
 

Multiobjective control

Citation for published version (APA):
Vroemen, B. G. (1996). Multiobjective control: a survey. (DCT rapporten; Vol. 1996.013). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/90da3e7a-c31e-4576-8b41-f018542cf1d0


Multiobjective control: A survey 

Bas Vroemen 

WFW report 96.013 

B.G. VROEMEN 
Faculty of Mechanical Engineering 

Eindhoven University of Technology 
February 1996 



Multiobjective control: A survey 

B. G. Vroemeri 
Faculty of Mechanical Engineering 

Eindhoven University of Technology 

February 12, 1996 

Trainee project c..- uyeïvisoï: Bram de Jager 



contents 

Nomenclat ure 4 

Summary 7 

1 Introduction 8 

2 Preliminaries 10 

2.1 Signal spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

2.2 Systemnorms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

2.3 The induced norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

2.4 Norm interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

3 Statement of the problem 15 

4 Solution of the problem 19 

4.1 The Youla- or &-parameterization . . . . . . . . . . . . . . . . . . . . . . . .  19 

4.2 Fixed-order controllers versus full-order controllers . . . . . . . . . . . . . . .  20 

4.3 The auxiliary cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

4.4 Lagrange multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

4.5 Convex optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

2 



4.6 Matrix Inequalities versus Algebraic Riccati Equations . . . . . . . . . . . . .  24 

5 Survey of approaches 27 

5.1 2 /&: a linear pïogïammiiig approach . . . . . . . . . . . . . . . . . . . . .  27 

5.2 e, /Rm : using the Youla-parameterization . . . . . . . . . . . . . . . . . . . .  31 

5.3 Rz/'FI, . convex optimization using matrix inequalities . . . . . . . . . . . . .  36 

5.4 Rz/lFt, . optimizing an entropy cost functional . . . . . . . . . . . . . . . . .  38 

5.5 Rz/'FI, : fixed-order controller design; auxiliary cost . . . . . . . . . . . . . .  42 

5.6 'FIZ/'FI, : using a bounded power characterization . . . . . . . . . . . . . . . .  45 

5.7 R2/'FI, . minimizing the worst-case X2-norm . . . . . . . . . . . . . . . . . .  51 

6 Conclusions 59 

Bibliography 61 



Nomenclature 

Only those symbols are included that are used in more than one section. Symbols that are 
not included in this list are defined in the same section where they were encountered. Defi- 
nitions were taken from [Francis 87, Zhou et al. 90, Sznaier 94, Dahleh and Diaz-Bobillo 95, 
Lancaster and Rodman 951. 

space containing all discrete-time signals that have a finite p-norm (p = 

space containing all continuous-time signals that have a finite p-norm (p = 

space containing all signals that have a bounded 'power-norm) 
space containing all signals that have a bounded 'spectrum-norm' 
set of all integers 
the real numbers 
the positive real numbers 
the complex numbers 
the Hardy space of all complex-valued functions which are analytic in the 
open right half plane-Re(s) > O- (or for discrete-time: analytic outside 
the unit disc) and satisfy 11.11, < 00 

the Hardy space of all complex-valued functions which are analytic in the 
open right hd f  plane-Re(s) > O- (or for discrete-time: analytic outside 
the unit disc) and satisfy l l . l l m  < 00 
space of real rational functions in E, 
subspace of functions in RE, which are analytic outside the disc of radius 
S (O < S < 1)' equipped with the norm 1 )  G(z) JJm,d = S U ~ , < ~ < ~ T ( G ( S . ~ " > )  
time (discrete or continuous) 
time- shift 
Laplace transform variable 
shift -operat or or z-t ransform variable 
dimension of IC, the states 
dimension of u, the control actions 
dimension of y, the measurements 
dimension of z(i), the regulated outputs (i = 1,2)  
dimension of w ( ~ ) ,  the exogenous disturbances ( i  = 1 ,2 )  
'plant' with state-space realization ( A ,  B ,  C ,  O) 
observability Gramian 

1' 27 4 
1 , 2 7 4  
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controllability Gramian 
maximum singular value 
phase-shift 
transfer function from 
impulse response element ( i , j )  of system with transfer function matrix G 
controller matrix 
the two norms of a two-norm optimization problem, where usually the pi- 
norm of some transfer matrix is minimized and the p,-norm of a second 
(possibly the same) transfer function is constrained 
pa-norm bound, y E R+ 
norm-bounded uncertainty 
transfer matrix T,,, 
linear operator from t!;:a to  t ! ~ ; ~ ~ b  

linear operator representing the admissible K ' s  
the free parameter which is used in the Youla-parameterization 
the nominal controller (: K for Q = O) 
dimension of z,, the states of the fixed-order controller 
state-space realization of the fixed-order controller 
dimension of 5, the states of the closed-loop system 
dimension of 2, the regulated outputs of the closed-loop system 
state-space realization of the closed-loop system, where B =: 1 6, bz 1 , 

to .qi) (i = 1,2)  

6 =: [ E:] and B =: [ 211 2zl 2 1 2  2 z z ]  

X Z  performance functional, defined in (4.10) 

L J 

expectation operator 

:= DyzD12 
:= DS3D1S 

:= CFC1 

:= CSDlz 
:= CSD13 
:= DszD13 
solution to Lyapunov equation (4.12) of the closed-loop system 
:= FE I -1 
:= BBT 
solution to Lyapunov equation (4.14) of the auxiliary minimization 
problem 
unitary matrices E I W ~ 2 ~ q 2 ,  E R d z x d z ,  respectively 
:= I,, - y-2D22D~2 

auxiliary cost, defined in (4.20) 
lower linear fractional transformation 
controller, estimator matrices 
matrices used in Youla-parameterization of Twl--ttl := VI, + VIZQVZI 
matrices used in Youla-parameterization of Twz+zz := Tll + Tl2QTZ1 
autocorrelation matrix 
cross-correlation matrix 

:= Id2 - Y-~D;,DZZ 



t r ( W  
stab. 
st abil. 

AME 
AMI 
ARE 
AR1 
CARE 
DA 
DARE 
ESPR 
FME 
FMV 
LBR 
LME 
LMI 
LP 

MI 
MIMO 
&MI 
Rl\il c 
SISO 

LQG 

spectral density 
cross-spectral density 

scaling matrix 
:= {d iag [a~ ,  b, . . . , a,], 1 1  Ai 1 1  I 1) 

the transpose of M 
the complex-conjugate transpose of M = the complex-conjugate of M' 
:= M* for Re(s) = O (1.1 = 1 for discrete-time); for Re(s) # O ( 1 . ~ 1  $r 1) it 
is defined as M"(s )  := M T ( - s )  ( M W ( z )  := AdT($)) 
the orthogonal complement to  a nonempty set M Cn : M1 = {x E 
C nl (x, y)  = O for all y E M }  where (x, y) is the inner product of x and y 
trace of M 
:=stable 
:=stabilizing 

Affine Matrix Equation 
Affine Matrix Inequality 
Algebraic Riccati Equation 
Algebraic Riccati Inequality 
Continuous Algebraic Riccati Equation 
Delay Augmentation 
Discrete Algebraic Riccati Equation 
Extended Strictly Positive Real 
Finitely Many Equations 
Finitely Many Variables 
Lossless Bounded Real 
Linear Matrix Equation 
Linear Matrix Inequality 
Linear Programming 
Linear Quadratic Gaussian 
Matrix Inequality 
Multi Input Multi Output 
Quadratic Matrix Inequality 
Root M e m  Sqiiare 
Single Input Single Output 



Summary 

In this report we survey a number of approaches to the multiobjective optimization problem. 
In practice, this usually boils down to  a mixed-norm optimization problem, where traditionally 
the norms of interest are X 2 ,  'FI, and a,. Specifications such as simultaneous rejection of 
disturbances having different characteristics (white noise, bounded energy, persistent); good 
tracking of classes of inputs; satisfaction of bounds on the peak values of some outputs; 
closed-loop bandwidth etc. cannot be cast into a single-norm form and therefore a mixed- 
norm formalism combining the ?iz, 'Hm and 1, norm can be expected to  be of considerable 
interest. Although it would be nice to have all three norms present, most approaches focus on 
the two-norm problem. Most frequently encountered is the 'FIz / 'FIFt ,  mixed norm optimization 
problem, but combinations of l ,  and the other two norms are starting to get attention as well. 
Semi-norm formulations, using the 'power-norm) or the 'spectrum-norm, (see Section 2.1) as 
well as the Extended Strictly Positive Real (ESPR, see Chapter 3) stability criterion are 
sometimes used as an alternative. 

The approaches investigated will be categorized into seven groups (Chapter 5 ) )  based on 
their problem setting (Chapter 3) as well as some techniques (Chapter 4) that are frequently 
used. An important feature in the problem statement is the number of sets of inputs and 
outputs respectively. If either one of these is less than the number of norms considered (which 
is usually two), the class of problems that can be handled is restricted considerably: most 
problems are not stated with the same sets of inputs (or dually outputs) for, say, the 'Flz per- 
formance measures as for (say) the 'FIm norm-bounded uncertainties. Some of the techniques 
that are utilized are the Youla-parameterization, the auxiliary cost functional ('of Bernstein 
and Haddad'), Lagrange multiplier techniques, convex optimization and Linear (sometimes 
called Affine) or alternatively Quadratic Matrix Inequalities (LMI, AMI, QMI). Other meth- 
ods encountered are Linear Programming (LP), duality theory, Delay Augmentation (DA), 
homotopy and continuation methods, the entropy cost functional and a lossless bounded real 
formulation. 

Finally, in Chapter 6 a comparison of these approaches will be made in an overview of pros 
and cons, although it will not be possible to  decide which approach would qualify as most 
promising. This, of course, also depends on what application (number of sets of inputs/outputs 
etc.) one has in mind. The chapter concludes with mentioning some of the latest publications 
on this subject. 
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Chapter 1 

Introduction 

During the past years, much progress has been made on many single objective control prob- 
lems. Several important controller synthesis problems have been formulated as optimization 
problems. In particular, the LQG or ',YFt2, 'Ft, and lii control theories have provided some 
basic synthesis tools. The underlying premise behind these theories is that all the design ob- 
jectives can be translated into minimizing a suitably weighted norm of a closed-loop transfer 
function matrix. 

The LQG approach proved particularly suited to meet performance constraints while guaran- 
teeing closed-loop stability in the presence of disturbances. Despite of this, LQG control was 
shown to possess no guaranteed robustness margins if applied in conjunction with an observer 
or Kalman filter. This resulted in the development of 3-1, control theory which could deal 
with the problem of robust stability: obtaining closed-loop stability in the presence of system 
uncertainty. For systems with structured uncertainty the 'Ft, framework can be refined to p- 
analysis which has been successfully applied to a number of hard practical control problems 
(see e.g. [Skogestad et al. 881). 

However, despite its significance, 'Ft, control-being a frequency domain method-cannot 
directly address time domair, specificatims. F,ecer,tly, ti optimal contro! problems have beer, 
addressed, where the signals involved are bounded in magnitude. This presents a method to 
accommodate the time domain specifications, although of course it cannot directly accommo- 
date some common classes of frequency domain specifications (such as 'Ft2 or bounds). 

Clearly, a single norm is usually not enough to capture different, often conflicting, design 
specifications. In an attempt to  cast the specifications into a single norm form, designers are 
forced to choose weighting functions, which remains essentially an art. It is therefore natural 
to expect a mixed-norm formalism to be of considerable interest. Although it would be nice to 
have all three norms present in a mixed-norm formalism, so far most efforts have been focussed 

denotes the discrete-time case, whereas L1 is used for continuous-time. In the following, whenever 1, is 
mentioned, the same can be assumed to be true for the continuous-time case, unless stated otherwise (where 
p can be i , 2  or cm). This means that whenever C, is mentioned, only the continuous-time case is referred to. 

