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Analysis of both kinematically and statically admissibl~ velocity fields in plane strain compre~sioni(). 
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P.C. Veenstra, Eindhoven University of Technology/NL (1); J.A.W. Hijink, Eindhoven University of Technology/NL. 

Summary: In connection with the CIRP co-operative program on upsetting and complementary to the finite elements analysis 
several classes of velocity fields have been investigated with respect to minimizing or stabil izing power in the system" 
in the case of non-str~inhardening material. Next it is examined whether such fields satisfy local equil ibrium as well as 
body equil ibrium. It is shown that the modified elliptic velocity field satisfies all requirements. 
Appl ication of this velocity field enables ,to calculate both the jtress - and the strain rate distribution throu~hout 
the specimen. . 
Finally through an incremental procedure the kinematics of deformation can be calculated. 

Prof.Dr. P.C. Veenstra , 
Eindhoven University of Technology 
Dept. of Mechanical Engi~eering 
P.O. Box 513 
EINDHOVEN, NETHERLANDS 
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1. I NTRODUCT ION 

\Jith an eye to the CIRP co-operative \JOrk in upsetting [1,2,3] 
several classes of velocity fields have been investigated in 
order to find whether they stabil ize or minimize the process with 
respect to power on the one hand and satisfy conditions for local 
and body equil ibrium at the other. 
For the time being the \tJOrk is restricted to a situation of plane 
strain in non-strain hardening (rigid-ideal plastic) material. 
It is found that the ell iptic velocity field satisfies conditions 
for minimum power as weI I as local equil ibrium, however, it 

,violates the requirements for body equilibrium. It is shown that 
modification of the velocity field gives a solution for the 
-latter problem. 
:From the analysis it fol lows that upsetting proceeds in three 
phases. If the compression ratio, which is the width b of the 
sample over its height h, 

lit b 
b = - < 2 

h 

the process is mechanically unstable. 

(1) 

If 2 < bllt < 6, the velocity field is virtually elliptic. Body 
equil ibrium is provided by stress peaks at the very edges of the 
specimen. • 
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Finally, if b* > 6, the velocity field is modified elliptic and 
the system moves to a sl ightly 1000Jer level of power as compared 
to the ell iptic case. 
From the velocity fields thus defined both the stress distribution 
throughout the specimen and the distortion of it can be 
calculated. 

,2. THE ELLIPTIC VELOCITY FIELD 

In the present analysis reduced (dimensionless) quantities are 
used 

~ 
o .. 

h = ...!...!.. .* f; •• (2) o .. E: •• :: 
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where 00 is the velocity of the press ram and 0 stands for the 
effective stress, which as said before is considered to be a 
constant. 
For the sake of simpl icity the asterisks will be omitted. 
The ell iptic velocity field is defined as ' 

Ox :: X [A + B -V1 - (2Pz)2 ] 

thus being symmetrical with respect to z, if z = 0 represents the 
plane of symmetry. Moreover the function assumes a maximum in 
z = 0, whereas it is antisymmetrical with respect to x. 
In this definition the velocity of the upper platen is- ~ 00 
with respect to z = O. 
The condition for continuity of the material flow requires 

i 
! x = S 0 dz (4) 

o x 
through which follows 

where 

From eq. 5 it 

2J = ! {O + fr arc sin p} 

is derived 
aO x 

E:xx = ax :: 
*) Full text in report WPT 0439 EINDHOVEN UNIVERSITY PRESS. 

(5) 

(6) 

(7) 
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and since in plane strain it holds 

E == - £ (8) : 
zz xx 

it is obtained by integration 

-Oz ::: Z [1 + B { :i "1 - (2Pz) 2 - 2J}} 

+~arc sin 2Pz (9) 

which satisfies the boundary conditions at z = 0 as well as at 
z = + 1-. 

Next it follows 
aO 

z 0 (10) ax= 
and hence 

2BP2 xz 

-Vl - (2Pz) 2 

From the strain rates thus derived the effective strain rate is 
calculated as 
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According to Levy-von Mises the shear stress now can be found as 
t 

2 xz 
Txz = 3 -.­

€ 

• 

(13) 

By substitution of z = ~ the frictional stress in the contact area 
between tool and workpiece is calculated to be 

It is remarked that in order to achieve this result not any 
assumption with respect to friction has been introduced. 

