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Unit vectors with non-negative inner products 

A. Bos and J.J. Seidel 

1. Introduction 

In [lJ W. Kruskal is credited with the following 

Conjecture. 1.1. The squared length of the sum of n unit vectors in 

Ed, having mutually non-negative inner products, is at least 
2 

n + · r(d-r) _ 
d ' where n = r (mod d), 0 ~ r < d. Moreover, equality 

is attained if and only if the n vectors are spread as evenly as 

possible over an orthonormal set of d vectors. 

For a number of cases we settle this conjecture in the affirmative. 

Moreover, we describe a setting for the problem which may lead to a 

general proof. However, the general conjecture remains open. 

2. The problem (cf. [lJ). 

Suppose we have d + 1 observations of n standardized variables. Arrange 

them in an (d+1) x n matrix 

X= [x . . J; i 
lJ 

1, ... ,d + 1 j 1, ... ,n, 

and assume that they are nonnegatively correlated, that is, for j,k = 1 , ... ,n 

assume 

where 

1 d+1 
r

J
. k : = d 1 L ( x . . - x . ) (x. k - xk ) ~ 0, 

+ i=l lJ J l 

x . 
J 

1 d+1 

d+1 L 
i=l 

d+1 _ 2 

x . . , d!l L (x .. - x
J
' ) 

lJ i=l lJ 

n 

1. 

The sum variable y. = L x . . achieves its maximum possible variance 
l lJ j=l 

2 n if all correlations r
jk 

equal 1. It is natural to identify the 
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II re l ateaness" of the variables -wTEh the--variance of t heir sum and 

ask what is the minimum possible variance. Without changing the situ

ation essentially we may assume that 
d+1 

the column sums of X are 0, 

L x . . = a for all j. If x. denotes the j-th column, then the variance 
i=1 1.J -J 

of x . equals d
1

1 (x.,x . ), which is 1 by assumption. Also the correlation 
-J 1 + --:J -J IT 

r jk = d+1 (~j'~) ~ 0, hence no angle between the xj's exceeds /2. The 

variance we wish to minimize can be written as 

1 (n n) 
d+1 L~., L~· 

j=1 J j=1 J 

1 
Now write u. := x .• These vectors are all perpendicular to 

-J Id+1-J 

(1,1, •.• ,1)t. Hence we have n unit vectors u
1

, ••• ,u in ~d with non-
- -n 

negative inner products, ,and the problem -is to minimize 
n 2 

" .L ~·II . J=1 J 

3. Inequalities 

Let S d denote the co~lection of all sets of n unit vectors in ~d n, 
all of whose inner products are nonnegative. Let n = qd + r, 0 $ r < d. 

For any S E Sn,d' let G = [gij] denote the Gram matrix of S, and let 

IT = A1 ~ A2~ ••• ~Ad denote the nonzero eigenvalues of G. 

Lemma 3.1. 
2 

n 
d 

+ 
2 

( lTd-n) 
d(d-l) 

Proof. tr G = nand tr G
2 

= Lg~. read 
1.J 

whence 

2 
(n - IT) 

n - IT, 
2 

IT , 
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implying the first inequality. The second follows from 0 S gij S 1, 

and the third one is implied by choosing x = (1,1, ••• ,1) in 

1T ?: (Gx,x)/(x,x). o 

When does equality hold? In the first inequality iff A2= ••• ~Ad (= A say), 

that is iff 

1T(1T - A)P, 

where P = [p,p,] is the rank one matrix made up from the (positive) 
1. J 

components p, of the unit eigenvector of 1T. G is a (0,1) matrix iff 
1. 

equality holds in the second, and G has constant row sums iff equality 

holds in the third inequality. 

Finally, our inequalities imply n S 1Td, and equality holds if and only 

if G = Id ® I n/ d , that is, iff S consists of d orthonormal vectors 

each repeated n/d tim~s. 

