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The dynamics of a rotor with rubbing

D de KRAKER, BE, ME,PhD,M T M CROOIJMANS, ME, PhD and D H van CAMPEN, ME, PhD
Department of Mechanical Engineering, Eindhoven Univérsity of Technology, Eindhoven, The Netherlands

SYNOPSIS

In real rotor-bearing systems several tight clearances between the rotor and the fixed
casing exist. Due to misalignment or excessive unbalances the rotor may rub ;gainst the
casing. A simple model for this so-called rubbing is introduced. The model consists of
a Laval rotor and a non-linear finite boundary stiffness with Goulomb frictionm.

It is known that rubbing is detected in the vibration spectrum by peaks at integer
multiples of the rotorspeed. Therefore, a non-linear calculation technique is used that
is bas;d on a periodicity assumption. After discretization with respect to time and
using finite differences, the non-linear equations of motion can be transformed intc a
set of non-linear algebraic equations, which can be solved by standard numerical
techniques.

Usiﬁg an arc continuation method a sensitivity analysis is performed for the

system variables. For a particular static deflection of the rotor results are shown of
rubbing near the system resonance. Phenomena such as jumping and backward whirl are
discussed. Conclusions are drawn for the sensitivity of the phenomena with respect to

the boundary stiffness, damping and friction coefficient.

LIST OF SYMBOLS z column with unknowns after
~ a tilde denotes a column matrix ‘ discretization
a dot denotes the first derivative (o1 exponent in expression of the
with respect to time restoring force
a double dot denotes the second ) parameter that indicates whether the
derivative with respect to time rotor touches the housing
ODE ordinary differential equation £ dimensionless mass eccentricity
A0 maximum amplitude of rotor response S dimensionless damping of the rotor
predicted by linear models sypport .
G clearance between rotating parts and - ¢ angle defined by eq. (3)
the fixed housing T dimensionless time
D rotor diameter w dimensionless rotor speed
> o o . . S w dimensionless frequency at A
: o : ;
ex’ey’ez *ixed Garteslan triad Q constant rotational rotor speed
% 1 INTRODUCTION
Fc dimensionless constant force
* H
F. dimensionless coefficient in the In real rotors narrow clearances between the
expression of the restoring force A . N . .
G final set of descretized expressions rotating parts and the fixed housing exist. In
% rotor mass the ideal situation clearances between the fixed
N total number of discretization points and rotating parts are circumferentially equal.
P geometrical centre of disc . R - R )
P& centre of disc mass Generally, this is not true due to misalignment;
m . " : :
q generalized co-ordinates furthermore, the rotor is excited by mass
R ‘'rotor radius unbalance and will vibrate. Due to this
t time
X,y displacements of the rotor centre combination the rotating parts may rub against
£, dimensionless displacements of the the housing and cause very different dynamic
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behaviour that is usually difficult to predict.
However, it was recognized that due to rubbing
the rotor vibrates periodically or quasi- ‘
periodically. In the vibration spectrum this can
be identified by sharp peaks at a restricted
number of frequencies and their multiples (1lit,
[2, 3, 4, 51).

the rotor vibrates periodically.

In this paper we will assume that

We will analyse the dynamic behaviour of a simple
model consisting of a Laval rotor and a massless
boundary with a non-linear restoring force.
The mathematical model results in two coupled
second order ODE’s. The number of design
variables can be reduced by using a non-
dimensional form of the set of ODE’s. We will
assume that the rotor touches the static parts
slightly and the sensitivity of the response with
respect to the various design variables will be
investigated.

;

2 ROTOR GEOMETRY, CONSTANT LOAD AND ISOTROPIC
SUSPENSION

The Laval rotorjhas been modelled as a massless
shaft mounted ;n two bearings at each end.
Symmetrically between the bearings, .it has an
infinitely thin rigid disc perpendicular to the
shaft. The disc has a mass M and radius R, whilst
it rotates with a constant angular velocity Q
around the centre Pg of the disc. The centre of
mass Pm of the disc does mot necessarily coincide
with Pg as indicated in figure la.