(14 ) 

Next it is obvious that for increasing x the 1 imiting value of 
the frictional stress is '0 = 'MAX = 1/13. 

The relative sl iding 'velocity follows from eq. 5 for z = i as 

0xo ~ x [1 + ~(P - ~arc sin p)] (15) 

Since this quantity cannot be negative for any positive value of 
x. the kinematical constraint to impose on the parameter B is 

2 
B s ----------==== - B 

1 • p - r:?1_p2 - MAX P arc sIn - Vl-P-
(16) 

The reduced power in the system is 

• . , 
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P = Pd + Pf 
( 17) 

where 
I b/2 1/2 :.. 

Pd = ~ S S E: dxdz ( 18) 
x=O z=O 

the contribution of deformation 
:and 

It b/2 
1'-0 1 (19) Pf ;: b ~ 0 dx 

0 
xo 

the contrlbut ion off ric t ion. 

Through the relationships obtained up to now the eqs. 18 and 19 
can be expressed in terms of the co-ordinates and the parameters 
Band P. 
Variational analysis shows that eq. 17 clearly stabil izes and 
even minimizes in dependence of the parameters. 
A typical example is shown in fig. 1, from which can be seen that 
the minimum is extremely flat as a function of B. Hence it is 
difficult to determine the optimum value of the parameter 
sufficiently accurate. The same holds for the parameter P, which 
proves to be close to one. 

Reduced Power p. 

6 Average normal 

{<1:VE}z*co 
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of velocity field 

-8 .. B/BHAX 
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Fig. 1. The reduced power and the reduced average 
normal stress in the plane z=O as a function 
of the reduced parameter B* of the elliptic 
velocity field, for a compression ratio 
b* = 10. The point of intersection determines 
the particular value of the parameter through 
which the velocity field satisfies conditions 
of minimum power as well as of equilibrium 
with respect to the plane z=O. 

,However, the reduced power has the same physical meaning as the 
reduced average normal stress on any plane z, which is 

{ } 
1 b/2 

aAVE z ;:::: m ~ az dx (20) , 

Now the first differential equation of equil ibrium in plane 
stra in is 

CIa (IT 
x xz 

T>(=----az- (21) 

In the plane z=O it follows from eq. 13 that TXZ 

von Mises plasticity condition reduces to 
= 0 and hence the 

{azt=o = {ax}z=o 2 - -
'13 

(22) 

The boundary condition is 

{axt=o ;:::: 0 for x ;:::: b/2 (23) 

and consequently 

2 
- - + 

13 
b/2l ch I 
S a~z z=o dx 
x 

(24) 

and 

{} 
2 1 b/2 b/21 CIT I 

a ;:::: - - + 'L7"i' S S -E dxdx 
AVE z=o 13 b/2 0 x az z=O 

(25) 

Application of renders 

2 1 =-- --
13 13 
~ .. Bp2 1 (2b)2 x21 
1+8 (1-2J) 

(26) 

{} 2 I 1 Bp2 
°AVE z=o = - 13 1 +3 1+S{1-2J} (~YI 

and 
(27) 

As also shown in fig. 1 the latter function intersects the curve 
of reduced power in a well defined way. Now very accurate 
variational analysis can be performed in order to move the point 
of intersection to minimum power. 
'After this having been achieved the parameters Band P are such 

• ,. 
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that the system satisfies conditions for mInimum power as well as 
conditions for equil ibrium with respect to the plane z=O. 
The final results are visual ized in fig. 2. 

Minimum values of 

reduced power pllt 

and its components 
3 p. " p. + pllt Ell iptlc d f 

velocity field 

~!:';9 satisfY,kin, 

2 
constraint 

pill. 
1.50 d~IIN 

I.lt5 I. 51 1.55 

1 

Compression ratio bllt 

0 1 2 3 4 5 6 7 8 9 '10 

Fig. 2. Minimum values of reduced power and its 
components due to deformation and due to 
friction, respectfvely, as a function of 
compression ratio. Elliptic velocity field. 

