

Some transformations on trees and codes which preserve
equivalences of the type $((A\ast B)\circ C)\sim((A\ast C)\circ
B)$
Citation for published version (APA):
Nederpelt, R. P. (1976). Some transformations on trees and codes which preserve equivalences of the type
$((A\ast B)\circ C)\sim((A\ast C)\circ B)$. (Eindhoven University of Technology : Dept of Mathematics :
memorandum; Vol. 7610). Technische Hogeschool Eindhoven.

Document status and date:
Published: 01/01/1976

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/9aaca002-1bee-47d9-b394-3dba9d979147

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics

Memorandum 1976-10

Issued November, 1976

SOME TRANSFORMATIONS ON TREES AND CODES

WHICH PRESERVE EQUIVALENCES OF THE TYPE

«A*B)oC) ~ «A*C)OB)

University of TechnololY
Department of Mathematics
PO Box 513. Eindhoven
The Netherlands

by

R.P.Nederpelt

- I -

i. INTRODUCTION.

I. l Abstract.

In this paper we shall proceed from product formulae like «a-b)*(c-(dxe»),

based on binary operations. In particular we shall be interested in formulae

of this type which are partitioned into classes by an equivalence relation

of the form «AaB)TC) ~ «(AOC)TB), A,B and C being formulae and 0, T being

symbols for binary operations. In 2.6 we some well-known examples of

such classes of formulae.

Our aim ~dll be to describe a manner of representing each of these

classes by a (labelled) oriented tree. SLnce an oriented tree is an equiva­

lence class of ordered trees, it suffices to give a bijection of product

formulae onto ordered trees in such a manner, that the equivalence is pre­

served. This means that equivalent product formulae ;He mapped onto equiva­

lent ordered trees, and vice versa. Pyecise definitions of these notions

will be given in section 2.

There are well-knot."TI t codings' of order:::d trees, being bijective

mappings of ordered trees to strings of symbols (e.g. parentheses). We

describe some of these codings in 2.3.

A product formula can be represented by a (labelled) trivalent ordered

tree. The coding of such a tree yields a symbol string of a special form;

we shall call it a product code.

In section 3 we describe a number of mappings which preserve the equiva­

lence in the sense as explained above. As a domain for these mappings we

take trivalent ordered trees or product codes rather than product formulae.

As images we take ordered trees or codes of such trees.

In section 4 we describe some inverse mappings.

1.2 A picture of the transformations.

The transformations which we shall describe can be graphically represented

in the following figure. The numbers refer to paragraphs.

2. DEF INITIONS.

COD
(2.4)

2.1 Product formula.

DEC

- 2 -

COD
(2.4) ,

DEC
(2.4)

Let X and S be alphabets, i.e. sets of symbols. We assume that neither

X nor S contains the opening parenthesis or the closing parenthesis as a

symbol. A product formula IS a string of symbols, with the following re­

curSIve definition:

(i) if x E X, then the string x is a product formula;

(ii) if A and B are product formulae and a E S, then the string (A a B) is

a product formula.

Example:

let X :- {a,b,c, ... ,z} and S :- {+,x,t,sin} then «axe) + «x+y) t b» and

t are product formulae. Note that (a sin b) 1.S a product formula, but

(sin b) is not. We think of S as being a set of s for binary opera-

tions, and X as being a set of symbols representing variables.

I

- 3 -

2.2 Product -code.

Each product formula has a frame of parentheses, which one can obtain

by deleting all symbols of alphabets X and S. So from (u x (v+w» one

obtains «». This string of parentheses is not very informative as to the

product structure of the formula, since «uxv)+w) yields the same string.

We retain much more information by embracing each letter of X occurring

~n the product formula by parentheses, before deleting all symbols of X

and S. Then (u x (v+w)) becomes successively «(n) x «v) + (w») and

(O(OO)).The formula «uxv)+w), however, yields «OO)().

