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Chapter 1 

Introduction 

In many mechanical systems, limit cycles occur in the form of vibration or oscillation. The 
term limit cycle refers to  an isolated closed orbit in the phase portrait of nonlinear systems. 
Limit indicates the isolated and cycle indicates the periodic nature of the motions. 

Limit cycling phenomena, which are observed in many mechanical systems, have gained 
a lot of attention from researchers and engineers for a long time. Recently, as the need of 
precision positioning systems becomes inevitable, the limit cycle has been the central issue 
(problem) in precision control designs. A lot of efforts have been done to  understand and 
control the dynamics of the limit cycle. Sophisticated mathematical theories to  analyze the 
dynamics of nonlinear systems, such as topology and bifurcation theory, have been employed 
to understand more about the limit cycling phenomena. 

Radcliffe and Southward investigated the properties of stick-slip friction model that gen- 
erated limit cycle in [21]. [2] reported that describing function analysis, which is a common 
approximate technique to  analyze limit cycles in nonlinear systems can not describe friction, 
thus is not a good tool to analyze limit cycle generated by friction. Olsson and Astrom 
[19] categorized two kinds of friction generated limit cycles, i.e. limit cycle with and with- 
out sticking and developed mathematical tools to analyze those limit cycles. Bonsignore 
et. all. [6] reported pure Coulomb friction plus integral action can produce limit cycles 
and designed a controller, pole placement technique like. [12] studied bifurcation of friction 
generated limit cycle under PID controller. Azenha and Machado [3] proposed a first order 
model variable structure controller (FOM-VSC) that can eliminate friction generated limit 
cycles with a cost of a small steady-state error. [14] found that fractional derivative (FD) 
controller outperforms the variable structure controller (VSC). 

[3] reported that backlash at the joint of 2R manipulator promotes limit cycles. [7] 
proposed a delayed feedback controller to eliminate the limit cycle caused by backlash, it 
successfully used describing function method to analyze the limit cycle and to design the 
controller. [24] developed a continuous-time adaptive backlash inverse controller that can 
eliminate limit cycles with a cost of small steady-state error for systems with backlash at their 
input, and [25] developed an adaptive backlash inverse for systems with backlash a t  their 
output. [8] designed a compensation for backlash which is treated as a problem of optimal 
control. [18] proposed a gear torque compensator and modification of PID controller gains 
to suppress the backlash generated limit cycle. [15] proposed a hybrid controller to enlarge 
the basin attraction of the smallest-amplitude limit cycles in the systems with backlash. 
[l] presented an adaptive backlash inverse controller to suppress the limit cycles caused by 
backlash and showed that the controller outperforms PD type controllers. [5] proposed a 
systematic design of a nonlinear controller to decrease the amplitude of limit cycles in the 
systems with backlash. [22] proposed disturbance observers to suppress limit cycles in a 
class of nonlinear systems including systems with backlash. [20] analyzed limit cycles and 
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its bifurcation in a feedback system with dead zone and saturation. 
[lo] treated friction, backlash, and dead zone as non-smooth nonlinearities, discussed an- 

alytical methods for the existence of limit cycles, and proposed a robust tracking controller 
which is a combination of variable structure controllers and variable structure observers. 
[23] developed a parameter-space PID controller design method for controlling limit cycles. 
[4] proposed a feedback control of limit cycle amplitudes in frequency domain. [27] pro- 
p s e d  .n extrexxcrr? seeking scheme for limit cycle minimization. [13] discussed how state 
variab!es participate in limit cycles behavior. 1161 developed a controiler for controlling the 
multiplicity of limit cycles near Hopf bifurcation. [26] discussed harmonic balance analysis 
of flip bifurcation of limit cycles. And [9] studied codim 1 bifurcation of limit cycles in 
feedback systems with nonlinearities in the feedback loop and derived simplified conditions 
for the existence of the bifurcations by using the harmonic balance method. 