8 
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on solving the two-norm problem, mostly being the mixed 'F12/?-t,, or the t l /Xm problem. 
One exception to this is formed by the approach followed by [Dahleh and Diaz-Bobillo 951 
which makes it possible to minimize the 1, norm subject to 'If2 and/or 'FI, constraints (or 
even other combinations, such as ?-t2/t1). The 'F12/'FI, problem received by far the greatest 
deal of attention, due to the simple fact that both the single-norm problems which it combines 
have been around much longer than the el problem. It is ia this X2/ 'H,  setting where the 
problem of designing fixed-order controllers is addressed, yielding a possibly non-convex and 
therefore complex problem. 

The report is organized as follows: In Chapter 2 the notation to be used is introduced, whereas 
the possible problem statements are given in Chapter 3 .  Then, in Chapter 4, several methods 
are listed which are then combined to form the many approaches to solving the problem that 
are discussed in Chapter 5. Finally, Chapter 6 concludes with a brief comparison of the several 
approaches and some final remarks. 

Throughout this report, the time t ,  the shift-operator z ,  and the Laplace transform variable 
s will often be omitted for clarity. 



Chapter 2 

Preliminaries 

2.1 Signal spaces 

o %(Lp)  denotes the space that contains all the discrete-time (continuous-time) signals 
that have a finite p-norm, which for z ( t )  E IR", is defined by [Dahleh and Diaz-Bobillo 
951 : 

for discrete-time and 

for coniiniious-time. Here we adopted the notation j . l p  to denote the p-norm on IR" 
(where 1.1 denotes the (usual) absolute value). In case p = 1,2 the appropriate expres- 
sions can be easily derived from this. For p = 00 this is not so obvious; then the norm 
is defined as 

and 

for continuous-time and discrete-time respectively. This norm is sometimes referred to 
as the peak of a signal [Boyd and Barratt 911. 

This means e.g. that an &-signal contains a finite amount of energy and an &-signal 
attains a finite maximum magnitude; the tl space doesn't have such an obvious physical 
interpretation. The 2-norm is sometimes referred to as the energy-norm, whereas the 

10 



2.1. SIGNAL SPACES 11 

energy of a signal actually is defined to be the square of its 2-norm. The l-norm is 
sometimes called the action of a signal. The following two signal spaces are defined here 
for continuous-time only. 

o Bounded power signals (P) :  signals that have a bounded 'power-norm' lI.l&, defined 
by [Zhou et al. 901: 

where 

R,,(T) := lim - z ( t  + r)z*(t)dt T - C Q ~ T  J' -T 

is the autocorrelation matrix. Here z* ( t )  denotes the complex conjugate transpose 
of z( t ) .  If 2' E P it can be shown that 11 z I l p  5 fill z llo0, where n is the di- 
mension of z. This 'power-norm' is the square root of the average power (also de- 
noted average-absolute value; 11 z [ I a a  [Boyd and Barratt 911) of z. Other terms used for 
this (semi-)norm are Root-Mean-Square (RMS)-norm [Boyd and Barratt 911 and power 
semi-norm [Zhou et al. 961. In [Doyle et al. 921 it is denoted by pow(z). 

o Bounded spectrum signals ( S ) :  signals that are in P and have a bounded 'spectrum- 
norm' Il.lls, defined by 

(2.7) 112 II z IIS := II S&4 llo0 

where 

00 

S,,(jW) := R,,(T)ëjWTd7- 
J-00  

is the Fourier transform of R,, and is called the spectral density of z. Another term for 
this norm is spectral density norm [Zhou et al. 961. 

Although, strictly speaking, white noise is not in S it can be thought of as the limit of a 
sequence of signals in S whose spectra in the limit approaches a constant matrix. In the 
following S is therefore assumed (as was done in [Zhou et al. 901) to include white noise, 
where the term white noise will be used to describe the case where S,, = I .  Both the 
bounded power and the bounded spectrum norm are semi-norms (since they can be zero 
for a nonzero (a,) signal) and were especially used by E(. Zhou et al. in [Zhou et al. 901. 
With the definition of S,, we can also write 

In case of the continuous-time signal spaces, we have the set inclusions, depicted in Figure 
A (see [Doyle et al. 92]), whereas for the discrete-time case the lp(Z)-spaces are nested with 
t,(Z) as the largest, depicted in Figure B (see [Dahleh and Diaz-Bobillo 951): 



12 CHAPTER 2. PRELIMINARIES 

Figure A. Figure B. 

2.2 System norms 

Before we define system norms, we first define some (standard) properties: 

A system G(s)  is called properif 

G(w) is finite or, equivalently, 

degree numerator 5 degree denominator. 

A system G(s )  is called strictly proper if 

G(w) = O or, equivalently, 

degree numerator < degree denominator. 

A system G(s )  is called biproper if 

G and G-l are both proper or, equivalently, 

degree numerator = degree denominator. 

A system G(s )  is called non-proper (or improper) if 

it is not restricted to  be proper and thus G(w) may be infinite or, equivalently, 



2.2. SYSTEM NORMS 13 

degree numerator > degree denominator may be true. 

A system is called causal (or non-anticipative) if the output at a certain time instant only 
depends on the input up to that time instant, including the time instant itself. 

A system is called non-causal (or acausal) if it not restricted to be causal and thus the output 
at a certain time instant may depend on the input after that time instant. 

Given a stable strictly proper (in order to keep the norms finite, see e.g. [Doyle et al. 92, 
p. 161) transfer function matrix G(s) with state space realization (A ,  B ,  C ,  O), the following 
performance measures can be defined. 

o The ?i2 norm of a transfer function G(s) is defined as: 

for the continuous-time case and 

(2.10) 

(2.11) 

for the discrete-time case. 

The 2-norm can be computed with Lyapunov equations: 

1 1  G = tr[SCTC] = tr[PBB*] (= ~ ~ [ c s c ~ ]  = ~ ~ [ B ~ P B ] )  (2.12) 

where S is the controllability Gramian and P is the observability Gramian solving 

A S + S A ~ + B B ~  = o  A ~ P  + P A  + C ~ C  = O (2.13) 

o The ?ia norm of a transfer function G(s) is defined as: 

(where r j  is the maximum singular value) for the continuous-time case and 

(2.14) 

(2.15) 

for the discrete-time case. 



14 CHAPTER 2. PRELIMINARIES 

o The i!, norm of a transfer function G(s) is not as easy to  define as the other two: 

Recall the l-norm of a sequence x ( t )  being 11 2 / I 1  = E,"=-, Iz(t)l (from (2.2) with n = 1). 
Then, given a matrix g with elements gij, representing a linear operator defined by the 
usual discrete-time convolution y = g * u (and with a corresponding transfer function 
matrix G), its l-norm is defined as: 

n 

(2.16) 

for the discrete-time case. The definition for the continuous-time case requires some 
more notational aspects and can be found in e.g. [Sznaier and Blanchini 941. Since the 
interpretation of the l-norm (see section 2.4) is of much more use to  us than the formal 
definition this will not be repeated here. 

2.3 The induced norm 

o The induced norm of an operator T is given by: 

(2.17) 

w e  say: the p-norm is the induced norm from i!, to i!b or the &/i& gain. 

2.4 Norm interpretations 

o The Ra norm: 

1. The induced norm from 4, to i!,. 
2. The square root of the average power (=RMS-value or 'power-norm') of the re- 

sponse to a white input signal of unit spectral density or the spectrum/power 
gain. 

3. The square root of the energy contained in the impulse response. 

o The E,  norm: 

1. The induced norm from 
2. The powerlpower gain. 
3. The spectrum/spectrum gain. 
4. An upper bound on the !,/power gain, assuming that the input is restricted to 

5. The peak gain of the Bode singular value plot. 

to la. 

be a persistent sinusoidal signal. 

o The i!, norm: 

1. The induced norm from i, to .eoo. 



Chapter 3 

Statement of the problem 

The general problem can be posed as follows. Suppose the plant is given by its transfer 
function matrix G(s) with three sets of inputs and outputs: 

w2 -------i G(s) z2 

with 

z1 = clx f Dllwl f 0 1 2 2 0 2  + D13u 

z2 C2x + D a w 1  t D 2 2 ~ 2  t D 2 3 ~  

y = C3lc f D31w1 f D32w2 + D33u 

or equivalently, using packed notation 

15 



16 CHAPTER 3. STATEMENT OF THE PROBLEM 

Here ‘=’ means that both representations (G and the packed notation) describe the same 
system, but of course they are not identical. In the following, it is assumed that, whenever 
two different representations are said to be ‘equal’, the reader is aware of this. 

Furthermore 

(3.6) 
n = dim(x) qi = dim(zl) dl  = dim(wl) 1 = dim(y) 
m = dim(u) qz = dim(zz) d z  = dim(wz) 

In the system equations (3.1)-(3.4) u represent the control actions, w (= [wl, wz]) the exoge- 
nous disturbances, y the measurements and z (= [zl,zz]) the regulated outputs. The signal 
sets [w,, zl] are related to performance criteria (measured by what we will call the pl-norm), 
whereas [w2, z2] are related to (‘pz-’) norm constraints. These two norms will usually be either 
EZ and “im, el and Em or EZ and el (seldom used). 

In control problems involving EZ minimization, Dll is always taken to be zero to  prevent the 
H Z  norm from growing infinitely. 

For the system as defined above the mixed two-norm problem, as encountered in the literature, 
can be written as (when Tw,+z, denotes the transfer function from w; to  zi (i=1,2) and y E R 
is the positive pz-norm bound): 

1. Find an internally stabilizing controller which minimizes 1 1  TwldZl / l p ,  while maintaining 
I I  Twz+z, lip, 2 Y 

where pi (=2 or 1) can denote either the EZ or el norm and p z  (=cm or 2) denotes the 
X, or the EZ norm. 

Another formulation, used by [Steinbuch and Bosgra 94, Stoorvogel 931, is the following: 

2. Minimize the p,-norm of the transfer function from w1 to z1 using the internally sta- 
bilizing controller K (  s ) ,  while maximizing the pl -norm of that same transfer function 
over the allowable uncertainties: 

where, in case of the problem addressed by [Steinbuch and Bosgra 94, Stoorvogel 931 
pi = 2 and p z  = 00. 
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Finally, [Elia et al. 93, Dahleh and Diaz-Bobillo 95, Voulgaris 941 use the following for- 
mulation, where @ = Tw-.,zl: 

3. Find an internally stabilizing controller K ( s )  which minimizes 1 1  @ [ l p ,  and satisfies a 
set of linear constraints given b y  A and b: 

inf j j  Y, [ i p l  such ihai A53 5 i> 
K ( s ) s t a b i l .  

with A a linear operator from 
containing the ?-bound?). 

to ! F i x m b ,  and b E t ; ; x m b  a fixed element (possibly 

In this last formulation the constraints consist of performance constraints and feasibility 
constraints, the latter representing the conditions for @ so it can be written as Gll + 
GlZK(1  - GzzK)-lGzl (i.e. <p is feasible) where G is partitioned according to  

[ s ]  = [ G:: G::] [u] 
This approach can also handle the three-norm problem. The description of this problem can 
be found in Section 5.1 and will not be treated here any further. In the pz-norm constraint 
some approaches instead of using I] TwZdz2 [ l p ,  5 y use the strict inequality, but this doesn't 
influence the rest of the approach essentially. 

As mentioned before, most approaches focus on solving the mixed 'Hz/'Hm control prob- 
lem, while the other two problems (ti/'H, and 'Hz/!l) so far have received little at- 
tention. The ( 'Hz/ t , )  problem actually is a special case of the approach followed by 
[Dahleh and Diaz-Bobillo 95, Voulgaris 94, Elia et al. 931 which provides a method (originat- 
ing from ti optimal control theory) that either minimizes or constrains the tl norm com- 
bined with 'li2 and/or 'li, norm minimization or constraints. Apart from this, only Sznaier 
[Sznaier 94, Sznaier and Blanchini 94, Sznaier 931 addresses the mixed f,/'H, problem, both 
for the discrete-time and the continuous-time case. The widest variety can be found in the 
approaches to the 'Hz/?ím problem, eventually to be divided into 5 categories. One other 
distinction can be made based on the number of sets of in- and outputs used in the statement 
of the problem. The distinction discrete-time versus continuous-time, however non-trivial it 
might be, will not be made explicitly since it doesn't essentially alter the approach used. 

