EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Semantics for Prolog via term rewrite systems

Citation for published version (APA):

Baeten, J. C. M., & Weijland, W. P. (1988). Semantics for Prolog via term rewrite systems. In Conditional Term
Rewriting Systems. 1st International Workshop, Orsay, France, July 8-10, 1987 : proceedings / Ed. S. Kaplan,
J.-P. Jouannaud (pp. 3-14). (Lecture Notes in Computer Science; Vol. 308). Springer.

Document status and date:
Published: 01/01/1988

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/cfa497b1-9b20-4efa-a68a-74d417f156a2

Semantics for Prolog via term rewrite systems

J.C.M. Baeten
Programming Research Group, University of Amsterdam,
P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

) W.P.Weijland
Dept. of Software Technology, Centre for Math. and"Comp. Sci.,
P.O.Box 4078, 1009 AB Amsterdam, The Netherlands

Abstract: We present semantics for logic programs using term rewrite systems. Reading
program lines from left to right (so reversing the arrows), considering the resuit as a rewrite
system, immediately gives the usual declarative semantics (the least Herbrand model).
Then, we add a priority ordering on the rewrite rules, and obtain a procedural semantics for
Prolog with depth-first search rule. This gives us different semantics in the same setting.

Note: Partial support received under ESPRIT contract 432, An Integrated Formal
Approach to Industrial Software Development (Meteor).

1. INTRODUCTION
- In this paper, we give a new approach to semantics for logic programming and Prolog. This semantics is
" based on term rewriting. If we reverse the arrows in a logic program, and consider all closed instances of
' program clauses, we can, after two minor adaptations, work with the resulting TRS (Term Rewrite
"'System). We prove the following theorems:

1. A ground atom reduces to true in the TRS iff it is an element of the success set of the logic program.
2.A grbund atom has no infinite reductions and no normal form true in the TRS iff it is an element of the
“finite failure set of the logic program. R . h
\ Thus, there is a clear correspondence between the least Herbrand model and the set of rewrites determined
by the TRS, and we get a declarative semantics for logic programs by means of term rewrite systems. ' '
Then, in section 3 we review the theory of Priority Rewrite Systems (PRS), and give a generalization of the
i theory in [2, 3]. A PRSis a TRS with a partial ordering on the set of rules. W.r.t. this partial ordering, we
have a notion of correctness, that tells us when a particular rewrite is allowed; roughly spealdrig, it is
allowed if it is not obstructed by a rewrite of higher priority. We say thata PRS is well-defined if it has a

unique sound and complete rewrite set, i.e. a set of rewrites such that a rewrite is an element of it iff it is
correct w.r.t. it.

In section 4 we define a notion of correctness for PRS's, that implements the depth-first search rule, such
that a PRS with this notion of correctness is always weli-defined. Then, we have the following thecrems:

1. A ground atom has a correct reduction to true in the PRS iff it is in the success set of the Prolog
~program, implemented with depth-first search rule.

2. A ground atom has no infinite reduction, and no normal form true in the PRS iff it is in the finite failure
set of the Prolog program with depth-first search rule.

Thus, we obtain a procedural semantics for Prolog, using the same formalism as in our earlier semantics.
- By adopting a reduction strategy on top of the priority ordering, we can implement a particular computation
rule. In the last section, we give some indications how one can obtain a declarative semantics. for Prolog.

1t is the subject of ongoing research to give an implementation in this formalism for control features such as

cut.

2. DECLARATIVE SEMANTICS FOR LOGIC PROGRAMS)

We give a declarative semantics for logic programs based on term rewrite systems (TRS's). In section 4,
we will see that we can use the same approach in order to give a procedural semantics for Prolog with
depth-first search rule. First, we give some basic definitions concerning logic programs and term rewrite

systems.

