, but not all approaches use the Youla-parameterization; some set w; = w, where others
take all four sets of inputs and outputs to be different; the MI’s involved can be LMI’s (most
common ), QMI’s or AMI’s (see e.g. [Feron et al. 92], which by the way only considers the H,
control problem); and some approaches use the performance measure of Bernstein and Haddad
where others don’t. A good example of a method using the performance measure of Bernstein
and Haddad is [Khargonekar and Rotea 91]. They consider problem (1) from Chapter 3 with
w; = wy := w and 2z # 2 and use the performance measure (4.20) where S solves (4.13)
(with (4.14)). However, they take a suboptimal approach. When v(() denotes the optimal
performance measure (for K an ‘admissible’ (: proper and internally stabilizing) controller
satisfying the H,, norm constraint’) the mixed Hs/Ho control problem is formulated as:
Compute v(G) and, given any o > v(G), find a controller K € A, such that the auziliary
cost J < a.

Given the plant G; (‘sf’ denotes the state-feedback controller):

z = Az + Bw+ Bsu
G = 2z = Ciz+ Disu
7Y 2, = Caz+ Dasu ’
y = z

one could choose to use B, instead of B, thereby saying w := w,, but this is no more than a
matter of notation, since ‘w,’ is the only w present and has the dual interpretation mentioned
in Section 4.3.

The key idea is to replace the search over the admissible static state-feedback gain matrices
K. This is done by introducing the change of variables K = WY ~! (which essentially is
an over-parameterization), where Y is the solution to the quadratic matrix inequality that
characterizes the infinity norm constraint (5.13).

Without loss of generality it is assumed that v = 1. Let W € R™* and symmetric positive-
definite Y € R (and [ = n since y = z) be given and define Z(W,Y) € R**™

Z(W,Y) 1= AY + YAT 4 BsW + WT By + BBT + (C,Y + DysW) (CoY + Dy W)

(5.13)
We define also
JOV,Y) 1= tr [(CLY + DisW)Y H(CLY + D)
Finally, define the set Q of real matrices (W,Y):
QG,;) = {(W,Y)|Y =YT > 0,Z(W,Y) < 0}
and consider the optimization problem
((Gsp) = (W,Y)lélsI;(Gsf)f(W’ Y) (5.14)

K € Ao as defined in [1] where ‘co’ denotes the Hoo constraint.
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Furthermore A, ,, denotes the subset of A, for which K is memoryless (or static).

THEOREM 5.3.1: Consider the system G; defined in the above, along with the definition
of f(W,Y), Q(G,;) and ((G,;) as stated in the above. Then,

Aco,m(Gsp) #0 & QAGop) # 0

and in case one (and thus both) of these sets is indeed nonempty (and when v,,(G,;)
denotes the optimal performance measure for the state-feedback problem with K €
Aoo,m(st)),

Vm(Gsf) = C(Gsf)
Furthermore, given any a > v,,(G;), there exists (W,Y) € Q(G,;) such that the state-
feedback gain K := WY ~! satisfies:

KeAom(Gsy) and J<L< f(WY)<a

At first sight this theorem doesn’t seem very attractive. The calculation of {(G,;) involves
a search over the set Q(G,;), whereas v,,(G,s) can be computed by solving a nonlinear
programming problem with only the real matrix K as the decision variable. However, the
over-parameterization introduced with the change of variables K = WY ~! (which causes the
dimension of Q(G,;) to exceed the number of free parameters in K) can be shown to be
most useful since the optimization problem defined in (5.14) is a convex problem. This can
be shown to be true based on the fact that both the set Q and the function f:Q — R* are
convex. On the other hand, the set of feasible static state-feedback gains, A« ,,(Gsy) is not
necessarily convex.

Finally, for the full-information problem, where y = [ 27 wT ]T, they show that the use of
dynamic full-information controllers can not improve upon the performance over all memory-
less state-feedback controllers. A fact worth noting is that based on this very article, there also
exists an H,, /ESPR-‘version’ ([Shim 94], also see Chapter 3) yielding similar results. Another
example in this category, [Halikias 94], uses the Youla-parameterization along with certain re-
sults from superoptimal interpolation theory (see [Halikias 94] and references therein), through
which the problem can be formulated as a multi-disk minimization in terms of a free parameter
of reduced dimension which can be tackled via a number of convex programming techniques
(described in e.g. [Boyd and Barratt 91, Dorato 91]).

LMI-based convex optimization problems are treated extensively in control literature and it
does seem to have great potential, since there exist effective and powerful algorithms for the
solution of these problems, as was described earlier in Section 4.5.

54 Hof/Heo: optimizing an entropy cost functional

This section refers to the work done mainly by Mustafa and Glover in [Mustafa 89, Glover
and Mustafa 89, Mustafa and Glover 88, Mustafa et al. 91]. It is shown that the auxiliary per-
formance index of Bernstein and Haddad can be interpreted nicely as an entropy expression,
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yielding the central H,, controller for the full-order case. They address the problem where
w, = wy =: w and z; = 25 =: 2, resulting in the matrices corresponding to the w and z that
are being left out to be zero. So, with the arbitrary choice w := w,, 2 := 23, By, Da1, D3
(and D,;) are zero and furthermore Dy, D33 and D, are taken to be zero.

Or equivalently

& = Az + Bywy+ Bsu
Zy = 0237 + D23U
y = Cs2+ Dgws

Then, if we define the entropy of Tyy—, (=Tw,—s,):

DEFINITION 541 The entropy Of T1w—>27 Where ” T111)—vz ” < ’}’, iS deﬁned by
I T N Y) = hlll - 111 det I— Y T N (1) T (3 l—‘—— Zdw
w23 : i wW—z ] wW—z ] . b
( ) S0 00 27"/_00 ! ( ( ) (] ))‘ ISO - ]w]]

where s, € R,

the first of the problems of interest can be stated:

e Problem A: The mazimum entropy/H., control problem [Glover and Mustafa 89,
Mustafa and Glover 88]. Find, for the plant G, a feedback controller K such that:
1. K stabilizes G

2. The closed-loop transfer function 7, _,, = Fi(G, K) satisfies the H,, norm bound
| Ty—: o, <7, where v € R is given

3. The closed-loop entropy Z(T—..,7) is maximized.

REMARK 5.4.1: Problem A is equivalent to the Risk Sensitive Linear Quadratic Gauss-
ian control problem of [Whittle 81, Bensoussan and Van Schuppen 85]. This link was
established in [Glover and Doyle 88].