Part of the conjecture reads 

Conjecture 3.2. Ig" ?: (n2 + r(d-r»/d, S E S d. 
1.J n, 

Clearly, lemma 3.1 implies that conjecture 3.2 is true for n = 0 (mod d). 

We observe that the right-hand side of the inequality equals the sum of 

the entries of 

[

I ® J 1 r q+ 

o 

the adjacency matrix of Turan's graph, cf. [2]. This illustrates the 

following lemma, by which conjecture 3.2 needs only be investigated 

for irreducible S E S d. n, 

Lemma 3.3. If n = n 1 + n2 , d = d 1 + d2 , n = qd + r, n 1 = qld l + r 1 , 

n2 =q2d 2 + r 2 , 0 S r < d, 0 S r
1 

< d 1 , 0 S r
2 

< d
2

, then 

- r ) 
1 

+ 
n

2 
+ red - r) 

d 
o. 
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Proof. Suppose ql ~ q2' then ql ~ q ~ q2. Indeed, 

hence ql d ~ n < (q2 + l)d. Straightforward caluculation shows that the 

left-hand side of the inequality in the lemma equals 

2 2 
d 1 ( (q - ql) + (q - ql)) - 2r 1 (q - ql) + d 2 ( (q2 - q) - (q2 - q)) + 2r 2 (q2 - q) • 

Since r
1 

< d
1 

and r 2 ~ 0, this is not less than 

2 2 
d 1 «q - ql) - (q - ql)) + d 2 «q2 - q) - (q2 - q)) , 

which is nonnegative, since q - ql and q - q2 are nonnegative integers. 

Remark. In the lemma equality holds iff q 

q2 = q + 1, r 2 = o. 

Remark. If conjecture 3.2 were true, then the Perron eigenvalue TI of 

G would satisfy 

n r (d-r) -+ ~ 7T. 
d nd 

4 . The solution in a special case 

Theorem 4.1 . The conjecture is true for S E S d' S a two-distance n, 
-1 set with inner products 0 and a • 

-1 
Proof. Let G = I + a A with a (0,1) matrix A having 2m ones. Thus, 

- a is the smallest eigenvalue of A. Assume the conjecture were not 

• 



- 5 -

-- -1 
true for any irreducible I + a A. Lemma 3.1 and the assumption then 

yield 

20 
n 
d 

n + 
2m 

2 
a 

FromQ)and@we obtain 

n + 
2m 
o 

< 
2 

n + r(d-r) 
d 

2 o n(n - d) $ 2md < a(n - r) (n + r - d). 

For n ~ d the right hand inequality yields a contradiction. For d < n ~ 2d 

we have a
2
nr $ 2md < od2r < 4dr < 2nd, since 0 < ~ < 2, hence m < n 

d+r 
and A is the adjacency matrix of a tree. But n - 1 = m < 2r < n is im-

possible. We are left with n > 2d, but then 

o < 
(n-r) (n-d+r) 

n (n-d) 1 + r(d-r) 
n (n-d) 

~ 1 + 9 
s· 

In [3J it is proved that any graph of diameter D has smallest eigen

value 

-0 $ -2 cos 'IT / (D + 2). 

Hence our graph has diameter D 

~. This proves the theorem. 

1, a = 1, d 

Corollary. The adjacency matrix of a graph has 

1, r 

Perron-eigenvalue ~ 0 (n - d + r) (n - r) / nd, 

0, contradicting 

where (-0), of multiplicity n - d, is the smallest eigenvalue and 

n = qd + r, 0 $ r < d. 
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5. Geometric methods 

Let Sd-l -- {x E JRd I } (x,x) = 1 • The hyperplane perpendicular to any 

unit vector Z E JRd determines two closed hemispheres 

{x E Sd-l I (x,z) ~ O} d H { d-l I ( ) } an = XES X,Z ~ 0 . 

