EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A wheeled mobile robot

Citation for published version (APA):
Berg, van den, H. C. (2002). A wheeled mobile robot: creating an experimental environment for non-linear
controllers. (DCT rapporten; Vol. 2002.020). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2002

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/08cc752a-1be4-482c-9448-e4b5c25a9db2

A wheeled mobile robot
Creating an experimental environment
for non-linear controllers
H.C. van den Berg

DCT 2002-20

Technische Universiteit Eindhoven

Professor: Henk Nijmeijer
Supervisor: Harm van Essen

Eindhoven, March 2002

Table of contents

1 Introduction 3
1.1 INEPOQUCHION ..ot 3
1.2 Problem Statement.................ccevruurrreesemsreeeeseeeemeeoseeeeeseeseeseeeee oo 3
1.3 Approach and OVEIVIEWccomveeemmueereeeeseoeeeeeeeeess oo 3

2 Hardware configuration 4
2.1 The MOBIIE TODOL.......oeeceeceeeerteeeeete e 4

2.1.1 The StepPer MOLOTSoveeeeeeeeeeeoeeoeooeeeeeeoeeeeoeeoeooooooo 4
2.1.2 Microstepping drivers and interface boards...............oooooooroooooooo 5
2.2 Voltage to fleqUency CONVEItEr Cardseueveoreemeeeeresosoeooooooooooooooo 6
2.3 The hardware configuration using dSPaceoo.eeeroeeeommoommeooeoooooooo 7

3 Control strategy and simulations 8
3.1 Non-holonomic SYSEmS..........c.eueunieeeeieeeeceeieeeeee oo ceeee8
3.2 Tracking COMMIOL..vvueeceeceretteeeeeeeee e 9

321 Linear control desighcccccoomoeiuioiioiioeoosooeeeooo 10
322 Non-linear control design..........................c.cocoocommomoooo 11
3.3 The chained fOrMc..ouieereeireete oo 11
3.4 Point SabIHZAtON ..ot s 12
34.1 Time-varying CONrol.................cccovovoveeesieoeeeoeeeeeseoeeoeoeooo 13
342 Discontinuous time-invariant control...................ccooovoooo 14
343 Hybrid CORMrol...............ccooooommiioioioieoeoeoeeeeeeoeooeo 16
3.4.4 Point stabilization controller evaluation..................coooooooooooo 17
L 1L O 18
351 Kinematic model for a tractor pulling n trailers..................coooooooooo 18
352 Controller designooooeooiooiiioooooeeeeeeooo 19
3.5.3 SIMUIGEION FESULS.............c.oovioioiieiooeeeeeeeeeooo 19

4 Dead-reckoning reconstruction and calibration 21
4.1 Dead-reCKOMING.verveevecee et e 21
4.2 CaliDIAON vveveee et 21

421 First calibration experimento.cocooooomoeoeoo 22
422 Second calibration experiment...................occcoooomomoomeoo 23
4.3 Realtime eXPeriments.c...eeeeeeruurrseeeneeeeeeereees s oo 24

S Measurement systems 25
5.1 The pantograph SYStem...........cuuuueumeerucuerseceeetseeeeeeeseeeseeeee oo 25
5.2 The CAD/CAM-DOAIAcruueeereeieitesee e 26
5.3 The eleCtronic COMPASSrvereurreerrereeeseeeeeeeeeeseeeeeeeeseee oo oo 27
5.4 Active beacon NAVIZAtONcc.uuevuevverereeeeeeeeeeeeese e 27
5.5 The Whiteboard SYStem.............vvuevereueeeeeeeeeeeeeeesees oo 28
5.6 Measurement system comparison and chOiCe..........o..ovoverveovooeoooo 28

6 The eBeam whiteboard system 29
6.1 How does €Beam WOIK?.......c..cuoueueeuemureieeieeeeeeeeeeeeee e 29
6.2 eBeam PErformancecoeceeerurmruruereeeeeieeeesee e ees e ee e oee oo oo 30
6.3 Adapting the system for €BEam............o...vveveeeoeeereeeeeeeeeeoeeeoooeoooooooo 32