The product structure of the formula ~s fully described by the

parentheses strings thus obtained.If one takes the precaution of storing

the string u x v + w (or the lists <u,v,w> and <x,+» in a safe place, one

can reconstruct the original product formula.

We call parentheses strings like those above: product C)-codes.

A recursive definition of product C)-codes is:

(i) () is a product C)-code;

(ii) if A and B are product ()-codes, then so is CAB).

2.3 Some codes for ordered trees.

It is wellknown (see e.g. Read [4J p. 157) that ordered trees may be

coded by binary strings, i.e. strings of symbols from a two-letter alpha­

bet. One can define this coding recursively: i an ordered tree consists

of a root which bears n subtrees coded C
1
,.",C

n
(in order), then the tree

itself is coded 0;C 1, ... 'Cn' 1, the comma's standing for concatenation. A

sole root is coded by 01. Here we use the tWo-letter alphabet {O, I}.

Example: see figure la. The leftmost tree has two subtrees, as sugges­

ted in the figure.

- 4 -

We shall adopt the existing convention of using the left parenthesis

instead of 0 and the right parenthesis instead of I. Thus 00010JOOIII011

~s written as «()()«»)(). We call this code the ()-code.

De Bruijn and Morselt (see [IJ) use the alphabet {U,D} instead of

{O,I}. We call their code the UD-code. It differs only slightly from the

codes above. The letters U and D, standing for 'up' and 'down', refer to

a simple way of obtaining the code of an ordered tree by following a path

around the tree. One writes a U if an edge is followed in the 'up' direc­

tion, a D if it is followed in the 'down' direction. Example: see figure

lb. Apart from the obvious renamings, one obtains the same code as the

()-code by putting an extra U in front and an extra D behind.

We note that the O-code ::an be obtained directly from the tree by

enclosing each node in parentheses and following the "De Bruijn-Morselt­

path". See figure lc.

The codes described have two nice propert s. The first, which we

shall call the ?alance condition, states that the number of left parentheses

(or U's) in a code is equal to the number of right parentheses (or D's).

The codes also obey the so-called level condition: the number of opening

parentheses preceding a certain entry in a O-code is greater than the number

•

O)-eode:
0001 01 00 I J 101 1

UD-code:
UUDUDUUDDDUD

/

~T / ,1'/
¥

00)0)00111
,

//

(~ (r) /(JIi)

() ()

(

C)-code:
«()()(O»()

*
01 figure la

figure Ib, figure Ie

- 5 -

of closing parentheses preceding this entry. (For a UD-code: the number

of U's preceding an entry is greater than or equal to the number of D's

preceding this entry).

It holds that a string on the basis of the two-letter alphabet {(,)}

and obeying both the balance condition and the level condition, is a

()-code of some ordered tree, An analogous statement holds for the UD-code.

One may regard a ()-code as a linear nesting, a nest being a connected

part of the string which has 'matching' parentheses as begin and end. For

example. the nest structure of «()()«»)(» is expressed by the following

underlinings:

In this example the (unique) outer nest has two so-called subnests.

The first of these subnests in its turn has three subnests, the second

has none.

We call a ()-code, each nest of which has two subnes s or none, a

doubly-nested ()-code.

We note that, in particular, all product ()-codes are ()-codes. In

paragraph 2.5 we shall state conditions, necessary and sufficient for

C)-codes to be product C)-codes.

Product ()-codes are doubly nested. This follows by induction on the

length of construction.

The ()-code of a trivalent ordered tree is a product C)-code. (A tri­

valent or bifurcant tree is a tree in which each node but for the root has

valency J or 3; the root has valency 0 or 2).

2.4 Decoding.

The process of decoding, i.e. the construction of an ordered tree from

a code which is a linear nesting, is easy. Since, in particular, product

()-codes are linear nestings, one can decode sach a code as an ordered

tree. Such a tree is trivalent. For example, the product ()-codes «)«)(»)

and «(()(»(j) yield the trivalent ordered trees:

and

- 6 -

The coding and decoding procedures being unique, we have the bijections:

ordered tree ~ ()-code or UD-code,

and in particular:

trivalent ordered tree ~ product C)-code.