Chapter 2 

Periodic Solutions and Limit 
Cycles 

A solution x = x ( t )  of continuous-time systems is periodic with least finite period T if 
x ( t  + T) = x ( t )  and x ( t  + r )  # x ( t )  for 0 < T < T. For autonomous systems 

a periodic solution x of least finite period T corresponds to a closed orbit I? in Rn and is such 
that x( to)  = x(to + T )  and x(to + T )  # x ( tO)  for 0 < T < T. By specifying the initial time 
to ,  one specifies a location x = xo on the orbit. For a periodic solution initiated at x = xo, 
the positive orbit y+(xo) and the negative orbit y-(xo) are such that y+(xo) = y- (so)  = I'. 

A periodic solution of (2.1) is called a limit cycle if there are no other periodic solutions 
sufficiently close to it. In other words, a limit cycle is an isolated periodic solution and 
corresponds to an isolated closed orbit in the phase portrait of the state space. Every 
trajectory initiated near a limit cycle approaches it either as t + co or as t + -a. 

Example 1 Consider the system 

= p x  - w y  + ( a x - b y ) ( x 2  ++') 

where x and y are the states and p, w, a ,  and p are constants. 

Under the coordinate transformation 

x = r c o s 8  and y = r s i n 6  

the above system takes the simple form 

Multiplying (2.5) with 2r yields 
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Assuming that p # 0 and using separation of variables, we integrate (2.7) and obtain 

where TO # 0 is the value of r at  t = 0. Letting B = wt + 4 in (2.6) gives 

Then, it follows from (2.7) and (2.9) that 

when r2  # -p/a. Hence, for a # 0, 

where c is a constant. Substituting for r and 6 in (2.4), we obtain a closed-form solution of 
(2.2) and (2.3). 

When p > 0 and a < 0, it follows from (2.8) that 

irrespective of the value ro as long as it is different from zero. Consequently, it follows from 
(2.6) that 

Therefore, we have 

P k% lim z = (--)'I2 COS[(W - -)t + BO] 
t+w a a 

PP lim y = (-!)'I2 sin[(w - -)t + Bo] 
t + ~  a a 

where 80 is the initial vahe  of 8. Equations (2.13) and (2.14) represent a c!osed orbit in the 
x - y plane. This orbit is a circle whose center is at  origin and radius is Jz; that is, 

The closed orbit in Figure 2.la corresponds to the periodic solution of (2.2) and (2.3) 
when p > 0 and a < 0. The figure also displays four positive orbits with the arrow on 
each of the orbit indicating the direction of evolution. Since there are no other closed orbit 
sufficiently near this periodic solution (in fact, there is no other closed orbit in the entire 
planar space), the closed orbit of Figure 2.la is a limit cycle. It  is also an invariant set 
because an orbit initiated from any point on the closed trajectory remains on this orbit for 
all times. Furthermore, we observe that positive orbits initiated from different points in the 
state space x - y,  other than origin are attracted to the limit cycle. Hence, it is a stable 
limit cycle or a periodic attractor. Its basin of attraction is the entire x - y space excluding 
the origin, which is an unstable fixed point of (2.2) and (2.3). 

When p < 0 and a > 0, we infer from (2.8) that 
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Figure 2.1: Periodic solutions of (2.2) and (2.3) 

lim r = ( - / , ~ / a ! ) ' / ~ .  
t+-w 

Then, (2.15) stili describes the corresponding closed orbit in the z - y plane. In Figure 
2.lb, we show some orbits of (2.2) and (2.3) when p < 0 and a! > 0. Here, the closed orbit is 
depicted by broken lines. Again, because there are no other closed trajectories sufficiently 
near this periodic solution, it is a limit cycle. Further, it is also an invariant set. Moreover, 
this limit cycle is said to be unstable because all positive orbits initiated from nearby points 
spiral away from it as t +- ca while all negative orbits initiated from nearby points spiral 
toward it as t -+ -00. In Figure 2.lb, the origin is a point attractor of (2.2) and (2.3), and 
its basin of attraction is bound by the closed orbit. 

