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Appendix A: Pathophysiology of diabetes 

1. Diabetes 
The prevalence of diabetes is rising all over the world. There are an estimated of 120 

million people With diabetes world-Wide. This number is predicted to increase, in 

both developed and developing countries to around 300 million by 2025. Diabetes is 

a serious and life-threatening condition, which is extremely costly [l]. 

There are different categories of diabetes mellitus (DM), of which the dominant 

primary one exists in two different forms, type I and type II diabetes. Type I 

diabetes, also known as insulin-dependent diabetes mellitus (IDDM). It is caused by 

an autoimmune disease and is characterized by a complete insulin deficiency due 

to the destruction of the beta cells producing the hormone insulin. Type II DM is 

much more common than type I DM, constituting about 90% of all cases of DM . In 

Type II diabetes, enough insulin may be available but, due to insulin resistance of 

the target organs, blood glucose regulation is perturbed [2J . 

A fasting blood glucose level of greater than or equal to 7.0 mmol/L, on at least two 

occasions, is diagnostic for diabetes. This test should be performed after an eight 

hour fast. Normal fasting glucose levels are less than 6.1 mmol/L, and normal two­

hour postprandial (after a meal) glucoses are less than 7.8 mmol/L. Symptoms of 

hyperglycemia (e.g., polyuria1, polydipsia2, polyphagia3, unexplained weight loss) 

With a casual blood glucose level of greater than or equal to 11.1 mmol/L also are 

sufficient to diagnose diabetes [2]. 

2. The physiology of glucose homeostasis 
Energy requirements are determined by age, sex, body and size composition and 

levels of physical activity. Energy is derived from the oxidation of carbohydrate , 

protein and fat. Body energy stores are filled after meals and mobilized during 

1 Polyuria is a condition characterized by the passage of large volumes of urine (at least 2.5 
Lover 24 hours in adults). 
2 Polydipsia is a medical symptom in which the patient ingests abnormally large amounts of 
fluids by mouth. 
3 Polyphagia is a m edical s ign m eaning excessive hunger and abnormally large (poly-) intake 
of solids by mouth. 
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fasting. Glycogen4 is mainly stored in skeletal muscle, while triglyceride is stored in 

fat and is the major reseIVe. During starvation, body proteins can also be mobilized 

to produce amino acids that are converted into glucose fuel [3]. 

a. Carbohydrate metabolism 

Blood glucose levels are normally maintained within tight limits by balancing 

glucose entry to the blood stream and glucose uptake by peripheral tissues. Tight 

glucose control is important in ensuring a steady state supply of glucose to the 

brain. The glucose level depends on the rate of glucose entry into the circulation 

and its uptake by the tissues. Under basal condition, the rates of glucose entry and 

uptake is equal and the blood glucose concentration is stable [3]. 

After digesting a meal, glucose concentrations in the blood rise with a speed and 

height that depends on the nature of the meal. Complex carbohydrates cause a slow 

rise with a low peak, while simple carbohydrates result in a rapid rise with a high 

peak. The skeletal muscle and liver are the main tissues that regulate blood glucose 

by varying their rates of glucose production and uptake. When the glucose levels 

rise, they stimulate the pancreatic beta-cells to secrete insulin. This cause glucose 

uptake in the insulin-dependent tissues like skeletal and cardiac muscles and fat. 

The ability of insulin to stimulate the maximum capacity for glucose uptake in 

these tissues is mainly dependent on the glucose transporter GLUT-4. In non­

insulin dependent tissues (such as the central neIVous system and red blood cells), 

glucose uptake (non-insulin-mediated glucose uptake) increases as blood glucose 

levels rise, through a mass-action effect. Insulin has little effect on glucose 

transporters GLUT-1 and GLUT-4 which are present in brain and other non-insulin 

dependent tissues. Once the blood glucose concentration dips below its basal value 

(5 mmol/L), the pancreas is stimulated to release glucagon which acts on the liver 

to release glucose. The liver can produce glucose via glycogenolysis5 and 

gluconeogenesiss. A brief schematic representation of carbohydrate metabolism is 

shown in figure A. l [3]. 

4 Glycogen is a polysaccharide of glucose which functions as the primary short term energy 
storage in animal cells. 
5 Gluconeogenesis is the production of 'new'glucose from pyruvate, lactate, glycerol, and 
glucogenic amino acids. 
6 Glycogenolysis in the liver produces only a limited amount of glucose which can rapidly 
mobilized for use by other tissues. 
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Carbohydrate metabolism is regulated by several hormones and by the sympathetic 

and parasympathetic divisions of the autonomic system. By suppressing 

gluconeogenesis and glycogenolysis in the liver, insulin (the principal hormone) 

lowers blood glucose levels. When gluconeogenesis and glycogenolysis decreases, 

the hepatic glucose output decreases which causes glucose uptake into peripheral 

tissues (mainly muscle and adipose tissue). Hepatic glucose production can be 

inhibited by low insulin concentrations (30-60 mU /L), while much higher insulin 

levels are required to stimulate peripheral glucose uptake. These processes are 

opposed by the counter-regulatory hormones. These are secreted all the time but 

are released under conditions of physiological 'stress', including hypoglycemia, 

when the immediate mobilization of glucose is needed to increase blood glucose 

levels to normal. Glucagon is the main hormone that increases glucose output from 

the liver. It rapidly stimulates hepatic glucogenolysis and glucose production and 

subsequently increases gluconeogenesis. Therefore, this hormone reverses 

hypoglycemia. Catecholamines, including both adrenaline and noradrenaline, also 

stimulate glyconeogenesis, glycogenolysis and hepatic glucose production. Cortisol 

enhances gluconeogenesis as well, but has little effect on glycogen breakdown [3]. 

Between meals, the blood glucose levels are mainly determined by hepatic glucose 

production and peripheral glucose uptake. After an overnight fast, hepatic glucose 

output is about 1.8-2.2 mg/min/kg body weight. As the delivery of glucose from the 

intestine decreases during the transition from the fed to fasting state, the blood 

glucose levels are maintained by a progressive increase in hepatic glucose 

production. This is also the case during exercise, in order to meet increased muscle 

glucose use and maintain normal glucose levels. Hepatic glucose production must 

however be promptly suppressed after glucose ingestion to limit the rise in plasma 

glucose. Whole-body glucose utilization is equal to glucose production (1.8-2.2 

mg/min/kg) in the basal state [3]. 

After an oral glucose consumption, 25 to 50% of the glucose load is taken by the 

liver. Of the extra glucose taken up by the peripheral tissues (compared with the 

basal state), the muscle accounts for 80-85% and adipose tissues for 10-20%. The 

brain has an obligatory requirement for glucose. It consumes 80% of the glucose 

utilized at rest after an overnight fast. Glucose uptake by the brain is not regulated 

by insulin or changes in blood flow, as it is in other tissues. Therefore, cerebral 

function is critically dependent upon maintaining blood glucose concentrations 
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within relatively narrow limits. Blood cells account for about 20% of total glucose 

requirements, and the renal medulla for most of the remainder [3]. 

Carbohydrate 
NTMGCJ 

Liver 

Glucose 

Central 
nervous 
system 

Glucose 

Adipose 
~---1 tissue 

Glucose 

Glucose 

Skeletal 
Muscle 

Figure A.1: Overview of carbohydrate metabolism [3/. Ins: insulin, NIM GU: non-insulin­

mediated glucose uptake. 

b. Fat and protein metabolism 

The liver and adipocytes synthesize triglyceride from non-esterified fatty acids 

(NEFA) and glycerol-3-phosphate that is derived from glucose. Insulin stimulates 

lipogenesis by increasing glucose uptake into adipocytes via GLUT-4 and by 

inhibiting triglyceride breakdown (lipolysis) [3]. 