We call the mappings involved the natural coding or decoding respectively,

abbreviated as COD and DEC.

2.5 When is a C)-code a product ()-code?

A trivial answer to this question is: a ()-code is a product ()-code

if and only if it is doubly nested.

In some cases it may be more appropriate to regard a ()-code not as a

nesting, but merely as a string of symbols. For such cases we shall develop

another criterion, summar in Theorem 2.

Let A be a ()-code. Partition code A in parts of the form (k)~ with

k;:: 1 and ~ ;:: 1. k
Here (stands for a sequence of k succeeding opening

parentheses. This partitioning can be done in only one way. Now it may

occur that for each of these parts (k)~ at least one of the exponents k

or ~, is'equal to one. We then say that A has the pruned tree property.

(The name will be clear if one imagines what the tree corresponding to an

A with this property looks like).

Theorem 1: Each product O-code has the pruned tree property.

Proof: Induction on the length of construction of the product ()-code. n
We shall define two auxiliary notions: partition code and priority code.

k 1 ~l ~ Q,m
(I) Let A be a ()-code such that A (') ... () with k. ::?: 1 and

1.

l1. i ~ I. The partition code of A is the string <a
l
,a2 ..• ,am_1>, where

a 1 ::: kl-Q,l and a i = a i _ 1 + ki-J,\ (, ..• ,m-I). Note: all a i are natural

numbers.

(2) Let A he a string of nntura] numbers. Then A IS obtained from A by

adding I to each number of A. Example: if A - <2,1,3>, then A = <3,2,4>.

(If A is the empty string, then of course A = A).

We define priority codes inductively by:

(i) The empty string is a priority code.

(ii) If A and B are priority codes, then <A B> is a priority code.

Theorem 2: Let A be a ()-code. Then A is a product ()-code if and only

if (i) the partition code of A is a priority code and (ii) A has the pruned

tree property.

Proof: The if-part 1S proved by induction on the length of the partition code

of A, the only-if-part by (i) induction on the length of construction of A

and (ii) Theorem 1. 0

- 7 -

Note: If A* is a product formula with corresponding product code A, then the

partition code of A (which is a priority code) gives a precise description

of the relative priorities of the operations in A*.

2.6 Some equivalences.

One may be interested in certain equivalences defined in the set of

all product formulae based on certain alphabets X and S. For example, one

may agree that each part (A+B) may be replaced by an equivalent part (B+A),

A and B being product formulae and + E S. A class for the corresponding

equivalence relation contains all product formulae which are 'equal but

for transposition with respect to addition'.

We shall concern ourselves with a slightly more complicated equivalence

by considering «AOB)TC) and «AOC)TB) to be equivalent, A, Band C being

product formulae and O,T E S. More precisely: the equivalence relation ~,

is the equivalence relation generated by:

(i) if A, Band C are product formulae and O,T E S, then

«AoB)TC) ~ «AOC)TB)

(ii) (monotony:) if A, B, C and D are product formulae such that A ~ C

and B ~ D and if 0 E S, then (AoB) ~ (CoD).

We glve two examples of this type of equivalence.

I. Consider algebraic formulae, the only (binary) operation allowed

being exponentiation. Then the formula (AB)C would yield the same

outcome as the formula (AC)B, after calculation for specific

values of the variables. Hence, one may define these. formulae to

be equivalent.

Formally: X:= {a,b, .•. }, S:= {t} and for each triple of product

formulae A, Band C it holds that: «AtB)tC) ~ «AtC)tB), the

equivalence being monotonous.

II. Consider formulae from the implication calculus. Then the formulae

(C+(B+A» and (B+(C+A»are logically equivalent. One may consider

the corresponding equivalence relation.

Formally: X:= {a,b, ..• }, S:= {+} and for· each triple of product

formulae A, Band C it holds that (C+(B+A» ~ (B+(C+A», the

equivalence being monotonous again. One notes the similarity be­

tween this equivalence relation and the previous ones, by reading

the formulae from right to left.