1

6.3.1 Adapting the sleeves nd rODOLococoooeeeeeoeeeeeeeeeeeeeoo 32
6.3.2 Switching from dSpace to TUeDACSccooeeeeeeeeeseeeeeeeeeeeoo . 33
6.3.3 Software develOpment.......................c.cocoovcveveeooceeeeeeeeeeeeeeeeeeeee 34
6.4 Realtime experiments using the eBeam SYStEIM.........oveveeevereeeeeeeeeeoeeeesoeooeoooeoe. 34
7 Conclusion and recommendations 37
Literature and internet-sites 39
LIEETATUTE ... ettt ettt e e e e s s s e e s e e e eee e 39
USEd INEIMEE-STEES.........cocurieeecetresieeteeesei et ee et eee e e ee e s e e ee e es e 40
Appendices 41
Appendix Al: Stepper motor connections and Specifications............oeeeereeeeeveveeeeeesoeo 42
Appendix A2: Micro stepping driver and 15-pin interface board specifications....................... 44
Appendix A3: Micro stepping driver and 19-pin interface board specifications....................... 46
Appendix A4: Voltage-to-frequency converter card Specificationso.veevveeeeeevevvoeenn 48
Appendix B1: Electro technical scheme for step motors, microstepping drivers and V/f-
CONVETEET CATUS .ovniiiiicce ettt e oot et e e e e e e e e e ee s eese s 49
Appendix B2: Electro technical scheme for MOBROB unit and eBeam transmitters.............. 50
Appendix B3: Electro technical scheme for TUeDACS QADcoeeuoueeeeeeeeeeeeeeererenenn, 51
Appendix C1: Simulink scheme for tracking CONtTOIIETS..........c.c.veveveeeereerereereeeeereeeeenn 52
Appendix C2: Simulink scheme for point stabilization controllers.............cooweeeevemrerereernnnn 53
Appendix C3: Simulation/realtime Matlab initialisation file example.............cc.ceververerrennnnn. 54
Appendix C4: Matlab-file for a tractor with one trailer point stabilization simulation.............. 55
Appendix C5: Matlab-file for a tractor with two trailers point stabilization simulation 56
Appendix D: Maximum position error calculation for the pantograph system........................ 57
Appendix E1: eBeam software development Kit CH-COA€......eovemeemereeeeeeeeeeeeeeeeeeeeeoo 58
Appendix E2: CH++-code for final.dll.......cccueeereueeieeeeeeeeee e 60
Appendix E3: C++-code for eBeam S-function...........c...eeveeeueeereeeeeemseeeeeeeeeeeeeees oo, 63

1 Introduction
1.1 Introduction

In the last decade a lot of research has been done on the field of wheeled mobile robots. These
robots belong to a special class of non-linear systems, called non-holonomic systems. Many
configurations are possible like carts with two or four wheels, possibly extended with trailers.
Because of the constraints on this kind of systems traditional control methods like linearization
and state feedback fail when it comes to point stabilization of the system. Solutions to this control
problem can be found using advanced mathematical, non-linear controllers like time-varying,
discontinuous or hybrid feedback controllers. These controllers are proven in theory and
simulations, but hardly in practice.

A second problem of this kind of systems is the measurement of the position and orientation of
the robot. Since dead-reckoning methods, like the use of incremental encoders for wheel rotation
measurement, are not reliable enough, other methods should be used. A lot of research has been
done on the field of beacon navigation, GPS-like systems and landmark recognition. Less
literature can be found on easier and cheaper ways of measuring position and orientation.

1.2 Problem statement

The goal of this project is to create an experimental environment to validate non-linear controllers
for non-holonomic systems, especially for a two-wheel mobile robot. This includes selecting and
implementing an absolute position and orientation measurement system.

1.3 Approach and overview

When I started this project, a wheeled mobile robot, including two stepping motors and
microstepping drivers, was already available. A dSpace unit was used to control to the robot,
which could already perform some realtime experiments.

Two voltage-to-frequency converters were available, but those were not implemented yet. The
first step was to test these cards and integrate them in the system. The hardware configuration of
the wheeled mobile robot system is described in chapter 2.

Some controllers from literature, both tracking and point-stabilization controllers, were simulated
in Matlab/Simulink to get familiar with the way they work and their performance. The system
kinematics, the basic principles of these controllers and performed simulations are discussed in
chapter 3. Also an extended problem, about a robot pulling one or two trailers, is described and
simulated in this chapter.

After calibrating the robot, the simulated controllers could be tested realtime by dead-reckoning
position reconstruction, which is described in chapter 4. However, for properly controlling the
robot and for the validation of the performance of the robot, an absolute position measurement
system is needed. In chapter 5, several potential measurement systems are discussed and one
system is selected. The next step is to adapt the existing system for this measurement system,
which is described in chapter 6. Software needed to be written in C++ to obtain the coordinates in
Simulink and the dSpace unit was replaced by a TUeDACS unit. A new, so-called MOBROB,
unit was designed especially for this project to supply power and to make the TUeDACS signals
usable for the other devices. At the end of the project an experimental environment for non-linear
controllers was ready.

Finally, in chapter 7, the conclusions and some recommendations are given.

2 Hardware configuration

This project deals with a small two-wheel mobile robot. The most important components of this
robot, i.e. the stepper motors and the micro stepping drivers, will be briefly described in section
2.1. To actuate the stepper motors properly two voltage-to-frequency converter cards were
implemented, which are discussed in section 2.2. To control the robot a dSpace unit was available
at the start of the project. Halfway the project this unit was replaced by a TUeDACS QAD unit.
In this chapter only the hardware configuration using the dSpace unit will be discussed (section
2.3). The modified configuration for the TUeDACS unit will be discussed in section 6.3.2.

2.1 The mobile robot

The mobile robot contains two driven wheels, each independently actuated by a stepper motor. A
third, ball-like, castor wheel is added to make the robot stable and move smooth. The two stepper
motors are controlled by microstepping drivers, which are mounted on an interface board.

A schematic overview of the used mobile robot is given in figure 2.1.a. In figure 2.1.b a 3D-
CAD-drawing of the robot is given.

Castor whee| ——«p-@

Driver, interface__>

and cooling
................. 210 mm
84 mm !I
Stepping rr;ntor __J
165 mm
Figure 2.1.a: Schematic view of the mobile robot Figure 2.1.b: 3D-CAD-drawing of the robot

In section 2.1.1 the stepper motors will be discussed briefly, section 2.1.2 takes a closer look at
the microstepping drivers and interface boards.