2.1 DEFINITION ‘
We have an alphabet or signature containing (countably many) variables, constants, functions and
predicates. Terms, atomic formulas and formulas are defined in the usual way. A term or formula is called
ground or closed iff it contains no variables.
A clause is any formula that is the universal closure of a formula of the form (By A ... A Bp) = (A v ... v
Ay) (n+k > 0, the A; and Bj are atomic formulas), usually written as

‘ A1, wens Ak — B1, ceny Bn.
A clause is a program clause if k=1, and a goal clause if k=0.
A program is a finite sequence of program clauses (so the clauses occur in a certain order). We will also
assume that the signature of any program does not contain a constant named {rue, or a predicate named &
(if this is not the case, a renaming is necessary).
A substitution is a mapping from variables to terms, and a substitution extends in the obvious way. to
terms and formulas. The result of applying substitution 9 to formula A is denoted AS. A ground
substitution maps all variables to closed terms.
We define the notions of an SLD-derivation, an SLD-refutation and an SL.D-tree as in [5]. Note that an
atom has an SLD-refutation iff it is a logical consequence of the program.
The success set of a program is the set of all ground atoms that have an SLD-refutation.
The finite failure set of a program consists of all ground atoms A that have a finitely failed SLD-tree
(i.e. a finite SLD-tree with no success branches).

2.2 DEFINITION _
" In a term rewrite system (TRS), there is no difference between predicates and functions (they are all called
_functions), and so there is also no difference between terms and atomic formulas (they are all called terms).
» A TRS is a finite sequence of (rewrite) rules, pairs of terms <t,s>; usually written as
e t—s.
_ "" : The left-hand side term t in such a rule must not be only a variable, but here we do not adopt the usual
; requirement that any variable occurring in the right-hand side S must also occur in t.
E : _These rules generate a reduction relation on terms: this is the closure of the rules under substitution and
L - contexts, and is also denoted —. If t — s for closed terms 1,8, we call t — s a rewrite. The semantics of a
fi; ““TRS is its set of rewrites. Further, —* is the transitive and reflexive closure of —. A term t is a normal
- . form if for no term S we have t — S; a term t' has a normal form if there is a normal form t with ' =%

2.3 TRANSLATION ,
Now with every program we will associate a term rewrite system. The signature of the TRS will contain,

besides the elements of the signature of the program,; a special constant true, and a special binary predicate
(function) &. We will use the following conventions in order to use & as a function of variable arity:

&({t) is another notation for t

&{ty, ..., thet) - is another notation for &(&(tq, - in)s thet):
Now the transformation from a logic program to a TRS will translate a clause A « B1-, <oy B with n>1
into a rule A = &(By, ..., By} and a clause A <~ into arule A — true; further, the transformation will

preserve the ordering and will ﬁrially add two rules
&(x, &y, z)) = &(&(x,), 2)
&(true, true) — true. .
If P is a logic program, call the TRS that results by applying this transformation P*.

2.4 EXAMPLE :
Let P be the logic program in table 1a. Then the TRS P* is displayed in table 1b.

P« q,r(x) p — &(a, r(x))
P« ' p — true
g rx k q—r(x)

&(x, &{y, z)) — &(&{x, y), 2)
&(true, true) — true

Table 1a. i Table 1b.

Now we can formulate the following theorem. In the proof, we use terminology of [5].

2.5 THEOREM

The ground atom G is an element of the success set of the logic program P iff G has true as a normal form
in the TRS P*. ' ,

PROOF: Suppose G is a ground atom, Since G is in the success set of P, there is an SLD-refutation of P u
{«G}. Using the obtained answer substitution, we can turn this refutation into an (unrestricted) SLD-
refutation in which all successive goals consist of ground atoms. Now each step in the SLD-refutation will
correspond to a rewrite step in the TRS P*, as follows: for each step from a goal « Aq, ..., Ay, ..., A
(consisting of ground atoms) to a resolvent goal ¢ Aq, ..., A1, B4, ..., B4b, Amyq, -, Ay, using arule
A ¢« By, ..., Bgand a ground substitution 8 with AB = Ap,, there is a corresponding reduction sequence
&A1, s Ay e A &(Aqs s A, &(B16, ., BgB), Ayt s A) —* &(Aq, o A, B4,
Bgf. Ama1s. s A), using the 6-instantiation of rule A — &(By, ..., Bg) in the first step, the added rules in .
the following steps. The empty clause O corresponds to the term true.

