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I. Introduction and summary 

1.1. Landau's well-known inequality (cf.[SJ) for twice differentiable functions 

may be put in the following form: if f and f" are bounded on JR. then 
1 1 

IIf'lI ~ 22(llfllllf"II)2; here, and throughout this paper, 11'11 denotes the 

supremum norm. Landau's inequality is best possible , i.e., the constant 
! 

22 cannot be replaced by a smaller one. Around 1939 Kolmogorov [4J ob-

tained similar best possible inequalities connecting II f 11,11 fen) 11,11 f(k) II 

(1 ~ k ~ n-1). The analogous problem for periodic functions has been 

dealt with by Northcott [7J. 

It is interesting to note that the extremal functions, i.e., the functions 

for which the inequalities above turn into equalities are the same for 

both problems; these extremal functions are the Euler splines. Cavaretta[IJ, 

\vho gave an elementary proof of Kolmogorov's inequalities by first 

establishing them for periodic functions, showed that Euler splines also 

maximize the functional II f (k+ I) + a f (k) II, for any a E JR. and for 0 ~ k ~ n-2 , 

on the set of functions f with prescribed upper bounds for II f II and II f(n)11 
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1.2. As the main result of this paper we show that the so-called Euler £-

splines are extremal with respect to a rather general class of differ-

ential operators defined on the set of periodic functions. 

Preliminary material is collected in section 2. Section 3 contains a 

proof of the main result and an example. 

2. Preliminary notions and results 

2.1. By Wen) we denote the set of functions f having an absolutely continuous 

(n-I)~st derivative f(n-I) on every compact subinterval of R and a 

(Radon-Nikodym) derivative fen) that is essentiallY bounded on R, i.e., 

fen) E Loo(R) • For a given period T > 0 the set w~n) is then defined by 

wen) = {f E wen) I f(t + T) 
T 

f( t), t E R} • 

Let D be the ordinary differentiation operator and let p be a polynomial 
n 

of degree n, then the corresponding differential operator of order n is 

denoted by Pn(D), DO = I. 

Let h be a positive number and let p be a mon~c polynomial of degree n. 
n 

If a function s satisfies the conditions 

1 
s E wen) 

(2. I) P (D) set) = -I (0 < t < h) n 

s(t+h) = -set) (t E JR.) , 

then s is called an Euler I-spline corresponding to the operator p (D) 
n 

and with mesh distance h. It can be shown that s is uniquely determined 

by (2.1) if p has only real zeros; in this case s will be denoted by 
n 

E(p ,h,·). 
n 
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2.2. Let p (n ~ 2) be a monic polynomial of degree n having only real zeros. 
n 

Furthermore, let de function P be defined by means of its Fourier 
n 

series with period T, i.e., let 

co 
(2.2) P (t) I P -I (iwj) 

n j=-co n 

j ;&0 

where w = 2Tf/T. Then P E w~n-I) 
n 

P can be written in the form 
n 

e i wjt (t E JR.) 

and (cL Ter Morsche [6,p. 137-138J) 

(2.3) P (t) 
n f 

tz 
2~i ______ e ______ dz (0 ~ t ~ T), 

Tz C(I-e )p(z) 
n 

where C ~s a closed contour in the complex plane including the origin 

and the zeros of p , but excluding the points z = iwj (j = ±1,±2, .•• ). 
n 

It immediately follows from (2.3) that 

(2.4) p (D)P (t) = -I 
n n 

(0 < t < T). 

(0 ~ k ~ n-2) be a monic polynomial of degree k that divides. p • n 

We now introduce P defined by P 
n,k n,k 

-I 
Pn,k corresponds to Pn,k:= Pk Pn in the same way as Pn corresponds to 

p in (2.2). 
n 

A representation formula for the elements of the set win) ~s given ~n 

the following lemma. 