Finally, as a counterpart of the 'FI, norm constraint can be mentioned the Extended Strictly 
Positive Real (ESPR) stability criterion (see e.g. [Shim 941). Positive realness is an old, but 
very important concept in system and control theory and is used in various areas, like network 
analysis, adaptive control, nonlinear control and robust control. It is well-known that positive 
realness is closely related to absolute stability. This criterion will however not be treated here. 

'Since in their formulation w1 = w2 =: w and z1 = 22 =: z ,  although different linear constraints can be 
defined for different closed-loop maps @ = T,,,,,, i.e. on the map between the jth input set and the ith 
output set. 
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Another, totally different, approach to the mixed norm problem, is based on the so-called 
‘behavioral setting’. This methodology can be characterized by the fact that all variables are 
considered a priori on an equal footing, without a distinction between inputs and outputs, 
and the behavior is defined as a subset of the possible time trajectories. Because of the fact 
that this setting, which is so unlike the others, is hardly ever encountered (but is becoming 
popular), it will not be treated here, but can be found in e.g. [Paganini ei ai. 941 and references 
therein. 



Chapter 4 

Solution of the problem 

While in the statement of the problem we could write down a generalized formulation, in 
the problem solution the various approaches followed differ too much to  cast them into one 
setting. However, different approaches sometimes appear to be more or less related and often 
make use of the same methodologies. This enables us to (partly) describe these approaches as 
combinations of a number of the following methods (which will be done in the next chapter): 

4.1 The Youla- or Q-parameterization 

The set of all stabilizing controllers can be parameterized in terms of a free stable parameter 
Q as 

K = 5(&m, Q )  
where ICnom is depicted in the following picture: 

The design objective is to minimize the transfer function from w to z :  

19 
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So now the optimization problem is parameterized in terms of Q as well: this is the Q- or 
Youla-parameterization. 

This parameterization can be used to cast the problem into a convex optimization problem 
(see Section 4.5), although this might be an infinite-dimensional problem which, in order to 
obtain a tractable problem ïeqüiïes several approximations (see [Dahleh 2nd Diaz-Ecbillo 95, 
PP. 43,441). 

4.2 Fixed-order controllers versus full-order controllers 

The problem of synthesizing full-order controllers is a well-studied problem. However, these 
approaches cannot handle a constraint such as fixed or reduced controller order. To describe 
this problem we have to  consider ncth-order dynamic compensators 

With this the closed-loop system (3.1)-(3.4)+(4.1)-(4.2) can be written as 

where 
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and (4.8) 

._ 211 212 

* -  [ 2 2 1  2 2 2 1  

(4.9) 

4.3 The auxiliary cost 

Since the auxiliary cost or performance measure of Bernstein and Haddad is used only in the 
'H2/XFloo control problem, this section will be specialized to this particular problem. 

With the closed-loop system given by (4.3)-(4.4) the LQG controller synthesis problem with 
an 'Hm constraint can be stated as follows: 

Find an ncth order dynamic compensator described by (4.1)-(4.2) which satisfies the following 
criteria 

1. 

2. 

3. 

the closed-loop system (4.3)-(4.4) is asymptotically stable, i.e. A is asymptotically sta- 
ble; 

the closed-loop transfer function T,,,,, := i;2(s15 - A )  
satisfies the constraint 1 1  Tw2+.z2 llm 5 -y 
where y > O is a given constant, and 

the performance functional 

- -1- 
b2 + d2, 

J(A,, Be, Ce, De)  := lim IE [zTRla  + 2sTR13u + uTR3u 

(4.10) 

is minimized, where IE is the expected value, R1 = CsC1 E I K p n x n ,  R3 = Ds3D13 E 
R13 = CTDI3 E Rnxm7 R2 = Ds2D12 E IKdzXd2,  R12 = C,TD12 E Rdzxn and R " X "  

R23 = DT2D13 E R d z x m .  

t-oo {l 
f w T R 2 ~ 2  + 2wTR12~ + 2 ~ 2 8 2 3 ~ 1  di} 

Then, for a given compensator the performance (4.10) is given by 

J(A,, B,, c,, D ~ )  = tr[s&I (4.11) 
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where Rl = qEl and 3 satisfies the Lyapunov equation 

AS + SA' + v = o (4.12) 

with v = B B T .  Note that (4.11) and (4.12) are similar to (2.12) and (2.13). 

LEMMA 4.3.1: 
satisfying 

Let (Ae,Be,Ce,De) be given and assume there exists an S E IRhxó 

S is positive-semidefinite (S 2 O), (4.13) 

and 

As + SAT + y-2(BDT2 + sé;)M;l(BD;z + SET>' + v = o (4.14) 

where M,, := I,, - y-2D22D22 is positive-definite. Then 

(A, 3) is stabilizable 

if and only if 

Á is asymptotically stable. 

In this case 

I I L + z 2  l l m  1. Y 7 

(4.15) 

(4.16) 

(4.17) 

3 5 S (S-3 is nonnegative-definite). (4.18) 

Consequently 

J ( A , ,  B,, C,, De)  5 3(& Be, Ce, D,, s) (4.19) 

where 

3 ( A c ,  B,, Ce, De, S )  := tr[s&i] (4.20) 

Hence, the satisfaction of (4.13) and (4.14) along with the generic condition (4.15) leads to: 

1. closed-loop stability 

2. pre-specified "i, attenuation 

3. an upper bound for the ?í2 performance criterion which is known as the auxiliary cost 
or performance measure (or index) of Bernstein and Haddad. 

This leads to the following optimization problem: 
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e Auxiliary minimization problem: 

Determine (A,, B,, Ce, D,, S) which minimizes the auxiliary cost J ( A C ,  Be, Ce, De,  S) 
subject t o  (4.14) with S E IKfixfi nonnegative-definite. 

REMARK 4.3.1: The notation used in this section and the previcus one can be eas- 
ily converted to  the notation in [Haddad and Bernstein 901, keeping in mind that 
in [Haddad and Bernstein 901 w1 = w2 =: wl (and z1 =: z and z2 =: zm) and therefore, 
if we leave out wl, B1 = O, DZl = O and D31 = O. Furthermore, -Ol2 and D, (and Dll) 
are taken to  be zero. If in addition to  this we set B2DT2 = O, E13 = O, 0 3 3  = O, D22 = O 
and C,TM;1D23 = O the results from [Bernstein and Haddad 891 can be obtained. Be 
aware that some notations used here are similar to the ones there, but may have a 
totally different definition. Although for the problem stated above no solution is given, 
it was formulated this way to  allow for all existing approaches using the performance 
measure of Bernstein and Haddad to  derive the appropriate expressions. 

4.4 Lagrange multipliers 

One way of solving the auxiliary minimization problem posed in Section 4.3 is by using 
Lagrange multipliers as was done in [Haddad and Bernstein 90, Bernstein and Haddad 891. 
Likewise, we will take De to be zero from now on. Derivation of the necessary conditions 
requires technical assumptions: Specifically, we restrict (A, ,  Be, Ce, S) to the open set 

X := { (Ac ,  Be, C,, S) : S is positive-definite, 

A + Y - ~ B D T ~ M ~ ~ C " ~  + y-2ScM;1Cz is asymptotically stable, 
and (Ac, Be, Ce) is controllable and observable} (4.21) 

Then, t o  optimize J (Ac ,  B,, C,, S) over the open set X subject to the constraint that  positive- 
definite S satisfies (4.14), the following Lagrangian is formed: 

,C(Ac, B,, Ce, S , M )  := tr{Skl + [ A S  + SAT (4.22) 
+-y-'(BD& + Sg)iZ/r4,'(BD2, + Sg)T + V I M }  

where M E JRfixfi is a Lagrange multiplier. 

Setting = O yields 

'This w has a dual interpretation being standard white noise as well as an Cz signal. 
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The partial derivatives 2, E and are then set to zero yielding three matrix equa- 
tions that one way or another can lead to the final results (see [Bernstein and Haddad 89, 
Haddad and Bernstein 90, Ge et al. 941). 

There are more approaches utilizing Lagrange multiplier techniques, not necessarily in this 
setting. The concept of forming the Lagïarigian and then setting its partial derivatives to 
zero, however, is used frequently and this section should therefore serve as an example. 

4.5 Convex optimization 

DEFINITION 4.5.1: A set C is convex if for every x1 and 22 in C, 
also in C for all O < (Y < 1. 

azl + (1 - a)22 is 

o Convex optimization: 
An optimization of the form 

ih’ II W C )  II subject to  E .Aconstr  

is called convex if the set .Aconstr representing the admissible K ’ s  is a convex one. If this 
set is characterized by linear constraints A@ 5 b, it is always convex. 

The solution to  many convex optimization problems can be computed in a time which is 
comparable to  the time required to evaluate a ‘closed-form’ solution for a similar problem. 
Nowadays, a control engineering problem that reduces to solving two Algebraic Riccati Equa- 
tions (ARE’S) is generally regarded as ‘solved’. When a control engineering problem reduces 
to solving even a large number of convex Algebraic Riccati Inequalities (ARI’s) the growing 
belief is this should also be regarded as ‘solved’, even though there is no ‘analytic’ solution 
(see [Boyd et al. 931). Hence a large number of approaches focuses on making the optimization 
a convex one, mostly by using some suitable parameterization. 

There are effective and powerful algorithms for the solution of these problems, that is, algo- 
rithms that compute the global optimum, with non-heuristicz stopping criteria. A number of 
general algorithms exist, for example the ellipsoid algorithm (see e.g. [Boyd and Barratt 91, 
Bland et al. 811) and the more recently developed extremely efficient interior point methods 
for solving LMI (Linear Matrix Inequality)-based problems, based on the work of Nesterov 
and Nemirovsky [Nesterov and Nemirovsky 931. 

4.6 Matrix Inequalities versus Algebraic Riccati Equations 

The Algebraic Riccati Equations we consider have the general form: 

X D X  + X A +  B X  + C = O (4.24) 

2Not using informal methods or reasoning from experience in case no precise algorithm was known. 
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where the coefficients A, B ,  C, D are real or complex n x n matrices and n x n matrix solutions 
X are to  be found. 

In control theory, they take a symmetric form: 

X D X  t X A t  A*X t C = O 

where C and D are hermitian matrices (C* = C, L>* = O). 

(4.25) 

For discrete systems, equation (4.25) takes the form: 

x = A * X A  + - A * X B ( B * X B  + E J ~ B * X A  (4.26) 

Here A and El have the size of X ,  say n x n, but E2 may have size rn x m, say, in which 
case B is n x M. Equation (4.25) is described as a ‘continuous algebraic Riccati equation’, or 
CARE, and equation (4.26) is known as a ‘discrete algebraic Riccati equation’, or DARE. 

When we make special choices for the matrices A, B ,  C and D we can obtain the Sylvester 
and Stein equations: 

X A - B X = C  (4.27) 

and 

X - B X A  = C (4.28) 

respectively. Their symmetric forms (when B = A*,  C* = C) are most important. Another 
special form of the Sylvester equation is the Lyapunov equation: 

X A f A * X = C  (4.29) 

where C is hermitian. 