The bending vibrations of this rotor have been.
modelled with two generalized co-ordinates. In
the reference configuration, Pg coincides with
the origin P of the Cartesian triad (e ’ Zy
,e ). The dlSC translates in the e - and Zy-
dxrectlons and rotates around the dlrectlon of
Zz. The position of F with respect to P, is
given by the vector * and the p031tion of P

and r are expressed

g
as follows

with respect to Pg by r . T

in terms of e and e
x y

-+ + -
xXe e
g x T %

s
T

¢

-
r

e ( %
e Ccos Qt)e
)

>
+ e sin(Qt)e

y
Where x and y are generalized co-ordinates, e is
the distance between Pm and Pg while Qt is the
rotation angle.

P 3Cc
The disc is loaded with a constant force F , a
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‘continuous first derivative.

load Fl that is linearly dependent on the
generalized co- _ordinates, and a non-linear load
FT. The constant load F¢ with amplitude Fc points
into the negative y-direction.

The linear force ?1 results from isotropic
stiffness, ks’ and isotropic damp?ng, ds’ of the

shaft and its bearings and it acts at Pg

3 RUBBING FORCES

The nen-linear load ¥ is produced by the rubbing
of the rotor against the stationary housing. Ve
assume that during the motion of the rotor the
housing only adds stiffness to the rotor. In the
reference configuration, the clearance between,
the disc and the housing is constant and is
called C. We can formulate a condition in which
the disc contacts the housing:

(xP+y%) > Cor 6 = P4y%)/c - 1> 0 (2
We assume that the disc and the housing make
contact at one point Pr only if the contact
eriterium (2) is fulfilled. The position of point,

Pr relative to Po is given by the vector ;p:

T_ = (R+C) 0o ine e
p = (cos e_ + sinl ey) 3
with: tan® = y/x

The housing acts on the disc with a normal force
=t N L

F~ and a tangential or friction force i (figure
1b). We assume that the normal force depends on §

exponentially:

(s > . isd .
—FrS (cos® ex+51ne ey) if 6>0

In (4), we represent the normal force by means of .
If o > b

a positive constant Fr and an exponent c.
1, the normal force as a function of § has a

Physically, the

‘rotor presses against the housing.

Instantaneously, this will cause a local

;impression of the housing. The normal force

gneeded for this impression increases non-linearly

with the magnitude of the impression.

: s s W
The friction force F is represented by Coulomb’s
law with the characteristic Coulomb friction

coefficient £:
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] if §<0
f:fw+ﬁ={ (5)
x o3 - -
f F 6§ (sin® e_-cos® e_) if 6>0
r b4 y =

In this model, we have assumed that the relative
velocity of the rotor contact point with respect
to the housing contact point is always
counterclockwise and unequals 0. This assumption
was checked and appeared to be valid for the
results that we will show later. With (4) and

t
(5), we can find ¥ from o= FOo+ fw.
4 EQUATIONS OF MOTION

We are now able to formulate the equations of

motion using Newton'’s law:

M (¥g+¥e> L LI (6)

1=

=

Hi
[

i

This can be transformed in two.coupled ODE’s.

M (x - eﬂzcos(Qt)) = - dsx - ksx

I ¥ Fr6a(—cos® + fsin@) (7a)

Fe ¢ dyy - kgy

+ Frsa(-éin@ - fcos@) (7b)

M (y - easin(t))

The underlined terms in the equation (7) have to

be taken into account only when §>0.

The number of design variables in equation (7) ig
eleven. We will reduce this number by writing
these equations in a non-dimensional form. For
this purpose, we must define a characteristic
frequency W, as: J§;7ﬁ. Furthermore, we will use
the clearance C as a characteristic length of the
problem: With C and w,_ we can define a number of

k
non-dimensional variables:

¢,1) = (x/C,y/C) ; £ =1¢/C
T = wk t ; @ = Q/wk

= d_/(2Mw : (8)
c* 1. /¢ 5) N

v
]

. 2
F /MCw ) F, =TF_ /(MCo)

Q
;If we use (8) for rewriting equation (7), we

obtain:
D

@

£" 425 €7 + € + Fo6"(coss-Fsind)= cwlcoswr  (9a)

%*
" +2¢ ' + n + F:Sa(sin9+fcos€)=-Fc+;w2sinwr(9b)
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with: ¢ )' = dC ydr , ()" = d2( y/ar?
5 SOLUTION METHOD

A method is discussed which provides periodic

_solutions of the non-linear equations of motion

(9) as a function of any of the design variables.
This method is based on time discretization of
the system equations combined with a numerical
solution algorithm to solve the resulting
non-linear algebraic equations.