Lemma 2. I. If f E \/n) 
T 

(2.5) f(t) 

then 

P (t - T)p (D)f(T)dT 
n n 

(t E JR) • 

For a proof of this lemma the reader is referred to Golomb [3J or Ter 

Horsche [6, Lemma 6.3.1J. 



- 4 -

2.3. In Section 3.1 we need an estimate on the number of zeros of various 

derivatives of P in the interval (O,TJ. The following lemma is used 
n 

for that purpose. Here Ker(p ) denotes the kernel of p (D), i.e., the 
n n 

set of real-nlued functions f for which Pn (D)f(t) = 0 (t E JR) • By Zf(J) 

we denote the number of zeros of f in the set J, counting multiplicities. 

Lemma 2.2. Let p be a monic polynomial of degree n having only real 
n 

zeros, and let r be a nonnegative integer. Furthermore, let f i 0 have 

the properties 

(2.6) 

f E Ker(p ) 
n r (i) 

1 (ii) f(j) (T) (j 

Then 

(2.7) 
r 

~ l 
Proof. We distinguish 

then condition (ii) of 

nontrivial function f 

r-I (r odd) 

r (r even). 

between the cases r ~ 

(2.6) ~s void. Since 

E Ker(p ) has at most n 

equality (2.7) obviously holds. Now let 0 ~ 

0, 1 , ..• ,n-r-I) • 

nand 0 ~ r < n. If r ~ n 

p only has real zeros, a n 

n-i zeros in JR , and ~n-

r < n, and let q i 0 be a 

continuously differentiable function satisfying q(O) = q(T), q'(O) = q'(T). 

Then for any A E JR 

(2.8) Z «O,TJ)~ Z , , «O,TJ) • q q - Aq 

This inequality may be verified by writing 

q'(t) - Aq(t) At d (-At \ e dt\e q(t») 
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and using Rolle's theorem. We note that Z «O,TJ) is even if q(O) # o. 
q 

Denoting the zeros of Pn by Ct I, aZ""' Ctn , we introduce the polynomials 

Pr+1 and Pn-r-I defined by 

P I (x) = (x - a 2)(x - Ct 3)"'(x - a ) • n-r- r+ r+ n 

Then g:= P I(D)f E Ker(p I) and in view of (ii) of (2.6) we con-n-r- r+ 

clude that g(O) = g(T). We proceed by first assuming that g F o. As Pr+1 

has only real zeros it follows that Z (J) ~ r for any setJ c R. 
g 

Since 

- a t 

get) n f(t), 

repeated application of (2.8) yields 

Hence, Zf«O,TJ) ~ r. If Zf«O,TJ) = r then obviously Zg«O,TJ) = r. It 

follows that g(O) ~ 0 and therefore that r is even, since otherwise one 

would have Z «O,TJ) > r. This proves (2.7) ~n case g F O. It remains 
g 

to consider g = O. Then f E Ker(Pn_r_l) and ~n view of (ii) of (2.6) f 

~s periodic. If Pn-r-I(O) ~ 0 then f - 0, contradicting the hypotheses 

of the lemma; hmvever, if Pn- r - I (0) o then f is a nonzero constant 

function for which (2.7) clearly holds. This proves the lemma. 

2.4. In order to formulate the next lemma we need the following definition. 

Definition 2.3. 

u 
T 

{u E L"" ([ 0, T J) III u" ::; I, f U ( T ) d T 

o 
O} • 

o 
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Lemma 2.4. Let g be an arbitrary real-valued nonconstant analytic func-

tion defined on [0, T]. Then there is a uniquely determined real constant 

Co such that 

(2.9) 

T 

max J g(T)u(T)dT 
UEU 0 

Moreover, functions u E U for which this maximum lS attained are given 

by 

(2.10) 

Proof. For ---

Hence 

u(t) = sgn(g(t) - cO) (a. e. on [0, T ]) • 

every u E U and c E 1\ one has 

T 

f g(T)u(T)dT 

0 

T 

f g(T)u(T)dT 

o 

T 

f (g(T) - c)u(T)dT :0; 