The induced equivalence relation for product ()-codes obeys:

(i) if A, Band C are product ()-codes, then «AB)C) ~ «AC)B),

(U) monotony.

- 8 -

For the corresponding trivalent trees one obtains:

if~'<!1 and ~ represent trivalent ordered trees, then

For the so defined equivalence relations on product formulae, product

()-codes and trivalent ordered trees we shall use the same symbol ~. We

speak of ~equivalence.

We shall consider another equivalence between ordered trees, denoted

~. We shall say that two ordered trees are ~-equivalent, if they represent

the same oriented tree, that is to say, if they only differ in the manner

in which they are embedded in the plane.

Example:

We also call the corresponding ()-codes or UD-codes z-equivalent:

«(O)()(OO»)O) z «(00)(0)0)0).

2.7 Preservation of equivalence.

Let A and B be sets, let R
j

be an equivalence relation on A and R2 on

B. We shall call a bijective mapping F : A + B equivalence preserving if

VXEAVYEA[XRIY ~ F(x) R2 F(y)J. Hence, an equivalence preserving mapping

F has the property that the image of a class of aD "ent is the same as

the class of the image of that element. Also: the mapping F induces a bi­

jection from the set of classes of A to the set of classes of B.

In section 3 we take R} to be ~ and R2 to be ~. For set A we take the

- 9 -

set of all product ()-codes or the set of all trivalent ordered trees,

for B we take the set of all C)-codes, of all UD-codes or the set of all

ordered trees. The mappings which we shall describe are equivalence pre­

serving. This makes it possible ~o represent a class of algebraic formulae

as described in 2.6, example I, by a single labelled oriented tree. An

analogous statement holds for a class of implication formulae as described

in 2.6, example II. The labelling of these trees occurs in an obvious

manner, each node being labelled with an element of alphabet X.

3. EQUIVALENCE PRESERVING TRANSFORMATIONS FOR TRIVALENT ORDERED TREES AND

PRODUCT C)-CODES.

3.1 Transformation via standard form.

A transformation from product formulae of a special type to oriented

trees was discussed in [2J. In that paper X = {x}, x representing a real

number greater than 1, and S = ttl, t standing for exponentiation. The

formulae obtained are a special case of the algebraic formulae of 2.6,

ex. I. In [2J, the corresponding product formulae such as

«(xt(xtx))tx) t (xix)) were called bracketings.

For given x, the authors formed classes of bracketings, each class

consistingof all bracketings with the same number n of exponentiation

symbols and the same numerical outcome. They were interested in the number

of classes for given x and n.

From the paper it follows that, for almost all x, such a class coin­

cides with the ~-equivalence class described in 2.6. The authors describe

a manner of mapping bracketings onto oriented trees. The algorithm given

intuitively amounts to taking logarithms, reordering and exponentiating

again in order to obtain a so-called standard form. The conversion of

a standard form into an ordered tree is the second step.

The latter transformation is equivalence preserving, so that the number

of classes to be calculated is (for almost all x) the same as the number of

oriented trees on n nodes.

One can also easily adapt the transformation described in [2J in ~;uch

a manner, that it maps product ()-codes onto orderf'(" ~ees. The procedure

is then, however, somewhat cumbersome. Therefore we now propose other

transformations, to be described in the following. Of course, these trans­

formations can also be applied to the case of [2J.

- 10 -

We note that Guy and Selfridge reconsidered the problem of [2J and

gave some further results. See [3J.

3.2 A direct transformation from product ()-codesto ordered trees.

We use symbolic notations for ordered trees, which we shall explain

by means of an example:

let a c Y and b c Vthen [al _ a,

[a'bl~dlCY
The t:;:ee *' will be denoted by [J,

We shall describe a direct transformation from product ()-codes to

ordered trees.

A transformation T from product 0 -codes to ordered t:n~es is

recursively defined by:

(i) o T ...----'lo» [J,

(ii) if A I...-..;;;T_~~ a and T B 1-1 ----"?) 0, then

(AB) IT... [a,!:!.J.