Instead of a continuous periodic solution of the
equations (9) an approximate solution at a
discrete number of times will be determined. In

order to discretise the equations (9) let Tj

(j=1,...,N) be an equidistant partition of one

period of time T, yielding:

ro= 2 g (10)

with T the period of time that results from Q (T
= 2n/Q). The velocity and accelération in the
direction of Zx at Tj are expressed with a 4th
order central difference scheme. The wvelocity and
the acceleration in the direction of Zy at Tj can
be expressed in a similar way.

Application of these discretization schemes in
the equations of motion at the N discretization
points yields 2N algebraic equations. The

algebraic equations are denoted by:

G (z) =0 (1)

~ -~ ~

with the 2N unknowns:

2% = [60r)s e ECT ) s, e (r) ] 2

This set of algebraic equations can be solved by
a standard multi-dimensional Newton-Raphson
method. If we add one of the variables as an
unknown we can solve the equations with an arc
continuation method [1], and obtain solutions as
a function of that variable.

The operation of the arc continuation method is
based on a prediction step followed by correction
steps until the solution at a next value of the
design variable is reached.

In order to find an initial solution with which

we can start the Newton Raphson procedure, a
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-first calculation with the linearized set of

equations can be made. The resulting solution
will resemble the solution of the set of
non-linear ODE'’s as long as the excxtatlonal

forces in (9) are small.

6 DESCRIPTION OF THE BEHAVIOUR AS A FUNCTION OF
ROTOR SPEED

If we neglect the stiffness of the housing a
simple set of linear ODE's remain from (9). Ve
will refer to this situatiom as the linear case
whereas the non-linear case will mean that we do
take into account the non-linear restoring force
of the housing. Both the radial frequency, Wy
and the corresponding vibration amplitude (Ao) at
resonance can be solved analytically for the
linear case.
We will assume that the static equilibrium
position (£,n) of the rotor centre Pg due to F
is at P2=(0,-O.9). Additional dynamic loads w111
cause the rotor to rub against its housing.
We have assumed a low damping value of ¢=0.02.
The choice of;ﬁeo.oos was made so that rub will
occur. At this value the maximum amplitude of the
rotor for the linear case is A°=0.2 The housing
characteristics were F:=10, o=1.3 and £=0.20.
Figure 2 shows the amplitude of the rotor
vibration as a function of the rotor speed, in
both the linear and non-linear cases. The
amplitude of the non-linear periodic motion has
 been calculated as half of the maximum minus the
minimum value of both the x- and the y-co-
ordinates. The amplitude of the x- and y-co-
ordinates of the linear curve are equal. At each
of the symbols (A, o, etc.) the periodic solution

has been determined using the arc continuation

method. Some of the points at the amplitude curve
of the x-co-ordinate have been numbered.

The differenées between linear and non-linear
forced response functions are obvious. The peaks
of the x- and y-amplitudes are both at higher
frequencies than the 1inear resonance frequency

w.. The amplitudes are larger as well. An

igcrease of the resonance frequency was to be
expected from the increase of the stiffness
produced by the housing.

In figure 3, the motion of P has been drawn in
the x-y plane for the calculated points indicated
in figure 2. The arrows jndicate the whirl-

direction of the rotor.
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1f we slowly increase the rotor speed, the rotor
will hit the housing at (0,-1) for the first
time. From that point the orbit in the x-y plane
will deviate from the circular form that follows
from linear analysms The increasing y-amplitude
is restricted by the housing. At points 8 to 17,
the rotor centre Pg whirls in the same direction
as the rotor speed.