2.1.1 The stepper motors

It is not the purpose of this section to give a detailed description of how stepper motors work. We
are only interested in the inputs and outputs and some important properties of this kind of motors.

A stepper motor may be considered an electromotor that responds to a pulse signal by rotating its
output shaft over some elementary angle 6. The use of stepper motors has two main advantages.
The first is the equivalence to the mathematical model. The computed output of the controllers is
in terms of velocities. These velocities can be converted into the equivalent ‘steps per second’.
This means no additional velocity controllers are required.

Secondly, no encoders are required. Every pulse to the stepping motors results in a fixed
displacement of the motor shaft. The total angular displacement of the motor depends on the total
number of pulses applied and its angular velocity on the pulse rate. By knowing the input signal

we can reconstruct the position and velocity of the motor. This gives the possibility of dead-

reckoning measurements and position reconstruction.

The stepping motor can be considered an electromotor, responding to a pulse signal. Every input

pulse causes a rotation on the output shaft over some elementary angle 6. This angle depends on

the number of steps in one complete revolution ‘ns’ of the motor. The stepper motors used for this

project have 200 steps per revolution, which makes the output shaft rotate 1.8 degrees for every

input pulse. Using the microstepping drivers every step can be divided into smaller steps. When

we let ‘msr’ be the number of microsteps per step, the output shaft will move over an angle 6,
27 [2.1]

ns - msr

The angular velocity is proportional to the step rate, which is the number of steps per second, and

therefore depends on the frequency of the applied pulse signal, f,,.. The maximum angular speed

2-z
) fpul.s‘e [22]
ns - msr

Although assumed in theory, all stepper motors exhibit some non-linearity in practice. This
means that the microsteps do not spread evenly over the span of a step, but they bunch together as
illustrated in figure 2.2.

which equals: 4

ms

of the motor shaft is given by: o,,, =

(43 : 2
o D
£] £
&= J_J o 5
o
B - £
£ - 2
& | 1
a8 8.
| e o
g2 H 3
Microstep pulsss Microstep pulses
{5.18 deg/pulse} {0.18 deg.oulsel

Figure 2.2: Stepper motor with bad linearity (left) and good linearity (right)

This non-linearity has two important effects. Statically the motor position is not optimal and
dynamically low speed resonances occur because of the cyclic acceleration where the microsteps
are spread apart and deceleration where the microsteps bunch up.

The stepper motors are manufactured to a certain tolerance, typically of +/- 5% non-accumulative
error regarding the location of any given step. For the given 200 step per revolution motors this
means that every step will be within an error range of 0.18 degrees. Stated otherwise, the motor
can accurately resolve 2000 radial locations, which corresponds to a resolution of 10 microsteps
per step.

More specifications on the stepping motors and its connections can be found in appendix A1l.

2.1.2 Microstepping drivers and interface boards

To control the stepper motors, two IMS-IM481H microstepping drivers are used. Each driver is
mounted on an interface board (IMS-INT481) together with a heat sink (H-481). Mechanical
specifications and the connection of the pins are given in appendices A2 and A3.

The microstep resolution can be varied from 2 microsteps per step up to 256 microsteps per step.
For the used 200 step per revolution motors a microstep resolution of 10 microsteps per step
results in the maximum accuracy. Any resolution beyond this rate yields no extra accuracy, only
empty resolution. Nevertheless there are two reasons justifying higher resolutions. In the case of
controlling the robot, very low speeds are required. In this situation higher microstep resolution

guarantees smooth operation. Secondly, microstepping can replace mechanical gearing. As the
microstepping resolution affects the maximum velocity of the robot, high resolutions can be used
at low speed to guarantee smooth performance and smaller microstep resolutions can be used at
higher speeds. To obtain this, the microstep resolution should be switched during operation,
dependent on the velocity.

In the case of our robot here lies a problem. The two interface boards are not identical: One of
them has a 15-pin terminal, the other one a 19-pin terminal. The four extra pins on the 19-pin
terminal give the possibility of controlling the microstep resolution from Matlab/Simulink while
the robot is moving. The microstep resolution of the 15-pin interface board can only be adjusted
manually by changing the configuration of the four dip switches. As a result it is not possible to
change the microstep resolution during operation.

In this project a microstepping rate of 50 microsteps per step is used, which is derived
experimentally. Lower rates result in non-smooth behaviour at low speed; at higher rates the
maximum speed of the robot becomes too low. The maximum velocity for the robot using the
chosen sample rate is about 0.4 [m/s]. As a result the maximum angular velocity of the robot is
about 5.3 [rad/s].

N7 PN e
2.2 Voitage to frequency converter cards

In order to apply high frequency inputs to the stepper motors, two voltage-to-frequency converter
cards are implemented. In earlier work [9] an input signal was applied to the stepper motors
directly from Matlab/Simulink. In this case only relative low frequencies could be generated,
resulting in low velocity movement only.

The new V/f-converters allow us to generate frequencies up to 16 [kHz)]. The cards can be used in
four modes, converting a 0 to 10 [V] analogue input signal to a frequency range from 0 up to 1, 4,
8 or 16 [kHz]. These modes can be chosen by adjusting a set of dip switches. In this project the
cards are always used in the 16 [kHz] mode.