Example. Consider the product ()-code ««)(»)(»«)(»), which one may

obtain from a product formula like «(x+y)xz) + (u~v». This product

C)-code is transformed by T into an ordered tree as follows:

««)(»(»«)(»)
....,......

1It 'fit'
~ '-v-' -...,....-

/ 1ft- *' * ~

V /
-v

,...,.

/ \t/j

- 11 -

By induction on the size of the tree one can easily show that T 1S a

bijection. The difference between T and the natural decoding DEC of a

product ()-code into a trivalent ordered tree as described in 2.4, is:

T (AB) 11----+) [a,k], and (AB) I DEC :.

Transformation DEC is not equivalence preserving with respect to ~ and ~.

We shall now show that T does preserve the equivalence.

Lemma 1. Let E and F be product ()-codes. If E ~ F, then T(E) ~ T(F).

Proof: Induction on the length of proof of E ~ F. Let a,b,ab .•• be the

ordered trees corresponding to A,B,(AB)

(1) Suppose E = «AB)C) and F = «AC)B). Then

and

and the right-hand sides are z-equivalent.

(2) Suppose E = (AB), F = (CD), A ~ C and B ~ C. Then the ordered trees

a and care z-equivalent by induction hypothesis and the same holds for

band d. Now

T T E 1-1 --~)o [a,!~.J and F II--;;....-~) [c&]

and the right-hand sides are z-equivalent again.

(3) The other cases are very easy: E ~ F by virtue of

(i) E = F,

(Li) F ~ E or

(iii) there is a G such that E ~ G and G ~ F.

We define recursively a mapping t from product ()-codes to natural

numbers:

(i)

(Li) t t ~ if A 1-1 '-;';"-..;.) a and B 1-1 ""';';"-..;.) S, then (AB) ... , --..;.~ a+$.

o

- 12 -

Lemma 2: Let E and F be product ()-codes. If T(E) ~ T(F), then E ~ F.

Proof: Induction on ~ := max{t(E),~(F)}. Let T(E) ~ T(F).

(I) ~ = I. Then E :: F :: () and E ~ F.

(2) If E :: (), then T(E) = [J = T(F), so F _ (). Hence E ~ F.

The same holds if F = (). So let E _ CAB) and F _ (CD). Then

E = (AB) J T ~ [a,!?] and F :: (CD) I T)0 [c&], where A I T ~ a, etc.

Since T(E) ~ T(F), one of the two following statements holds:

(i) a ~ c and b ~ d;

(ii) [a,E) ~ [c&] ~ [g,!?,~] for some ordered tree g.

In the first case, by induction hypothesis, A ~ C and B ~ D, so also

E = (AB) ~ (CD) :: F.

In the second case a ~ [g,~] and c ~ [g,!?]. There is a product ()-code
T T T G such that GI) g. Moreover, (GD) I-'~---,l» [g&J ~a ..,.. ... ---tIA, so by

induction hypothesis: (GD) ~ A. Also (GB) ~ C. Then

E :: (AB) ~ «GD)B) ~ «GB)D) ~ (CD) :: F. o
As a consequence of these two lemmas, T is equivalence preserving:

E ~ F 4=9- T(E) ~ T(F).

Note: The 1-map of all product ()-codes in an ~-equivalence class is

the same; this number is equal to the number of nodes (the root inclusive)

in each of the T-maps. These observations can be used as a second proof

of Theorem 2.1 of [2J.

3.3 A transformation from product ()-codes to UD-codes.

There is a very simple recipe for transforming a product C)-code into

the UD-code of its T-map:

(i)

(ii)

Substitute U for each opening parenthesis and D for each closing

parenthesis in the product C)-code.
k t Partition the UD-code obtained into parts of the form U D , with

k~ 1 and1~ J.

(iii) Replace each part u~t
for the empty string).

t-1 0
thus obtained by UD • (Here D stands

(iv) Omit the first U.