d-l 
For any finite set XES the convex hull C(X) is the set of all 

finite convex linear combinations of elements of X, that is, 

C(X) := {z E sd-l I Z 

Its dual spherical polytope D(X) is defined by 

D(X) := {z E Sd-l I 'v' 
XEX 

(X,Z) ~ a}, 

that is, the intersection of the positive hemispheres of the vectors 

* * of X. Let P and P be spherical polytopes. P is said to be' dual to P 

* if ~ : F(P) ~ F(P ) is a bijection from the set of faces of P to the 

* set of faces of P such that f ~ g ~ ~f ~ ~g for all f,g E F(P). P is 

called self-dual if p* = P. 

The polar set P of a spherical polytope P is defined by 

d-l I P := {z E S V 
XEP 

(X,Z) ~ a}. 

Clearly P is dual to P and D(X) = C(x) • 

Theorem 5.1. Assume that X is such that 

for all YES d. Then X E V(DX», where V(P) is the set of vertices of P. 
n, 
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Proof. Suppose x E X is not a vertex of D(X), that is, there exist 

a,b E D(X) such that x = aa + Sb, where 0 < a, S < 1 are related by 

a
2 

+ 2aS (a,b) + S2 = 1. Now let X' = X \ {xL Then 

( L z,x) 
ZEX' 

a( L z,a) + S( L Z,b) 
ZEX' ZEX' 

is, as we shall prove, a nonconstant concave function of a, thus 

reaching its mininum for a = 0, say. But if X" = X' u {a}, this con

tradicts the assumption, since then 

because 

( L z, L Z) = (I Z, 
ZEX ZEX ZEX' 

L ~) + 2( L Z'X} + 1 > (L Z, 
ZEX ZEX" ZEX' 

+ 2( L z,a) + 1 
ZEX' 

( L z, L z). 
ZEX" ZEX" 

2 
f(a) is a concave function iff d f ~ O. Hence the sum of two concave 

da 2 

functions and the square root of a nonnegative concave function are 

again concave. Since 

-a (a,b) + 10. 2 (a,b) 2 -+ 1 
2' 

a 

it remains to prove that a 2{(a,b)2 - I} is a concave function of a, and 

this is obvious since (a,b)2 ~ 1. 

Corollary 5.2.: For every x E X, with X as in theorem 5.1, there exist 

d - 1 linearly independent xi E X such that (x,xi ) = 0 for all 

i 1,2, ••• ,d - 1. 
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Corollary 5.3. For d = 2 and Ixi n == 1 (mod 2) , 

2 

" L Z" Z X 

Equality is attained iff X consists of two orthogonal vectors, each 

t d n-l d n+l. . 1 repea e --2- an --2- t1mes respect1ve y. 

Corollary 5.4. If X contains a set of d orthonormal vectors, then 

D(X) = C(X) is the regular orthogonal spherical polytope spanned by 

these vectors and 

2 
n + r(d-r) 

d 

Theorem 5.5. Assume that X is as in thm. 5.1, then a self-dual spherical 

polytope P exists with X ~ V(P) • 

Proof: From the properties of X we know C(X) ~ D(X) and further V(C(X» 

= X ~ V(D(X». Let L be the set of all polytopes P with P £ P and 

V(C(X» ~ V(P) ~ V(D(X». Clearly C(X) E L, so L is not empty. The set 

L is partially ordered by pi < P iff V(P) C V(P'). L contains an upper 

bound of each totally ordered subset M of L, so, with the lemma of Zorn, 

L contains a maximal element, which has to be self-dual and which con

tains X = V(C(X» as vertices. 

6. Cases in which the conjecture holds 

The conjecture holds for 

i) n ~ d, all d. Equality holds iff all vectors are orthonormal; 

ii) n == 0 (mod d), all d. See the observations after conjecture 3.2.; 

iii) d = 2, all n. Corollary 5.3.; 

iv) all n, all d, some special cases as in section 4 and corollary 5.4. 
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