To test the converters they were connected to a power supply and the input voltage was increased
with steps of 1 [V] from 0 [V] up to 10 [V]. At every input voltage point the frequency was
measured using a scope. The result is shown in figure 2.3. The cards show linear behaviour, even
at low and high input voltages. Two other conclusions resulting from the experiments were that
the frequency signal almost equals a block signal and the reaction time of the cards is that small
that it can be neglected.

Input wltage vs. output frequency
18 T T T T T T T T T
') ‘ ' ‘ | : :
1

| | 1 i H ' ; i
) h \ H 1 1 ' H 1
1 , 1 ' H : H H
1 1 1 1 ' ; H 1
1 ") 1 1 H ; H H
1 H : H ; 1 H H H
2f-mmee {srC- == Fomeee- fommmnnn oo fm-mmenn ----- O Measurement |-------
¥ H . | H 1 R
: 1 1 H H 1
: 1 1 1 H 1 1 ; ;

o H H H H H H H H H
1 2 3 4 5 6 7 8 9 10
Voltage [V]

Figure 2.3: Input-output relation for the voltage to frequency converter cards

Besides a 0-10 [V] input signal a 24 [V] power supply needs to be connected to the converters.
The output of the V/f-cards is a frequency signal with an amplitude of 24 [V]. The needed input
voltage of the micro stepping drivers is lower, about 5 [V], so a set of resistors is added to
decrease the voltage. More information about the V/f-converters is given in appendix A4.

2.3 The hardware configuration using dSpace

At the start of the project a dSpace DS1102 unit, connected to a PC with Matlab/Simulink, was
used to actuate the mobile robot. In this mode the two voltage-to-frequency converter cards
receive a 0 to 10 [V] signal from two analogue output ports on the dSpace system. This signal is
used to adjust the angular velocity of the wheels.

From the digital in/out port on the dSpace unit each microstepping driver receives a signal
containing the direction of the wheel rotation. Two other digital outputs on dSpace are used for
the opto supply of the micro stepping drivers. This opto supply is needed to power the opto
couplers, which process the frequency and direction signals. Even though this is a simple solution
that works properly, dSpace should not be used for this kind of power supply. When adapting the
system for TUeDACS another solution for this opto supply is needed.

Two power supplies feed the stepper motors and frequency converter cards with 30 [V] and 24
[V] respectively. Since the stepper motors still work properly when only 24 [V] is supplied, later
on in the project only one power supply is used to feed both the motors and the converter cards.
A schematic view of the hardware configuration at the start of the project is given in figure 2.4.

Controller
input

Opto supply

Direction

Digital Opto supply
input

Pulse

Figure 2.4: Schematic view of the hardware configuration using dSpace

3 Control strategy and simulations

Three different kind of control problems can be recognized concerning the wheeled mobile robot,
i.e. the stabilization of the motion of the robot along a time-indexed trajectory (tracking control),
along a geometric path (path following) and along a fixed point (point stabilization). Since the
control strategies for the first two problems are quite similar, path following will not be
discussed. In section 3.1 the class of non-holonomic systems is discussed, together with the
kinematics of the wheeled mobile robot. Section 3.2 discusses tracking control. An often-used
state transformation into the chained form, which is needed for many point stabilization
controllers, is described in section 3.3. Section 3.4 actually presents some point stabilization
controllers and section 3.5 discusses the point stabilization control of a mobile robot pulling one
or two trailers. Since it is not the purpose of this project to actually design controllers, but just to
create a test environment for them, only some existing controllers from literature will be
discussed. Simulations in Matlab/Simulink are performed to recognize the behaviour of the
controllers.

3.1 Non-holonomic systems

Consider the mobile robot, schematically drawn in figure 3.1. The front (castor) wheel is free to
rotate without any restrictions. The rear wheels can be rotated independently. This makes our
robot a (2,0)-type robot, as described in [6] In this article several types of wheeled mobile robots
are recognized by comparing their degree of mobility and the degree of steeribility. The degree of
mobility is equal to the number of driven wheels and is 2 in our case. The degree of steeribility is
equal to the number of steering wheels, which equals 0 in our case.

We assume that the non-slipping condition holds in this case. Now it is impossible for the robot
to drive in side-way directions. Only forward and backward movement and rotation is possible.
This kind of constraint is called a non-holonomic constraint and it is given in equation 3.1.

This is by definition a non-holonomic constraint, because it cannot be integrated. It is not-the time
derivative of a function of the generalized coordinates.

Since no side-way movement is possible, the control problem becomes under-actuated. We need
to control three coordinates, x, y and 9, with only the forward velocity u and the steering velocity
w to achieve this. The kinematic model for this kind of robot is given in equation 3.2.

These equations form the basic model for a larger class of non-holonomic systems like an
equivalent four-wheeled robot or a truck with one or more trailers. These models can be easily
extended to a model with dynamic input extension, i.e. torque as input instead of velocity. Since
we are using stepper motors, there is no use to convert the model and we will be using the model
given in equation 3.2.

A y Non-holonomic constraints:
x-sin$-y-cos$=0 [3.1]

Kinematic model:

x = cos(B)
y = sin(8) [3.2]
g =w

Figure 3.1: Schematic view of the mobile robot in Cartesian coordinates.