Protein production, which is around 200-300 gram per day, exceeds normal protein 

intake (70-100 g/ day) . Amino acids that are released from endogenous proteins are 

important in resynthesizing body proteins and producing glucose [3]. 

8 



c. The effect of insulin 

Insulin is a hormone that is secreted by the pancreatic beta-cells. These secrete 

about 40-50 units of insulin per day in normal adults. The basal concentration of 

insulin in the blood of fasting humans is on average 10 µU/ml (0.4 ng/ml or 61 

pmol/L). Basal insulin secretion is the amount of insulin that is secreted in the 

absence of exogenous stimuli (in the fasting state). Insulin rarely rises above 100 

µU /ml after standard meals. The peripheral insulin concentration begins to rise 8-

10 minutes after ingestion of food and reaches a peak concentration in peripheral 

blood by 30-45 minutes. Consequently, postprandial plasma glucose concentration 

declines rapidly, which returns to baseline values by 90-120 minutes [4]. 

Stimulated insulin secretion, which occurs in response to exogenous stimuli, is the 

response of the beta-cell to ingested food. Glucose is the most potent stimulant of 

insulin release. When the glucose concentration in the system is increased 

suddenly, an initial short-lived burst of insulin secretion occurs, the early phase. If 

the glucose concentration is held at this level, the insulin release gradually falls off 

and then begins to rise again to a steady state level, the second phase. In the early 

phase, insulin is produced in a rapid burst, while in the second phase there is a 

less intense longer release lasting as long as blood glucose levels remain above 

basal levels. The first phase is important in priming the liver and muscles (insulin 

target tissues) so that they can respond to insulin. Persistent levels of high glucose 

stimulation (> 24 hours in vivo) results in a reversible desensitization of the beta­

cell response to glucose but not to other stimuli [4]. 

Insulin's major function is to promote storage of ingested nutrients. Although 

insulin directly or indirectly affects the function of almost every tissue in the body, 

we will focus here on the effects of insulin on the three major tissues: liver, muscle 

and adipose tissue [3] . 

The liver is the first major organ that is reached by insulin via the bloodstream. 

Insulin promotes glycogen synthesis and storage at the same time it inhibits 

glycogen breakdown. The liver has a maximum storage capacity of 100-110 g of 

glycogen, or approximately 440 kcal of energy. Insulin also increases both protein 

and triglyceride synthesis and VLDL (very low density lipoprotein) formation by the 

liver. Next to that, it inhibits gluconeogenesis and promotes glycolysis. 
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Furthermore, insulin inhibits hepatic glycogenolysis, ketogensis and 

gluconeogenesis [3]. 

Insulin promotes protein synthesis in the muscle. It also promotes glycogen 

synthesis to replace glycogen stores expended by muscle activity. In the muscle 

tissue of a 70-kg man. approximately 500-600 g of glycogen is stored. However, it 

cannot be used as a source of blood glucose because of the lack of 6-phosphatase 

in the muscle, except by indirectly supplying the liver with lactate for conversion to 

glucose [3]. 

The most efficient means of storing energy is fat (in the form of trtglyceride). It 

provides 9 kcal per gram of stored substrate (4 kcal/g is generally provided by 

protein or carbohydrate). The energy content of adipose tissue in the typical 70-kg 

man is about 100.000 kcal. Insulin acts to promote triglyceride storage in 

adipocytes by inducing the production of lipoprotein lipase which leads to 

hydrolysis of trtglycerides from circulating lipoproteins . increasing glucose 

transport into fat cells and by inhibiting intracellular lipolysis of stored triglyceride 

by inhibiting intracellular lipase [3). 

3. Diabetes management, complications and therapy 
Diabetes is currently a chronic disease without a cure. The medical emphasis is on 

controlling and avoiding possible short- and long-term diabetes complications. In 

order to avoid these complications, DM patients should control their blood glucose. 

This can be achieved by combining diet, exercise and medication (oral diabetic 

drugs and/or insulin)[2] . 

Chronic elevation of blood glucose will eventually lead to tissue damage. Whilst 

tissue damage can be found in many organs, it is the kidneys (nephropathy). eyes 

(retinopathy). peripheral nerves (neuropathy) and vascular tree, which manifest the 

most significant and sometimes fatal diabetic complications, figure A.3 [2). 

Oral diabetes medications help control blood glucose levels in people who still 

produce insulin (the majority of people with type II DM). Several of these diabetes 

medicines are used in combination to achieve optimal blood glucose control. People 

with type I DM usually do not (or very little) produce insulin. For this group 

patients. insulin is required to control their blood glucose. In time, people with type 
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II DM develop beta-cell failure. This means that beta-cells in the pancreas that 

produce insulin no longer are able to secrete this hormone in response to high 

blood glucose levels. Therefore, type II DM patients often require insulin injections 

too, either in combination with their oral medications or alone . 

The goal of diabetes therapy is tight glycaemic control, which delays the 

development of short-term complication such as hypoglycaemia 7 and 

hyperglycaemia sand long-term complications such as microvascular diseases. 

Glucose homeostasis results from the regulated balance among, glucose ingestion, 

hepatic glucose release, and skeletal muscle and adipose tissue glucose uptake and 

disposal. Pharmacologic treatment of diabetes patients targets all these 

components. There are several categories of oral diabetes medications. Different 

types and the way they work are listed in table A. l [5]. 

7 Hypoglycaemia is a pathologic state caused by a lower than normal level of 
glucose in the blood. 

8 Hyperglycaemia is a condition in which an excessive amount of glucose circulates 
in the blood. 
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Table A.1: Oral diabetes medication {5] 

Type 

Sulfonylureas 

Biguanides 

How it works 

Lower the blood glucose by stimulating the pancreas to 

release more insulin. This medication is ineffective in type- I 

diabetes because of 13-cell destruction in this patient group. 

Reduce hepatic glucose output and increase insulin­

stimulated glucose uptake in skeletal muscle and 

adipocytes. 

Thiazolidinediones Reduce insulin resistance in skeletal muscle 

Alpha-glucosidase inhibitors Delay the intestinal absorption of carbohydrates through 

inhibition of the brush-border enzymes that hydrolyze 

polysaccharides to glucose. 

Dipeptidyl peptidase-4 

inhibitors 

Increase Incretin levels which inhibit glucagon release, 

increase insulin secretion and decrease gastric emptying. 

There are several types of insulin. The different types that are used in The 

Netherlands are classified below and in table A.2. 

>- Rapid-acting (Humalog®, NovoRapid® and Apidra®) 

>- Short-acting (Humuline® Regular, Actrapid®, lnsuman® Rapid and 

lnsuman® Infusat) 

>- Intermediate-acting (Humuline® NPH, Insulatard® and Insuman® Basal) 

>- Long-acting (Lantus® and Levemir®) 

>- Mix insulin (Humuline® 20/80, Humuline® 30/70, Mixtard® 50, lnsuman® 

Comb 15, lnsuman® Comb 25 and lnsuman® Comb 50) 

Insulin is ineffective when taken orally, and must therefore be given by other 

routes. It is taken as subcutaneous injections (into the layer of fat under the skin) 

by single-use syringes with needles, an insulin pump, or by repeated-use insulin 

pens with needles. 
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Table A.2: Pharmacokinetics of most commonly used insulin preparations 

Insulin type Onset of action Time to peak effect 

Rapid-acting 5 to 15 min 45 to 75 min 

Short-acting About 30 min 2 to 4 h 

Intermediate-acting About 2 h 6 to 10 h 

Long-acting About 2 h No peak 

The major diabetic complications 

Eyes 
(retinopathy) ~-

coronary circulation 
(coronary 

heart disease) 

Lower limbs 
(peripheral 

vascular disease) 

____ Brain and 
cerebral circulation 
(cerebrovascular 
disease) 

Diabetic foot 
J / (ulceration and 
/ amputation) 

Figure A.3: Diabetes complications 
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Duration of action 

2 to 4 h 

5 to 8 h 

18 to 28 h 

20 to >24 h 



4. Diabetes education 
OM patients play an important role in determining their health status. Diabetes 

self-management is among the most difficult of all chronic illness self-management 

regimens. These patients must identify symptoms of emergencies (such as severe 

hypoglycemia). adhere to often complex medication schedules and modify their 

lifestyle such as their diet and physical activity. Therefore, many patients have 

difficulty in managing their disease [2] . 