The Sylvester, Stein and Lyapunov equations are Linear Matrix Equations (LME’s). There 
appears to  be some confusion over the terms Affine Matrix Inequality (AMI) and Linear 
Matrix Inequality (LMI) (or, alternatively, Equations: AME and LME). Inequalities of the 
form 

n 

F ( z )  = Fo + EZi& > o , z E R”, = CT 
i=O 

that are actually affine in z (and, consequently, are sometimes called AMI), are generally 
referred to  as LMI’s. Multiple LMI’s F,(z) > O , .  . . , F,(z) > O can be expressed as the single 
LMI 

Nonlinear (convex) inequalities are converted to  LMI form using Schur complements (see 
e.g. [Wortelboer 94, p. 231). The basic idea is as follows: the LMI 

(4.30) 
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where U ( x )  = U'(x), W ( x )  = W'(x) ,  and V ( x )  depends affinely on z is equivalent to 

W ( x )  > o ) U ( x )  - V ( x ) w - l ( x ) V T ( x )  > o (4.31) 

In other words, the set of nonlinear inequalities (4.31) can be represented as the LMI (4.30). 
More practical use of LMI's can be found in [Boyd et al. 931 and references therein. Finally 

(&MI). Most of what was treated in this section was taken from [Lancaster and Rodman 951. 
?$;hen the eqUaEty ir, the '=ec=mes al, inequ,ty ;\y hruTe &Ua&atic Matrix Inequ&ty 



Chapter 5 

5.1 

Survey of approaches 

Wl = w2 UI1 = w2 w1# w2 w1# w2 

z1 = z2 z1 # z2 z1 = 2 2  z1 # z2 
5.2 5.3 5.4 5.5 5.6 5.7 

As was mentioned in the previous chapter, we will now describe a number of approaches to 
the solution of the mixed-norm optimization problem, frequently using methods that were 
mentioned in that chapter. This survey can of course not be exhaustive, but an attempt was 
made to (briefly) describe the approaches most frequently encountered in the literature. 

The following classification was used: 

It must be stressed that this classification is fairly arbitrary and other classifications can be 

of these classes. However, for the approaches most regularly encountered, this classification 
should suffice. 

eqUd,!!j sUEcient. In h e t ,  there may be soEe a p p a c h e s  that UGE’t actu2Ey f t  ir, any cue 

5.1 w2 a linear programming approach 
00 

This approach uses the problem statement (3) from Chapter 3, where most commonly 
w1 = w2 =: w and z1 = z2 =: z ,  although different linear constraints can be defined for 
different closed-loop maps Tw,4zj, i.e. on the map between the ith input set and the jth out- 
put set. Using that formulation, either p1 or p 2  is taken to be 1 and the remaining p=l, 
2 or 00. Most common is the fl minimization combined with fi2 and/or Em constraints 

27 
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[Dahleh and Diaz-Bobillo 95, Elia et al. 931. The 'Fla/tl problem is not so often encountered 
[Voulgaris 941. All these approaches use the technique of Linear Programming (LP) combined 
with duality theory. An LP problem is an optimization problem in R", where the objective 
function is linear in the unknowns, and the unknowns have to satisfy a set of linear equality 
and/or inequality constraints. This can be stated in the following standard form: 

min cTx 

subject to 

AX = b 

xi 2 o i =  1, ... , n  

where x,c  E Et", b E Rm and A E IRmx". 

It should be noted that any LP problem can be transformed into the above form. To bring 
the objective function 1 1  @ I l l  (from problem statement (3)) Chapter 3) into linear form and 
to  avoid the nonlinearity built into the norm (i.e. the absolute value function), a standard 
change of variables is used in LP. Let @ = @+ - @-, where (a+ and ip- are sequences of 
q x d matrices with nonnegative entries. Then, when & j ( t )  denote the elements of the impulse 
response matrix, replace the ti1 norm of @ by 

d c o  

which is linear in ((a+, a-). This expression equals the norm only if, for every ( i , j , t )  at least 
one of q5&(t), 4;(t) is zero2. This is illustrated in Figure 5.1. 

With this change of variables, the tl minimization can be restated as follows: 

u' = inf u 
o+,@- 

subject to  

f o r i =  l , . . . , q  
j=l t=o 

ip = (as - (a- is feasible (see Chapter 3 for definition). 
~ 

'From now on, in this section refers to the discrete-time case only. 
2Since an optimal value of 423 = 4; -4; can always be achieved with 4:' = 4A-4mzn and 4;' = $;-drnzn 

(where $,,, = min(+:, 4;)) resulting in 423'  = 4' 23 ' - 4-' 23 = 4: - dmzn - (4; - #mzn) = 4; - 4; = 4zl and 
thereby reducing the sum of 4;  and 4; with 24m2n. 
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O 5 10 'O 5 10 
t t t 

Figure 5.1: Change of variables for a scalar-valued sequence 4, where 4 = 4+ - &(= sin(t)) 
and )I # )I1 = #+ + 4-(= Isin(t)l>. 

Finally, a compact representation of the tl norm can be obtained by defining an operator 
At, : tyxd + IRQ such that 

j=l t=O 

and a vector with all elements equal to one, 1 E RQ. It follows that 

Realizing that a large class of specifications can be expressed in terms of linear constraints 
leads to the following approach. The idea followed is to simply augment the constraint of 
the linear program, derived from the 1, optimal control, with the linear specifications con- 
straints and solve the new linear program. With this we can augment the linear operator Al, 
with somewhat similar linear operators to get one operator constraint, resulting in a typical 
augmented operator such as 

where .Atemp and btemp reflect the time domain (template) constraints. If these operators 
should apply on different sets of inputs and outputs (which was said to  be a possibility, 
however unexploited) naturally all dimensions of the appropriate operators and '1-vectors' 
would change accordingly. The 1-vector in the 7-lm constraint will generally be of a dimension 
far greater than q since the infinite-dimensional constraint has to  be approximated by a 
finite number of constraints (by sampling the unit circle, see [Dahleh and Diaz-Bobillo 95, 
PP. 43,441)- 

Eventually, this will be combined with the feasibility- (or interpolation-) constraints 
(see [Dahleh and Diaz-Bobillo 95, pp. 123-1261)) again using ('similar') linear operators: 
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which is equivalent to Af,,,@ = b,,,, apart from the fact that the L P  problem size has 
doubled. Linear programming problems can be solved using the efficient Simplex method 
(see [Dahleh and Diaz-BobiIIo 95, pp. 195-2001). Another important issue in Linear minimiza- 
tion problems (and thus LP) is duality theory. Given the standard form minimization (5.1), 
which we will call the 'primal problem', it is always possible to define an associated linear 
maximization problem, known as the 'dual problem'. The corresponding primal-dual pair is 
given by 

min cTx (dual) max qT b 
X iI 

(primal) 

subject to 
AX = b 

xi 2 o i = 1, ... ,n  

subject to 
qTA 5 cT (5-4) 

where 7 is the vector of dual variables E IR" (i.e. in 'dual space'). The equality constraints in the 
primal problem can easily be derived from the inequality constraints (5.2) and (5.3) by using 
so-called slack-variables3. It can be shown that the primal problem has an optimal solution 
if and only if the dual problem has an optimal solution, and further both achieve the same 
optimal value. Duality theory is used for instance in the solution of the multiblock problem 
(i.e. a problem in which d > 1 and/or q > m, whereas for a one-block problem d = l and 
q = m). For multiblock problems, both the primal and the dual problem have infinitely many 
variables and constraints (whereas one-block problems have finitely many (primal) constraints 
but still infinitely many variables; however, the underlying problem can-by looking at  the 
structure of the dual problem-be shown to  be finite-dimensional). In principle, one can 
attempt to  get approximate solutions by an appropriate truncation of the original problem. 
There are basically three approximation methods: 

1. Finitely Many Variables (FMV): provides a suboptimal polynomial feasible solution by 
constraining the number of (primal) variables to be finite. 

2. Finitely Many Equations (FME): provides a superoptimal infeasible solution by includ- 
ing only a finite number of (primal) equality constraints. It is to be combined with FMV 
to get an idea of the achieved accuracy. 

3. Delay Augmentation (DA): provides both a suboptimal and a superoptimal solution 
by embedding the problem into a one-block problem through augmenting the opera- 
tors U and V with delays (where @ = H - U Q V  is an equivalent form of the Youla- 
parameterization as used in [Dahleh and Diaz-Bobillo 951). 

For a more thorough treatment on these methods the reader is referred to [Dahleh and Diaz- 
Bobillo 95, Chapter 121. 

The FME/FMV method does have a few drawbacks: 

31n general, given a set of m inequalities of the form AZ 5 b,  then 1: E R" satisfies the set if and only if 
there exists a nonnegative vector of slack-variabIes, y E IK", such that AZ + y = b. 
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o FME/FMV requires existence of polynomial feasible solutions, and 

o FME/FMV results in controllers of high order, related to the order of the approximation. 

The DA method is used much more often since it doesn’t necessarily suffer from order- 
infiation when in- and outputs are (re)ordeïed properly (depending on which TOWS of @ are 
‘partially dominant’, see [Dahleh and Diaz-Bobillo 95, p. 3û2j for definition). Another (earlier 
mentioned) drawback of the LP approach, when combined with ?iFt, constraints, is that the 
infinite-dimensional R, constraints have to be replaced by a finite number of constraints by 
sampling the unit circle. This may prevent finding a solution if the performance specifications 
are tight. Moreover, it has been recently shown [Venkatesh and Dahleh 931 that, for a class 
of problems, the approximations obtained by sampling the unit circle will fail to  converge to 
the solution, even when the number of sampling points tends to infinity. Note that in this 
approach, according to [Elia et al. 931, the solution is obtained by solving LP’s instead of 
convex or non-convex optimization and neither does it use Lagrange multiplier techniques. 

5.2 !l/X,: using the Youla-parameterization 

This approach considers one of the same problems as the approach mentioned in the previous 
section: the !i/7-lFI, problem. However, it utilizes the more general description where tol # w 2  
and z1 # z2 in both the discrete-time- and the continuous-time case (see [Sznaier 93](SISO) 
and [Sznaier 94](MIMO) for discrete-time and [Sznaier and Blanchini 94](MIMO) for 
continuous- time). 

The main result shows that a suboptimal solution to the ll/7-lFI, problem, with performance 
arbitrarily close to the optimum, can be obtained by solving a finite-dimensional convex 
optimization problem and an unconstrained ZFt, problem. First, a brief description of the 
discrete-time problem will be given, after which the continuous-time problem can be solved 
using the discrete-time results. 

Derivation of these results requires more preliminaries: 

By ;Ft, we denote the space of stable transfer function matrices G(z) (G(s) )  E l,(Lc,) which 
are analytic4 outside the unit disk (or for continuous-time: analytic in Refs) 2 O). RE, 
denotes the subspace of real rational transfer matrices of Em. Similarly, RX,,6 denotes 
the subspace of transfer matrices in RE, which are analytic outside the disc of radius 6, 
O < S < 1, equipped with the norm 

(compare this definition to (2.15)). 

For the system G with state-space realization (3.5)) the following assumptions are made: 

4Having a complex derivative at every point of its domain, and in consequence possessing derivatives of all 
orders and agreeing with its Taylor series locally. 
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1. 0 1 3  has full column rank 

2. D31 has full row rank 

3. ( A ,  B3) and (C3,  A)  are stabilizable and detectable, respectively. 

Then, the set of all internally stabilizing controllers can be parameterized in terms of a free 
parameter Q E R H m ,  resulting in the Youla-parameterization: 

where .Fl denotes the lower linear fractional transformation: Fl = Knom11 + 
1 C n o m 1 2 Q ( 1 -  7nom22Q)-1 Knomal where Knom is partitioned according to the following state- 
space realization 

and where F and L are selected such that A + B3F and A + LC3 are stable. By using this 
parameterization, the closed-loop transfer matrices can be written as: 

where Ej, zj are stable transfer matrices. The discrete-time i1/Xm problem can now be 
precisely stated as: 

e Problem 1: (Mixed ll/7-t, control problem) 

1. Find the optimal value of the performance measure: 

inf 1 1  Twl-tl I l l  = Q&i, II VI,  + V12QV21 I l l  po = 
QER'XW 

(5.9) 

subject to 
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2. Given E > O, synthesize a controller such that 

II Tw*+zz 11, I Y and II T W r , i . z i  I l l  5 Po + E 

It is known that it is possible to select F and L; such that T12 is inner5 and T21 is co-inner6. If TI, 
(TZl) is not square, we can choose Tlz1 (T21L) such that TlZa = [Yl2 T12,] (TGa = [Tg T g J )  
is a unitary matrix. 