As an example we again take the product ()-code ««)(»(»«)(»), which

we considered in 3.2. We obtain successively:

- 13 -

(i) U U U U DUD DUD D U U DUD D D,

(ii) U
4
D I UD

2 I UD
2

U
2
D I un3 ,

(iii) U I UD I UD I U I un2 and

(iv) U DUD U U D D.

This is the UD-code for the tree:

This tree is, indeed, the T-map of the product ()-code.

Let SeE) stand for the result of applying the above recLpe to product

()-code E. Let COD (X) be the UD-code of tree X which code we obtain by the

natural coding as described in 2.3. We shall prove that SeE) is indeed the

natural coding of T(E).

Theorem 3: Let E be a product ()-code. Then SeE) = cOD(T(E».

Proof: Induction on t(E) .-----­

(i) Let E = O. Then SeE) is the empty string, being the UD-code of

T (E) :: [] •

(ii) Let E = (AB) , where A = (kl)~I(k2)t2 ••• (~)~ and

vI w v2 w2 v w . . B = () I() ••• (n) n, k., t., v. and w. be1ng natural numbers.
1 1 L L

Then SeA) = DtI-IUD~2-1 ••• UD~m-l and S(B) = DWI-IUDw2-1 .•• unwn-1.

Also: SeE) = D~1-1untTI ••. UDtm-lunWI-l ••• unWn-l-:lUDwn, which is S(A)

followed by U, followed by S(B), followed by D.

By induction hypothesis: SeA) = cOD(T(A» and S(B) = cOD(T(B». Let

T(A) = a and T(B) = b. Then cOD(T(E» = cOD([a,~J), which is cOD(T(A»

followed by U, followed by cOD(T(B», followed by D.

Hence COD(T(E» = SeE).

It is now trivial that S 1S an equivalence preserving bijection:

E IV F ~ SeE) z S(F).

o

- 14 -

3.4 A transformation from trivalent ordered trees to ordered trees.

In 3.2 we described in passing the difference between the natural de­

coding DEC(A) of a product ()-code A,and its T-map T(A). One can ask what

transformation V looks like which maps DEC(A) onto T(A). In general: we

shall describe a simple transformation V from trivalent ordered trees

such that V = T 0 COD. Of course, V is an equivalence preserving bijection.

We give a pictorial representation of this correspondence, again taking

as an example product ()-code A := ««)(»(»«)(»), which we considered

in 3.2 and 3.3. We shall add numbers 1,2, ••• ,5 for elucidating the process

of this transformation.

2

5 5

One could call this process a "left branch contraction".

3.5 A transformation from trivalent ordered trees to UD-codes.

This transformation, which we call W, is also very easy. Given a tri­

valent ordered tree X, we follow the De Bruijn-Morselt path around the tree

in the usual way. Now we write a U if we pass an edge upwards and to the

right and a D if we pass an edge downwards and to the left. We write nothing

in other cases. So we only take into account edges in the S.W.-N.E. direction,

and not those in the S.E.-N.W. direction. The UD-code obtained is the UD-code

of V(X).

So W = S 0 COD = COD 0 V and W is an equivalence preserving bijection.

The correspondence between this transformation W, .ind the transformation

V described in 3.4, is obvious.

- 15 -

4. THE INVERSE TRANSFORMATION.

4.1 The inverse transformation from ordered trees to trivalent ordered

trees.

It is not hard to invert the "left branch contraction" explained in

3.4, in order to devise the direct transformation v+ from ordered trees

to trivalent ordered trees. We shall not describe this transformation.

Instead, we shall give the corresponding transformation for codes in the

next paragraph.

4.2 The inverse transformation from UD-code to product ()-code.

We shall describe the mapping S+, the inverse of S which was explained

in 3.3.

Starting from a UD-code, one can form the UD-nests by connecting

corresponding U's and D's.

Example:

U U U U D DUD U U D D DUD D

~v~

Now we may obtain another string of U's and D's from a given UD-code

by the following procedure. Add a symbol U in front and a symbol D behind.