The goal of diabetes self-management education is to support the efforts of people 

with diabetes to: understand the nature of their illness and its treatment, identify 

emerging health problems in early reversible stages, adhere to self-care practices 

and make needed changes in their lifestyle. 

Diabetes education programs range from one-on-one counseling to group sessions 

led by a clinician. Self-management educators can play an important role in 

empowertng people with diabetes to become active participants in identifying self­

care goals and overcoming barriers to their achievement [2]. 

5. Glucose monitoring 
a. Self-monitoring 

Blood glucose self-monitoring is very important in 

diabetes care as it may improve glycaemic control 

in DM patients. For this purpose, OM patients use 

glucose meters that are based on chemical test 

strips (figure A.4). These meters use a relatively 

small drop of blood (taken from the fmgertlp) that 

is placed on a disposable test strip. This strip 

interfaces with a digital meter that measures the 

level of blood glucose within several seconds. 

b. HbAlc 

Glycosylated hemoglobin (HbAlc) testing provides 

an index of average blood glucose levels over the 

prior two to three months. This testing method is 

used to assess long-term glycemic control. 
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Improved glycemic control is associated with preventing or delaying the progression 

of microvascular complications in diabetes. Hemoglobin formed in new red blood 

cells enters the circulation without any glucose attached. However, red cells are 

freely permeable to glucose. As a result, glucose becomes irreversibly attached to 

hemoglobin at a rate dependent upon the prevailing blood glucose. Several million 

red cells are destroyed every day, while an equal number of new ones are formed. 

Thus, the average amount of HbAlc changes in a dynamic way and reflects the 

mean blood glucose concentration over the previous two to three months. 

c. Continuous monitoring 

A continuous blood glucose monitor 

determines blood glucose levels on a 

continuous basis (every few minutes) for a 

few days (usually 3 days). A typical system 

consists of a disposable glucose sensor 

placed just under the skin, a link from the 

sensor to a non-implanted transmitter 

which communicates to a radio receiver, 

an electronic receiver (or insulin pump) 

that displays blood glucose levels (figure 

A.5). Continuous blood glucose monitors 

measure the glucose level of interstitial 

fluid. Therefore, calibration with a "finger 

stick" blood glucose measurement (2 to 4 

times a day) is required. Glucose levels in 

interstitial fluid lag temporally (about 5 

minutes) behind blood glucose values. 

Continuous monitoring allows 

examination of how the blood glucose level 

reacts to food, insulin, exercise, and other 

factors . Monitoring during periods when 

blood glucose levels are not typically 

checked (e.g. overnight) can help to 

Figure A.5: Continuous Glucose Monitoring 
System (CGMSJ 

identify problems in insulin dosing. A continuous monitor may also provide alarms 

to alert patients of hyperglycemia or hypoglycemia so that a patient can take 

corrective action(s) even in cases where they do not feel symptoms. 
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Appendix B: The glucose-insulin model 

1. Introduction 
This document describes a model of glucose-insulin interaction. This model was 

first developed by Bergman and colleagues [6] and describes glucose and insulin 

kinetics in healthy subjects. This model was developed to quantify insulin 

sensitivity from an intravenous glucose tolerance test (IVGTD. During an IVGTI, a 

known glucose concentration is injected into the blood plasma. The glucose and 

insulin concentration in blood plasma are then measured in time. The minimal 

model of Bergman is used to estimate parameters that are used to calculate an 

insulin sensitivity parameter (Si). As this model doesn't contain a model of 13-cell 

secretion, a model of subcutaneous insulin injection, a renal excretion model and a 

model of the gut, we added the 13-cell secretion model of Steil [7], the gut model of 

Natalucci [8], the renal excretion model of Lehmann [9] and the injection insulin 

model of Berger & Rodbard [ 10]. A schematic representation of the complete model 

is represented in figure B. l. 

Eq .9 

Eq. 17 

Liver • 

Degradation 
by kidneys 

Plasma 
Eq. 17 

• I 
I 

Central neivous 
system and red 

blood cells 

Muscle and 
adipose 
tissue 

·--------- ________ J ________ , 

Pancreas 

~---~Eq.12 

~ 
Subcutaneously 
injected insulin 

~ 
~ 

Plasma ~ 
Eq.7 

Degradation 
I by kidneys 
+ and liver 

Figure B.1: Structure of the glucose-insulin model. 

I 
I 
I 

Interstitium 

Degradation in 
muscle and I + adipose tissue 
kidneys 

Glucose flow: _,.. , Glucose influence: -----+ , Glucose degradation:--+ 
Insulin flow - ~ , Insulin influence - - _..,. , Insulin degradation: - + 
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2. The classical minimal model of Bergman 
The classical model of Bergman (6) contains one plasma glucose compartment, one 

plasma insulin compartment and one remote compartment for insulin. Insulin 

concentration does not affect glucose dynamics directly, but acts through a "remote 

compartment". This compartment is called "remote" because the effective insulin 

concentration is not directly measurable (11). Physiologically, the remote insulin 

compartment can be regarded as the interstitium in muscle and adipose tissue. 

The effective insulin concentration in the remote compartment, Ieff (µU /ml). is 

represented by: 

d/ eff = k2 {IP ( t) - J b ) - k3 Jeff ( t) 
dt 

(1) 

Where lb (µU/ml) represents the basal insulin concentration, Ip (µU/ml) represents 

the insulin concentration in plasma and kz and k3 represent the fractional rate 

parameters for insulin transport into and elimination from the remote 

compartment, respectively. 

The rate of change of glucose G (mmol/L) in the blood plasma is given by: 

dG dGL dG1 -=----
dt dt dt 

(2) 

~ ~ where : ---;ft is the net rate of glucose production by the liver and dt is the rate of 

glucose utilization by other tissues. 

dGL = B0 -k5G(t )-k6 /eff (t )G( t) 
dt 

And 

d~t = Rdo +kp(t)+k4 /effG(t) 

(3) 

(4) 

In equation 3, Bo represents the rate of glucose production by the liver, while the 

rate of glucose uptake by the liver is assumed to be proportional to an insulin­

independent component(~) and insulin-dependent component ksleff(t). In equation 

4, the rate of glucose utilization by other tissues is assumed to have a constant 

component Reio. a component proportional to glucose concentration k1 and a 

component sensitive to both glucose and effective insulin concentration kileff(t). 

Substituting equations (3) and (4) into (2), we obtain: 
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dG 
- = [ B0 - Rd0 ]- [ k5 + k1] G ( t )- [ k6 + k4 ] I ef! ( t) G ( t) 
dt 

where Go (mmol/L) is the glucose concentration at the beginning (to)of the 

simulation. 

Since leJI is not measurable, a further reduction in parameters is achieved by the 

introduction of a new variable Irem (1 /min) that is proportional to leJI: 

By substituting equation (6) into equations (1) and (5). we obtain: 

di 
-.!!!!L=-p I (t)+p (I (t)-1) dt 2 rem 3 p b 

and 

dG 
- =-pp(t)-Jrem (t)G(t)+ PPb 
dt 

(5) 

(6) 

(7) 

(8) 

where p1 = k1 +k5 [I/min]. p2 = k3 [I/min], p3 =k2 (k4 +k6 ) [ml/µU/min2 J, Gb [mmol/LI 

is the basal glucose concentration in the blood plasma and ppb = B0 - Rdn . 