The reverse direction is equally easy.

2.6 THEOREM

The ground atom G is an element of the finite failure set of the logic program P iff G has no infinite
reductions in P*, and does not have {rue as a normal form in- P*.

PROOF: Just like the previous theorem. Note that if we have an SLD-tree that has no success branch and no
infinite branch, then by Konig's lemma there must be a K such that the tree is finitely failed of depth <k.

3. PRIORITY REWRITE SYSTEMS

In this section we give a review of the theory. of Priority Rewrite Systems (PRS's). The notion of a PRS
was introduced in BAETEN, BERGSTRA & K1L.OP [2], and rephrased by the same authors in [3]. Here, we
give a more general treatment, in order to define a special purpose PRS in the following section. For more
explanations and examples, see [3] or [2].

3.1 DEFINITION

A Priority Rewrite System is a triple (R, <, ¢}, where R is a Term Rewrite System, < is a partial
ordering on the rewrite rules, and ¢ is an anti-monotonic mapping on sets of rewrites. ,
In this paper, we will only consider the linear ordering, i.e. if a PRS has rules-ry,...;f, {(presented in this
order), then 1 < 1y iff i <. Ifr <'s, we say rule r has priority over rule s.

Instead of ¢{R) we write RC. Anti-monotonicity means that R ¢ S implies that R¢ o SC. If a rewrite is in
RC, we say it is correct wr.t. R.

Now, let P be a PRS. Considered as a TRS, its semantics is the set of all rewrites, i.e. the set of all closed '
instantiations of its rewrite rules. As a PRS, some of these rewrites are invalidated, are not correct, because
of the existence of a rule that takes priority. We clarify our intention with the following example.

. COnsider a PRS containing the rules in table 2 below. Rule rq has priority over rule rp. Let a be a constant.
o - 'Now the rewrite eq(a,a) — false is incorrect, because the term eq(a,a) is also an instantiation of the left-
“hand side of rule r4, and the rewrite eq(a,a) — true will take priority.

rir eqix,x) — true
ro: - eqx,y) — false
Table2.

“To be more precise, we could use the following definition of the mapping C: a rewrite r: p — g is incorrect
w.r.t. a set of rewrites R iff there is arewrite f:p — ...in Rwith r' < r. Itis obvious that this definition

‘makes C into an anti-monotonic mapping.
S In references [2] and [3], different notions of correctness were ‘used. In this paper, we will need still
““another notion, in order to give a procedural semantics for Prolog.

-+ 3.3 DEFINITION
= Let P be a PRS, and R a set of rewrites of P.
i. Ris sound iff R c RS, i.e. every rewrite in R is correct w.r.t. R;
 ii. Ris complete iff R o RS, i.e. every rewrite, that is correct w.r.t. B, isin R;
*iii. P is well-defined iff there exists a unique sound and complete rewrite set for P. Such a rewrite set is

e called the semantics of P.

3.4 NOTE
It is by no means the case that every PRS is well-defined. In [3], examples are presented of a PRS with no
* sound and complete rewrite set, and a PRS with two sound and complete rewrite sets. It is the subject of
.~ ongoing research to determine classes of PRS's that are well-defined. For example, in [3], it is proven that
: all strongly terminating PRS's are well-defined (w.r.t. the definition of correctness in [3]).

. 3.5LEMMA
— LetPbeaPRS, and R a set of rewrites of P.
: 1.if RS, and S is sound and complete, then R is complete;
S ii.if R < S, and S is sound and complete, then R is sound.
. 'PROOF: i: R 2 S implies RC < SC. Since S is sound and complete, S¢ = S. Thus R 2 RC, which means
that Ris complete. The proof of ii. is similar.