0 

T 

:0; mln J Ig(T) - cldT • 
CE]R. 0 

T 

f Ig(T) 

0 

- cldT • 

So the LI-distance of g to the set of constant functions has to be deter­

mined. Since by assumption g is a real-valued nonconstant analytic func-

tion, it coincides with any constant c in at most finitely many points 

of [O,T]. According to a well-known characterization theorem for L1-

approximation (cf. Cheney [2,p.220]), the best approximation Co to g lS 

uniquely determined by 

(2. 1 I) 

T 

f sgn(g( 1) - cO)d1 

o 
O. 

Formula (2.9) now immediately follows by taking u(t) = sgn(g(t) - cO), 

With respect to the second assertion of the lemma we note that for 

functions u E U the equality 
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T 

J (g(T) - cO)u(T)dT 

o 

holds if and only if u ~s given by (2.10). 

3. An extremal property of Euler £-splines 

3.1. Our main result is the following theorem. 

Theorem 3.1. Let p (n ~ 2) be a monic polynomial of degree n having only 
n 

real zeros with p (0) 
n 

O. Furthermore, let Pk (0 ~ k ~ n-2) be a monic 

polynomial of degree k that divides p • Then the following two inequali­
n 

ties hold: 

(i) if Pk(O) = 0 then for all a E JR and all f E win) 

(ii) if Pk(O) # 0 then for all f E win) 

Moreover, equality in (3.1) or (3.2) holds if and only if S E ]R. and 

~ E (O,TJ exist such that 

f(t) = S E(p ,T/2,t- ~ ) 
n 

(t E JR) • 

Proof. Without loss of generality we may assume that II Pn (D) f II ~ I. 

Accordingly, define 

In order to prove (3.1) and (3. 2) one has to determine 

o 
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sup II Pk (D) (D + aI)f II , 
_en) 

fEW
T 

with a = 0 5n case Pk(O) # o. As the set w~n) ~s invariant under trans-

lation of arguments, (3.3) equals 

(3.4) sup Ipk(D)(D+aI)f(T)I. 
_en) 

fEWT 

Applying Pk(D)(D + aI) to (2.5) and putting t 

obtain the relation 

(3.5) Pk(D)(D + aI)f(T) 

where G ~s given by (cf. p.3) 

(n) 
T, for any f E WT 

(3.6) G(t) Pk(D)(D + aI)Pn(t) = (D + aI)Pn,k(t) • 

T 

we 

Since P (0) = 0 one has f P (D)f(T)dT 
nOn 

= 0; this, together with lip (D)fll::; I, 
n 

implies that P (D)f E U. By (3.5) and 
n 

follows that 

(3.7) sup II P
k 

(D) (D + aI) f II 
_en) 

fEW 
T 

max 
UEU 

on account of Definition 2.3 it 

T 

T-II G(T - T)u(T)dT 

o 

Because of (2.4), G satisfies the differential equation 

P k(D)G(t) = -a n, 
(0 < t < T) 

and thus coincides with an analytic function on (O,T). Moreover, G is 

not constant since (cf.(2.2» otherwise (iwj + a)Pk(iwj) would be zero 

for all j = 0,±1,±2, ••• , which cannot occur since by assumption Pk i O. 

Consequently, we may apply Lemma 2.4 to (3.7). This yields a constant 
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Co uniquely determined by (cf.(2.11» 

T 

J sgn(G(T - T) - cO)dT O. 