3. The model of the gut 
Glucose enters the plasma compartment not only via hepatic (liver) glucose 

production but also via intestinal absorption. This part was not modeled in 

Bergman's model [6J. Therefore, we will couple the classical minimal model to the 

model of the gut from Natalucci [8]. Glucose absorption from the gut is described 

by equation: 

dGgu1 (t) = D k/Je(-1<1)P -k G (t) 
dt G abs gul 

(9) 

where, Ggut (mmol) is the mass of glucose in the gut, DG (mmol) represents the 

amount of ingested glucose, k [min] is the time constant of gastric emptying, 13 is 

the power of the curve, t (min) is the independent model variable, Gguw (mmol) is the 

glucose concentration in the gut at to and kabs (1 /min) is the rate constant of 

glucose absorption from the gut into blood plasma. By adding the model of the gut, 

we obtain: 

dG k G - = - G ( t) - I ( t) G ( t) + G + abs 
8111 

dt Pi rem Pi b V 
G 

(10) 

Where: VG (l/kg) is the volume of glucose distribution per kg body weight. 
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4. The ~-cell secretion model 
The pancreas ~-cell has a biphasic response to glucose variations. The "first" and 

"second" '3-cell phase response are clearly seen during hyperglycemic clamps, in 

which the amount of glucose necessary to compensate for an increased insulin level 

without causing hypoglycemia is measured, see figure B.2. The frrst-phase insulin 

concentration peak and the rate of increase of second phase insulin (slope) are both 

proportional to the increment in plasma glucose, see figure B.2b. Defects in first­

phase insulin release have been linked with the etiology of type 2 diabetes [12] and 

improvements in this response has been linked to improvements in glucose 

tolerance [13], [14]. Since glucose uptake is proportional to glucose concentration 

times insulin effect, an early insulin response results in less total insulin needed to 

yield a similar area under the glucose excursion [11]. It is thought that first-phase 

insulin results in an early suppression of hepatic glucose output. 

The '3-cells' biphasic insulin response can be compared to the response of a 

proportional (P), integral (I). and derivative controller (D). PIO-controller [15]. The 

proportional component reacts to the difference between plasma glucose and basal 

glucose, the integral component reacts to persistent hyper- or hypoglycaemia and 

the derivative component reacts to the rate of change in plasma glucose. Hence, the 

integrator and derivative components produce the slow second-phase rise and rapid 

first-phase rise seen during hyperglycemic clamps, figure B.3. 

Insulin delivery Uo) by the pancreas as predicted by a PIO-controller is described by: 

10 (t)=P(t)+l(t)+D(t); 

P(t)= KP (G(t)-Gb) 
K I 

I(t)=-f-f(G(t)-Gb)dt; 
I 10 

(11) 

where the proportional gain Kp (units/h per mmol/l) detennines the rate of insulin 

delivery in response to glucose above the basal level (Ga; mmol/l) , Tr (integral time; 

min) detennines the rate at which the underlying basal rate adapts, and Tv 

(derivative time; min) determines the relative amount of insulin delivered in 

response to the rate of change of glucose. The value of Kp is set in relation to the 

total daily dose (Too) of insulin as follows: 
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K K = T, X p,reference 
p DD T 

DD.reference 

A patient's Too depends on the function of the pancreas 13-cells. With decreasing 

beta-cell function resulting in decreased insulin production, subjects with type 1 

diabetes may require insulin. In general, type 1 diabetics generally require 0.5-1.0 

units per kg of body weight per day of insulin. During the early stages of type 1 

diabetes, patients will require less insulin injections because the 13-cells are still 

producing some insulin; insulin requirements can be in the range of 0.1-0.6 units 

per kg per day. In our model the Too will be patient-specific. For healthy persons, 

the Too is set to 1 unit per kg of body weight. 

The proportional component of the PID-controller increases insulin delivery when 

glucose is above target and reduces insulin delivery when glucose is below target 

level. When glucose is at target level, the P component provides no contribution. 

Thus, it does not contribute to the underlying basal requirement needed to 

maintain fasting glucose at target. The integration component is the only 

component to provide insulin when glucose is at target and stable and is 

comparable to basal insulin secretion. It adjusts upward when glucose is above 

target level, downward when glucose is below target level, and is unchanged when 

glucose is at target level. It ensures that target is always achieved when the system 

is at steady state. The derivative component increases insulin delivery when glucose 

is rising and decreases delivery when glucose is falling. This stabilizes the system in 

such a way that any change in plasma glucose is counteracted by a change in 

insulin delivery; regardless of the prevailing glucose level (it stops for example 

insulin delivery when glucose is falling, even if the glucose level is above target). 

Insulin is secreted from the 13-cell into plasma at a rate proportional to p5 (l/ml) 

and is eliminated at a rate proportional toke (I/min). This process is described by 

the following equation: 

dip= P/D (t)-kJP (t) 
dt 

(12) 

where, Ip represents plasma insulin and Ipo is the insulin concentration in the blood 

plasma at to. 
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5. The subcutaneous insulin injection model 
When simulating blood glucose profiles in diabetes patients, the beta-cell secretion 

model will be modified or disconnected from the model as the beta-cell is not 

working properly /anymore in these patients. In this case, insulin will be injected 

subcutaneously (external input). 

The phannacokinetics of injected insulin absorption have been derived from Berger 

& Rodbard [10). The rate of insulin absorption I1nJ is modeled as follows: 

s(-t Js D, 
Tso 

(13) 

where tis the time elapsed from the injection, Tso is the time at which 50% of the 

insulin dose, D1, has been absorbed and s is an insulin specific parameter defining 

the insulin absorption pattern of the different types of insulin used in the model 

(short-, intermediate- and long-acting). Tso on dose is defined as: 

(14) 

where a and b are also insulin specific parameters. The values of these parameters 

are given in table C.2. 

By adding the subcutaneous insulin injection model, equation 12 will become: 

di P = Ps (ID ( t) + Jinj )- kJ P ( t) 
dt 

6. The renal glucose secretion model 

(15) 

The function of the kidney is modeled in terms of renal threshold of glucose and 

creatinine clearance [9]. Glucose excretion from the model takes place above the 

renal threshold as a function of the creatinine clearance rate. The rate of renal 

glucose excretion Gren is defined as follows: 

{

Gren =~FR(G-R,c); 
Gren -0, 

G>RTG 

(elsewhere) 
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where GFR is the glomerular filtration (creatinine clearance) rate. Default parameter 

values for RTG and GFR are set to 9 mmol/l and 100 ml/min respectively. The renal 

excretion of glucose is zero for blood glucose values below the renal threshold of 

glucose. By adding the renal glucose excretion model, equation 10 becomes: 

~ k G G - = -p G (t)-1 (t) G (t) + p G + abs gut _ __!!!!!._ 
dt i rem i b V V 

G G 

(17) 

7. Model equations 
The differential equations that describe the glucose-insulin model are: 

dG8u/t) = D k/Je(-kt)p -k G (t) 
dt G abs gut Ggw(to) = GgutO (9) 

dG =- G(t)-1 {t}G{t)+ G + kabsGgut - Gren 
dt Pi rem Pi b V V 

G G 

(17) 

di 
___!E!!_ = -p I (t) + p (1 (t)- I ) dt 2 rem 3 p b (7) 

dip 
dt = p5 (ID ( t) + 1;,J-k/ p ( t) (12) 

These equations are implemented, along with the initial conditions, in Simulink®. A 
schematic representation of the Simulink® model is given in appendix D. 
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Appendix C: Initial model parameters 

1. Parameters 
The model parameters of Bergman et al. [ 17] were detennined from a human study 

in which they performed an intravenous glucose tolerance test (IVGTI) in 18 

subjects. The subjects were in good health and were not taking any medication that 

would alter carbohydrate metabolism. The subjects were divided in 4 groups lean 

(88-105% Ideal Body Weight) with good glucose tolerance, lean with low glucose 

tolerance, obese (130-206% IBW) with good tolerance and obese with low tolerance. 