Interesting about this kind of systems is that no smooth time-invariant stabilizing feedback laws
exist [5]. In can be proven that the system is controllable [7], i.e. it can be steered from any state
configuration to another state configuration in finite time by using finite inputs, but for non-linear
systems this does not imply the existence of stabilizing smooth static state feedbacks. In a similar
way it can be proven that tangent linearization and full-state feedback linearization of the system
are not possible [7]. Other control structures are needed to stabilize the system, as we will see in
the next sections.

3.2 Tracking control

The tracking control problem for a wheeled mobile robot can be solved using relatively classical
non-linear control techniques [7]. Simply stated, the problem is to follow a virtual reference robot
equal to the used robot. The reference robot follows a time-dependent trajectory and the actual
robot should be stabilized to this trajectory. As a result not only the position and orientation of the
robot are important, but its forward and rotational velocity as well. The tracking control problem
is illustrated in figure 3.2, where the subscript ‘r’ stands for reference and the subscript ‘¢’ for the
centre of the actual robot.

y A

‘Reference robot’

Yr & S e, cos(9) sin(9) 0) (x -x

Ur, Wr e, | = —sin(S) cos(8) 0|y -y [3.3]
Actual robot

0 0 1 9 -9
O & ’
v, 'Y'

~v+v_-cos(e,)

—> U = w —w
X X X 2 ”

=
g
8
I

Figure 3.2: Tracking control problem

The above-defined tracking problem involves error equations, which describe the time evolution
of the difference between the actual state and the reference state. In order to simulate two
different tracking controllers a change of coordinates is used as shown in equation 3.3. Together
with this change of coordinates, the change of inputs as given in equation 3.4 is introduced.

Some assumptions should be made to find a stable feedback control law for the tracking problem.
First, the reference velocities v, and w, should be bounded and have bounded derivatives.
Secondly, the reference should be persistently exciting. When the reference robot is at rest, the
tracking problem becomes a point stabilization problem, which requires more difficult control
techniques.

We can now differentiate equation 3.3 to gain the tracking error equations:
e 0 w 0)[e 0 1 0

.l l . ul

é,|=|-w 0 Ole |+ sin(e,) [-v.+[0 0] [3.5]
u

é 0 0 0)\e 0 o 1) "

Using thesé error equations, simulations are performed with one linear and one non-linear
feedback design. More information about the controller design can be found in [7]. Other
controllers are proposed [12, 23].

The Simulink-scheme for the tracking controllers can be found in appendix C1. An example of a
Matlab initialization file can be found in appendix C3. Four blocks can be identified. The first
one, the reference block, applies the trajectory, which the robot should follow. The reference
states x,, y, and 6, are derived from the input reference velocities v, and w,. In the second block
the error equations (3.5) are modeled. The third block contains the controller; the fourth contains
the system as given in equation 3.2. In order to reconstruct the states of the robot an integration
scheme is used. This scheme was proposed and tested in [9].

All simulations for tracking controllers are performed with a circular reference. A constant
reference forward velocity and angular velocity are applied in the reference block, resulting in a
reference circle with radius 7, = v,/w,. The starting point of the reference is (x,, y,) = (0, y,), the
starting point of the robot is (x, y) = (0,0). In the simulations the maximum forward and angular
velocities are set to the values calculated in section 2.1.2.

3.2.1 Linear control design

The linear control design results in the following control laws:

u = ~k e

—
W
(@)

[

u, = —k, 'Sgn(vr)'ez —k, e
with: k =2-&\Jw +b-v", k=b|, k=2-Lw +bv’
Here the control parameters & and b are positive real numbers. Although this control law is called
linear in [7], a sign term is present. Therefore, we assume the reference forward velocity will
always have the same sign. In practice this means the robot will drive only forward or only
backward during one experiment.
The above-designed error equations and control laws are implemented in Matlab/Simulink in
order to test the controller. A forward velocity of 0.3 [m/s] and a angular velocity of 1 [rad/s]
were supplied; the control parameters & and b were set to 1.5 [-] and 0.5 [m™] respectively. The

reference trajectory is started after 2 seconds. In figure 3.3 the x,y-trajectory and the forward and
angular velocities resulting from this experiment are given.

0.4 0.6

0.3 0.4

T N
TN v
?/ / % 5 1 10 15

e~y

vand v, [m/s]
o
o ()
w
-~ o

z

o

S

‘ h:
\ S
=

©

2z

~0.4 -0.3 ~0.2 -0.1 0 0.1 0.2 0.3 0.4 0 5 10 15
x [m] Time [s]

Figure 3.3: Simulation results for a linear tracking controller

The simulation results show that the robot state converges to the reference state within 15
seconds. This holds for both the velocity trajectory and the position trajectory.

By adjusting the control parameters the configuration of the trajectory can be adjusted. Increasing
the parameter £ makes the trajectory converge slower. Too high values of & make the control

10

unstable. Decreasing &results in overshoot in the trajectory. In this case it means that the robot
would drive outside the reference circle while converging to it. Increasing the parameter b results
in higher inputs, but not necessarily in faster convergence. This is a result of the changing form of
the robot trajectory; in some cases it has to make one or more extra ‘turns’. To high values of b
make the control unstable. Taking smaller values for 5 then the chosen 0.5 [m?] does not have
much influence. The convergence becomes just a little slower.