This fact can be used to reduce 11 Tw,-z2 11, to the form: 

where R" = T&,Tl1Tga has a state-space realization 

(5.11) 

In the sequel for simplicity we will call 

We will also assume that y = 1 (this does not entail any loss of generality, since it can always 
be accomplished by scaling the input matrix B2).  It can be shown that problem 1 can be 
solved by considering a sequence of modified problems: 

e Problem 2: (Mixed l1/&,6 control problem) 

1. Given Tij, T$ E R3-1,,6, find 

Pug = inf I I  Vll + V12QV21111 
QERX,,s 

(5.12) 

subject to 

where 6 < 1 and R E R'Ft,,J 

5A square system G is called inner if G"G = I and G is stable, where G" := G* for Re(s) = O (1.1 = 1); 
for Re(s) # O (1.1 # 1) the definition is G"(s) := GT(-s)  (G"(z) := GT(:)).  In engineering terminology, an 
inner function is stable and all-pass with unit magnitude. 

6 A  matrix G is said to be co-inner if GT is inner. 



34 CHAPTER 5. SURVEY OF APPROACHES 

2. Given E > O, synthesize a controller yielding a cost pi such that pa 5 pi 5 + E .  

LEMMA 5.2.1: Consider an increasing sequence Si i 1. Then p6i -+ po. 

Next, if (el,/?d3,6) is feasible, it can be shown that a rational suboptimal solution, arbitrarily 
close to the optimum, can be found by solving a truncated problem. Moreover, solving this 
truncated problem only entails solving a finite-dimensional optimization problem and an 
unconstrained 4-block (i.e. d > I and q > m) XFt,  problem. 

THEOREM 5.2.1: Let R" have a state-space realization as in (5.11). Then, a suboptimal 
solution to  the mixed !,/X,,6 control problem, with cost p;, pug 5 pi 5 E.16 + E is given 
by Q o  = Q$ + z - ~ & $  where Q$ = Eizo N - l  Q(  i)z-<; 

& ( O )  

0 ... Q ( 0 )  
- Q=I Q(1) i &(O) . . -  

& ( N - 1 )  

solves the following finite-dimensional convex optimization problem 

and QI, solves the approximation problem 

where 
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1/12 = 

(where Vll E 

,jj = & I 2  = y 1 1 2  
7 

where X > O and Y > O are the solutions to the following (uncoupled) ARE’S: 

X = ÂXÂT+y-2B ,BT  
t<Axc: t ~ - ~ B , D : ) ( I  - y - 2 ~ ~ ~ ~ : ~  - c , x c ~ ) - ’ ( c , x ~ ~  + ~-ZD,, .BT) 

+@‘YB, t c,TD,,)(I - D:,D,~ - BsYB,)-~(B:YÂ + DT~C,) 
Y = ÂTYÂ+C:C, 

and where Q(b) ,  Kj(S) denote the bth element of the impulse response of Q ( z ) ,  x j ( z )  
respectively. 

This is the main result of [Sznaier 941 from which an iterative algorithm can be derived and 
can be found in the same article but is omitted here. In [Sznaier 941 u,, v12 and v21 are 
defined somewhat differently but it is not clear whether this would yield different results. It is 
not likely that it should since in [Sznaier 931, which also handles the discrete-time case (but 
SISO), definitions similar to those used here are encountered. 

For the continuous-time case the proposed method is based upon solving an auxiliary discrete- 
time !,/Zm problem, obtained using the simple transformation z = l+$s and then transform- 
ing back the resulting controller to the s-domain. To do this the Euler Approximating System 
(EAS) is introduced, which can be shown to have 1, and ‘H, bounds that are upper bounds 
of the corresponding continuous-time quantities. Moreover, these bounds are non-increasing 
with $I and converge to the exact value as + + O. 

DEFINITION 5.2.1: Consider the (continuous-time) system G represented by ( 3 . 5 ) .  Its 
Euler Approximating System (EAS) is defined as the following discrete system: 

where $ > O. 
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THEOREM 5.2.2: Consider a strictly decreasing sequence 

Let: 

+ O and the corresponding 
EAS (+i). 

and let po be defined as in Problem 1. Then the sequence p+, is non-increasing and such 
that + po. 

Theorem 5.2.2 shows that the L1/'FI, problem can be solved by solving a sequence of discrete- 
time !,,/E, problems, each one having the form: 

where Tij, Tij E RE,(T). It is not clear from [Sznaier and Blanchini 941 what the 'T' in 
RE,(T) stands for. There RE,(T) is defined as the set of real-rational functions in E,(T), 
where E,(T) denotes the set of stable complex functions G ( z )  E L,(T) and where C,(T) 
denotes the Lebesgue space of complex valued transfer function matrices which are essentially 
bounded on the unit circle with the co-norm as defined in (2.15). 

LEMMA 5.2.2: A suboptimal rational solution can be obtained by solving a discrete-time 
mixed !,/'Fl, control problem for the corresponding EAS, with 6 = 1 - +2.  Moreover, 
if K ( z )  denotes the controller for the EAS, the suboptimal continuous-time controller 
is given by K(+s + 1). 

The approach that was presented here is a departure from previous approaches to solving this 
type of problems, where several approximations, such as replacing the infinite-dimensional E ,  
constraint by a finite number of constraints by s a m p h g  the unit circle, were reqiiired to  obtain 
a tractable mathematical problem. Perhaps the most severe limitation of the proposed method 
is that it may result in very high order controllers (roughly N ) ,  necessitating some type of 
model reduction. Note however that this disadvantage is shared by some widely used design 
methods, such as p-synthesis or el-optimal control theory, that may also produce controllers 
of very high order, the latter method especially. Application of some well established methods 
in order reduction (noteworthy, weighted balanced truncation) usually succeed in producing 
controllers of manageable order. 

5.3 3-t2/7i, :  convex optimization using matrix inequalities 

The approach described here has received a great deal of attention (see e.g. [Boyd and Barratt 
91, Boyd et al. 93, Geromel et al. 92, Khargonekar and Rotea 91, Halikias 94, Scherer 951). 
However, although all these approaches use matrix inequalities (MI'S) to arrive at a convex 
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optimization problem there still exists a wide variety among these approaches. For instance, 
some, but not all approaches use the Youla-parameterization; some set w1 = w2 where others 
take all four sets of inputs and outputs to be different; the MI’S involved can be LMI’s (most 
common), QMI’s or AMI’S (see e.g. [Feron et al. 921, which by the way only considers the R2 
control problem); and some approaches use the performance measure of Bernstein and Haddad 
where others don’t. A good example of a method using the performance measure of Bernstein 
and Haddad is [Khargonekar and Rotea 911. They consider problem (1) from Chapter 3 with 
w1 = wz := w and z1 # zz and use the performance measure (4.20) where S solves (4.13) 
(with (4.14)). However, they take a suboptimal approach. When v(G) denotes the optimal 
performance measure (for K an ‘admissible’ (: proper and internally stabilizing) controller 
satisfying the R, norm constraint7) the mixed R2/R, control problem is formulated as: 
Compute v(G) and, given a n y  a > v(G),  f ind a controller K E A, such that the auxiliary 
cost 3 < a!. 

Given the plant G,f (‘sf’ denotes the state-feedback controller): 

i = A x + B w + B ~ u  
z1 = C l Z $ D 1 3 U  

2 2  zz C ~ X + D ~ ~ U  7 

y = x  

G,f := 

one could choose to use B2 instead of B ,  thereby saying w := w2, but this is no more than a 
matter of notation, since ‘w2’ is the only w present and has the dual interpretation mentioned 
in Section 4.3. 

The key idea is to replace the search over the admissible static state-feedback gain matrices 
K .  This is done by introducing the change of variables K = WY-’ (which essentially is 
an over-parameterization), where Y is the solution to the quadratic matrix inequality that 
characterizes the infinity norm constraint (5.13). 

Without loss of generality it is assumed that y = 1. Let W E I R m x ‘  and symmetric positive- 
definite Y E WlX’  (and i = n since y = x )  be given and define Z(-VV,Y) E I R n x n :  

Z(W,Y) := AY + Y A ~  + B ~ W  + W ~ B ,  + B B ~  + (c2y + D ~ ~ w ) ~ ( c ~ Y  + ~ 2 3 ~ )  

(5.13) 

We define also 
f (W,Y)  := tr [(CIY + D13W)Y-1(C1Y + D13W)T] 

Finally, define the set f2 of real matrices (W,Y): 

Q(G,f)  := {(W,Y)  I Y = YT > O, Z(W,Y) < O} 

and consider the optimization problem 

(5.14) 

7 K  E A, as defined in [l] where ‘co’ denotes the ‘Fl, constraint. 
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Furthermore A,,, denotes the subset of A, for which K is memoryless (or static). 

THEOREM 5.3.1: Consider the system G,, defined in the above, along with the definition 
of f (W,Y) ,  O(G,,) and C(G,j) as stated in the above. Then, 

&,,(G,j) # 0 * R(G,,) # @ 
and in case one (and thus both) of these sets is indeed nonempty (and when v,(G,j) 
denotes the optimal performance measure for the state-feedback problem with K E 

A,,rn(GSd)> 
Z47G.f) = C(Gs.f) 

Furthermore, given any a > v,(GSf), there exists (W,Y) E G ( G S f )  such that the state- 
feedback gain K := WY-l satisfies: 

E Am,m(Gsj) and 3 I f ( W , Y )  I a 

At first sight this theorem doesn't seem very attractive. The calculation of ((G,j)  involves 
a search over the set R(G,,), whereas v,(GSf) can be computed by solving a nonlinear 
programming problem with only the real matrix K as the decision variable. However, the 
over-parameterization introduced with the change of variables K = WY-l (which causes the 
dimension of Q(GSf) to exceed the number of free parameters in A') can be shown to be 
most useful since the optimization problem defined in (5.14) is a convex problem. This can 
be shown to be true based on the fact that both the set G and the function f : 0 --f IRf are 
convex. On the other hand, the set of feasible static state-feedback gains, A,,,(GSf) is not 
necessarily convex. 

T 
Finally, for the full-information problem, where y = [ xT wT ] , they show that the use of 
dynamic full-information controllers can not improve upon the performance over all memory- 
less state-feedback controllers. A fact worth noting is that based on this very article, there also 
exists an 'Ft,/ESPR-'version' ([Shim 941, also see Chapter 3) yielding similar results. Another 
example in this category, [Halikias 941, uses the Youla-parameterization along with certain re- 
sults from superoptimal interpolation theory (see [Halikias 941 and references therein), through 
which the problem can be formulated as a multi-disk minimization in terms of a free parameter 
of reduced dimension which can be tackled via a number of convex programming techniques 
(described in e.g. [Boyd and Barratt 91, Dorato 911). 

LMI-based convex optimization problems are treated extensively in control literature and it 
does seem to  have great potential, since there exist effective and powerful algorithms for the 
solution of these problems, as was described earlier in Section 4.5. 

5.4 7-ì!2/Rm: optimizing an entropy cost functional 

This section refers to the work done mainly by Mustafa and Glover in [Mustafa 89, Glover 
and Mustafa 89, Mustafa and Glover 88, Mustafa et al. 911. It is shown that the auxiliary per- 
formance index of Bernstein and Haddad can be interpreted nicely as an entropy expression, 
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yielding the central 'FI, controller for the full-order case. They address the problem where 
w1 = w2 =: w and zl = z2 =: z ,  resulting in the matrices corresponding to the w and z that 
are being left out to be zero. So, with the arbitrary choice w := wz, z := z2, B I ,  D21, D31 
(and Dil) are zero and furthermore D22, 033 and D,  are taken to be zero. 