3.6 DEFINITION
Let P be a PRS, and R a set of rewrites of P. We put Rp(R) = (RC)C. If there is no confusion possible, we

write R instéad of Rp. Since ¢ is anti-monotonic, it follows that R is a monotonic mapping. In general,
however, R need not be continuous. Since R is monotonic, we have a least fixed point Ifp(3) and a
greatest fixed point gfp(R). :

Also, we can define the sets RTo and R for every ordinal o as in e.g. LLOYD [5]. We have:
1. %70 = @ and %40 = @ '

2. RT(o+1) = R(RTa) and K(o+1) = KGR la)

3. RTA = Ugey, KT and KA = Mgy, Ria, if A is a limit ordinal.

3.7 LEMMA
LetPbe a PRS, and let n e N. Then:
i. ®Tn is sound and Rdn is complete
i, (RTn)e = Ridn

it (Rdn)e = %T(TH‘!)
PROOF: By induction on n. For n=0, we have (i) since @ < ¢, which implies @¢ o ©°C, and (11) and (i)
follow by definition. The induction step is just as easy.

3.8 LEMMA (Stabilization Lemma, see also [2] or [3])
Let P be a PRS. If for some n,m RTn = Rlm, then P is well-defined.
PROOE: Immediate from 3.6 and 3.8. R7Tn is the least and greatest fixed point of the mapping X.

4. PROCEDURAL SEMANTICS FOR PROLOG

Now we will define a notion of correctness for priority rewrite systems, such that adding this priority to a
term rewrite system as in section 2 will give us a procedural semantics for Prolog using a depth-first search
rule (for terminology, see LLOYD [5]). We use the word Prolog for logic programs implemented with the
depth-first search rule. Initially, we do not consider a certain computation rule (one could say that we
discuss concurrent Prolog). Later on, we will see that the adoption of a selection rule amounts to the
adoption of a reduction strategy in the corresponding rewrite systems.

4.1 INTUITION
Let P be a term rewrite system with the linear rule ordering (see 3.1). We will say that a rule instance ' p
~ q is incorrect, if there is arule ' < r and a rewrite 'z p — ..., such that Prolog will never consider the.
rewrite I p — g. Since Prolog will consider the rules in order, first the rewrite r': p — ... will be carried

out, but later, by backtracking, r: p — q may also be considered. There are two cases in whichr:p—q

will never be considered: g ‘ .

1. 1" p — ... results in a normal form true;

2.1': p — ... gives rise to an infinite reduction.

A second circumstance in which the rewrite r: p — @ is incorrect, is when there is also arewrite r: p —

with a different q' (so this only happens when the rule r introduces a variable), such that the substitution
made in q will never be considered. We give examples of both types of incorrectness.

; “}"4‘."2 EXAMPLES :
“ 717 Consider the following Prolog program P in table 3 (written as a TRS according to the definitions of
- section 2, with the two added rules for & left out):

: ra: p—true
3> 979
Table 3.

= :I'n;the standard procedural semantics with depth-first search rule, we find that the goal p gives no answer,

: _; ‘bé’:cause. Prolog will get stuck in the infinite reduction sequence Q. — q — q — ... Thus, we must have
" that the reduction p — true is incorrect w.r.t. the set of reductions {p—q,9—q}

~ 2. Consider the following Prolog program Q in table 4.

q(f(x)) — q(f(x))
q(a) — true :
p—a(x) .
Table 4.

-"In the standard procedural semantics with depth-first search rule, we find that the goal p gives no answer,
~.because Prolog will unify q{x) and g(f(x)), and start an infinite reduction. Thus, we must have that the
reduction p — g(a) — true is incorrect. Since the rewrite q(a) — true is obviously correct, we will
ensure that the rewrite p — q{a) is incorrect w.r.t. the set {p — q{f(a)), q(f(a)) — q(f(a))}.

. Next we give some definitions, that are preparatory to the definition of our notion of correctness.

4.3 DEFINITION :
 Let ©: 84 =1 8p 27283 — ... and p: t; =71’ tp =72 t3 — ... be two reduction sequences (finite or
-~-infinite). The ordering on rules induces a lexicographical ordering on reduction sequences, so p < G if r{'<

iu. Ty, or ry' =rq and either Iy’ <y or p haslength'1, or.