3.2.2 Non-linear control design

The non-linear control design from [7] results in the following control laws:

u, = —k -e

i 3.7
P LI C) R, 3.7]

€

Here k; and k; are defined as in section 3.3.1 and k, = b. For this controller the extra assumption is
made that e; does not equal 0. Again, this controller is implemented in Simulink. The forward and
angular velocity were 0.3 [m/s] and 1 [rad/s] respectively. The control parameters & and b were
set to 1.5 [-] and 0.5 [m™] respectively. In figure 3.4 the x,y-trajectory and the forward and
angular velocities resulting from this experiment are given.

It shows from figure 3.4 that the results for this controller, using the same trajectory and control
parameters, are almost equal to the results obtained using the linear controller as discussed in
section 3.2.1. This is a result of the used control structure, which is more or less the same in both
cases. Again the state converges to the reference state within 15 seconds. When the control
parameters are varied, the same correlations are obtained as in section 3.2.1.

0.4 0.6

0.4 ‘.“‘ ,—-—_-—
N AVA
V

0.3

0.2

v and v; [vs]

0.1

y [

Time [s}

N

w and w, [rad/s]

-0.4 [
~0.4 -0.3 ~0.2 -0.1 0 0.1 0.2 0.3 0.4 0 5 10 15

x[m} Time [s]

Figure 3.4: Simulation results for a non-linear tracking controller

3.3 The chained form

In most point stabilization control design cases for wheeled mobile robots a preliminary change
of state coordinates is used which transforms the model equations into a simpler ‘canonical’ form.
For instance, the following change of coordinates and inputs:

x, 0 0 1) (x

=w
x, | = 005(3) sin(&) 01yl “ [3.8]
X, sin(&‘) —005(8) 0\ & 2 = FEEES

11

transforms the system (3.2) into:

xl = ul
X, = u, [3.9]
X, = X,-u,

This canonical form can be expanded for systems with more than three states. In that case, two
different techniques can be used to obtain the new coordinates and inputs. The first leads to so-
called chained form equations; the second to power form equations. When those higher order
systems are concerned, for example when trailers are added to the system, it depends on the
situation which conversion is used. The chained form is preferred for tracking control and path
following, but often no canonical form at all is not used for this kind of controls, as shown in
section 3.2. For point stabilization the control strategy designer is free to pick one of both
transformations. More information on the chained form and power form can be found in [26, 29]
and [10, 16] respectively.

For our robot only three states are of interest. In this case the power form equals the chained
form.

3.4 Point stabilization

The most difficult problem in mobile robot control is the point stabilization problem. The
definition of this problem is: “Given an arbitrary desired state of the robot, find a control law that
stabilizes the difference between the desired state and the actual state about zero, independent on
the initial state of the robot”. One example of a point stabilization problem is the parking problem
as illustrated in figure 3.5.

Figure 3.5: The parking problem: non-feasible motion (dashed line) and feasible motion (solid line).

Since there do not exist any smooth control laws to solve this problem (section 3.1), alternative
control techniques should be used. Those are more complicated than, for example, tracking
controllers, since our reference is not persistently exciting; our reference is a fixed point all the
time. Basically, three different control techniques are used for point stabilization: Smooth time-
varying non-linear feedbacks, discontinuous time-invariant control laws and hybrid controls.
Those control techniques will be discussed en simulated in the next subsections. The simulation
scheme for those controllers is given in appendix C2. This scheme contains three important
blocks. The first block contains the coordinates transformation into the chained form as
mentioned in section 3.3. The second block contains the controller. The third block contains the
system. The starting point of the robot is set by adjusting the initial values of the integrators in
this block. In the simulations in the next sessions the robot will have to perform a parking
movement starting 0.2 [m] from the origin in y-direction, with its orientation equal to 0. The
reference point for the controllers is always the origin (0,0), with the orientation of the robot
equal to 0.

12

3.4.1 Time-varying control

Quite a lot of research has been done in the field of time-varying controls [1, 7, 13, 22]. Its basic

principle is to add one ore more sinusoidal terms to the control laws, which keep the robot

moving. The amplitude of these terms becomes smaller when the difference between desired and

actual state decreases. An example of this kind of controllers from [13] is given in equation 3.10:
u, = —k -x +k -x -(sin (t) —¢cos (t)) [3.10]
u, = <k, -x,—k,-x -x,—k -x-(x +x,-cos(¢))-cos(t)

Simpler, but also much more difficult can be found in literature. In figure 3.6 the x,y-trajectory

and the parameter convergence for the controller in equation 3.10 are given. The parameters &;,

k, ks, ky and ks were set to 1, 1, 0.1, 10 and 1 respectively.

XVs. y x,yad Qvs.t

022 05
—
02 .
0.4 £ ey
0.18 i
0.16 — 0.3
o4 ,/ g o
Eon / 2
= " E
g .
01 p— 2%
- / <
0.08 0
i p—
0.06
- - —0 1
0.04 ' ’ '
0.02 -02
-02 015 -0 005 0 005 01 015) 50 100 150 200 250
x [m] Time s}

Figure 3.6: Simulation results for a time-varying controller

It shows that the controller is stable and asymptotically stabilizes the robot to the origin, but it is
obvious that it is very slow; after 250 seconds the robot is still 0.02 [m] away from its reference
point. This is one of the main disadvantages of time-varying controllers. Two main advantages of
this type of controllers are that they are easily understood and quite accurate. You can get your
robot as close as possible near the reference point, by just waiting long enough.