There exists a hyperbol ic relationship between the 
parameter B and the compression ratio b 

B • b = 3 

and analogeous 

b(l-P) - __ 1 - 0.037 - 33 -

(28) 

(29) 

These relationships make it possible to calculate stress and 
strain solely as a function of the instantaneous compression 
ratio. 
It is remarked that 
1. if the compression ratio b < 1.8 the kinematical constraint 

is violated. In the present model the situation is mechanical Ii 
unstable. 

.. ,. 
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2. the 1 inearity as well as the inclination of the curve in 
fig. 2 agree very well with the results reported by Unksow 
[4J and Prandt 1 [5]. 

3. when the compression ratio increases the effect of friction 
becomes increasingly dominant. 

The second equation 
<lo z az= 

of equilibrium 
aT xz ---ax 

in plane strain is 

(30) 

'Hence the normal stress in the contact plane between tool and 
workpiece is 

on 
According to eq. 13 T is a steadily decreasing function of x. xz 
This implies that in eq. 31 the absolute value of the normal 
stress in the contact plane in any point x is less than in the 
corresponding point in the plane z=O. Consequently it holds 

{oAVE}Z=O F {oAVE}Z=i (32) 

which states that the ell iptic velocity field does not satisfy 
body equil ibrium. 

3. THE MODIFIED ELLIPTIC VELOCITY FIELD 

n ~ 0 

[he latter quantity is introduced merely to avoid instability of 
the computation at the very edge x = b/2. 
Performing the analysis in the same way as in the previous 
section results in rather compl icated expressions for stress and 
strain (see report HPT 0439). The major conclusion is that the 
.odified ell iptic velocity field satisfies body equil ibrium in 
two different cases. 

n = 3b
2 10-4 

B = 3/b 

P = 1 - 1/33 b (4) 
... ' .. .._ ... , 
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for 2 < b < 6 

which because of the small value of the parameter n is named the 
quasi-ell iptic velocity field. 
A typical example of stress distribution is shown in fig. 3. 
Obviously conditions for body equil ibrium are satisfied by 
development of a stress peak at the very edge of the specimen, 
as also observed in experiments [6J. 

8.33 

2.5 

2 

Reduced normal stress 

- a· z 

1. 71. LJ!. ..J..:1..L I. 73 
--_ 1.69 

{ 1t.} 1 59 --__ 1.63. 
crAVE zit.. • • 

1.5 1. 53 1. 53 1. 53 1. 56 

Quasi-ell iptic 
velocity field 

b- .. 2 

--- {01t.} 1t. 
Z Z =0 

- {0:}z1t.=1 

1.15 

l~--~--~--~--~--~--~--~--~~--~--~---
o 0.1 O.~ 0.3 0.4 0.5 0.6 n.7 0.8 0.9 1.0 

Reduced co-ordinate x1t. .. x I ~ 

Fig. 3. The distribution of normal stress in the plane 
z=o as well as in the contact plane between 
tool and workpiece for the quasi-elliptic 
ve 1 oci ty fie I d. 

The second solution is 

n;::ll 

21f + Si (b/7rr) 
i~ ) 

B == b 

P ::: _ (~)6 
"for b > 6 . 

(35) 

u·: . ~.; !; 
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\'Jhich is the modified elliptic velocity field.· 
The basic equations of the modified elliptic field are 

Ox = X[I+B 11 -(b~i)2! 1~1-(2pz)2 - 2J!J (36) 

-Oz = z+ Bll -3(b/2YW z ~H2Pz)2 + ~ arc sin 2Pz - 2JZ! 
(37) 

(38) 

(39) 

1 aoz 
--"" 38 2 ax x 2 It z.v1-(2Pz)2·+ -dr arc sin 2Pz - 2Jz l 

(b/2) , 
(40) 

1 aox 1 aoz 
E: =--+--xz 2 az 2 ax 

1" = __ 1 BP211 -(mY!x 
o . IJ [<I_p2) II +t{I-3(b/i)l{~ -t arc s in. pW + 

~ =~ l-E..-.:!.~ E ~+E -2£ I 
('11" ! [at. I. t. 1 dE aE !] 
ax x 3' ~ a x . 3 ~ 2 xx dX xz ax 

\~here 

. ( b) b/7rr 
51 - = ~ 

7rr 0 
sin t dt 

t 
for b ~ 10 S i (b/7rr);:;: b/7rr. 