For the development of our model, we considered the parameters p1 , p2, p3 and~ 

of the first group "lean with good tolerance", see table C. l, as the basis of our model 

should behave like a healthy person. 

Tabel C.1: Model parameters (Bergman, 1981) 

Subjects Sex lb Gb pl p2 p3 

[uU/ml] [rnrnol/l] [I/min] [I/min] [min-2/uU/ml] 

1 M 17 5.22 2.96E-02 l .86E-02 6.51E-06 

2 M 9 5 .06 1.92E-02 2 .62E-02 l.47E-05 

3 M 15 4.72 3.74E-02 4 .78E-02 8.73E-06 

4 M 8 5 .50 3.63E-02 8 . lOE-03 4 .0lE-06 

5 M 9 5 . 17 4.64E-02 3 .80E-03 3 .61E-06 

AVG 11.60 5 . 13 3.38E-02 2 .09E-02 7.51E-06 

STD 4 .10 0 .28 l .OlE-02 l .74E-02 4 .52E-06 

In the study of Natalucci [8], nine nondiabetic subjects received an oral glucose 

tolerance test (OGTI). From the measured data, the parameter kabs was derived and 

was used in our model. Parameters k and ~ were derived from the study of Schirra 

[18). This study investigated in eight healthy male volunteers (age: 24-28 yrs; 

IBW=l0%) the gastric emptying pattern of glucose. To develop a physiologically 

plausible parametric description of glucose gastric emptying Natalucci et al took the 

derivative of power exponential equation f (t) = exp(-kt)P that Schirra et al used to fit 

the experimental gastric emptying curve (the amount of glucose retained in the 

stomach expressed as percentage of the total glucose ingested) observed during 

OGTT. The equation for gastric emptying Rge is described as follows: 

R
8
e(t) =-D df = Dk/Jexp(-kt)p 

dt 
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The derivative df/dt was multiplied by the amount of glucose ingested, D, to express 

Rge in mg/min. The minus sign indicates that Rge enter the gut compartment. 

Steil et al [7] evaluated two secretion models for their ability to describe plasma 

insulin dynamics during hyperglycaemic clamps in seven nondiabetic subjects (five 

men, two women; age: 48 ± 2 yrs; BMI=25. 7 ± 0.8 kg/m2). We used the PID model, 

as described above, as it was the most suitable model. 

Table C.2 gives descriptions and values for all the model parameters, which were 

taken from the literature [17], [8], [18],[7]and [10]. 

Table C.2: Model parameters 

Parameter Unit Description Value 

G(t} [mmol/I] Plasma glucose Calculated 

GB [mmol/ll Basal glucose level 5.I3 ± 0.28 

Go [mmol/11 Glucose concentration at to Patient-specific 

Ggut(tl (mmol) Glucose concentration in the Calculated 

gut 

Ip(t} (µU/ml] Plasma insulin Calculated 

Ierr{t} [µU/ml] Effective insulin Calculated 

lo(t} [µU/rnin] Physiological insulin delivery Calculated 

lrem(t} [I/min] Variable proportional to Ierr Calculated 

lpo [µU/ml) Insulin concentration at to Patient-specific 

k1 [I/min] Rate of insulin-independent Not identifiable 

glucose utilization by non-

hepatic tissues 

(I/min] Fractional rate parameter for Not identifiable 

insulin transport into remote 

compartment 

(I/min) Fractional rate parameter for Not identifiable 

insulin transport from remote 

compartment 

(I /µU /ml/min] Rate of insulin-dependent Not identifiable 

glucose utilization by non-

hepatic tissues 

ks (I/min) Rate of insulin-independent Not identifiable 

glucose uptake by the liver 

(I/µU/ml/min] Rate of insulin-dependent Not identifiable 
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Bo [mmol/l/min] 

Rew [mmol/l/min] 

p1 [I/min] 

p2 (I/min] 

p3 [ml/µU /min2] 

[I/ml] 

Kp, reference (µU/min per 

mmol/l] 

Too.reference (U/min] 

Too [U/min] 

(µU/min per 

mmol/l] 

T1 (min] 

To [min] 

Ios (µU/min) 

De [mmol] 

glucose uptake by the liver 

Rate of glucose production by 

the liver (constant component) 

Rate of glucose utilization by 

non-hepatic tissues (constant 

component) 

P1 =k1 +ks 

P2 = k3 

p3 = k2 ( k4 + k6) 

Insulin secretion rate from the 

beta-cell into the plasma 

Reference total daily dose 

Total daily dose 

Rate of insulin secretion in 

response to glucose above basal 

Ratio of proportional to integral 

release 

Ratio of derivative to 

proportional release 

Basal insulin delivery rate 

Amount of glucose ingested 
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Not identifiable 

Not identifiable 

3.38 ± l.OI . I0-2 [17] 

2 .09 ± 1.74. I0-2 (I7] 

7.5I ± 4.52. I0-6 [I7] 

0.675 (U/h per [19] 

mg/di]= 0.2·I06 

[µU /min per mmol/l] 

I [U /kg body weight [I9] 

per day]= 0.0486 

(U/min] (70 kg) 

Variable between 0.5 

and I U /kg per day 

(I9] 

98.8 (7] 

37.6 [7] 

0 (I9) 

Variable 



kabs [I/min] Rate of glucose absorption from 2.89·10·2 (8) 

the gut into blood plasma 

k [I/min) Time constant of gastric 0 .014 [81 

emptying 

~ dimensionless Power of the exponential cuive 1.23 [8) 

Vo [ l ) Volume distribution for glucose 0.17 [l/kg) [8) 

per kg body weight 

V1 [ml] Volume distribution for insulin 0.142·103 [ml/kg) [9] 

per kg body weight 

w kg Body weight Patient specific 

ke [I/min) Insulin elimination rate 0.09 [7) 

I1nj (µU/min) Subcutaneously injected Calculated [10) 

insulin 

Tso (min) Time at which 50% of the Calculated [10] 

insulin dose has been absorbed 

s dimensionless Insulin preparation specific s(regular)= 2 [10) 

parameter 

a [min/ µU]) Insulin preparation specific a(regular)=0.05 (10) 

parameter [h/U)=(0.05x60) . lQ-6 

[min/ µU] 

b [min] Insulin preparation specific b(regular)= 1. 7 (10] 

parameter [h]= l . 7x60= 102 (min) 

Dr [µU) Insulin dose 

Gren [mmol/l per Rate of renal glucose excretion Calculated 

ml/min] 

Grn [ml/min) Glomerular filtration rate 100 ml/min (default) [9) 

Rro [mmol/l) Renal threshold of glucose 9 mmol/l (default) (9) 

2. Initial conditions 
In equation 15 and 1 7, Go and lpo. the initial of glucose and insulin in blood plasma, 

depends on the carbohydrate consumptions and insulin injection (for insulin­

dependant patients) the night/evening before the start of the simulation. So, these 

parameters are patient/scenario-specific. Ggut0 and lpo are set to zero as we assume 

that there is no glucose in the gut and no insulin in the plasma after night fasting. 
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Appendix E: Model performance 

1. Results for a healthy subject with initial parameters 
Figure E. l shows the glucose and insulin concentration time-courses of a 70 kg 

healthy subject, predicted by our model, before and after the consumption of 75 g 

glucose (solid line). Glucose was orally ingested at t=O min. 

a. Rate of glucose appearance into plasma 

The rate of glucose appearance into plasma reaches its maximum (600 mg/min) 48 

minutes after glucose consumption, figure E. l. Our results (red dots in figure E.2) 

are within the 95% confidence interval of the predicted rate of glucose appearance 

by Natalucci et al [8) where a maximum (between 400 and 700 mg/min) is reached 

at around 50 minutes, figure E.2. 

b. Insulin delivered by the pancreas 

Figure E. l shows also the simulated response of the pancreas to the glucose input 

(plasma glucose trace in figure 3). Insulin delivery rate reaches its maximum of 

about 25 U/h at 12 minutes from glucose consumption. Our results are 

comparable to Steil [ 16). The shape of the simulated pancreas response is slightly 

different from figure B.3 because the input in figure B.3 was a step function, 

whereas the input (for the Insulin delivery system) was the plasma glucose trace 

shown in figure E. l. 

c. Insulin concentration in the plasma 

The maximum insulin concentration in the plasma is around 350 µU /ml (figure 3). 