Example 2 W e  consider the system 

Multiplying (2.16) with 2x and integrating , we obtain 

where H is a constant that represents the total energy of the system and xo = x(0), and 
xo = x(0). Thus, for any initial condition (xo, ko) ,  (2.17) represents a closed trajectory in 
the x - x plane and, hence, a periodic solution. In Figure 2.2, we show four closed orbits 
of (2.16) obtained by choosing four different initial conditions. It is noticed that periodic 
solutions in Figure 2.2 are not isolated but form a continuum. Because there exist an infinite 
number of closed trajectories in the vicinity of any closed trajectory, a periodic solution of 
(2.16) is not a limit cycle. 
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Figure 2.2: Periodic solutions of (2.16) 



Chapter 3 

Mechanical Systems that 
Exhibit Limit Cycles 

3.1 Mechanical Systems with Friction 

Radcliffe and Southward [21] investigated the properties of stick-slip friction model that 
generated limit cycle. They investigated the controlled stick-slip mass as shown in Figure 
3.1. Some friction models, which are shown in Figure 3.2, were used. It is shown that limit 
cycles only occur for the friction models whose damping function drops (dis)continuously 
for non-zero velocity from the static force level (i.e. the Stiction plus Viscous Model and 
Exponential plus Viscous Model in Figure 3.2, and the controller must have an integral 
action. 

Damping hu. 4 \.iml 
The I-DOF conceptual stick-slip mass systan 

used to investigate models of stick-siip friction f a .  

Block Diagram of PID control system 
incorporating stick-slip mass system. 

Figure 3.1: Controlled stick-slip mass system 

Bonsignore et. all. [6] reported pure Coulomb friction plus integral action can also 
produce limit cycles. The the stick-slip models induce limit cycle with sticking, where the 
velocity at  the friction interface is zero during a time interval. While the pure Coulomb 
friction model induces limit cycle without sticking, the velocity is zero only at  isolated time 
instants. The last type of limit cycle can be explained in the terms of relay oscillations. It 
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Figure 3.2: Three friction models 

is shown in [2] that the describing function method, which is explained in section 4.1, is not 
a good method to analyze friction induced limit cycles because the friction induced limit 
cycle often can not be approximated by a nonbiased sinusoidal function. 

3.2 Mechanical Systems with Backlash 

Backlash occurs in mechanical systems driven via two mating masses (gears) as depicted in 
Figure 3.3b. In Figure 3.3b the movement of the driving gear is denoted by v(t) ,  and the 
position of the driven gear is denoted by u(t) ,  while the slope m depends on the ratio of the 
mass of the two gears. 

(a) (bl 

Figure 3.3: Backlash model 
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The mathematical model of the backlash is given by 

m(v - c,) if v(t) > 0 and u(t) = m(v(t) - c,)  
u= m ( v + q )  if v(t) <Oandu( t )  =m(v(t)+cl)  . (3.1) 

u otherwise 

Another way to model backlash is using the principle of conservation of momentum after 
collision, yields a bynaizk model ef backlash. Let the two mating gears have masses I& 
and M2 respectiveiy, XI and a2 are their position respectiveiy, and the clearence between 
the two gears is hl. A collision between the masses MI and M2 occurs when XI = x2 or 
x2 = x1 + hl. In this case, we can compute the velocities of masses MI and M 2  after the 
impact (x i  and xh, respectively) by applying the Newton's law 

where 212 = XI -52, and E is the restitution coefficient. On the other hand, by the principle 
of conservation of momentum it comes 

From equations (3.2) ar,d (3.31, we obtain 

It is reported in [3] that backlash at the joint of a 2R manipulator promotes limit cycles. 
[3] also showed that the describing function method can predict the limit cycles with a very 
good accuracy in terms of frequency of the oscillation. 

3.3 Servo Systems with Dead Zone and Saturation 

Ortega et. all. [20] reported that a dc servomechanism with proportional gain controller 
exhibits limit cycle due to the deadzone and saturation in the characteristic map of the 
input voltage to the output velocity of the dc motor. The block diagram of the system and 
the nonlinear input-output relation can be seen in Figure 3.4 and Figure 3.5, respectively. 

The deadzone in Figure 3.4 due to static friction between rotor and stattor of the dc 
motor, while the saturation is caused by the magnetic field saturation. In Figure 3.5, G(s) 
is the linear transfer function of the dc motor and Kc is the proportional gain. 