If we recall the performance functional J, defined in (4.10) and (4.11), we have (the proof of
this may be found in [Mustafa and Glover 88]):

PROPOSITION 5.4.1: —I(Tyezry) 2 J(Tp—2)

Next, recall J denoting the auxiliary cost as defined in (4.20). Then the second problem of
interest is:
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¢ Problem B: The combined Ho, /LQG control problem [Bernstein and Haddad 89]. Find,
for the plant G, a feedback controller K such that:

1. K stabilizes G

2. The closed-loop transfer function T, _., = F;(G, K) satisfies the H., norm bound
| Twezllow < 7, where v € R is given

3. The auxiliary cost J(Ty—,7) is minimized.

and from (4.19) we know that

ProrosiTION 5.4.2: T Tyesyy) > J(Tw-s)

For completeness we will state the well-known LQG problem associated with G

e Problem C: The LQG control problem. Find, for the plant ¢, a feedback controller X
such that:

1. K stabilizes G
2. The LQG cost J(Ty,—,) is minimized.

After a few mild assumptions have been made (see [Mustafa 89]) the key result is established:

THEOREM 5.4.1: For any T,—., € RH with || T,—. ||, < 7, minus the entropy equals
the auxiliary cost, i.e.

—I(Twﬁz,’)’) = j(Tw—>17 7)

where the auxiliary cost is defined by (4.20), with S the positive-definite solution to (4.14).
This is in contrast with [Bernstein and Haddad 89], where S must be positive-semidefinite.
Furthermore S is insisted on being the stabilizing solution S, to (4.14), a condition which is
not mentioned in [Bernstein and Haddad 89].

Next, they state the state-space realization of the controller which solves problems A and B,
expressed in terms of the stabilizing solutions, denoted X, and Y, to two algebraic Riccati
equations, followed by the maximum value of the entropy and the minimum value of the
auxiliary cost, respectively. While the maximum entropy can be expressed in terms of X
and Y., the minimum auxiliary cost in addition to this requires the solution S, to a third
algebraic Riccati equation coupled to the other two. Since the two optimal values were said to
be equal in theorem 1, we will be able to discard of the (yet to be stated) minimum auxiliary
cost expression and the corresponding algebraic Riccati equation as redundant.



5.4. Hy/H.: OPTIMIZING AN ENTROPY COST FUNCTIONAL 41

and

PRrOPOSITION 5.4.3: The controller which solves the equivalent problems A and B has
a state-space realization

P [ A+Y, (y2CTC, — C¥Cs) — BsBYX ., Z | Y, CF
| —BTX..Z 0

where X > 0, Y, > 0 are the stabilizing solutions to the ARE’s

0= XA+ ATX o + CTCy + Xo (v 2B, BT — BsBY) X,
0= YOOAT + AYOO + Bng + Yoo (’)/—ZC;[’CQ — C';;”C'g) Yoo

and where
Z =T =77 X)) "

In saying the stabilizing solutions, we mean the solutions X, and Y., such that
A+ (7*2323;{ — Bng) X, is asymptotically stable and
A+Y, (v 23CTC, — CTC3) is asymptotically stable.

PROPOSITION 5.4.4: Minus the maximum value of the entropy is given by
~Tmas(Tw—zy7) = tt[Xoo B2 BY + X0 Z2Y o0 X oo BaBY

PROPOSITION 5.4.5: The minimum value of the auxiliary cost is given by
Tmin(Tu—z,7) = tr [YouCF C2 + SR},

where S, > 0 is the stabilizing solution to the algebraic Riccati equation

0= AS +SAT +4*SRS + Y, ,CTC5Y,,

and

/_i ‘= A — BsBYX .7 +v7%,CTC,

R:=C¥fCy+ X ZBsBY ZT X,

In saying the stabilizing solution, we mean the solution S,, such that A+ vy~2S,R is
asymptotically stable.

As mentioned before, we can discard of this last proposition and therefore there is no need
to solve the third coupled algebraic Riccati equation. Although this is an attractive feature,
it must be remembered that this approach addressed the problem where both sets of inputs
and outputs are equal.
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5.5 Hy/Hs: fixed-order controller design using the auxiliary
cost

This class of approaches refers mainly to the work done by Bernstein and Haddad
in [Bernstein and Haddad 89, Haddad and Bernstein 90, Haddad et al. 91] and some meth-
ods based on it [Ge et al. 94]. The general setup was described in Sections 4.2-4.4 which
ended with setting the partial derivatives aa_i7 56’3% and (,f—gc to zero. The results of this can be
obtained by various matrix manipulations (which can be found in [Bernstein and Haddad 89]
addressing the simplified problem as mentioned in Section 4.2) and will be stated here for the
most general case being the mixed-norm reduced- (or fixed-) order dynamic compensation
problem (solutions to the problems of finding fixed- as well as full-order controllers for both
the Hy/Ho and the pure H,, problem can be found in [Haddad and Bernstein 90]). Here the
same problem setting is used as in [Haddad and Bernstein 90], where By, Ds1, Ds;, D15 and

D, (and Dy, ) are taken to be zero.