By adjusting the control parameters k; preferences can be given to the state variables to control.
Basically this changes the form of the x,y-trajectory. For example, when converging the x-
coordinate gets high priority and converging the &-coordinate gets low priority, the trajectory will
stay within a small x-domain and it turn more. The convergence speed can be increased by
adjusting the control parameters, but just a little. Really high or low values for the parameters can
make the controller unstable, but within a normal range the controller is always stable.

A possibility to obtain not only asymptotic stability, but also exponential stability, which
guarantees faster convergence, is to design a controller which is smooth in the entire domain
except at the origin [13]. In equation 3.11 a controller of this kind is given.

u(x,0) ==k -x; +k, -x—3-cos(t)
plx)

2
X

Uy (6,1) ==k -x, ——>—sin(t) [3.11]

)]

000, o)t ent o

13

In figure 3.7 the simulation results for this controller are given. The parameters k;, k;, k; and k&,
were all set to 1.

XVs.y X, yand®vs. t
02 03
—
o , =}
016 <
0.14 B 01
= Y
012 ™. = e
g o0 = L
- N £ PR
E o < z
> =
008 I 2 v
/> y 3
0.06] t
P -02 Y
0.04 el ll
S -03
002 \::5— v
0 “3‘ -04
04 0.3 02 0.1 0 01 02 03 0 5 1 15 2 2 3 H 4 4 w0
x[m) Time [s]

Figure 3.7: Simulation results for a non-smooth time-varying controller .

As stated above, this controller converges the state not only asymptotically to the origin, but also
exponentially. In 50 seconds the robot stands within a 5 [mm] radius of its final point. Using this
kind of small adaptations and a non-smooth origin, time-varying controllers form a very useful
technique for solving point stabilization problems.

Again, changing the control parameters will change the form of the trajectory, but it merely
affects the convergence speed. Only extreme values can make the controller unstable or make it
converge significantly slower.

3.4.2 Discontinuous time-invariant control

Discontinuous time-invariant controllers can be classified into two types: piecewise continuous
controls and sliding mode controls. In this project the sliding mode controllers are not discussed.
Piecewise continuous controllers can differ a lot from each other. Different techniques can be
used to design this type of controllers and they often result in complex control laws [2, 7, 8, 10,
16, 27,]. Generally, piecewise continuous will show faster parameter convergence than time-
varying controllers. A disadvantage is that the discontinuity of the controllers reduces the
accuracy. The controller will make the states jump over the origin time after time. In fact it is
impossible to reach the origin.

An example of a piecewise continuous controller is given in [7,8]. The idea behind this controller
is hat there always exists a circle with radius 7(x,y) and its centre on the y-axis, which passes
through the origin and the control point of the robot (figure 3.8).

alx, y)= r(x, y)- 4y, a(x,0)=x

YI—=""N 7 e(x, ¥, 9)=9—€d [3-12]

\

[}
{
L
X

Figure 3.8: lllustration of the variables a, e and 6

14

We can now define the arc length a(x,y) between the control point and the origin and an error
angle e(x,y,), which is the difference between the angle of the tangent of the defined circle and
the robot orientation (equation 3.12). At the x-axis the arc length is equal to the x-coordinate of
the control point of the robot.

To obtain the desired behaviour, a controller is developed, which is given in equation 3.13.

u, = -y-b-a
[3.13]
u2 =]/bl .bz .a_k.e
With k and ytwo positive real control parameters and b; and b, defined as:
1 1
b, = cos(9)- (——1)+sm(8) { 5 (1——2)+-ﬁ—}
g / [3.14]

2B
(1+/3) sm(S) () .

b

2

cos (9)

i

with: = y/x.
This controller is based on the idea that first the orientation should be adjusted to equal 6, and the
arc length should be decreased. Figure 3.9 gives an idea f kind of trajectories are generated by

this kind of controller.

¥ ¥

1\,{“‘n,._m-umu-&-hmw»wm»‘@@’w*ﬂ%%ﬁ;}‘
I

% £ = ¥
e & = %

&
e
L

Figure 3.9: Trajectories for a piecewise continuous controller

The control laws have been implemented in Simulink to test the controller. One of the main
problems implementing this kind of controllers is how to handle the discontinuities. In this case
some solution should be found when crossing the y-axis, where numerical problems appear. To
avoid this problem in the first place, in this case the starting point of the trajectory is not placed
on the y-axis, but a little besides it. The results are given in figure 3.10.

The shape of the trajectory shown in 3.10 is quite similar to the ones shown in 3.9. The main
difference is, that the results from the simulations are much slower, than those claimed in the
literature. Possibly, this is a result of the fact that the simulations are done in discrete time. More
likely, numerical problems are the reason for the slow convergence. Since the controller is quite
complex, it is difficult to find the trouble spot. However, if an error would be present in the
simulations, it would be pure luck to create a controller, which converges the parameters to the
origin as it does as shown in figure 3.10.

15

0.18 \-‘\ .
016 — 25 —
014 AN
\)
012 \ g
E ot =154
>
008 z \
/ ;;1
006
/ R —
0.04 A 0
002 o
0 0
-002 0 002 004 006 0.08 0t 0 00 W0 X0 40 500 600 700 800
x [m} Time [}

Figure 3.10: Simulation results for a piecewise continuous controller

Adjusting the control parameters does change the shape of the trajectory, but merely the
convergence speed. The parameters should be chosen carefully, because instability appears in

many configurations.