The insulin concentration in the plasma is not within the physiological range for a 

healthy human (up to 100 µU/ml), see appendix A. The predicted plasma insulin 

immediately begins to rise after ingestion of food and reaches a peak concentration 

by 18 minutes. This is not the case in vivo, where the insulin concentration begins 

to rise 8-10 minutes after ingestion of food and reaches a peak concentration by 30-

45 minutes, see appendix A. 

d. Glucose concentration in the plasma 

Figure 3 shows that the predicted glucose concentration in the plasma is also 

within the normal range for a healthy person (4 to 8 mmol/L). However, the plasma 

glucose trace should be validated against measured glucose data. 
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Figure E. l: Glucose and insulin concentrations predicted by the model using parameters 

from the literature (solid line) and estimated parameters (dashed line). These results are 

obtained for a 70 kg healthy person, where glucose was orally ingested at t=l h (no 

exogenous insulin was injected) . There is a difference between the simulated glucose and 

insulin profiles for literature parameters and estimated parameters. This difference is 

caused by the fact that the estimated parameters are fitted to the measured data 
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Figure E.2: Average (with 95% confidence interval) rate of glucose appearance into plasma 

predicted by the gut-model of Natalucci [8]. The parameters of the model are estimatedfrom 

nine non-diabetic subjects that ingested a glucose load (75 g) at time t=O min. For comparison, 

the figure also shows the predicted rate of glucose appearance by our model (the red dots), 

where the same input (Do=75 g) is used (figure E. l). 
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2. Results with estimated parameters 
In order to improve the results of our model we estimated the parameters of the 

model using a 17 hour Continuous Glucose Monitoring System (CGMS) data. These 

data were measured on 11 healthy normoglycaemic subjects (Age=59 ± 2 years; 

BMI=27.8 ± 1.4 kg/m2). More information about the measurement procedure and 

the subjects is given in (20]. The Parameter Estimation toolbox of Simulink® was 

used to perform the estimation. Table E. l shows the initial (from the literature) and 

estimated parameters. A detailed description of the estimation of the parameters is 

shown in appendix F. 

Table E. l : Initial and estimated model parameters of a healthy person 

Parameter Initial Estimated Unit 

Kp 200000 114060 µU/min per 
mmol/L 

Td 40.0 0.003 min 

Ti 100.0 199.95 min 

beta 1.23 0.32 dimensionless 

k 0 .0140 0.0035 l/min 

kabs 0.029 0 .058 l/min 

ke 0.090 0.085 l/min 

pl 0.034 0.016 l/min 

p2 0.021 0.019 l/min 

p3 7.5·10-6 0.57·10-6 ml/µU/min2 

a. Results of a multiple meals simulation in a healthy person 

We used the new estimated parameters to simulate multiple meals , with breakfast 

at 8 a.m. (129 g), a snack at 10.30 a.m. (28 g) and lunch at 12.30 a .m. (86 g). The 

results of the simulation are compared with continuously measured glucose data. 

Figure E .3 shows the predicted glucose concentrations (bold line) against ±lSD 

(n=l l) confidence limits (grey area) of the CGMS trace. Our results are within the 

±lSD confidence limits of continuously measured signals (measured in 11 healthy 

persons. 
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b. Results for a type-1 diabetes patient without exogenous insulin 

In order to simulate a type-I diabetes patient, the pancreas (PIO-model) function 

was decreased to 50% and I 0%. The decrease in pancreas function represents the 

different stages of the severity of the disease. The remaining model parameters were 

assumed to be unchanged in a type- I diabetes patient and there was no exogenous 

insulin injected. 

Figure E.5 shows the predicted glucose and insulin concentration of a 70 kg type- I 

diabetes subject before and after the consumption of 75 g glucose. Glucose was 

orally ingested at t=O min. The plasma and delivered insulin concentration decrease 

while the pancreas function decreases from IOOO/o to IO%. Next to that, the first 

phase response (first peak) of the pancreas disappears with the decrease of 

pancreas function. The plasma glucose trace of figure E.5 shows that the 

concentration of glucose is higher in a diabetic patient with IO% pancreas function 

than in a healthy person (100% pancreas function), difference of approximately I 

mmol/L, and that it takes more than 24 hours for the plasma glucose concentration 

of a type-I diabetic patient (10% pancreas function) to return to its basal value. The 

glucose concentration in the gut is not affected by the pancreas function. 
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Figure E. 5: Predicted glucose and insulin concentration time-courses for a 70 kg type-1 

diabetes patient. Glucose (75 g) was orally ingested at t=O min and there was no exogenous 

insulin injected. 
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c. Results for a type-1 diabetes patient with exogenous insulin 

The model was also used to simulate a type- I diabetes patient that uses insulin, by 

injecting 3 units of insulin (Regular) and assuming a pancreas function of I 0%. The 

remaining models parameters were assumed unchanged. Figure E.6 shows the 

predicted plasma glucose concentrations of a type- I diabetes patient (solid line) 

versus the predicted plasma glucose concentrations (dashed line) of a healthy 

person. The figure shows that the plasma glucose trace in the type- I diabetes 

patient reaches its maximum I80 minutes later than the healthy person. 

Furthermore, it takes more than 24 hours for the diabetic glucose trace to return to 

its basal value, whereas the healthy one returns within 5 hours to its basal value. 
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Figure E.6: Predicted glucose concentrations of a type-1 diabetes patient (carbohydrate 

consumption=75 g at t=O min; insulin injection=3 units Regular at t=O min) 
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3. Discussion 
The results of the simulation for a healthy subject using parameters from the 

literature show that the predicted plasma glucose and rate of glucose appearance 

are within the physiological range. This is not the case for plasma insulin, where 

the concentration is three times as large as the normal value and the time to peak 

concentration is about three times faster than values reported in vivo. From this, we 

can report that the delivered insulin is also not within the physiological range, even 

if our results are comparable to the results of Steil et al [16). The cause of the high 

concentration and fast increase of plasma insulin may be the cause of high delivery 

rates of insulin by the [3-cell. Furthermore, the model of Steil et al. is not validated 

against measured data. The graph, shown in figure 8.3, that we used to evaluate 

our results, is theoretical. We looked at simulated results of Steil et al, but as they 

use the PID-model for another purpose (development of a closed-loop system), these 

data were not useful to compare our results to. However, when we looked at their 

simulations obtained by using a measured glucose data as input, we observed that 

they do not achieve to obtain results comparable to the graph shown in figure 1. 

In order to improve the performance of the model, we estimated the model 

parameters using continuously measured glucose data (CGMS data). The results of 

a multiple meal simulation using the estimated parameters (figure E.3) show that 

the plasma glucose predicted by our model is within the ±lSD confidence limits of 

the measured glucose trace. Furthermore, the plasma insulin concentration is 

approximately within the physiological range of healthy subjects (150 µU/mL). We 

cannot comment on the rate of glucose appearance and the delivered insulin 

concentration because we don't have measured data of these concentrations. 