Or equivalently 

Then, if we define the entropy of T,,, (=Tw2,z2): 

DEFINITION 5.4.1: The entropy of T,,,, where 11 T,,, [lm < y, is defined by 

where so E Rf ,  

the first of the problems of interest can be stated: 

Problem A: The maximum entropy/?& control problem [Glover and Mustafa 89, 
Mustafa and Glover 881. Find, for the plant G, a feedback controller K such that: 

1. K stabilizes G 
2. The closed-loop transfer function Twia = &(G, K )  satisfies the 'FI, norm bound 

< y,  where y E IR is given 

3. The closed-loop entropy Z(T,,,, y)  is maximized. 
I] Tw+, 

REMARK 5.4.1: Problem A is equivalent to the Risk Sensitive Linear Quadratic Gauss- 
ian control problem of [Whittle 81, Bensoussan and Van Schuppen 851. This link was 
established in [Glover and Doyle 881. 

If we recall the performance functional J ,  defined in (4.10) and (4.11), we have (the proof of 
this may be found in [Mustafa and Glover 881): 

PROPOSITION 5.4.1: -I(Tw+,, y> 2 J ( z u ' d )  

Next, recall J denoting the auxiliary cost as defined in (4.20). Then the second problem of 
interest is: 
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o Problem B: The combined XFI, /LQG control problem [Bernstein and Haddad 891. Find, 
for the plant G, a feedback controller K such that: 

1. K stabilizes G 
2. The closed-loop transfer function T,,, = .Fl(G, K )  satisfies the X, norm bound 

3. The auxiliary cost J(T,,,, y) is minimized. 

i/ T,,, 11, < y7  where y E B is given 

and from (4.19) we know that 

PROPOSITION 5.4.2 : 

For completeness we will state the well-known LQG problem associated with G: 

o Problem C :  The LQG control problem. Find, for the plant G, a feedback controller K 
such that: 

1. K stabilizes G 
2. The LQG cost J(T,,,) is minimized. 

After a few mild assumptions have been made (see [Mustafa 891) the key result is established: 

THEOREM 5.4.1: For any T,,, E RX, with 1 1  Tw+, ll, < y,  minus the entropy equals 
the auxiliary cost, i.e. 

4 ( T w + z ,  7 )  = J ( T W + , ,  7) .  

where the auxiliary cost is defined by (4.20), with S the positive-definite solution to  (4.14). 
This is in contrast with [Bernstein and Haddad 891, where S must be positive-semidefinite. 
Furthermore S is insisted on being the stabilizing solution S ,  to (4.14), a condition which is 
not mentioned in [Bernstein and Haddad 891. 

Next, they state the state-space realization of the controller which solves problems A and B, 
expressed in terms of the stabilizing solutions, denoted X ,  and Y, to two algebraic Riccati 
equations, followed by the maximum value of the entropy and the minimum value of the 
auxiliary cost, respectively. While the maximum entropy can be expressed in terms of X ,  
and Y,, the minimum auxiliary cost in addition to  this requires the solution S, to a third 
algebraic Riccati equation coupled to the other two. Since the two optimal values were said to 
be equal in theorem 1, we will be able to discard of the (yet to be stated) minimum auxiliary 
cost expression and the corresponding algebraic Riccati equation as redundant. 
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1 A +Y, ( Y - ~ C T C ~  - C3TC3) - B3BrX,Z K =  

PROPOSITION 5.4.3: The controller which solves the equivalent problems A and B has 
a state-space realization 

Y,CF 

where X ,  2 O, Y, 2 O are the stabilizing solutions to the ARE’S 

and where 
1 2 := ( I  - r-2YmX,)- 

In saying the stabilizing solutions, we mean the solutions X ,  and Y, such that 

A + ( Y - ~ B ~ B ;  - B3B3) X ,  is asymptotically stable and 

is asymptotically stable. A + Y, ( Y - ~ C F C ~  - C:C3) 

and 

PROPOSITION 5.4.4: Minus the maximum value of the entropy is given by 

-Z,,,(T,,,, Y) = t r  + X,~Y,X,&B?] 

PROPOSITION 5.0.5: The minimum value of the auxiliary cost is given by 

Jmin(Tui-z,Y) = t r  [ymc, TC 2 + S , R ]  

o = AS + SAT + y2SRS + Y,C,TC3Yo0 

7 
- 

where S ,  > O is the stabilizing sokition to  the algebraic Riccati eqUation 
- _ -  

and 

A := A - B3BTX,Z + Y-~Y,CFC~ 
R := c,Tc2 + X , Z B ~ B ; Z ~ X ,  
In saying the stabilizing solution, we mean the solution S,, such that Ä + Y - ~ S ~ R  is 
asymptotically stable. 

As mentioned before, we can discard of this last proposition and therefore there is no need 
to solve the third coupled algebraic Riccati equation. Although this is an attractive feature, 
it must be remembered that this approach addressed the problem where both sets of inputs 
and outputs are equal. 
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5.5 7 í 2 / 7 í W :  fixed-order controller design using the auxiliary 
cost 

This class of approaches refers mainly to the work done by Bernstein and Haddad 
in [Bernstein and Baddad 89, Haddad and Bernstein 9U, Haddad et al. 9i]  and some meth- 
ods based on it [Ge et al. 941. The general setup was described in Sections 4.2-4.4 which 
ended with setting the partial derivatives E, and E to zero. The results of this can be 
obtained by various matrix manipulations (which can be found in [Bernstein and Haddad 891 
addressing the simplified problem as mentioned in Section 4.2) and will be stated here for the 
most general case being the mixed-norm reduced- (or fixed-) order dynamic compensation 
problem (solutions to the problems of finding fixed- as well as full-order controllers for both 
the 7 f 2 / 7 f ,  and the pure 'Hm problem can be found in [Haddad and Bernstein 901). Here the 
same problem setting is used as in [Haddad and Bernstein 901, where BI, 0 2 1 ,  0 3 1 ,  0 1 2  and 
De (and D l l )  are taken to be zero. 

First, for arbitrary positive-semidefinite S,C, S E IRnx" and a,B 2 Os we define the matrices 
1 T  S a  SCZ + B 2 M z  D 3 2  

Next, the following lemma is required for the statement of the main theorem: 

LEMMA 5.5.1: Let positive-semidefinite matrices S, 2 E IRnxn  and suppose rank[sC] = 
ne. Then there exist ne x n q ,  î, and n, x ne invertible 'ï, unique except for a change 
of basis in IRn,, such that 

S i :=qTm , rqT=In, .  

r;=qTr , K ~ = I ~ - K  

Furthermore, the n x n matrices 

are idempotentg and have rank ne and n - ne. 

8Where for simplicity it is assumed that R3 := Ds3D13 =: a2R3 and R300 := DT3MMpz'D23 =: p 2 R 3 ,  where 
the nonnegative scalars cy, /3 are design variables such that a2 + p2 # O .  

2 2  [ -1 -1 ] 1. 'Having the property that it is equal to its own square (e.g. the identity matrix; 
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and let (A , ,  B,, C,, S) be given by 

A, = I' [A - B3Rg1CaA - SaVc-C3 + S a V ~ ~ D 3 & ~ 1 C a A  + (SRI,  + B2R21, 

-B2R23,R;1CaA - SR13,R;1CaA - SaV<dD32R21m + SaI$~D32R23,R;'CaA)] QT 

B, = I ' S a V - ~  

C, = -RglCaAQT 

s = [ " -  

Then, (A,g) is stabilizable if and only if A is asymptotically stable. In this case, 
the closed-loop transfer function TwzldZ satisfies the ;Ft, disturbance attenuation con- 
straint (4.17) and the I f 2  performance criterion (4.10) satisfies the bound 

J(A,, Be, C,) 2 t r  [(S + S)R1 - 2R1&31CaAS + ATC~R;1R3&1EaAS] 

From these results the full-order case results can be derived by setting n, = n 
(see [Haddad and Bernstein 901) so that K = Q = r = i and tcL = O. In this case the 
last ('additional') term in each of (AREl)-(ARE4) can be deleted and (ARE4) becomes 
superfluous. 

Another way of solving the problem, when leaving off from the point where the partial deriva- 
tives 2, were set to  zero, is by using homotopy techniques (see [Ge et al. 941 and and 



44 CHAPTER 5. SURVEY OF APPROACHES 

references in [Bernstein and Haddad 89, Haddad and Bernstein 901). These techniques have 
been developed to account for the additional terms in the equations (AREl)-(ARE4) which 
existing Riccati equation solvers cannot handle. Homotopy methods utilize the solution of a 
related easily solved problem as the starting point. In the case of full-order X 2 / X ,  control 
with unequalized weights, the starting point is provided by the standard LQG solution. The 
approach followed in [Ge et al. 941 is Sased on [Bernstein and Haddad 891 and combines it 
with so-called probability-one homotopy algorithms (this name will become clear in the foï- 
lowing). Also, in [Ge et al. 941 the number of parameters (which determine A,, Be and Ce) is 
reduced from ne(ne f rn -t I )  (= ne x n, t n, x l+m x ne)  to n,(m+ I )  (= n, +ne x 1 -t (m- i)n,) 
by using the 'Ly, Bryson and Cannon'-parameterization [Ly et al. 941, which, like all (mostly 
canonical) realizations involving a minimal number of independent parameters, cannot pro- 
vide a smooth, global representation of all MIMO (or in case of the 'Ly, Bryson and Cannon'- 
parameterization even SISO) systems. It does however provide a generic representation which 
is particularly suited for parametric optimization (see [Ge et al. 941 and [Ly et al. 941 for 
further information). The (reduced number of) parameters are now cast into one vector t .  
Furthermore, the relevant matrices A(X), B(A),  etc. and the '&-norm bound y(A) are defined 
as 

where X is a variable step-size that is to be computed each step and A0 and A, denote the 
starting and ending point of A(A) for each step (and likewise for the other matrices and y(X)). 

The homotopy map p(c, A) is then defined basically as the combination of the three partial 
derivatives E, $ and s, where only those elements corresponding to  the parameter 
elements of A,, B, and C, are present. The numerical algorithm which computes tf for which 
A, = 1 and p ( t f ,  A,) = O starts with Xo = O and yo such that yo-' is approximately zero. The 
initial to is chosen such that p(e0,O) = O and can be derived from the LQG solution in the 
full-order case, but has to be computed from an initialization scheme for the reduced-order 
problem. In practice, it may be difficult to find the initial point to such that p(tO,O) = O. 
A somewhat more artificial homotopy then, letting to be the chosen initial point, is the 
Newton homotopy map defined as p(t,X) = p( [ ,A)  - (1 - X)p(cO,O). To guarantee a full 
rank Jacobian matrix (denoted by Dp(t ,  A)) along the whole homotopy zero curve, except 
possibly at the solution corresponding to A = 1, define the homotopy map to be P(t,X) = 
p( [ ,  A) - (1 - X ) ( t  - to). Once the initial point is chosen, the rest of the computation is as 
follows: 

1. Set X := O, E := to. 
2. Compute S and M according to (4.14) and (4.23). 

3. Evaluate the homotopy map p(J, A) or P(t, A) and the Jacobian of the homotopy map 
W t ,  A) or W t ,  A). 

4. Predict the next point (t(O),A(O)) on the homotopy zero curve using e.g. a Hermite 
cubic interpolant. 

5. For k := O, 1 ,2 , .  . . until convergence do 
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where [Dp ( [ ,  A)]+ is the Moore-Penrose inverse" of D p ( [ ,  A)  

Let ([l, A,) = fimk+co([(q, A(W. 
6. If Al < 1, then set [ := el, A := Al, and go to step 2. 

7. If A l  2 1, compute the soliition [ at A = 1. 
- 

The standard classical continuation techniques solve p( [ ,X+  AA) = O for fixed AA > O, given 
a solution (5,x) : p($,x) = O. It is implicitly assumed that ( = ((A), i.e. the zero curve y 
of p( [ ,  A)  being tracked in ([, A) space is monotone in y.  Other tacit assumptions are that y 
does not bifurcate or otherwise contain singularities. The more general homotopy methods 
which are used in [Ge et al. 941 make no such assumptions, and include mechanisms to deal 
with bifurcations and turning points. In particular, homotopy methods do not assume that 
the zero curve y is monotone in A. A continuation or homotopy algorithm is not a priori glob- 
ally convergent (where globally convergent means that the zero curve y reaches a solution s, 
p( f ,  1) = O from an arbitrary starting point to, p ( l 0 ,  O) = O). However, probability-one homo- 
topy methods are provably globally convergent under mild assumptions [Watson et al. 871, 
and their zero curve y is guaranteed to  contain no singularities with probability one. In- 
terestingly, these particular algorithms are implemented in software-packages such as HOM- 
PACK [Watson et al. 871. 