We call a (finite) reduction sequence successful, if it ends in the normal form true.
+-“We call p an obstruction of ¢, notation ¢ » p, if 3 =14, p < o and p is either successful or 1nfimte

P See figure 1.

p: t, —» t ~& true or o
2 r'- 3
2
5
1 p <o
o: 32—r-’3 i
2
Fig. L.o>» p

Now we can give the formal definition of correctness.

10

4.4 DEFINITION

Let P be a term rewrite system, with the linear rule ordering.

Let ¢ be a reduction sequence, and let R be a set of rewrites.

Then & is incorrect w.r.t. R, if there is a reduction sequence p in R such that o> p.

Now let r: p — q be arewrite (a closed instantiation of rule r). This rewrite is incorrect w.r.t. R, if every
reduction sequence starting with this rewrite is incorrect w.r.t. R.

Further, if r; p — q is incorrect, then every application in context of this rewrite is also incorrect.

A 'rewrite is correct w.r.t. R, if it is not incorrect w.r.t. R.

The reader can check for himself that this definition indeed leads to the right results in the examples in 4.2.
It is obvious that this gives us an anti-monotonic mapping C, and so we can use the results of section 3. We
will call this notion of correctness DFS correctness (correctness pertaining to the depth-first search rule).
Now a procedural semantics for Prolog will be given by the sound and complete rewrite set of the resulting
PRS. Therefore, we first have to establish that such PRS's are well-defined. This we do next.

4.5 THEOREM
Let P be a PRS with the DFS notion of correctness. Then P is well-defined.

In fact, RT1 = R4 (in the notation of section 3).
PROOF: We will prove this in a number of claims.

CLAIM 1: Let R be a set of rewrites, and t a closed term. If t has an infinite or successful reduction in R,
then 1 also has an infinite or successful reduction in R m RC. , .

PROOE: Suppose ©:1 — — _.. is an infinite or successful reduction in R, which is not a reduction in. RC.
Let p — q be the first rewrite in G which is not in RC. Then p — g — ... is incorrect w.r.t. R, so there is
an obstruction p —+ q' —* ... in R. If the rewrite p — ¢ is still not correct w.r.t. R, there is another
obstruction p — " —* ... in R. After finitely many steps, we must obtain a reduction sequence p — q -
...in R of which the first rewrite is correct w.r.t. R (since there are only finitely many rules). Thus, we
obtain an infinite or successful reduction sequence 6*:t — — p — g* — ... in R, which is also in R® for

at least one more step (see fig. 2).

G*: - . q* — true or e
o t &> p —» q B frue or o
Fig. 2.

Continuing iri this fashion, we obtain reduction sequences, of which larger and larger initial segments
remain unchanged. It follows that we can write down a reduction in R m RC, and the proof is finished.

CLAIM 2: Let R be a set of rewrites. Then RS¢ ¢ RS,

17

OOF: If @ ewrite is not correct w.r.t. R (2 RC), then there is an obstruction in R. By the previous claim,
meré is also an iobstruction in RC, and so the rewrite is also not correct w.r.t. R (g RCC).

AIM3 RT1 =K1,

, OOF Let R be the set of all rewrites. By cla1m 2 we have RCEC ¢ RC. On the other hand, R is complete,
f so Rc 1s sound, and thus by definition R¢ < R¢C. Then RT1 = RS = RSC = K11,

Ve define the success set and finite failure set of a Prolog program in the sequel.

: 1. We'deﬁne the notion of a SLD-tree just like in [5]. For each computation rule, a goal has a different

. SLD_ftree. The edges in the tree are labeled by the name of the rule used. The ordering of the rules induces
in ordering on the edges, and in this paper, all SLD-trees will be ordered trees. An example, for the

rogram in 4.2.1 for goal p, is given in fig. 3a.