o 

Let H(t):= G(t) - cO' then H satisfies the differential equation 

D p k(D)H(t) = ° n, 
(0 < t < T) • 

Moreover, H(j)(O) = H(j)(T) (j = O,I, ••• ,n-k-3). In v~ew of Lemma 2.2 
T 

one has ZH«O,TJ) ~ 2. Since f sgn H(T)dT = ° it follows that either H 
o 

has precisely one zero ~n (O,T) located at T/2, or H has precisely two 

zeros in (O,T) a distance T/2 apart. In any case H has equidistant 

zeros in lR with distance T/2. These observations ascertain that a func­

tion f E w~n) yielding the supremum in (3.4) has the property Pn(D)f(t) = 

sgn(H(T - t». Moreover, any function yielding the supremum in (3.3) 

satisfies the differential equation 

p (D) f (t) 
n 

sgn(H(n - t» (t E JR.) 

for some n E (O,TJ. Taking into account the definition of the Euler £-

splines (cf.p.2), we conclude that an extremal function f has the form 

f(t) = f3 E(p ,T/2, t - ~ ) 
n 

for some f3 E lR and some ~ E (O,TJ, i.e., it is an appropriate multi"ple 

of an Euler £-spline. This completes the proof of Theorem 3.1. 

Remark. If in case (ii) we take in particular p (D) = Dn and k = 0, then 
n 

(3.2) implies Northcott's theorem. We further note that results similar 

to Theorem 3.1 have been derived by Golomb [3J for specific subsets of 

o 
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W(n)and for specific functionals. 
T 

3.2. As an application of Theorem 3.1 we consider the following example. 

Example. Given n E Nand y > 0 let 

(3.8) 

According to (3.1) one has, taking Pk(D) D and CL = 0, 

IIf"lI::; IIE"(P2n+I,T/2,.) IIIIP2n+ I (D)fll 

Applying Formula 3.2.30 inTer Morsche [6, p.67], we obtain by elementary 

calculations 

(_I)n+l 2 ~ (_I)n-k sinh«t-T/4)ky) 
(3.9) E(P2n+I,T/2,t) = ( ,)2 2n(t-T/4) - 2n+l

k
L

I
(n+k)!(n-k)! cosh(kyT/4) 

n. y y = 

where 0 ::; t ::; T/2. 

'" A careful count of the zeros of E (P2n+I,T/2,.) shows that on [0,T/2J 

this derivative only vanishes at the end-points of [0,T/2J. SO 

IE"(P2n+I,T/2")1 attains its maximum at t = 0, and using (3.9) we get 

(3.10) IIE"( T/2 .) II = _2_ \' (-I) k tanh(kyT/4) = 

I 
00 n-k I 

P2n+ I" /n-I k~ I (n+k) ! (n-k) ! 

I I In (-I)k(n-k) (2n) tanh«n-k) y T/4) I. 
(2n)!y2n-1 k=O k 

As is apparent from (3.8) the polynomial case P2n+I(D) = D2n+1 LS ob­

tained by letting y ~ O. In order to evaluate (3.10) for y ~ 0 we use 

the identities 

(3. II) (2n)! cS. 
J , n 

(j 0,1,2, ... ,n) , 
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which are easily verified. 
co 

For small x let tanh x = I c.x2j - l
• Then for sufficiently small y 

j:: I J 

2n k 2n co T 2' -I 2' -I 2n k 2' 2n I (-I) (n-k)(k)tanh(n-khT/4) = I c'(7;) J y J I (-I) (n-k) J(k)' 
k=O j= I J k=O 

In view of (3.10) and (3.11) we conclude that 

limIlE"(P2 I,T/2,')11 
y+o n+ 

I c I (T /4) 2n-1 • 
n 

By the residue theorem 

c = _1_. rh tanh(z) dz 
n 2rr~ r 2n ' 

C z 

C being a closed contour including z = 0, but excluding the poles of 

tanh(z). Since the sum of all residues of tanh(z)/z2n is zero, it follows 

that 

Consequently 

lim IIE"(P2 I,T/2,.) II 
O 

n+ y+ 

Taking T 2IT we obtain 

II filii :0; ~ Ilf (2n+ I) II 
IT 

co 

I (2j + I) -2n 
j=O 

which agrees with Northcott's theorem. 

co 

I (2j+I)-2n 
j=O 
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