It is noted that in such a system the high frequency dynamic of the linear part of the 
model of the system, G(s), plays an important role to explain the occurence of the limit 
cycles. The high-frequency pole of G(s) is usually not identified via indentification using 
temporal response to a step input. [20] shows that the limit cycle of this type of system 
can be predicted and analyzed by using the describing function method, see section 4.1. 
The limit cycle occurs at a certain value of controller gain, Kc = Kpin. For Kc < KFin 
there is no limit cycle occured, instead the system has a band of stable fixed (equilibrium) 
points including origin. But for Kc > K,"'" the system has two limit cycles and the band 
of stable fixed points. The limit cycle with bigger amplitude is stable, while the smaller 
one is unstable. This lead to the fold bifurcation of limit cycles with the controller gain Kc 
is the bifurcation parameter. The bifurcation of limit cycles is explained in Chapter 6. 
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Figure 3.4: Static characteristic of the servomechanism for positive values input 

Figure 3.5: The closed loop system with proportional gain 



Chapter 4 

Tools for Predicting Limit 
Cycles 

4.1 Analytical Tools 

4.1.1 Describing Functions 

The describing function technique is a frequency response method. This method is applied 
for nonlinear systems that can decomposed into linear subsystems and a nonlinear subsys- 
tem, which can be depicted by Figure 4.1. In the figure 4.1 GI and G2 represent linear 
parts of the system and N is a nonlinear element. 

In the describing function analysis, it is assumed that the input x to the nonlinearity is 
sinusoidal 

x = Asinwt (4.1) 

and the linear subsystems have a low pass filter characteristic. This method works as follows. 
Let the nonlinear element be an ideal relay. As shown in Figure 4.2, the square wave is the 
output of an ideal relay for a sinusoidal input. The square wave can be represented by a 
Fourier series of the general form 

W 

~ ( t )  = bo + C (a, sin nut + b, cos nwt) .  (4.2) 
n=l 

Since Gz is assumed to be a low pass filter then the harmonic terms (n > 1)  can be 

I 

Figure 4.1: System configuration for Describing Function analysis 

11 
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Figure 4.2: Square-wave output of ideal delay element given sinusoinal input 

neglected. Tnus, the output y is approximated by the fundamental Fourier component 

yf = a1 sin w t  + bl cos wt .  (4.3) 

Hence, the nonlinear element can be modelled as a function 

which is called describing function. Since N is modelled as an equivalent linear gain, in 
Figure 4.1 , for R = 0 (because limit cycle is a self-sustained oscillation), we have 

where G = GIG2 is the product of linear elements in the loop. From (4.5), the condition 
for existence of a nonzero solution (limit cycle) for the output C is 

This has a graphical interpretation that a limit cycle is identified by the intersection of 
the polar plot of G(jw) and a plot of -1/N. Furthermore, the predicted limit cycle has 
amplitude A and angular frequency w. 

4.1.2 Harmonic Balance 

Harmonic balance method basically is the same as the describing function. In this method 
the periodic output y is approximated not only by the fundamental Fourier component but 
with some harmonic terms in addition to the fundamental Fourier component. 
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4.2 Numerical Computation 

4.2.1 Shooting Method 

The periodic solution of the nonlinear systems x = f (x) is found by solving Zpoints bound- 
ary value problem, in which the solutions are sought of 

where T is the period of the periodic solution. Since (4.7) is a system of n equations with 
n + 1 unknowns (the n components of x and period T) can not be solved directly. Instead, 
y H(x, T) is linearized, to obtain 

where QT(x) is the solution of the variational equation. To achieve H = 0, Ax and A T  are 
chosen such that Ay = -H. This value of Ay is substituted to (4.8), yields 

In order to make this system solvable, a constraint is added, which restrict the state correc- 
tion term Ax to be orthogonal to f (x), given by 

F'rom (4.9) and (4.10), the following iterative scheme is assembled, with which zeros of 
H can be found, using initial guesses x(O) and ~ ( ' 1 .  

where the superscript indicates the iteration count. This scheme is reiterated until some 
convergence criteria is met. The algorithm is similar to the Newton-Raphson algorithm, 
and thus the same convergence property is applied. When the shooting method returns 
values P and T, it should be tested whether T is the minimum period of the solution, since 
it could be a multiple of the actual period. 



Chapter 5 

Available Control Schemes 

This chapter presents some available control schemes for eliminating, reducing amplitude, 
and controlling the amplitude and frequency of limit cycles. Most of the control schemes 
are designed for controlling limit cycles induced by a certain type of nonliniearity. 