- 2.'A DFS-tree (SLD-wree using the depth-first search rule) of a goal is obtained from the SLD-tree by
: -’}er;S}ing out all subtrees that have an infinite obstruction in the tree (i.e. from the root there is an infinite
~“branch starting with a higher rule). The DFS-tree of the tree in fig. 3a is given in fig. 3b.

2 p p
T. r
i r 5 ’ /

q true q
M3 3

q q
M3 M3

q : q§

Fig. 3a. Fig. 3b.

F3.A ground atom A is in the success set of a Prolog program P, if the goal A has a DFS-wree with
success branch (a branch ending in O).

C4A ground atom A is in the finite failure set of a Prolog program P, if the goal A has a finite DFS tree
with no success branch.

4 7 THEOREM
"The ground atom A is an element of the success set of the Prolog program P iff A has a successful correct

reduction in the PRS P*,
: PROOF: =»: Suppose A is in the success set of the Prolog program P, so there is a DFS-tree with success
branch. Using the translation of 2.3, we get a reduction sequence

12

o:A— A= . —irue.
If o is incorrect, then there is an obstruction ouq. If ot4 is infinite, then o cannot be in the DFS-tree.
Therefore, 04 is finite and successful. If oy is also incorrect, then there is a finite oty with otq » 0. In
this way, we obtain a sequence & > 04 » Oip ... of successful reductions of A. If this sequence is
infinite, then the transitivity of the obstruction relation yields an infinite obstruction for o, and so o is not in
the DES-tree. Thus, the sequence 02 04 » g ... » O is finite, and 0y is a correct reduction from A to
true. '
«=: Straightforward, by definition of DFS-tree.

4.8 THEOREM

The ground atom A is an element of the finite failure set orfrthlcr Prolog program P iff A has no infinite or
successful correct reductions in P*. ')

PROOF: Similar to the proof of 2.6 and 4.7.

4.9 Thus, we see that the adoption of a priority ordering on a term rewriting system gives us:a procedural
semantics for Prolog with depth-first search rule. This is interesting since no explicit semantics could be
found in the literature, only semantics directly in terms of SLD-trees with the search procedure defined on
them. : ‘

“The priority mechanism seems powerful enough to deal in addition with extra features like cut, or the use of
negation in Prolog programs. Details of such extensions are not clear to us at the moment, however.

4.10 So far, we have not discussed the effect of a computation rule, i.e. we were dealing with a form of
concurrent Prolog, in which each element of a sequence of goals is reduced independently. In the present
setting, -adoption of a computation rule just amounts to the adoption of a reduction strategy on the
corresponding PRS. Thus, adoption of the standard computation rule (that always selects the left-most
atom) means in terms of rewriting that we only consider reductions in which in each step the left-most redex

is contracted.

5. DECLARATIVE SEMANTICS FOR PROLOG

In the previous sections, we found a procedural semantics for Prolog with depth-first search rule, using
priority rewrite systems. Moreover, we proved this procedural semantics to be equivalent to the semantics
of depth-first search trees.

In this section, we give some indications on how to obtain a declarative equivalent for the DFS-semantics
for Prolog. In the case of logic programs, we know that the declarative semantics simply consists of its set
of Horn clauses. This declarative semantics is equivalent to the procedural one, in the sense that for any
logic program P we have that an atom A is in the succes set of P if and only if A is a Jogical consequence of -
P. But what to say about the DFS succes set of P?

In order to find an answer to this question, consider the following definitions.

13

e In the followmg we will write substltutlons (see [5)) as equational formulas. To give an example: suppose

'e have 6 = {x/a} then we can translate this substitution to 8(x) = {x=a}. The most general unifier of atoms
‘and B, will be denoted by mgu(A,B). Writing mgu(A,B) as an equational formula we obtain: .

k for all atoms A and B: . F V (mgu(A,B) — (A < B)).