First, for arbitrary positive-semidefinite $,%, § € R™*" and a, 8 > 0° we define the matrices

S, = SCT+ B,M;'DE,

Yo = [BY +77?RE BT + 77 R (S + 8)| B + R,

A = (I, + f2y28%) 7

where
R2300 = Dg;Mq:’lng RlBoo = Cg’Mq—;lng, Md2 = Idz - 7_2D§2D22

Farthermore
R2100 = Dgqu;102 RloQ = Cqu_;Cz Rgoo = Dg?)Mq_lezg
Vvloo = B2Md_21_Bg VZoo = DggMd—leng

Next, the following lemma is required for the statement of the main theorem:

LEMMA 5.5.1: Let positive-semidefinite matrices S, 3 € R**" and suppose rank[é’f]] =
n.. Then there exist n. x n ¥, I', and n, X n. invertible T, unique except for a change
of basis in R"<, such that

su=vTyr |, r19T=1g,.
Furthermore, the n x n matrices
k=0T | g, =1I,—k

are idempotent® and have rank n. and n — n..

8 Where for simplicity it is assumed that Rs := D% Dis =: o®Rs and Rseo := D%},Mq;l Das =: 8% Rs, where
the nonnegative scalars o, 8 are design variables such that o 4+ 5% # 0.

®Having the property that it is equal to its own square (e.g. the identity matrix; [ 21 1 ] ).
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THEOREM 5.5.1: Let n, < n, suppose there exist nonnegative-definite matrices 5, %, 5
and ¥ € R™*” satisfying
(ARE1):

0 = (A+72ByRoico) S + S(A+ 7" 2ByRo1e0)” + 7725 R10eS

Vi = 8aViso ST + K1 8aVasa STKL
(ARE2):

0 = (A+772[S + SRi + 77 BoRares — 7 2SATSTRS'RE,)
+5(A+ 778 + 8] Rico + 7 BoRoree — 7 28ATST R RY,., )
+Ry — ATSTRI'SA + kTATST RIS, ARy

(ARE3):

0 = (A — ByR3'S,A + 7728 [Rico — RiseoR3 S0A] + 7 2By [Roteo — RzgwRQIEaA]) S
+5(A = BaR3 Suh + 725 Raco — Rizeo B3 Sah] +772Bs [Roreo — Rasealts'ZaA])"
+7728 (Rico — Rusooll ' Suh = ATSTRT R, + BATSTR;'S,A) §
+5.Vis ST — k18 Vg STRT

(AREA):
0 = (A-S5.V5itCs+7 2BoRy1oo + 7 2SR1eo — 7_25av2;}D32R2100)TS

+2(A _Asavzt.gcs + 7—232@2100 +7725R100 — 7—2SaV2:>§D32R2100)
+ATSTRIIS A — KTATYSTRIIS ARy

rank[$] = rank[S] = rank[SE] = n,

and let (A., B.,C.,S) be given by
Ac = F [A - B3R§12aA - Savr?,;c.?: + Sasz;gD&’)R:s—lEaA + 7_2 (SRloo + B2R2loo
—BZR2300R3_12(1A - 5R1300R512aA — 84Vsea D32 Ro1oo + Sa%;DsszsméglzaA>] T

B, = IS, V!

C, = —R3'ZAU7

s - | S +§ 817
- rs rsrr

Then, (/LB) is stabilizable if and only if A is asymptotically stable. In this case,
the closed-loop transfer function T,,,_.,, satisfies the H., disturbance attenuation con-
straint (4.17) and the H, performance criterion (4.10) satisfies the bound

J(A., B.,C.) < tr [(5 + S8Ry — 2Ry3R; 'S, AS + ATzfﬁglR3R;12aA§]

From these results the full-order case results can be derived by setting n, = n
(see [Haddad and Bernstein 90]) so that K = ¥ =T = I and s, = 0. In this case the
last (‘additional’) term in each of (ARE1)-(ARE4) can be deleted and (ARE4) becomes

superfluous.

Another way of solving the problem, when leaving off from the point where the partial deriva-

tives %, 5‘%95 and —% were set to zero, is by using homotopy techniques (see [Ge et al. 94] and
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references in [Bernstein and Haddad 89, Haddad and Bernstein 90]). These techniques have
been developed to account for the additional terms in the equations (ARE1)-(ARE4) which
existing Riccati equation solvers cannot handle. Homotopy methods utilize the solution of a
related easily solved problem as the starting point. In the case of full-order H,/H,, control
with unequalized weights, the starting point is provided by the standard LQG solution. The
approach followed in [Ge et al. 94] is based on [Bernstein and Haddad 89] and combines it
with so-called probability-one homotopy algorithms (this name will become clear in the fol-
lowing). Also, in [Ge et al. 94] the number of parameters (which determine A., B, and C.) is
reduced from n.(n.+m+1) (= n.xn.+n, xl+mxn,) to n.(m+1) (= n.+n. xl+(m-1)n,)
by using the ‘Ly, Bryson and Cannon’-parameterization [Ly et al. 94], which, like all (mostly
canonical) realizations involving a minimal number of independent parameters, cannot pro-
vide a smooth, global representation of all MIMO (or in case of the ‘Ly, Bryson and Cannon’-
parameterization even SISO) systems. It does however provide a generic representation which
is particularly suited for parametric optimization (see [Ge et al. 94] and [Ly et al. 94] for
further information). The (reduced number of) parameters are now cast into one vector &.
Furthermore, the relevant matrices A()), B(}), etc. and the Ho,-norm bound y(A) are defined
as

AN) = Ao+ A(A; — Ao) B(A) = Bo+ A(B; = By) 7(A) =70+ A1y = 70) etc.

where A is a variable step-size that is to be computed each step and Ay and A; denote the
starting and ending point of A(\) for each step (and likewise for the other matrices and y(})).