(41) 

(42) 

(43) 

(44) 
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xx 6 B x ~ 1 - (2 P z) 2 ae I 
-ax- = - (b/2)2 

(45) 

.EXZ [ p2 z 11 - 3(b/2Y! + --rx=B -
11- {2Pz)2 

3 H z~1-(2Pz)2 1 sin 2Pz- 2JZiJ ' + 
(b/2)2 

+ "liP arc 

(46) 

Through these equations the optimizing procedure can be performed 
analogeous to the way as shown earlier. 
It appears that the power in the modified ell iptic field is 
s1 ightly less than in the quasi-ell iptic field, as shown in 
fig. 4. 

Reduced minimum power 

6 P~IN c {o:VE}Z*=O 
~ 

~.134 
. ·5.58!>,-:: ,/ 

5 

3 

2 

1 

/% /' ,.-0/- 5.557 /' 

A .971 /' 
4.423 Z /' 

~ 

. ~4.392 /' 
Quasi ell iptic 3.8~/- /' 

velocity field A 3.808 / 
3.277./.

h 
Mod. elliptic 

~~ .225 velocity field 
Unksow's 2. 70~ /. /' 
SOlution~ 2.640 /' 

/' /' 
~1.I3S /-- SI ip I ine solution Prandtl 
/' 

/l~85 

./' 

/' 
/ 

/' 

Compression ratio b* 

oL------'-----~-'------....I------'----
5 10 15 20 

Fig. 4. Reduced minimum power and average reduced 
normal stress in the plane z=O as a function 
of compression ratio in both the case of an 
quasi-ell iptic and a modified elliptic 
velocity field. 
A comparison is given .. with.Prandtl's slip 1(ne ... 
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solution [5J and Unksow's solution [~] for 
rotational symmetry. 

Uowever, if the compression ratio b < 6 the modified field 
violates the kinematical constraint eq. 16, whereas the quasi­
ell iptic field satisfies it. For these reasons the different 
modes of compression, as mentioned before, must be distinguished. 
Typical examples of stress distributions are shown in figs. 5 and 
6. 

5.12 
Normal stress in contact plane 

2.5 
-{o:}z*"t 

1----__ 

_ Quasi-elliptic 

2 

1.5 

0.1 0.2 0.3 n.4 0.5 0.6 0.7' 0.8 0.9 1.0 
Reduced co-ordinate • b 

x "X I 2. 

Fig. 5. The distribution of normal stress in the contact 
plane between tool and workpiece in the transition 
region between the quasi-ell iptic velocity field 
and the modified elliptic velocity field. 

It is remarked that in case b ~ 5,which is close to the 
transition from the one mode to the other, the formerly high 
negative value of a in the plane z=O close to the edge of the 
specimen, rapidly c~anges in a positive (tensile) stress. 

• . ~ 
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Modified ell iptlc 

velocity field 

b- .. 10 

- {a:}zlltco 
--- {a:}z*c! 

1.15 

0.1 0.2 0.3 O.~ 0.5 0.6 0.7 0.8 0.9 1.0 
lit b 

~educed co-ordinate x c x I 2 

Fig. 6. The distribution of normal stress in the plane 
z=O as well as in the contact plane between 
tool and workpiece for the modified elliptic 
velocity field. 

4. THE KINEMATICS OF DEFORMATION 

Once the velocity field being known also both the field of 
incremental displacements and the local incremental effective 
strain can be computed. 
In relation to stepwise decrease of the height h of the sample 
large displacements and hence the deformation of the sample 
can be visual ized. At the same time the local effective strain, 
obtained by integration of its local incremental value along the 
path of a material point, can be computed. An example is shown 
in fig. 7. 
It is remarked that in the present model barrel ing mainly develops 
in the quasi-elliptic phase, because the low value of the 
parameter n brings about a considerable difference between 0 at 
{z c 0, x = biZ} and that velocity at {z = !h, x = biZ}, x 
As soon as the modified ell iptic mode is reached, the barreling 
previously developed moves further outward without any remarkable 
change .. ' 

• .. 
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10 15 

-- fig. 7. The distortion and the local effective strains 
of a sample of the original dimensions ho = 10, 
bo = 20 after 50% reduction in height. 
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