Insert a symbol D between each adjacent pair DU in the given UD-code. and

insert U~ between each adjacent pair UU in the given UD-code ,m being

the number of subnests of the nest corresponding to the first U of the pair.

The UD-code of the example is thus transformed into

Lemma 3. The above procedure transforms UD-codes into UD-codes. The latter

UD-code is, but for the obvious renamings, a product ()-code which is the

S+-map of the original UD-code.

Proof. (1) Between each adjacent pair DU one finds a border of two adja­

cent subnests. So the procedure adds one D between each pair of adjacent

subnests. Between each adj acent pair un one may imagine the starting point

- 16 -

of a full sequence of consecutive subnests,oe g to the nest of

the first U of the pair. Here the procedure adds another D, and as many

U's as there are subnests. Thus, altogether, we add as many U's as D's, in

such a manner, that the level condition is obeyed (we never "descend below

the zero level"). So the string obtained is a UD-code, since level condi­

tion and balance condition (see 2.3) are obeyed.

(2) We shall now show that the UD-code obtained is doubly nested. One may

depict one nest plus its subnests, as occurring in the original UD-code,

by:

U U ••• D U ••• D U .•• D D

~"--/ "--/ ~

(For convenience we took a nest with 3 instead of n subnests). After in­

sertion of D between adj acent pairs DU and of U~ between the pair ['.,

we obtain:

U • •• D D ,
)

which we can write as the nested code:

D •

Assuming that the three nests U ••• D are doubly nested, it clearly

follows that this holds for the entire code obtained. Hence, by induction,

the new UD-code is doubly nested. It follows that one obtains a product

()-code after replacing U and D by parentheses.

(3) Let UkDQ, be one of the parts (k ;::: 1, Q, :;: 1) in which the original

UD d b d k£ b' -co e can e partltloned. After lnsertlon, lnstea of U D we 0 taln:

IT ~~ IT ~ IT ••. IT ~J ITD{~) with Wi > I.

The last string may be rewritten as

which has the pruned tree property.

- 17 -

h " , fbI U d D 1'n the parts UkDt of the Apart from t 1S insertion a sym a s an

original code, a new part(U)(U~ is added in front of the entire string.

. . b ' U2D TIllS string may e rewr1tten as •

(4) Finally we show that the S-map of the code obtained is the original

UD-code. We derived above that a part UkDi is transformed into
m +1 m +1 ~ +1

U I D U 2 D ••• U -} D UDi+l. Mapping S replaces each
i+ 1 i . ..m 1 + I. mk -I + 1

by a single U, and UD by UD ,so u D ••••• U D

m,+1
1 part U D

UD~+l is re-
k i 2 placed by U D . By the procedure' the part U D wasarlded .. in front of the

entire string. Mapping S first replaces U2D by a single U and next omits

this U. It follows that S is the inverse of the transformation described

above. [l

We note that the above transformation, which is S~, can be easily

algorithmised. The only non-trival part is to devise an algorithm which

counts the number of subnests of a given nest. However, this is not hard;

one may for example make use of the level numbers of a UD-code.

, .
-]8 -

5. REFERENCES

[1] N.G. de Bruijn and B.J.M. Morselt, A note on plane trees, Journal of

Combinatorial Theory 2, 27-34, 1967.

[2] F. Gobel

iterated

1971 .

[3J R.K. Guy

laddered

1973.

and R.P. Nederpelt, The number of numerical outcomes of

powers, Amer.Math.Monthly, vol. 78, p.J097-1103, December,

and J.L. Selfridge, The nesting and roosting habits of the

parenthesis, Amer.Math.Monthly, vol. 80, p. 868-876, October,

[4J R.C. Read, The coding of various kinds of unlabeled trees, in Graph

Theory and Computiltg, Ed. R.C. Read, Academic Press, New York, 1972.

Typing: C.l.T. Kolk-Koenraat

English correction: A.V. Zimmermann