The homotopy map p(€, M) is then defined basically as the combination of the three partial
YA

derivatives 73, 35~ and 5@(%, where only those elements corresponding to the parameter
elements of A., B, and C, are present. The numerical algorithm which computes &; for which
As =1 and p(€;, ;) = 0 starts with Ag = 0 and ~y, such that ;72 is approximately zero. The
initial &, is chosen such that p(&;,0) = 0 and can be derived from the LQG solution in the
full-order case, but has to be computed from an initialization scheme for the reduced-order
problem. In practice, it may be difficult to find the initial point & such that p(&,,0) = 0.
A somewhat more artificial homotopy then, letting & be the chosen initial point, is the
Newton homotopy map defined as p(&,)\) = p(&,A) — (1 — A)p(&,0). To guarantee a full
rank Jacobian matrix (denoted by Dp(¢,A)) along the whole homotopy zero curve, except
possibly at the solution corresponding to A = 1, define the homotopy map to be p(€,\) =
p(&,A) — (1 = A)(€ — &). Once the initial point is chosen, the rest of the computation is as

follows:

1. Set A:=0, £ := &,.
2. Compute S and M according to (4.14) and (4.23).

3. Evaluate the homotopy map p(&, ) or p(€, ) and the Jacobian of the homotopy map
Dp(€, ) or Dp(E, A).

4. Predict the next point (£(0),A(0)) on the homotopy zero curve using e.g. a Hermite
cubic interpolant.

5. For k:=0,1,2,... until convergence do

(6(k + 1), Ak + 1)) = [Dp(§(k), A(k))p(£(R), A(K)),
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where [Dp(£,A)] is the Moore-Penrose inverse'® of Dp(€, A).
Let (&1, A1) = limp_ oo (&(K), A(E))-
6. If Ay < 1, then set £ := &1, A := Ay, and go to step 2.

7. If A, > 1, compute the solution £ at A = 1.

The standard classical continuation techniques solve p(£, A+ A)) = 0 for fixed AX > 0, given
a solution (£,X) : p(€,)) = 0. It is implicitly assumed that & = £(X), i.e. the zero curve 7
of p(&,A) being tracked in (€, A) space is monotone in 7. Other tacit assumptions are that 7y
does not bifurcate or otherwise contain singularities. The more general homotopy methods
which are used in [Ge et al. 94] make no such assumptions, and include mechanisms to deal
with bifurcations and turning points. In particular, homotopy methods do not assume that
the zero curve < is monotone in A. A continuation or homotopy algorithm is not a priori glob-
ally convergent (where globally convergent means that the zero curve v reaches a solution £,
p(€,1) = 0 from an arbitrary starting point &, p(&o,0) = 0). However, probability-one homo-
topy methods are provably globally convergent under mild assumptions [Watson et al. 87,
and their zero curve 7 is guaranteed to contain no singularities with probability one. In-
terestingly, these particular algorithms are implemented in software-packages such as HOM-
PACK [Watson et al. 87].

5.6 Hy/Hs: using a bounded power characterization

In this section the semi-norms as defined in Section 2.1 are used to obtain both necessary
and sufficient conditions for optimality. Unlike most of the other approaches the H,/H.
control problem is stated in terms of signal sets. The problem addressed [Doyle et al. 89,
Zhou et al. 90] sets w; # wq, 23 = 22 =: z where w,; is assumed to be fixed and white, and
ws is assumed to be bounded in power. The design objective is to minimize the power of the
output error signal z, i.e. compute

sip 2113 (5.15)

w1€ES,w2€P

with & and P as defined in Section 2.1. It will be seen that if only w, is present, the problem
reduces to the standard H, problem. Similarly, if only w, is present we obtain the standard
‘Hoo problem. To describe the approach followed, we must first define some more properties:

If we consider a linear system G with convolution kernel (impulse response) ¢(t), input u and
output z

10The Moore-Penrose inverse of an mas X nas matrix M is the unique npr X mas matrix M t satisfying the
conditions:

(a) MIMM'=M' | MM'M =M,
by (MM =MM , (MMY =MM'.
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the following (standard) properties are defined

Rou(r) = g(1)* Ruu(T)
R..(t) = g(7)* Ryu(1)*g*(—7)
Swu(jw) = G(jw)Suu(jw)
S.(jw) = G(jw)Sul(jw)G*(jw)

Denote the cross spectral density of w; and wy by Sy,w,(jw). Now assume G is stable and
partition G compatibly with w; and wy as | G1 G2 ], where GG is assumed strictly proper

(otherwise the output signal can have unbounded power).

Now we can compute the power spectral of the output z. To do that let

Then the spectral density matrix of w can be computed as

Swlwl Sw1w2
Sww - [ S* Sw2w2 }

Using this formula and the earlier defined expression for 5;,, we get
_ . . Swlu)l Swlwg Gl(-jw)*
Szz - I: Gl(Jw) Gz(]b)) } [ S':)lwz Sw2w2 ] [ G2(]O.))*

and, according to (2.9)

2 1 7=
l2lip = 57 [ S (o)l
These relations form the basis for the mixed-norm performance analysis, where we examine
the norms induced on G with inputs w; and w, (so this is a system without a controller or
uncertainties).
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Consecutively, there will be treated:

1. The orthogonal case, i.e. Sy 0, =0

2. The white and causal case, i.e. w; is assumed to be white with Sy,w, = I and Sy,uw, =
S(s) with S(s) strictly causal (i.e. we assume that wy(t) can be generated from w,

ivil 2L S ) SLiiCUY Lallisdl v donillll

through a strictly causal filter)
3. The non-white and non-causal case
4. The white and non-causal case

5. The non-white and causal case

The 4t problem appears to be equal to the 3™4 problem, i.e. the worst-case signal w; in the
374 problem is shown to be white. The 5tF problem is not solved in the paper, but it can be
shown that the worst-case w, is not necessarily white.

1. The orthogonal case

Here we have
2 p) 2
sup Nzl =Gl + | Gl

w1 ES,wo
and the worst-case signal w; is white noise with unit spectral density, Sy,w, = 1.