5.1 Compensation Techniques 

In this section, we present some methods to  eliminate or reduce the size of limit cycies by 
designing a compensator to eliminate the nonlinear element that induces the limit cycles. 

5.1.1 Compensation for Backlash 

Tao and Kokotovic [24] developed an adaptive backlash scheme and applied it to  feedback 
control of a known linear plant and unknown backlash at its input. In this case, backlash 
as depicted in Figure 3.3 is modelled as 

if U(t) > 0 and  u(t)  = m(v(t)  - c,)  
u(t)  = or 6(t)  < 0 and u(t)  = m(u(t) + e l )  , (5.1) 

0 otherwise 

which is a time derivative of backlash model (3.1) in section 3.2. 
The desired function of a backlash inverse is to cancel the damaging effects of backlash 

011 system performance: the delay corresponding to time needed to traverse an inner segment 
of B ( - )  and the information loss occuring on an inner segment when the output u(t) remains 
constant while the input v(t)  continues to change. That is, given a desired signal ud( t )  for 
u( t ) ,  a backlash inverse BI(.)  is such that ud( t )  = B(BI(ud( t ) ) ) ,  see Figure 5.1. 

Figure 5.1: Backlash inverse for compensation 
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Figure 5.2: Adaptive inverse backlash 

The following mapping BI(-)  = BI(m, c,, el; .) from ud(t) to v(t) defines such a backlash 
inverse: 

if ud(t) > 0 and v(t) = m+ c, 
t a t ,  or ud(t) < 0 and v(t) = - + cl 

ii(t) = 0 if ud(t) = 0 (5.2) 
g(t,t) i f l i d ( t ) > O a n d v ( t ) = m + c l  
-g(t,t) if ud(t) < o and v(t) = +$ + c, 

where g ( ~ ,  t) = 6(7 - t)(c, - el) with d(t) being the Diract &function. In this definition the 
inverse of a horizontal segment of the backlash characteristic is a vertical jump of a distance 
c, -q. 

When the exact backlash parameters are unknown, we use their estimates m(t), E,(t), El (t) 
A A 

to design an adaptive backlash inverse BI(-)  BI(m, E,, El; -),which is graphically depicted 
in Figure 5.2 by two parallel straight lines and instantaneous vertical transitions between 
this two lines. The instantaneous vertical transitions take place whenever ud(t) changes its 
sign. 

5.1.2 Disturbance Observer 

Shahruz and Rajarama [22] designed disturbance observers to suppress limit cycles in a class 
of nonlinear feedback systems. The class of nonlinear feedback systems are those that can 
be decomposed into a iinear piant, r", and a nonlinearity, N, which are shown in Figure 5.3. 

The nonlinear systems in Figure 5.3 is called S(N, P )  systems, which consist of the plant 
P represents a (possibly unstable) SISO linear time-invariant system, the nonlinearity N 
represents a SISO nonlinear time-varying system that can be decomposed as 

where H is a stable SISO linear time-invariant system, and @ is a SISO time-varying non- 
linearity, whose output is given by 

d(t) := (@u)(t) = $(u(t), t). (5.4) 

It is assumed that d is bounded for any bounded input u. The Cin  Figure 5.3 is a SISO 
linear or nonlinear controller that at least achieves the BIB0 stability of the system S(N, P). 

By equations (5.3) and (5.4), the output of the nonlinearity N is the summation of the 
output of a stable linear iime-invariant system and a bounded functior, of time, i.e: 
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Figure 5.3: Nonlinear feedback system S(N,  P )  

Figure 5.4: The equivalent feedback system S(H,  P )  

Under the above decomposition the S (N,  P )  system can be transformed into S(H,  P )  system, 
which is an equivalent from the input-output point of view. The controlled S(H, P) system 
is depicted in Figure 5.4. 

The disturbance observer is designed to suppress the effect of the bounded disturbance 
d in the S(H, P )  system, which is depicted in Figure 5.5. 