At p01nts 19 to 33, the rotor whirls backward,
which is caused by the frictional force. In its
final part, the motion will approache a circular
form when the rotor no longer touches the
housing.

In practice, the motions at the equilibrium
points 23 to 43 will never occur because they
appeared to be unstable as conflrmed by numerical
time integration. If we slowly increase the rotor
speed, the motion will jump suddenly from near
point 23 to a motion where the rotor does not

touch the housing.

7 INFLUENCE OF THE DAMPING

The shape of a resonance peak of a linear system
depends greatly onrthe dimensionless damping
coefficient ¢. When the damping increases, A0
decreases, w, increases and the peak becomes less
sharp.

Starting from the non-linear results shown in
figure 2 we can vary the damping ¢ at four
jevels: ¢=0.02, ¢=0.05, ¢=0.10 and ¢=0.20. The
corresponding linear amplitude A0=0.2 was kept
constant by adjusting the eccentricity value ¢; ¢
was 0.008, 0.01998, 0.0398 and 0.0784
respectively. Figure 4 shows the results of these
successive cases. ‘

With an increased damping, a larger unbalance ¢
was chosen in order to keep the same value of Ao.
In this case, the magnitude of the unbalance
forces increases as compared with the magnitude
of the restoring forces of the housing. For large
values of ¢, and thus of &, the solution ‘
resembles the linear solution more and more.
Also, after increasing the damping, its
stabilizing effect increasingly dominates the
destabilizing frictional forces. The unstable
series of solutions will disappear entirely for
large damping values. Also, the unstable backward
whirl motion will not exist any longer for
¢=0.10.

The jump phenomenon that occurs when the rotor
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speed is slowly increase, does not necessarily
disappear when we increase the damping. In figure
4, we observe the largest jump at a damping level

of ¢=0.10.

8 INFLUENCE OF HOUSING STIFFNESS AND FRICTION
COEFFICIENT

The stiffness of the housing can be changed by
varying both ¢ and F:. Figure 5a shows the effect
of an increase of a for both the amplitudes of
the x- and y-co-ordinates, A decreased stiffness
leads to a reduced resonance frequency. It also
diminishes the unstable series of solutions. Due
to the increased stiffness, the contact time
between the rotor and the housing decreases.
Therefore, the friction forces will have less
influence and the backward whirl will eventually
disappear. The jump in the y-co-ordinate
amplitudes decre?ses too, while varying F: leads
to similar results.

The influence of a variation in the Coulomb
friétion coefficient £ on the statiomary
behaviour is s?own in figure ,5b. In this example,
the frictional forces point mainly in the x-
direction. Therefore, the largest influence can
be expected in the xz-direction too as can be
observed in figure 5b. The frictional forces
diminish with £ and, thus, the amplitude of the

x-co-ordinate increases.
9 CONCLUSIONS

A rotor model was introduced that took into
account rubbing between the rotating part and the
stationary part. The reaction of the housing was
modelled by a non-linear restoring force and a
friction force. In the dimensionless form, the
design variables for the model were varied in
order to investigate their influence. For all
results the resonance frequencies increase
compared to those in the corresponding linear
case due to the added housing stiffness. In the
spectrum of the periodic solutions higher
harmonics are found in addition to the first
harmonic that can be found from linear analysis.
In slightly damped cases, a backward whirl is
caused by the friction force. However, it is
found that this backward whirl is never stable.
With the aid of numerical time integration, we
learn that increasing or decreasing the rotor
frequency causes the rotor to jump from one rotor

C284/88 © iMechE 1988

orbit to another. A series of unstable periodic
solutions are then passed over.

Results obtained for a rotor that rubbed the
housing slightly are sensitive to the damping.
Therefore, we adjusted the mass unbalance in such
a way that the system without the housing had a
‘constant maximum amplitude for all damping
levels. From these results, we conclude that when
the &émping increases, the influence of the
housing decreases and the backward whirl finally
disappears. However, a greater damping does not
necessarily mean that the jump phenomenon is less
pronounced.

An increased housing stiffness leads to somewhat
higher resonance amplitudes and frequencies. An
increased friction coefficient has little

influence on the results.
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