‘E‘XANIPLE
wLet A'=p(x,f(z)) and B=p(a, f(g(y))) then clearly, mgu(A,B) = {x/a,z/g(y)}. Writing this substitution as
equanonal formula we obtain: mgu(A,B) = {x=a,z=g(y)} and clearly we find

EV [x=a A z=g(y) — (p(x,f(z)) & plafgiy)].
3 MSLAnONs OF PROGRAMS
éXt‘ we will translate a given program P into a set of Horn clauses L(P), which is equivalent to the

e ongmal program except that it is restricted to the depth-first search rule. This can be done as follows.
“LetPbe A<By, .., Bg
C — D1, ey Dr.

: W1th the depth-first search rule, the upper clause A « B4, ..., Bq has highest priority. So we may write:
V(BiA..ABy = A)e LP).

4 The second clause C « Dy, ..., Dr cannot simply be added to L(P), since it will only be used if either the
' - first clause has failed (by backtracking) or if the current goal did not match A. This can be expressed by the
: following sentences: o

V (mgu(A,C) A=By A ...A —BgqADyA..AD—C) and

YV (-mgu(A, C) ADyA...AD, 5C)e LP).

‘v,"»r:Note that - is used'to express negation in the sense of finite failure. This pfocedure can simply be extended -

" 'to a general procedure for programs with more then only two clauses.

5.4 TURNING L(P) INTO A GENERAL PROGRAM
' Note that L(P) can easily be translated to a general program, i.e.: a program with negated literals in its
. ’fclauses Taking the program P from 5.3 again, we see that L(F) is equivalent to
L P: AeBy, ., q
A« =By, .. -» —Byq, D1, cers D
: C « Dy, ..., D, =mgu(A, C).
As we see, we will permit equations in the bodies of the clauses.

5.5 SEMANTICS OF GENERAL PROGRAMS
"In FITTING [4] a general theory for fixed point semantics of general programs is presented, using three
valued logic. Fitting uses sets of sz'gned formulas T¢ or F¢ to indicate whether an atom can be proved true,

false, or cannot (yet) be proved equal to either of the two. Of course such a set need not be consistent (for
examplc if it contains both T¢ and F¢), but if it is, it can be seen as a (partial) model.

14

Next, in the same way as is done in' APT & VAN EMDEN [1], a monotonic mapping ®@p is defined on partial
models as follows: ‘

TA € ®p(X) < there’is a ground instance A « By, ..., Bq, =Cy, -, —C; of a clause from P

such that {TBy, ..., TBq, FCy, ..., FC} < X;

FA e ®p(X) & for every ground instance A < By, ..., B, —Cy, ..., =C, of a clause from P

we have {TBy, ..., TBq, FCy, ..., FClz X) "
Now it can be proved that for any program P, ®p has a least fixed point which precisely consists of the
succes set of P and the complement of the finite failure set ([4], proposition 7.3). Moreover, any general
program has a semantics via $p.

5.6.So, the general program P' in 5.5, has 4 clear semantics (see also LLOYD [5]). This semantics could be
proved equivalent to the semantics we gave in 3.9-and 4.5. It goes beyond the subject matter of this paper,
to try to develop such a proof here.

REFERENCES

[1] K.R.APT & M.H.VAN EMDEN, Contributions to the Theory of Logic Programming, J. ACM 29 (3),
pp. 841 - 862, 1982.

[2] J.C.M.BAETEN, J.A.BERGSTRA & J.W.KLOP, Priority rewrite systems, réport CS-R8407, Centre for
Math. & Comp. Sci., Amsterdam 1984.

[3] J.C.M.BAETEN, J.A.BERGSTRA & J.W.KLOP, Term rewrite systems with priorities, in: Proc. 2nd
Conf. on Rewriting Techniques and Applications, Bordeaux 1987, Springer LNCS 256, pp. 83 - 94,
1987. ‘ . ,

[4] M.FITTING, A Kripke semantics for logic programs, Journal of Logic Programming 4, pp. 295 - 312,
1985.]

[5] J.W.LLOYD, Foundations of logic programming, Springer 1984.

[6] T.C.PRZYMUSINSKI, On the declarative and procedural semantics of stratified deductive databases,
Dept. of Math. Sci., Univ. of Texas, El Paso. ‘ ‘