In Figure 5.5, H,(s) and Pn(s) represent the nominal transfer function of H(s)  and P(s)  
respectively, and Q(s) is a low-pass filter with the unity DC-gain. A typical form of Q(s) 
is 

where p is a t  least equal to the summation of the relative degrees of Hn(s) and P, (s), and ak 

and r are positive real numbers. A realizable implementation of the disturbance observer 
for the system S(N, P )  (equivalently S (H,  P ) )  is shown in Figure 5.5. [22] showed that 
the disturbance observer successfully eliminates the backlash induced limit cycles. 
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Figure 5.5: The S ( H ,  P) system with disturbance observer 

5.2 Variable Structure Controller (VSC) 

[3] applied the VSC, expressed by the following equation, to a 2R manipulator. 

The VSC becomes of first order, First Order Model (FOM) VSC, if the sliding surface CT 
obeys the expression: 

where the parameter c is the corresponding eigenvalue, qe is the input to the VSC and T is 
the respective output. For a second order model (SOM) VSC, the sliding surface g is given 
by 

where < is the damping ratio. The block diagram of the VSC is shown in Figure 5.6. 
[3] showed that the VSC can eliminate the friction induced limit cycle with the cost of a 

small steady-state error but does not succeed to eliminate backlash induced limit cycle. 

5.3 Fractional Derivative (FD) controller 

FD controller is a proportional derivative (PD) controller like where the term derivative, 5, 
is replaced by fractional derivative which is defined as follows. The fractional derivative of 
order a,  Dff : 

1 "  T(a + i) 
Dff x(t) = lim 

0 [ - l k k  + 1 - k + 1) 
~ ( t  - kh) 

k=O 1 
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Figure 5.6: Block diagram of the VSC 

where I? is the gamma function and h is the time increment. Therefore, for a discrete-time 
control algorithm, with sampling period T, this formula can be approximated through a r-th 
order truncated series, resulting the following equation in z-domain: 

In order to  have a good approximations, we must have a large number of terms and a small 
sampling period. 

[14] compared the performance of the FD controller and the VSC controller in stabi- 
lizing a 2R manipulator having backlash, friction, and flexibility in the joints, which can 
exhibits limit cycling. It turns out that the FD controller outperforms the VSC controller 
in suppressing limit cycles. 
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Bifurcation of Limit Cycles 

Bifurcation theory is concerned with the qualitative changes in the phase portrait of a system 
as a result of the birth or the disappearance of limit sets and their corresponding basins. 
Since limit cycle is one of these limit sets, the birth, and the disappearance of the limit 
cycles causes bifurcations in the dynamics of a system. Bifurcations of limit cycles refer to 
any qualitative changes with respect to limit cycles, i.e. the birth, the disappearance, the 
multiplicity, and the change of stability of the limit cycles. 

There are four kinds of bifurcations of limit cycles, which will be presented in the following 
sections. 

6.1 Hopf Bifurcation 

In the Hopf bifurcation of limit cycles is born from equilibrium (stationary solutions) at the 
bifurcation point (Hopf point) because the equilibrium after the bifurcation point becomes 
unstable. The scenarios of this type of bifurcation can be seen in Figure 6.1. 

In Figure &la, the branch of stationary solutions extends beyond Xo, but it is unstable 
for A > Xo. The Jacobian at  a Hopf bifurcation has a pair of purely imaginary eigenvalues 
&iP. Here a branch of periodic orbits is born. It is also noticed in the Figure 6.la, that 
for X > Xo, X + Xo the periodic solutions merge into the stationary branch, the amplitude 
vanishes. The bifurcation is vertical and the amplitude locally behaves like d m .  

The situation in of Figure 6.la and Figure 6.lb depicts a transition without jump: passing 
Xo when increasing X one experience a soft loss of stability of the stationary state; the 
bifurcation is supercriticai. Figure 6.ic illustrates a subcritical situation where locally no 
stable exists for X > Xo. Globally, this local scenario often extends to a different situations, 
see Figure 6.ld. 

In Figure 6.ld the branch of unstable periodic orbits bends back, gaining stability at a 
turning-point-like situation. Consequently, when we increase X beyond the critical Hopf 
parameter value Xo a jump occurs. For X > Xo, there are no neighboring small-amplitude 
periodic solutions, and the dynamics is immediately attracted by a large-amplitude limit 
cycles. This large jump is the hard loss of stability. 