2. The white and causal case

This case is the main focus of this paper. As was said, w; is assumed to be white with
Sw,w, = I and wy € P. Furthermore S,,,,, = S(s) with S(s) strictly proper. When the
system equations are

T = A$+B1'UJ1 +B2w2

2o = Oy + Dygwy

and suppose || G2 ||, < 7, with 7 > 0. Denote

A + BZ’Y—?MJ;DCQFQCZ B27—2Md_21_Bg

X = Ric
—CT[I + Dapy™2M;'DLIC, —[A+ B,y 2M ;' DLCo

]T >0

where X = Ric(H) (with H the Hamiltonian belonging to the corresponding ARE) uses
the ‘Ric’-operator, uniquely determining X by H. Furthermore, H is said to belong to
the domain of Ric: H € dom(Ric).

Then

THEOREM 5.6.1:
sup {1| 21> — 7w lp = BT X By)

with a worst-case signal w, = y~2M ;. (D5,Cs + B X )z.
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Finally to compute (5.15), we have to find v such that the worst-case w, € P, this is
given in the following theorem:

THEOREM 5.6.2: Let 7, be such that || v My (70) (D5,C2 + B X (70)) 2|, = 1
Then
sup || #lp = tx [BY X (70)B1 + 7]

. The non-white and non-causal case

Here we examine the case when w, is not restricted to be white and w, is not restricted
to be a causal function of w;. Again we assume ||G»||, < 7, v > 0. Without loss
of generality we assume that the spectral densities of w; and w; have the following
decompositions:

Swiw, = S1157;

Swiws = 51157

Sw2w2 = 5125;‘2 + 522552
where 511 can be restricted to be a stable and minimum phase transfer matrix, in fact,
wy can be thought of as the output of the stable system S;; with a unit density white
input. Then the following result can be shown to be true:

THEOREM 5.6.3: Let v be such that || w, ||, = ” (v - G;G2)~1G§G1 “2 =1
Then
2 _ 20027 xy —1
sup P”zHP = ”7 (v*I - G»G3) Gl'(z

w1ES,we€
with the worst-case signal w;, white with unit spectral density (S,,,, = I) and w,

having spectral density S,,u,, = 51257, where S15 = (v — G;Gz)_1G§G15M

Note that from the expression for S, it is seen that the worst-case signal w, can be
generated from passing w; through the non-causal linear system (72 — G3G5) ™ G3G:.

. The white and non-causal case

As was seen from the previous case the worst-case w; was white, so the two problems
are identical.

. The non-white and causal case

This problem so far remains unsolved. However, examples exist which show that in this
case, the worst-case w; is not white.

Now we will analyze the system performance when the system model has structured norm-
bounded perturbations, as in the following diagram
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fe———— Wi

zy G f— Wi

2 :I Way
A

where G is partitioned according to the inputs and outputs as

Gn
G =
[ G

G Gia .
Gaon Gag } o [ Gr G }

and G; = { gll } is strictly proper.
21

The uncertainty is structured such that A € A where

A= {dia’g[AhAZ, s 7Ap]7 H Az ”oo < 1}
Again we assume that w; € S and w, € P. The robust performance problem in this setting
concerns the following question:

when does

|| z2 H;i
| war (5 + [ wy 12 <1 VvAea (5.16)

kold?

A sufficient condition for this problem can be obtained using the mixed-norm analysis results
that were stated in the above. Define a set of scaling matrices!?

D = {diag[d [, do s, ... ,dp L] | i, 07" € Hoo }

Then DAD™' = A forall A€ A and D € D, and let

R B | wa
Z.—}:DZQ} w2'—[DU)22}

Then we have

_[ Gu
2 =

Gin G122D_1 wy | . A A W
DGzl DG221 DGQQQD—l J Ii We jl -' { Gl G2 ] [ Wo

HThese scaling matrices will be denoted by D and not by D to avoid confusion with the matrix D, which
connects # {and possibly w) with y.
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Now consider a mixed-norm analysis problem

2
Jn = inf  sup ‘212“7’ = (5.17)
020w, comner [[wn o + [0

THEOREM 5.6.4: (5.16) holds, if J,, < 1.

Now let w; be such that || wy ||g < 1. Then the test J,,, < 1 for a given D& D is equivalent
to

sip_ {llzll7 = w3} < 1.

w1 ES,wa

To get the least conservative test possible, a search on D is required. Furthermore, (5.16) has
two special cases:

e w; = 0: the so-called robust H,, performance problem, reducing to p-analysis!?.

e w,; = 0: we shall call this the robust H, performance problem.

Finally'® we consider the synthesis problem, when the system is subjected to mixed distur-
bance signals and is described by the following diagram

e——— W7
4 - G le——+ Wo

where both G and K are assumed to be real-rational and proper. When we only consider the
white and causal case, the mixed H,/H,, optimal control problem can be stated as: find an
internally stabilizing controller K such that

i 2 2 2
K veapi. B, {1215 = vllw I3 } (5.18)

is solved.

A both necessary and sufficient condition for this problem to be solvable is that there exists
a K such that || Ty,—, ||, <7, i.e. the corresponding M., problem (w; = 0) is solvable.

After a few mild assumptions have been made (see [Zhou et al. 90]), we can state the final
result:

12Gelecting the best D scalings for the mixed problem is not as simple as for g-synthesis where these matrices
can be taken to be constant for all frequencies.
13 The fourth case, in which both A and K are present, is not treated in the paper.
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THEOREM 5.6.5: Given v > 0 and the plant (, there exists a controller X which solves
problem (5.18) if and only if the following conditions hold:

1. B, € dom(Ric) and X, := Ric(Fu) > 0 where

| A-BsDLC,  y72ByB] - BsBY |
l_ _CgDéLs(DéLs)l Cy _(A - BBD%C?)J _|

-'—JOO:

2. There exist L, Y and P which satisfy
LD3, DY, + B, DL, + PCYT +y~2PYLD3, DY, +v-2PY B, DI, = 0

(A+LCs)+(A+LCs)' Y +VRY + FLF,, =0

>0 and A+ LCs + RY is stable.

b

. - -~ = - . - ~_ T — _
(A+LCs+ RV)P + P(A+LCs + BY) + (B + LD51)(By + LDs1)” =0
Moreover, when these conditions hold, one such controller is

A+ BsF + LC; | -1

K(s):= T 0

where R = y"%(By+ LD3s)(By + LDs)Y A= A++72B,BIX,,
and F, = —(DLCy + BT X.).