Figure 6 shows the average ( 11 subjects) measured glucose concentrations against 

the predicted glucose trace using the estimated parameters. This figure shows that 

there is still a difference between the measured and predicted glucose 

concentration. These differences may be caused by different factors, which will be 

explained here. During the nocturnal fasting period (0-8 hours in figure E.3), the 

plasma glucose concentration predicted by our model is constant (around 5.5 

mmol/L). This is not the case for the measured glucose concentration. This shows 

that our model lacks some metabolic processes such as those that occur during the 

night fasting, see appendix A. This may be one of the causes of the differences 

between the predicted glucose trace and the measured one. Next to that, our model 
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does not take movement, emotions and other regulatory hormones than insulin 

(such as the counter regulatory hormone glucagon) into account. Furthermore, 

during the measurement of the glucose trace (CGMS). the subjects had a complex 

meal that contains, next to carbohydrate, protein and fat. Our model only uses a 

carbohydrate-rich meal as food intake. In addition, the measured CGMS data were 

from persons that were age and BMI-matched to a diabetes group [20). 

Consequently, these subjects have a relatively high BMI (average: 27.8). As a high 

BMI is related to insulin resistance, we are wondering how healthy this patient 

group is. The large variability in glucose concentrations among the subjects and 

relatively high glucose concentrations (up to I6 mmol/L) during the day in the data 

confinns this. This variability also makes it difficult to estimate the model 

parameters accurately. 

We also used our model to simulate a type- I diabetes patient that uses insulin. The 

time course of absorbed insulin is shown in figure E.8. The plasma insuhn trace is 

identical to that reported by Berger [I OJ. For the sake of comparison with Berger, we 

simulated an injection of 24 units. The results of the simulation (10% pancreas 

function, 3 units injection of Regular insuhn, 75 g carbohydrate consumption in a 

70 kg person) show that the plasma glucose trace in the type- I diabetes patient 

reaches its maximum I80 minutes later than the healthy person and that the 

plasma glucose concentration is not returned to its basal value before 24 hours (5 

hours in a healthy person). This may occur in type-I diabetes patients. At the 

moment, we don't have measured data of type- I diabetes patients to evaluate this. 

Our results show also that the type and dose of insulin used during this simulation 

is not suitable because we didn't achieve a good glycaemic control (glucose 

concentration didn't not return to its basal value within 5 hours as occurs in 

healthy persons), which is the aim of insulin therapy. More insulin types should be 

therefore added to the model. 

Using the new estimated parameters, we also investigated the influence of the 

decrease of pancreas function, in absence of subcutaneous insulin injection, on the 

plasma glucose. The results show that when the pancreas function is decreased 

from IOOo/o to IO%, the predicted plasma glucose remains within the normal 

physiological range. In type- I diabetes patient where the pancreas does not produce 

insulin and where no exogenous insulin is injected, the plasma glucose increases to 

a higher value. The relatively low plasma glucose concentration in our model may 
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be caused by assuming the remaining parameters equal to the parameters of a 

healthy person. Dalla Man et al. [2l]showed in their study that there is a difference 

between model parameters for healthy and diabetes subjects. 

In order to find out why the plasma glucose concentration decreases in absence of 

insulin, the endogenous glucose production, the insulin-dependent and insulin­

independent glucose utilization, renal excretion and the plasma glucose change in 

time were plotted, see figure E.7. This figure shows that when the pancreas 

function decreases and the insulin-dependent utilization consequently decreases, 

the insulin-independent utilization increases. This occurs because the minimal 

model of Bergman assumes a linear relationship between the rate of insulin­

independent glucose utilization (pi) and plasma glucose concentration (G) that 

increases due to the absence of insulin. The product of G and p1, which represents 

the insulin-independent utilization, increases with the increase of glucose 

concentration. There is a recent published study [21] where a Michaelis-Menten 

relationship is used instead of a linear one. This may be more suitable for our 

model too. 

4. Conclusion 
In conclusion, we showed that our glucose-insulin model achieved to predict 

glucose concentrations in healthy persons, within (qualitatively) acceptable 

accuracy for education purposes. However, the glucose-insulin for healthy persons 

should be validated against another dataset. During this study, we used the same 

dataset for parameter estimation as for the (qualitative) validation. 

The predictions in type-1 diabetic patients did not result in realistic prediction of 

glucose concentrations. This may be caused by using model parameters for healthy 

subjects. During the simulation of a type-1 diabetes patient, we only decreased the 

pancreas J3-cell function, which represents a type-1 diabetes patient that lacks 

insulin production, while the remaining parameters were unchanged. 

The results of the simulations should be validated quantitatively. For this purpose, 

we should quantitatively define the acceptable accuracy of our model prediction. We 

may use a Clarke Error Grid for this goal. This grid is usually used to quantify the 

accuracy of blood glucose meters as compared to a reference value. "The grid 
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breaks down a scatter plot of a reference glucose meter and an evaluated glucose 

meter into five regions. Region A are those values within 20% of the reference 

sensor, Region B contains points that are outside of 20% but would not lead to 

inappropriate treatment, Region C are those points leading to unnecessary 

treatment, Region D are those points indicating a potentially dangerous failure to 

detect hypo- or hyperglycemia, and Region E are those points that would confuse 

treatment of hypoglycemia for hyperglycemia and vice-versa" [22]. As our model will 

be used for educational purposes, it is not highly required to have an accurate 

model. However, how accurate is accurate enough for educational purposes? 

41 



Appendix F: Parameter estimation using CGMS data 

This document describes parameter estimation of the glucose-insulin model 

described in appendix B. 

1. Model equations 
The differential equations that describe the model are given below: 

dGgur (t) = D kfie(-k1)'1 -k G (t) 
dt G abs gut 

dG k G G 
- = - G ( t) - I ( t) G ( t) + G + abs gut - _.!!!l.. 
dt Pi rem Pi b VG VG 

di ---!!!!!..=-p I (t)+p (1 (t)-1) dt 2 rem 3 p b 

di P = p
5
1 D ( t) -kJ P ( t) 

dt 

Where: 

2. CGMS data 
The parameters were estimated using 1 7 hour (325 sample points) Continuous 

Glucose Monitoring System (CGMS) data. These data were measured from 11 

healthy normoglycaemic subjects (Age=59 ± 2 years; BMI=27.8 ± 1.4 kg/m2). The 

subjects took standardized meals [43.8 kJ /kg of body weight, consisting of 60 En% 

(energy%) carbohydrate, 28 En% fat and 12 En% protein]. The meal and beverages 

were provided in pre-weighed packages and ingested at pre-determined time points 

to ensure fully standardized dietary modulation. During the measurement period, 

subjects received a standardized diet (three meals and three snacks per day). 

Whenever the subjects deviated from the prescribed diet-scheme, they reported this 

to the investigators. 

More information about the measurement procedure and the subjects is given in 

[20). The subjects received different meals, containing carbohydrate, protein and 

fat, during the day. The amount of carbohydrate and the time of food intake per 

subject is given in table F. l and table F.2 respectively. 
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Table F.1: Amount of carbohydrate (grams) ingested during the day 

Meal 1 2 3 4 5 6 7 8 9 10 11 AVG SD 

Breakfast 113 143 143 143 113 113 143 143 143 143 83 129.4 19.7 

Snack 28 28 28 28 28 28 28 28 28 28 28 28.0 0 

Lunch 80 80 110 110 80 80 80 110 80 80 60 86.4 15.5 

Snack 34 34 34 34 34 34 34 34 34 34 34 34.0 0 

Diner 83 83 83 83 83 83 83 83 83 83 83 83.0 0 

Snack 14 14 14 14 14 14 14 14 14 14 14 14.0 0 

Table F.2: Time of food intake during the day 

Meal 1 2 3 4 5 6 7 8 9 10 11 AVG SD 
Breakfast 7:40 7:50 7:30 7:30 8:00 9:10 8:30 7:40 7:30 7:40 7:30 7:51 0:31 