6.2 Fold Bifurcation 

Fold bifurcation occurs if a branch of stable limit cycles and a branch of unstable limit 
cycles collide and disappear at the bifurcation point. Figure 6.2 shows that for bifurcation 
parameter a < 0 the system has two limit cycIes; a stable limit cycle L1 and an unstable 
limit cycle L2. As the bifurcation parameter a increases, at the bifurcation point a = 0 the 
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Figure 6.1: Scenario of Hopf bifurcation of lmit cycle 
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= 0 

Figure 6.2: Fold bifurcation of limit cycles 

two limit cycles merge and form a semi-stable limit cycle Lo. For a > 0, the limit, cycle Lo 
disappears, thus the system has stationary solutions. 

6.3 Flip Bifurcation 

In a flip bifurcation (also called period doubling), a cycle of period two (a stable limit cycle) 
appears and the current branch of limit cycle loses stability. This situation can be seen in 
Figure 6.3. 

Dynamically, the flip bifurcation is the following scenario (see Figure 6.4): Assume a 
branch of periodic solutions (limit cycles) parameterized by X with stable orbits on one side 
of (say, X < Xo ) and a multiplier crossing the unit circle with p(Xo) = -1. Then, locally, 
there are periodic orbits with the double period near Xo. These double-periodic orbits form 
a new branch that emerges at  Xo. Note that the periods vary with A, and the factor 2 of 
period doubling holds only asymptotically for X -+ Xo. The situation typically is as in the 
left part of Figure 6.4, for Xo = Xol. The new branch of the double period can experience 
a period doubling too, and forms a cascade of period doubling as shown in Figure 6.4. In 
the supercritical case, the stability is exchanged to the branches of the double period. After 
some period doubling the period has become so large that the orbit looks irregular. It has 
been shown that the bifurcation values satisfy a universal scaling law, 

lim Xv+1 - A, = 0.214169 ... 
",-+a Xv - Xvpl 

This scaling law, named after Feigenbaum, has a remarkable consequence: There is an 
accumulation point A, of the sequence of period doubling bifurcations. Passing A, means 
that the "period" has reached infinity. The resulting solution is fully aperiodic, and is 
chaotic. It is well known that a cascade of period doubling is one of the important routes 
to chaos. 
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Figure 6.3: Flip bifurcation of limit cycles 

Figure 6.4: Cascade of period doubling bifurcation 
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Figure 6.5: Neimark-Sacker bifurcation of limit cycles 

6.4 Neimark-Sacker Bifurcation 

In Neimark-Sacker bifurcation some long-period cycles of difference stability appear on a 
two-dimensional invariance torus, as depicted in Figure 6.5. Its scenario is as follows. For 
the bifurcation parameter a > 0, the system has a stable limit cycle Lo. As a decreases 
until it reaches the bifurcation point at a = 0 the system still has the stable limit cycle Lo. 
Then for a < 0, the stable limit cycle Lo becomes a two-dimensional invariant torus and 
some long-period cycles of difference stability appear in this torus. 



Bifurcation Control 

Bifurcation control refers to the task of modifying certain bifurcative dynamical behavior 
of nonlinear systems that is desirable for intended application, by means of designing an 
appropriate controller. Typical objectives of the bifurcation control incIude delaying the 
occurrence of an inherent bifurcation, introducing a new bifurcation phenomena at a prefer- 
able time or parameter value, changing the parameter set or values of an existing bifurcation 
point, modifying the shape or type of a bifurcation chain, stabilizing a bifurcated solution or 
branch, monitoring the multiplicity, amplitude and/or frequency of some limit cycles emerg- 
ing from a bifurcation mechanism, optimizing the system performance near a bifurcation 
point, or a combination of these objectives. In our case, the bifurcation control is intended 
to force the system to a limit cycle with smaller amplitude or eventually to  the desired 
equilibrium point. 

Genesio et. all. [9] gave analytical conditions for bifurcations of limit cycles in the 
describing function term of parameters for nonlinear feedback systems where the nonlin- 
ear element is the feedback loop, as depicted Figure 7.1. The analytical conditions are 
summarized in the following table. 

- 
nonlinear subsystem 

Figure 7.1: Nonlinear Feedback Systems 
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Figure 7.2: Summary of Limit Cycles Bifurcation Conditions 
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