The results presented here (according to the authors) turn out to have a superficial similarity
with the results of [Bernstein and Haddad 89] that hints at deeper connections. It would
therefore be useful to compare these results. However, this is not done in this report.

5.7 Hy/Ho: minimizing the worst-case Ho-norm

Finally, we describe methods which use problem statement (2) from Chapter 3 (where p;=2,
pa=00) and four different sets of inputs and outputs w;, ws, z; and z, [Steinbuch and Bosgra
94, Stoorvogel 93]. This still allows for a considerable variety in the approach followed.
In [Steinbuch and Bosgra 94] a ‘lossless bounded real formulation’ (this will be explained
in the following) is used to parameterize the uncertainty A(s), thereby reducing the original
constrained optimization to an unconstrained one. [Stoorvogel 93] uses a Lagrange multiplier
o for the same purpose. Both methods result in an optimization scheme of a form similar
to the D-K-iteration in p-synthesis (see also Section 5.6). To illustrate this both methods
will be described in the following, starting with [Steinbuch and Bosgra 94]. They developed a
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parameterization for stable strictly proper H,, norm-bounded uncertainties using LMI’s and
exploit the situation when the worst-case perturbation is lossless bounded real.

¢ Inequality formulation:

THEOREM 5.7.1: Let (Fa,Ga, Ha, UA) be an asymptotically stable minimal real-
ization of the transfer function A(s) = Ha(s] — Fa) 'Ga+Ja. Then the following
statements are equivalent:
LAl <t
FIX + XFs XGa HT
2. 3X > 0 such that GLX -1 JI | <o
Hp Jn =T

3. 3X > 0 such that
T 1” T
(2) FIX + XFa+ | XGa Hg][ T JA} {GﬁX]@
A

—JA I
(b) [ -1 Jj]<o

In the sequel we will denote the set of all transfer functions with [[A{l < I as A.
Theorem 5.7.1 directly leads to the following parameterization which characterizes all
real rational causal stable transfer functions A(s) of order n, having || A ||, < 1.

1. Choose J, such that

-1 JZ
[JA _I} <0 (5.19)

2. Let Gao and Ha be matrices of appropriate dimensions containing the free para-
meters and let Fa = F, + F, with F, = FT and F, = —FF, such that

-1
I -Jz [GT ]
_t 7 A A
F, < [GA HA][_JA ; } | | (5.20)
and
. 0 —a; . 1
Fk_dlag[ai 0 } , 1_1,2,...,§n (5.21)
for n even and
. 0 —a;
F, = d‘a‘g[ai 0 J O, i=1,2,,..,%(n—1) (5.22)
0 0

for n uneven.
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e Lossless bounded real formulation:

When the inequality constraints (5.19) and (5.20) are both active then the worst-case

perturbation is lossless bounded real. This means that the perturbation is on its bounds

at all frequencies and for all its singular values. Now we need two definitions:
DEFINITION 5.7.1: The real r
if O(s) +0~(s)=0.
DEFINITION 5.7.2: The real rational function A(s), s € C is lossless bounded real
(LBR) (or inner, see Section 5.2) if A~(s)A(s) = I. The set of all such A(s) is
denoted A.LBR.

LEMMA 5.7.1: Let A(s) = (I — O(s))(I + ©(s))™" then A(s) is lossless bounded
real if and only if O(s) is lossless positive real.

LEMMA 5.7.2: Let O(s) = Ha(sl — FA) GA 4+ Ja, with FAo + FL =0,Ga = H
(so it is assumed that ds = ¢5) and Ja+JL =0, with Fa € R*2X"a and J, € Rded2
(=R#*¢2), and with Hp and G5 of compatible dimensions. Then the real matrices
Fa, Ha and Ja parameterize all lossless bounded real transfer functions @ with
state dimension na .

LEMMA 5.7.3: Let A(s) = (I —-O(s)) (I + O(s))™" with O(s) = Ha (sI — FA)
Ga +Ja with Fa, Ha and Ja as defined in the previous lemma. Then a state-space
realization for A(s) is given by:

(5.23)

l Fa | Ga ] B [ Fa— HI(I +Jp) "Ha | —V2HE (I+JA>
HalJda |~ V2T +Ja) Ha  |[(I=Ta)T+Ja)"

And this is a parameterization for all stable lossless bounded real A(s).

Since matrices F5 and Ja are skew-symmetric, we further reduce the number of free
variables and state the main result (for the parameterization):

THEOREM 5.7.2: Define the matrices €5 and ¢ as upper triangular real matrices,
with zero on their diagonal, and with appropriate dimensions, such that Fo =
0n — 0%, and Jp = da — %, then the triple (fa,pa, Ha) parametemzes all stable
lossless bounded real transfer functions A(s) = Ha(sI — Fa)~ 'Ga + Ja with Ha,
Fa, Ga and Ja defined by (5.23).

Now consider the system with feedback. This can be described by (3.1)—(3.4) where Dy, D33
(and D) are taken to be zero. The perturbed system, where A(s) = Ha(sI — FA) 'Ga+Ja,
is then given by

z — A+ By J\Cy; ByH, x n B+ By Ja Doy ws - Bs + ByJaDys u
P GaCs Fa p GaDa ! GaDys
5.24
=: Ay,z, + Bpyw + Bpsu ( )
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z = [ Ci+ D12JaCy DiyHa ] l: ; } + [ Dis+ Di3JaDos } u=: Cpiz, + Dpi3u
(5.25)

] D31 + D33 J 5Dy } =:Cp3Zp + Dpz1wn

= [ Cs+ D3pJaC D32HA [
L (5.26)

*ﬁ&

Notice that Di,Ja Dy needs to be 0 for || Ty,—., (A)]l, < oo and that Dz JaDss = 0is
assumed for simplicity.