5.6 7iz/'Ft,: using a bounded power characterization 

In this section the semi-norms as defined in Section 2.1 are used to obtain both necessary 
and sufficient conditions for optimality. Unlike most of the other approaches the ;Ft2/X, 
control problem is stated in terms of signal sets. The problem addressed [Doyle et al. 89, 
Zhou et al. 901 sets w1 # wz, z1 = z2 =: z where wl is assumed to be fixed and white, and 
wz is assumed to be bounded in power. The design objective is to minimize the power of the 
output error signal z ,  i.e. compute 

(5.15) 

with S and P as defined in Section 2.1. It will be seen that if only w1 is present, the problem 
reduces to the standard 'Fla problem. Similarly, if only wz is present we obtain the standard 
;Ft, problem. To describe the approach followed, we must first define some more properties: 

If we consider a linear system G with convolution kernel (impulse response) g( t ) ,  input u and 
output z 
~ 

"The Moore-Penrose inverse of an m M  x 1 2 ~  matrix M is the unique 1 2 ~  x mM matrix Mt satisfying the 
conditions: 

(a) M ~ M M ~  = ~t , M M ~ M  = M, 
(b) ( M t M ) *  = M t M  , ( M M t ) *  = M M t .  
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the foiiowing (standard) properties are defined 

Denote the cross spectral density of w1 and w2 by Swlwz( jw) .  Now assume G is stable and 
partition G compatibly with wl and wz as [ G1 G2 1 ,  where G1 is assumed strictly proper 
(otherwise the output signal can have unbounded power). 

Now we can compute the power spectral of the output z.  To do that let 

w := [ E; ] 
Then the spectral density matrix of w can be computed as 

Using this formula and the earlier defined expression for S,,, we get 

and, according to (2.9) 

These relations form the basis for the mixed-norm performance analysis, where we examine 
the norms induced on G with inputs w1 and w2 (so this is a system without a controller or 
uncertainties). 
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Consecutively, there will be treated: 

~ 

47 

1. 

2. 

3. 

4. 

5.  

The orthogonal case, i.e. S,,,, = O 

The white and causal case, i.e. w1 is assumed to be white with S,,,, = I and S,,,, = 
C í s ì  with -$(.> strictly c-1us-l (k= we assilm-e that 71)2(t) can be generated from w1 
through a strictly causal filter) 

The non-white and non-causal case 

The white and non-causal case 

The non-white and causal case 

- \  1 .'-"-- 

The 4th problem appears to be equal to the 3rd problem, i.e. the worst-case signal w1 in the 
3rd problem is shown to be white. The 5th problem is not solved in the paper, but it can be 
shown that the worst-case wl is not necessarily white. 

1. 

2. 

The orthogonal case 

Here we have 

and the worst-case signal w1 is white noise with unit spectral density, S,,,, = I. 

The white and causal case 

This case is the main focus of this paper. As was said, w1 is assumed to  be white with 
S,,,, = I and w2 E P.  Furthermore S,,,, = S(s) with S(s )  strictly proper. When the 
system equations are 

X = A x + B ~ w ~ + B ~ w ~  
z2 = c2x 4- 1)22w2 

and suppose 11 G2 [Io3 < y ,  with y > O. Denote 

A + B ~ Y - ~ M ~ ~  DT2C2 B; 
1 T -C?[I + D22Y-2Mz1DT21c2 - [ A  + B2Y-2M; 42c21 

x = Kc 

where X = Ric(H) (with H the Hamiltonian belonging to the corresponding ARE) uses 
the ‘Rit'-operator, uniquely determining X by H .  Furthermore, H is said to  belong to 
the domain of Ric: H E dom(Ric). 

Then 

THEOREM 5.6.1: 

with a worst-case signal w2 = y -2M~1(D;2C2  + B 2 X ) x .  
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Finally to compute (5.15), we have to find y such that the worst-case w2 E P ,  this is 
given in the following theorem: 

THEOREM 5.6.2: Let yo be such that 1 1  yö2M~ ' (y0 )  (D&C2 + B a X ( y o ) )  
Then 

= i 

3. The non-white and non-causal case 

Here we examine the case when w1 is not restricted to  be white and w2 is not restricted 
to be a causal function of wl. Again we assume IIG211, < y,  y > O. Without loss 
of generality we assume that the spectral densities of wl and w2 have the following 
decompositions: 

sw,w, = s11s;, 
s w , w 2  = s11s;z 
sw,,, = s12s;z + s22s ;2  

where Sll can be restricted to be a stable and minimum phase transfer matrix, in fact, 
w1 can be thought of as the output of the stable system SI1 with a unit density white 
input. Then the following result can be shown to be true: 

THEOREM 5.6.3: Let y be such that 1 1  w2 I J P  = 1 1  (7'1 - G*,G2)-lG2G1 1 1  = i 

Then 
2 

with the worst-case signal w1 white with unit spectral density (SwIw, = I) and wz 
having spectral density SW2,, = S12S;2 where S12 = (7'1 - G2G2)-1G2G1S11 

Note that from the expression for S12 it is seen that the worst-case signal w2 can be 
generated from passing w1 through the non-causal linear system (7'1 - GZGz)-'GZG1. 

4. The white and non-causal case 

As was seen from the previous case the worst-case w1 was white, so the two problems 
are identical. 

5. The non-white and causal case 

This problem so far remains unsolved. However, examples exist which show that in this 
case, the worst-case wl is not white. 

Now we will analyze the system performance when the system model has structured norm- 
bounded perturbations, as in the following diagram 
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where G is partitioned according to  the inputs and outputs as 

and GI = [ ] 
The uncertainty is 

] =: [ G, G2 ] 
G222 

is strictly proper. 

structured such that A E A where 

A = {diag[Al, AZ,. . . , A,], 11 Ai 11, 5 11 
Again we assume that w1 E S and w2 E P. The robust performance problem in this setting 
concerns the following question: 

when does 

(5.16) 

hold? 

A sufficient condition for this problem can be obtained using the mixed-norm analysis results 
that were stated in the above. Define a set of scaling matrices'' 

Then DAD-, = A for all A E A and 5 E D, and let 

Then we have 

'lThese scaling matrices will be denoted by D and not by D to avoid confusion with the matrix D, which 
connects z (and possibly w) with y. 
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Now consider a mixed-norm analysis problem 

(5.17) 

THEOREM 5.6.4: (5.16) holds, if J ,  I: 1. 
Now let w1 be such that 1 1  w1 [Is 5 1. Then the test J ,  5 1 for a given DE 2, is equivalent 
to 

To get the least conservative test possible, a search on D is required. Furthermore, (5.16) has 
two special cases: 

o w1 = O: the so-called robust Fíw performance problem, reducing to  p-analysis12. 

e w21 = O: we shall call this the robust Î í a  performance problem. 

Finally13 we consider the synthesis problem, when the system is subjected to  mixed distur- 
bance signals and is described by the following diagram 

where both G and K are assumed to  be real-rational and proper. When we only consider the 
white and causal case, the mixed Fí2/Fí, optimal control problem can be stated as: find an 
internally stabilizing controller K such that 

(5.18) 

is solved. 

A both necessary and sufficient condition for this problem to be solvable is that there exists 
a K such that 11 T,,,, IJ, < y,  i.e. the corresponding R, problem (wl = O) is solvable. 

After a few mild assumptions have been made (see [Zhou et al. go]), we can state the final 
result : 

~ 

"Selecting the best D scalings for the mixed problem is not as simple as for p-synthesis where these matrices 

I3The fourth case, in which both A and K are present, is not treated in the paper. 
can be taken to be constant for all frequencies. 
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THEOREM 5.6.5: Given y > O and the plant G, there exists a controller K which solves 
problem (5.18) if and only if the following conditions hold: 

1. E, E dom(Ric) and X ,  := Ric(E,) 2 O where 

2. There exist x, Y and P which satisfy 

Y(Ä + I C s )  + (Ä + % ' s ) ~ Y  + Y&Y + 1;D",F, = O 

Y 2 0  and À + I C 3  + &Y is stable. 

Moreover, when these conditions hold, one such controller is 

where A = yW2(Bz + E&)(& + LD32)T 
and F, = -(DT3C2 + BTX,). 

A = A + Y - ~ B ~ B T X ,  

The results presented here (according to the authors) turn out to have a superficial similarity 
with the results of [Rernstein and Haddad 891 that hints at deeper connections. It would 
therefore be useful to compare these results. However, this is not done in this report. 

5.7 E2/E,: minimizing the worst-case Ea-norm 

Finally, we describe methods which use problem statement (2) from Chapter 3 (where p,=2, 
pZ=m) and four different sets of inputs and outputs tu1, w2, z1 and z2 [Steinbuch and Bosgra 
94, Stoorvogel 931. This still allows for a considerable variety in the approach followed. 
In [Steinbuch and Bosgra 941 a 'lossless bounded real formulation' (this will be explained 
in the following) is used to parameterize the uncertainty A(s), thereby reducing the original 
constrained optimization to an unconstrained one. [Stoorvogel 931 uses a Lagrange multiplier 
9 for the same purpose. Both methods result in an optimization scheme of a form similar 
to the D-K-iteration in ,u-synthesis (see also Section 5.6). To illustrate this both methods 
will be described in the following, starting with [Steinbuch and Bosgra 941. They developed a 
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parameterization for stable strictly proper 3-1, norm-bounded uncertainties using LMI's and 
exploit the situation when the worst-case perturbation is lossless bounded real. 

o Inequality formulation: 

THEGRE?"$ V.?.?: Let (177A' U,,A,, 2,) he an asympte t idy  stable IEiEiXd red- 
ization of the transfer function A(s) = HA(sI  - FA)-lGA + J A .  Then the following 
statements are equivalent: 

1. II a llW < 1 
F I X + X F A  X G A  Ha 

J A  -I 
2. 3X > O such that 

3. 3X > O such that 

-I J z  ] < O  

-1 
-JE GXX 

( a ) c X t X F A + [ X G A  
-'JA I ] [ H~ ] < O  

-I JX 
(b) [ J A  - I ]  o 

In the sequel we will denote the set of all transfer functions with Ilhll, < 1 as A. 
Theorem 5.7.1 directly leads to the following parameterization which characterizes all 
real rational causal stable transfer functions A(s) of order na having 1 1  A 11, < 1. 

1. Choose Ja such that 

(5.19) 

2. Let GA and HA be matrices of appropriate dimensions containing the free para- 
meters and let FA = F, + Fk with F, = e and Fk = --e7 such that 

(5.20) 

and 

for n even and 

(5.21) 

for n uneven. 
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o Lossless bounded real formulation: 

When the inequality constraints (5.19) and (5.20) are both active then the worst-case 
perturbation is lossless bounded real. This means that the perturbation is on its bounds 
at all frequencies and for all its singular values. Now we need two definitions: 

EEF:N:TIOX 5.7.1: The red ratimal fi incti~n @(s) ,  s E C! is 2ossless positioe recd 
if O ( s )  + O"(s)  = O. 

DEFINITION 5.7.2: The real rational function A(s), s E C! is lossless bounded real 
(LBR)  (or inner, see Section 5.2) if A-(s)A(s) = I .  The set of all such A(s) is 
denoted A L B R .  

LEMMA 5.7.1: Let A(s) = (I - O ( s ) ) ( I +  O(s))-' then A(s) is lossless bounded 
real if and only if O ( s )  is lossless positive real. 

LEMMA 5.7.2: Let O(S)  = H A ( s I -  F A ) - ' G A  + JA, with F A  + = O, G A  = H a  
(so it is assumed that d2  = q 2 )  and zA+JT = O, with F A  E I K n A x n A  and E I K d z x d 2  
(=RwQzxwQ2), and with H A  and GA of compatible dimensions. Then the real matrices 
F A ,  H A  and J A  parameterize all lossless bounded real transfer functions O with 
state dimension na. 