Snack 

Lunch 

Snack 

Diner 

Snack 

10:30 10:30 10:30 10:30 10:05 11:30 11:00 10:40 10:30 10:30 10:30 10:36 

12:10 12:30 12:00 12:00 12:00 13:30 13:00 12:30 13:00 12:00 12:15 12:26 

15:15 16:00 15:30 15:30 17:00 16:10 16:30 15:30 16:00 15:30 15:30 15:51 

18:30 18:45 18:30 18:30 18:30 18:30 18:30 18:40 18:30 18:30 18:30 18:32 

20:30 20:30 20:30 20:30 19:30 20:30 20:30 20:30 20:30 20:30 20:30 20:24 

3. Parameter estimation 
Using an average trace of the 11 subjects (as output) and the average values for 

food consumption (as input), we estimated all the parameters given in table F.3, 

except p5= 1 /V1, V c, GFR, RTG, lb and ~- The reason for excluding these parameters 

is that we assume that they are well estimated in the literature. The Parameter 

Estimation toolbox of Simulink® was used to perform the estimation. Table F.3 

shows the initial parameters taken from the literature. The estimated parameters 

are shown in table F.4. 
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Table F.3: Initial model parameters from the literature 

Parameter Value Unit 

p1 3.38·10-2 [I/mini 

p2 2 .09·10-2 [l/min] 

p3 7.51·10-6 [ml/µU /min2) 

p5 p5=l/V1 [l/ml] 

Kp 0.2·106 [µU/min [µU/min per mmol/11 

per mmol/l) 

T1 100 [min) 

To 40 [min) 

Ios 0 [µU/min) 

Do Carbohydrate [mmol] 

intake 

kabs 2.89-10-2 [l/min] 

k 0.014 [I/min] 

f3 1.23 dimensionless 

Vo 0.17 x 70 [ l l 

V1 0.142·103 x 70 [ml] 

ke 0 .09 [I/min] 

GFR 100 ml/min [ml/min] 

RTG 9 mmol/l [mmol/11 

Table F.4: Estimated model parameters 

Parameter Initial Estimated Unit 

Kp 200000 114060 µU/min per 
mmol/L 

Td 40.0 0,003 min 

Ti 100.0 199,95 min 

beta 1.23 0,32 dimensionless 

k 0.0140 0,0035 l/min 

kabs 0.029 0,058 l/min 

ke 0.090 0 ,085 l/min 

pl 0.034 0,016 l/min 

p2 0.021 0,019 l/min 

p3 7.5·10-6 0,57·10-6 ml/µU/min2 
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4. Discussion 
Figure E.3 shows a 24 h predicted glucose concentrations (bold line) against ±lSD 

(n=l l) confidence limits (grey area) of the CGMS trace used during the estimation. 

This figure shows that during the nocturnal fasting period (0-8 hours in figure E.3), 

the plasma glucose concentration predicted by our model is constant (around 5.5 

mmol/L). This is not the case for the measured glucose concentration. This shows 

that our model lacks some metabolic processes such as those that occurs during 

the night fasting. This may be one of the causes of the differences between the 

predicted glucose trace and the measured one. Next to that, our model does not 

take movement, emotions and other regulatory hormones than insulin (such as the 

counter regulatory hormone glucagon) into account. Furthermore, during the 

measurement of the glucose trace (CGMS), the subjects had a complex meal that 

contains, next to carbohydrate, protein and fat. Our model only takes carbohydrate 

ingestion into account. In addition we used the average CGMS trace and the 

average food intake during to estimate the parameters. As these values were not 

constant for all the subjects, the results of the estimation may be affected by this. 

We tried to estimate the parameters per subject but this did not give better results 

because of the large variability in glucose concentration among the subjects. 
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Appendix G: The user interface of the simulator 

Basis Medi sch 

Naam Patient X 

Leeftljd (jaar) 50 

Lengte (cm) 180 

Gewlcht (kg) • 75 

Uille{I 

Figure G. l: Patient categorization page (basic) 

Tekengrootte Tooltlps 

Vul d• gevraagde gegevens In 

Basis Medlsch 

WHt u uw basale bloedglucosewaarde? ! Nee .. J 

B;isale b l oedgl uco~ewaarde cmmol 11 ".:; 

WHt u uw nlertunctle? [ Nee 1 .. J 
f~I !'1unctl 100•1.. 

Weet u uw HbA 1 c-waarde? [ N .. .. J 

HbA l c 1· I s.o 

We et u uw Insulin• reslstentle? I N•• /:"J 
ln!.ullri• r ~l~tentle Norma~ I 

Figure G.2: Patient categorization page (medical) 
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TekenQrootte Tooltips 

Selecteer het nlveau 

0Niveau1 Level1 

Level2 
u Niveau 2 

Level3 

U Nlveau3 

Figure G.3: Selection of one of the three levels 

Koolhydraten lnsullne Beweglng 

Uitleg 

In te nemen koolhydraten • 75 gram Hulp,...ddel 

Wat voor een maaltljd is dlt7 [0-;rtb~ . • J Breakfast 

Wanneer wordt deze maaltljd genuttlgd? ~ : '-0--E:_ uur 

In te nemen koolhydnten * 50 

Wat voor een maaltqd Is dlt? ( Lunch 
~~~~~~~~~~ 

!. ) 
Wanneer wordt deze maaltijd genuttigd? ~ o uur 

~ 
~~~~~~~~~~ 

In t• nemen koolhydraten 80 

1. J Wat voor un maaltlJd Is dlt? [ Avondmaal 
':::::=::::::;::;:-----:==---~ 

Wanneer wordt deze maaltijd genutttgd? 20 : : 0 ~ uur 

Figure G.4: Carbohydrate intake for three different meals 
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Aard"P!'olon, rij.t, pas!' Brood on ontt>jtproduct• Groenten 

'v1Hs(wwen}. vis, kip e Sn•oks, not.en .rl z:outjt Ov erig beleg 

Fruit 

,-.._ ,:v. l 
-.~ 

Olien, v etten en jus 

Mel k en ma! kproductan 

Soep en sauz:en 

OrWlken K~nt-en.ld.., en oompl« Vegetarische product.,.. Kruiden, specerljen, z:ot 

Voorbeeldm0101ltijd: l.._?_ n_tb_iJ_·t _____ I -"" l 
[ Toep01ssen 

Product [ Brood, bruin, volkoren en y, ... J 

Eenheld [ snee .,. J 

A01nt01l 

Product Eenheld 

Brood, bruin, volkoren en wit snee 

Koek, gebak, snoep en : 

Aanbl IChd 

1 16 

I Verwijderen J Totaill (gram): 16.0 

Figure G.5: The carbohydrate calculator 

Tekengrootte Tooltlps 

Feedback 
Well done! Your blood glucose profile is 
within the normal range. You can go to 
the next level. 
Good luck! 

GNfteken 

Pl01sm01 glucose Plilsma Insulin• 

5.2~ 
4 .6 

4 

360lLL 240 

120 

0"7) ...... -:-, ~'"'=:~-. =, =, -

t ijd (s) tijd ( s) 

Patient information 
Name: Patient X 
Age: 50 y 
Height: 180 cm 
Weight: 75 kg 
BMI: 23.15 (normal) 

Figure G.6: Results of the simulation and.feedback 
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0 3 4.8 
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c 
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200 3 

100 
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Legenda 

I Pla9ma gluco.. 

I 
I Pl.sma lnoullne 

I 

Breakfast, 8.00 Lunch, 12.00 Dinner, 20.00 

I M"'"I" I lnsullne: 

Beweglng: 

Emotie: 

I Slulten 

Huidige slmulatie 

Ontbijt (75 gram koolhydraten) 

Humulin s ( eenheden), Humulin I ( 
eenheden) 

n.v.t. 

n.v.t. 

Graflek: [ Plasma glucose 

Graflek: [ Plasma Insulin• 

I U Pas spectrum toe 

U Vorlg• result:iten lat•n zien 

-~ ~ - - ~ - - - -

Figure G. 7: Plasma glucose and insulin in the same graph 
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Figure G.8: The previous and current simulation results for plasma glucose in the same graph 
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