The design problem (where A(;pg) denotes either A or Arp r) is

sup min ” Twl—"?«l([(7 A) ”2
AEA(LBR) K(s)

If we assumed that Ag(s) would qualify as the worst-case uncertainty, we could determine
the feedback law K*(s) that would be H,-optimal. By computing an 7,-optimal K*(s) for
each Ag(s), we iterate over Ag(s) until it satisfies the conditions for a worst-case disturbance.
This is the ‘D-K’-like procedure which we mentioned in the foregoing.

When (5.24)—(5.26) is assumed to be stable and Ag(s) (and thereby Fa, Ga, Ha, Ja) is
assumed to be fixed, the optimization problem

min || Ty,—z, (v = K(s)y) [l,

can be solved as a standard H, or LQG type of problem:

(Ap — B,DT,Cp1)" X + X(Ap — ByDT,Cp1) = X BB X + CL(I — Dy DL,)Cpy = 0
(5.27)

(Ap — BuDT.C)Y +Y(A, — BuDL.C,)" —YCTC,Y + Byu(I - DY, D1,)BY, =0
(5.28)

and the H, optimal control law v = K*(s)y is defined by

u = —[BTX 4+ DI cpl] (5.29)

The optimization problem including the uncertainty A € A can now be formulated as a
constrained optimization problem over a standard H» optimal control problem:
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—_ *
| T (0= K(5)0) (5:30)

with K* the solution to (5.27)-(5.29), and F, F}, Ga, Ha, Ja according to (5.19)—(5.22). If
A € Appr the optimization problem can be formulated as an unconstrained optimization
problem:

Tw —z = K* 31
e [T (6= K500 (531

with K* the solution to (5.27)~(5.29) , and with (Fa,Ga, Ha,Ja) defined by (5.23), where
Fpn =05 —6%, Jao = ¢a — ¢%. In the paper it is not mentioned whether this iteration always
converges, or, if it doesn’t always, under what conditions it does.

In [Stoorvogel 93], which will be described briefly, two interpretations of the H, norm are
used, i.e.:

1. The square root of the energy contained in the impulse response and

2. The RMS-value of the response to a white noise input.

The approach is said to be conservative in the sense that the disturbance system is not
assumed to be causal. Furthermore, the uncertainty is assumed to be unstructured, although
frequency dependent weights can be incorporated. For state-space realization (3.1)—(3.4) it
is assumed that A is stable and || Ty,-., ||, < 1. Furthermore D, (and D) is taken to be
zero, so the system without feedback has the state-space realization

z = Az -|— Blwl + BQ’UJZ
G zZ; = C]_Z' + D12w2 (532)
zo = Cox + Dyw,

In this paper several different maximal H, costs are defined namely B, By, BY, B,:, B, and

Bie.-

B is the maximal H, norm for the case where A(s) is assumed to be causal

Blew)i= sup {lalf | 2(0) =i, [ ()~ us(r) [ dr 2 0 ve > 0)

where z, denotes the nonzero initial condition of z, representing an impulse on z = 0. This
corresponds to definition (1.) of the H, norm where the input is an impulse. This problem is
particularly hard to solve and at this moment the solution is unknown. B; denotes the case
where A(s) is non-causal

Bi(2o) := Sup {11151 2(0) = @0, [[we ll, < Iz )15}
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It is shown that this B; depends on the particular basis of the input space chosen for the
impulse input. To get rid of this dependence B, will eventually be introduced. First BY is
defined as

B (wo) := sup {|| = I3+l 22115 = w2 115)}

Wa

where ¢ > 0 is the Lagrange multiplier. BY is shown to be equal to 2 P(¢)z, where P(¢)
solves the algebraic Riccati equation:

0 = (BfP+DLC+ ©DLC,) (¢l — DT,D1y — oD%, Day) " (BT P + DLC, + ¢DL,Cy)
+ATP + PA+CTC, + oCTC, (5.33)

such that
A+ By(@I — DT, D1y — DT, Dyy) (BT P + DLC, + ¢DLC5)  (=:A, in [Stoorvogel 93])
is asymptotically stable. (5.34)

Such a P exists if and only if

[ ]oorns ()5 en

B,; is the worst-case H, norm over all static linear time-varying disturbance systems. Finally,
B, is:derived as an upper bound for B,,. However, it turns out to be quite a crude bound since
it is also an upper bound for B,. Using the second definition of the H, norm, it is shown that

P > Pmin = inf {92

By, < By :=inf {tr[BT P(¢)B1] | ¢ > ©@min}

Ultimately, the relation of B, to the auxiliary cost of a related problem is investigated. There-
fore, the following related system (still without feedback) is defined:

( © = Az+ Byw, + Byw,
Gw'{

L [ C, ]H[ Dy, }wz (5.36)

VPl \/PD32

When B, is defined as the auxiliary cost of the system (see Section 4.3), we have
tr[BIP((P)Bl] = Bac(%‘%th)
(where P(¢) again solves (5.33) subject to (5.34) and (5.35)) and therefore

By, = inf B..(¢,G,)

P>Pmin

Then it can be shown that B, < B<B; <By<B,. and B, <BY.
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Now augment G to include a controller K:

¢ = Az+ Byw;+ Byw, + Bsu
2 Ciz + Diywy + Dysu

22 Cox + Daswy + Doszu

y = Cs2+4 Daywy + Dasw,

l

G: (5.37)

!