LEMMA 5.7.3: Let A(s) = (I -O(s ) )  ( I  + O(S))-' with O ( S )  = H A  (SI - FA)-' 
GA +JA with F A ,  H A  and Ja  as defined in the previous lemma. Then a state-space 
realization for A(s) is given by: 

And this is a parameterization for all stable lossless bounded real A(s). 

Since matrices F A  and Ja  are skew-symmetric, we further reduce the number of free 
variables and state the main result (for the parameterization): 

THEOREM 5.7.2: Define the matrices BA and 4 A  as upper triangular real matrices, 
with zero on their diagonal, and with appropriate dimensions, such that F A  = 
BA - Ox, and J A  = #A - &, then the triple ( B A , g 5 A , H A )  parameterizes all stable 
lossless bounded real transfer functions A(s) = H A ( d  - FA)-lGA + J A  with Ir,, 
FA, GA and JA  defined by (5.23). 

Now consider the system with feedback. This can be described by (3.1)-(3.4) where Dz2 ,  033 
(and Dil) are taken to  be zero. The perturbed system, where A(s) = H ~ ( s i  - FA)-lGA+ J A ,  
is then given by 

(5.24) 
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Notice that 
assumed for simplicity. 

needs to be O for 1 1  T,,,,,(A) [ I 2  < 00 and that D32J~D23 = O is 

The design problem (where A(LBR)  denotes either A or A L B R )  is 

If we assumed that A,(s) would qualify as the worst-case uncertainty, we could determine 
the feedback law K*(s) that would be Ea-optimal. By computing an Ez-optimal K*(s)  for 
each A,(s), we iterate over A,(s) until it satisfies the conditions for a worst-case disturbance. 
This is the 'D-K'-like procedure which we mentioned in the foregoing. 

When (5.24)-(5.26) is assumed to be stable and A,(s) (and thereby FA, Ga, H a ,  J A )  is 
assumed to be fixed, the optimization problem 

can be solved as a standard Ea or LQG type of problem: 

and the E2 optimal control law u = K*(s)y is defined by 

(5.29) 

The optimization problem including the uncertainty A E A can now be formulated as a 
constrained optimization problem over a standard E2 optimal control problem: 
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(5.30) 

with K* the solution to (5.27)-(5.291, and Fs, F k ,  G A ,  B A ,  J A  according to (5.19)-(5.22). If 
E ALBR the optimization probiem can be formuiated as an unconstrained optimization 

problem: 

(5.31) 

with K* the solution to (5.27)-(5.29) , and with ( F A ,  G A ,  H A ,  J A )  defined by (5.23), where 
FA = ûA - ea, JA = 4~ - &. In the paper it is not mentioned whether this iteration d w a y s  
converges, or, if it doesn't always, under what conditions it does. 

In [Stoorvogel 931, which will be described briefly, two interpretations of the X 2  norm are 
used, i.e.: 

1. The square root of the energy contained in the impulse response and 

2. The RMS-value of the response to a white noise input. 

The approach is said to be conservative in the sense that the disturbance system is not 
assumed to be causal. Furthermore, the uncertainty is assumed to be unstructured, although 
frequency dependent weights can be incorporated. For state-space realization (3.1)-(3.4) it 
is assumed that A is stable and 1 1  T,,,,, / l m  < 1. Furthermore D21 (and Dll) is taken to be 
zero, so the system without feedback has the state-space realization 

(5.32) 

In this paper several different maximal Z2 costs are defined nameiy B, Bl, By, Bst, B2 and 
&c.  

B is the maximal X2 norm for the case where A(s) is assumed to be causal 

where zo denotes the nonzero initial condition of z, representing an impulse on z = O. This 
corresponds to definition (1.) of the 'HZ norm where the input is an impulse. This problem is 
particularly hard to  solve and at this moment the solution is unknown. B1 denotes the case 
where A(s) is non-causal 

Bl(XO) := ( 1 1  z1 11; 1 X ( o )  = 1 1  w2 112 5 11'2 1121 
W 2 E L 2  
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It is shown that this B1 depends on the particular basis of the input space chosen for the 
impulse input. To get rid of this dependence B2 will eventually be introduced. First BT is 
defined as 

BT(z0) := SUP {II z1ll; + Y(II 2 2  11; - II w2 ll;)> 
W2€& 

where y 2 O is the Lagrange multiplier. 3: is shown to be equal t o  xFP(y)xo where P ( v )  
solves the algebraic Riccati equation: 

such that 

A + B 2 ( y i  - DS2D12 - yDT2D22)-1(BFP + Dy2Cl + yDF2C2) (=:Act in [Stoorvogel 931) 

is asymptotically stable. 

Such a P exists if and only if 

(5.34) 

B,,, is the worst-case 7i2 norm over all static linear time-varying disturbance systems. Finally, 
B2 is derived as an upper bound for B,,,. However, it turns out to  be quite a crude bound since 
it is also an upper bound for B1. Using the second definition of the 7 í 2  norm, it is shown that 

Ultimately, the relation of B2 to  the auxiliary cost of a related problem is investigated. There- 
fore, the following related system (still without feedback) is defined: 

When Ba, is defined as the auxiliary cost of the system (see Section 4.3), we have 

tr[B1P(cp)B11 = B a c ( 9 ,  GP) 

(where P ( y )  again solves (5.33) subject to  (5.34) and (5.35)) and therefore 

(5.36) 

Then it can be shown that BSt I B I B1 5 B2 I Ba, and BI L BT. 
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Now augment G to include a controller K: 

(5.37) 

We will minimize 
B2(G x K )  = inf B 2 ( y ,  G x K )  

‘p 

(this equality is shown to be true in [Stoorvogel 931) where K is a stabilizing controller of the 
form: 

(5.38) 

Next, for fixed y ,  we define the following related system (with feedback): 

Minimization of B2(cp,G x K )  over all stabilizing controllers is shown to be equivalent to 
minimization of (i + cp)Bac(cp, G ,  x K )  over all stabilizing controllers. The problem of min- 
imizing Bac(y,G, x K )  has been discussed in literature (see [Bernstein and Haddad 89, 
Doyle et al. 89, Khargonekar and Rotea 91, Zhou et al. 901). Next some assumptions are 
stated through which the results of [Khargonekar and Rotea 911 are applicable, where the 
problem is reduced to a convex optimization over a finite-dimensional space as was seen in 
Section 4.5. Here, an additional parameter search over y must be carried out to obtain the 
smallest worst-case IF12 measure B2, i.e. we apply the following scheme: 

inf B2(G x K )  = inf inf B 2 ( p ,  G x K )  
K K v  

= inf inf(1 + p)Bac(y, G ,  x K )  

= inf(1 + y ) i ~ f  Bac(p, G, x K )  

As was mentioned before, this scheme has the form of a ‘y-K’-iteration similar to the D-K- 
iteration , well-known from p-synthesis. 

i P K  

‘p 

Obviously, the two methods described differ in many ways, but on the other hand they do 
have things in common, one of which is the important feature of not having the drawback of 
equalized input sets and/or output sets: a problem setting that only allows for a restricted 
class of problems. 

Finally, an approach that may be classified into this category is [Rotea and Khargonekar 911. 
Here, again w1 # w2,  z1 # z2 and the solution is obtained by solving ARE’S (not LMI’s). 
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On the other hand, they do not use a ‘D-K’ type of optimization to achieve the worst-case 
uncertainty. However, necessary and sufficient conditions are derived for an unconstrained 
optimization problem, whereas the original optimization problem is a constrained one, for 
which these conditions are sufficient. So again, the optimization is reduced from constrained 
to unconstrained. 



Chapter 6 

Conclusions 

We have surveyed a large number of approaches to solve the mixed-norm optimization prob- 
lem. It was seen that all but one focus on solving the two-norm problem, although this one 
approach (see Section 5.1)) which considers a three-norm problem setting does not really 
exploit this possibility and ends up giving no more than a vague description of what the 
methodology would look like. It was also seen that the X2/7-t, problem received the greatest 
deal of attention. This is due to  the fact that the need for a mixed-norm formalism originates 
from the separate XFt2 and X, control theories not being able to accommodate all practical 
design specifications. To accommodate bounded-magnitude signals, the !, optimal control 
theory was developed, but not until a few years ago, which explains the relatively small num- 
ber of approaches to this problem. Most of the approaches tend to have an ad hoc character, 
but the same is said for p-synthesis [Zhou et al. 901, which has been successfully applied in 
recent years. All methods have their pros and cons, and differ in complexity depending on 
how general the problem is posed. A list of this can be found on the following page. This list 
will not be complete, but serves as an overview of what was discussed throughout Chapter 5. 

It is not clear which one of these approaches qualifies as most promising. The future will point 
out which methods are best suited for practical application, but all efforts will undoubtedly 
cont ï ib~te to what mnst become a c!em c!~sed-!o~p s~!utier: t e  the  mixed-norm optimization 
problem. 

Recently (December 1995)) a number of articles were published in Proceedings of the 34th 
Conference of Decision and Control that with regard to  this survey deserve our atten- 
tion, but couldn’t be included in this report. This concerns a.0. an article by M. Sznaier, 
M. Holmes and J. Bu [Sznaier et al. 951 that addresses the mixed X z / L 1  control problem 
where wl = wz, z1 # z2. They utilize LMI’s to arrive at a convex optimization problem 
(combined with a ‘line-search’=one-dimensional minimization). Another article worth men- 
tioning is [Kapila and Haddad 951 by V. Kapila and W. M. Haddad, that considers the mixed 
X 2 / X m  stabilization problem, where wl = w2 and z1 = zz. It is recommended that a survey 
of mixed-norm optimization techniques is carried out every few years, since the work in this 
area is growing and for some time to  come not finished. 

59 
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APPROACH 
1. !I/$: a linear 

co 
programming 
approach 

2. !,/?ico: us- 
ing the Youla-para- 
metrization 

3. ",2/?i,: convex 
optimization using 
matrix inequalities 

4. %2/?iw: opti- 
mizing an entropy 
cost functional 
5. 'H2/?im: fixed- 
order controller de- 
sign using the aux- 
iliary cost 

6. 'Hz/?iFtoo: using 
a bounded power 
characterization 

7. ?i2/?im: mini- 
mizing the worst- 
case X2-norm 

PRO 
-accommodates bounded-magnitude 
signals 

-possibly three-norm optimization 

-possibly 101 # wal 21 # 2 2  

-can be solved using the efficient DA 
method that doesn't (necessarily) suf- 
fer from order inflation 
-accommodates persistent bounded 
signals 

-w # wal 21 # 22  

-convex optimization 
-provides an iterative algorithm 
-convex optimization 

-LMI based optimization can be 
solved with very efficient algorithms 
-some approaches take uil # w2, 21 # 
22 

-relatively simple solution 

-fixed (reduced) order controller 
design 

-provides an algorithm 
-homotopy techniques can effectively 
solve the ARE's 
-induced norm interpretation, instead 
3f an ad hoc upper bound 

-w1# w2 
-(structured uncertainty) 

-[S toorvogel :] convex op timization 

-[Steinbuch and Bosgra:] lossless 
bounded real formulation leads to un- 
:onstrained optimization 

CHAPTER 6. CONCLUSIONS 

CONTRA 
-(mostly) w1 = w2, 21 = 22  

-specifications such as ?im con- 
straints must be approximated; when 
t.his is done by samnliny t,he unit, &- 
cle this may prevent a solution from 
being found 

-may result in very high order 
controllers 

-not all approaches take w1 # w2, 

21 # 22 

-w1= w2 

-existing Riccati equation solvers can- 
not handle the ARE's that result from 
the fixed-order controller design 

-21 = 2 2  

-[Stoorvogel:] uncertainty not as- 
sumed to be causal 

-[Stoorvogel:] unstructured uncer- 
tainty 
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