We will minimize

Bo(G X K) = ix;f Ba(p,G X K)

(this equality is shown to be true in [Stoorvogel 93]) where K is a stabilizing controller of the
form:

v = Hyv+ Hyy
K : 5.
{ U Hoyv 4 Hosy (5-38)

Next, for fized ¢, we define the following related system (with feedback):

2 = Az + Byw;+ Byws+ Bsu

) _ o Dy, Dys
G,:{ z = [ J7Cs ] r+ [ /@D } wy + [ J/@Das }u (5.39)
y = (324 Dswy + Dayws

Minimization of By(p,G X K) over all stabilizing controllers is shown to be equivalent to
minimization of (1 + ¢)B..(¢,G, X K) over all stabilizing controllers. The problem of min-
imizing B,.(¢,G, X K) has been discussed in literature (see [Bernstein and Haddad 89,
Doyle et al. 89, Khargonekar and Rotea 91, Zhou et al. 90]). Next some assumptions are
stated through which the results of [Khargonekar and Rotea 91] are applicable, where the
problem is reduced to a convex optimization over a finite-dimensional space as was seen in
Section 4.5. Here, an additional parameter search over ¢ must be carried out to obtain the
smallest worst-case H, measure B,, i.e. we apply the following scheme:

inf By(G x K) = i%figf Ba(¢,G x K)

= llquf I%f(l + (P)Bac(S‘% th X K)
= lgf(l + SD) i%fBac(spa ch X K)

As was mentioned before, this scheme has the form of a ‘p- K’-iteration similar to the D-K-
iteration, well-known from p-synthesis.

Obviously, the two methods described differ in many ways, but on the other hand they do
have things in common, one of which is the important feature of not having the drawback of
equalized input sets and/or output sets: a problem setting that only allows for a restricted
class of problems.

Finally, an approach that may be classified into this category is [Rotea and Khargonekar 91].
Here, again wy # ws, 21 # 2, and the solution is obtained by solving ARE’s (not LMI’s).
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On the other hand, they do not use a ‘D-K’ type of optimization to achieve the worst-case
uncertainty. However, necessary and sufficient conditions are derived for an unconstrained
optimization problem, whereas the original optimization problem is a constrained one, for
which these conditions are sufficient. So again, the optimization is reduced from constrained

to unconstrained.



Chapter 6

Conclusions

We have surveyed a large number of approaches to solve the mixed-norm optimization prob-
lem. It was seen that all but one focus on solving the two-norm problem, although this one
approach (see Section 5.1), which considers a three-norm problem setting does not really
exploit this possibility and ends up giving no more than a vague description of what the
methodology would look like. It was also seen that the Hy/Ho, problem received the greatest
deal of attention. This is due to the fact that the need for a mixed-norm formalism originates
from the separate H, and H,, control theories not being able to accommodate all practical
design specifications. To accommodate bounded-magnitude signals, the ¢; optimal control
theory was developed, but not until a few years ago, which explains the relatively small num-
ber of approaches to this problem. Most of the approaches tend to have an ad hoc character,
but the same is said for u-synthesis [Zhou et al. 90], which has been successfully applied in
recent years. All methods have their pros and cons, and differ in complexity depending on
how general the problem is posed. A list of this can be found on the following page. This list
will not be complete, but serves as an overview of what was discussed throughout Chapter 5.

It is not clear which one of these approaches qualifies as most promising. The future will point
out which methods are best suited for practical application, but all efforts will undoubtedly
contribute to what must become a clean closed-loop solution to the mixed-norm optimization
problem.

Recently (December 1995), a number of articles were published in Proceedings of the 34%h
Conference of Decision and Control that with regard to this survey deserve our atten-
tion, but couldn’t be included in this report. This concerns a.o. an article by M. Sznaier,
M. Holmes and J. Bu [Sznaier et al. 95] that addresses the mixed H,/L; control problem
where w; = w,y, 21 # 2. They utilize LMI’s to arrive at a convex optimization problem
(combined with a ‘line-search’=one-dimensional minimization). Another article worth men-
tioning is [Kapila and Haddad 95] by V. Kapila and W. M. Haddad, that considers the mixed
Hs/He stabilization problem, where w; = wy and z; = 2,. It is recommended that a survey
of mixed-norm optimization techniques is carried out every few years, since the work in this
area is growing and for some time to come not finished.
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CHAPTER 6. CONCLUSIONS

CONTRA

1. fl/,'z({—;: a linear

-accomrodates bounded-magnitude
signals

-(mostly) w1 = ws, 21 = 22

programming
approach
-possibly three-norm optimization -specifications such as H., con-
straints must be approximated; when
this is done by sampling the unit cir-
cle this may prevent a solution from
being found
-possibly wy # we, 21 # 22
-can be solved using the efficient DA
method that doesn’t (necessarily) suf-
fer from order inflation
2. f1/Hw: us- | -accommodates persistent bounded | -may result in very high order
ing the Youla-para- | signals controllers
metrization

-w1 F Wa, 21 F 22
-convex optimization
-provides an iterative algorithm

3. Ha/He: convex
optimization using
matrix inequalities

-convex optimization

-LMI based optimization can be
solved with very efficient algorithms
-some approaches take w; # ws, 21 #
z9

-not all approaches take wi # ws,

ZlgéZg

4. Ho/He: opti-
mizing an entropy
cost functional

-relatively simple solution

“Wp = W2, 21 = 22

5. Ho/Heo: fixed-
order controller de-
sign using the aux-
tliary cost

-fixed (reduced) order controller

design

-2 F 22

-provides an algorithm
-homotopy techniques can effectively
solve the ARE’s

Wi = Wy

-existing Riccati equation solvers can-
not handle the ARE’s that result from
the fixed-order controller design

6. Ha/Heo: using
a bounded power
characterization

-induced norm interpretation, instead
of an ad hoc upper bound

~Wiy # wa
-(structured uncertainty)

-2y = 22

7. Ha/He: mini-
mizing the worst-
case Ho-norm

- ?é w3, 21 ?5 23

-[Stoorvogel:] convex optimization

-[Steinbuch and Bosgra:] lossless
bounded real formulation leads to un-
constrained optimization

-[Stoorvogel:] uncertainty not as-
sumed to be causal
unstructured

-[Stoorvogel:] uncer-

tainty
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