3.4.3 Hybrid control

In hybrid control two or more different control techniques are combined. In the case of point
stabilization two different types of hybrid control can be recognized. The first uses a control law
in which several control techniques are combined along the entire working area. In fact, the non-
smooth time-varying controller discussed in section 3.4.2 could be called a hybrid controller,
because it combines the time-varying control technique with the discontinuous technique.
Because the time-varying behaviour is dominant, we still call it a time-varying controller. Other
combinations of control techniques can be found {1, 21].
The second type of hybrid controller uses two different controllers on two different parts of the
working area. This way the advantages of the controllers can be combined. A controller can be
designed for example, which makes the robot drive as fast as possible to a small area around the
origin. A second controller, for example a time-varying controller, will then be used in this area
to reach the origin and control the orientation. An example of this kind of controller is given in
[21]. The proposed controller shows parameter convergence and proper performance, but the used
time-varying controller is quite slow. To increase the performance this controller is replaced by
the non-smooth time-varying controller, discussed in section 3.4.1. The controller that makes the
robot move to a circle around the origin with radius R is given in equation 3.15.

u = a(x,y,S)-(x -sin(g)—y-cos(9)+R)

1 [3.15]
u, = —E-a(x,y,g) -(xvcos(n9) +y~sin(9))

2

with: a(x,y,B) = h

k,+NX +Y
and: X = x+R-sin(3), Y = x—R-cos(B)
k; and k, are two positive real control parameters.

Simulations with the controller from equation 3.15 combined with the controller from equation
3.11 were performed. The radius of the area around the origin was set to 20 [mm] and the control

16

parameters k; and k; both to 1. The time-varying controller is tuned the same way as done in
section 3.4.1. The results are given in figure 3.11.

0.2 1.8 T
— X
0.18 16 Y H
J—
0.18 1.4
0.14 1.2
0.12 E‘ 1
= @
E 01 = 0.
= ‘ E 0.8
=
0.08 £ 06
{ =
0.06 0.4
0.04 02 j@\l& 7
0.02 0 T R P
0 0.2
01 -008 -006 -004 -002 O 002 004 006 008 01 0 5 0 15 20 25 30 35 40 45 50
% [m] Time [s]

Figure 3.11: Simulation results for a hybrid controller

The two controllers can be identified quite easy from figure 3.11. The hybrid controller shows
fast parameter convergence as expected, although it is not much faster than the non-smooth time-
varying controller alone. This is a result of the fact that the first controller works only in a small
area. When the starting point is further away from the origin and the area of controller 2, this
hybrid controller will gain more profit of the first controller.

By adjusting the control parameter R, the area around the origin can be made larger and smaller.
Making this area too small will make it almost impossible for the second controller to reach the
origin. Making the area too large will take away the advantage of the first controller.

Increasing k; or decreasing k, will make the first controller go faster to the area around the origin.
As a resuit the needed inputs will increase.

3.4.4 Point stabilization controller evaluation

It is proven that all three kinds of controllers can solve the parking problem. Not all controllers
are useful in all cases however. Time-varying controllers have the advantage of their simplicity
and accuracy. By just waiting long enough, the controller will stabilise the robot as close to the
reference point as possible. The final accuracy depends on the system and measurement accuracy.
The main drawback of this kind of controllers is their slow convergence rate.

Discontinuous time-invariant controllers are far more complex than the time-varying controllers
are, which makes their tuning more difficult. Their advantage is in most cases the fast
convergence. Their discontinuities however bring a lot of disadvantages. The accuracy is reduced
because the robot keeps jumping over its final position. Secondly, numerical problems appear
when simulations are performed. In literature however, very promising controllers are proposed,
which could give excelient performance when the numerical probiems are solved.

Hybrid controllers form the most promising group of controllers. By adding the good properties
of two or more different kind of controllers and reducing their disadvantages, a fast control law
for every application can be found. A drawback might be that the designed controllers are not
useful for all applications so the robot task should be well-defined.

17

3.5 Trailers

An interesting expansion of the point stabilization problem is the addition of trailers to the
system. This makes the system and the used controllers more complex. The relative easy point
stabilization ‘parking’-problem now changes into a problem of parking a tractor pulling » trailers.
Everyone who has ever parked a car with trailer can imagine how difficult it is to park a car with
two or more trailers. The pulling robot will be called tractor from now on.

Quite a lot of research has been done on this topic [10, 15, 18, 26, 29] resulting in some
interesting controllers. The first thing to do is to expand the kinematic model for the trailers and
transform it into the chained form. This will be discussed in section 3.5.1. In the next session a
controller design will be discussed and in section 3.5.3 simulations with a tractor pulling one and
two trailers are presented.

Again it is not my goal to actually design a controller for this kind of systems, but only to study
and simulate their behaviour. Adding trailers to the robot might be an interesting topic in future
research.

3.56.1 Kinematic model for a tractor pulling n trailers

The kinematic model of the robot given in equation 3.2 should now be expanded for the addition
of n trailers [26]. A schematic view of the new system is given in figure 3.12. In this figure the
parameters d; are the distances between the axle between the two wheels of one trailer (or the
tractor) and the next. The parameters 6 are the orientations of the trailers and tractor. v and w,
are the applied forward and angular velocity respectively. The kinematic model for this system,
seen from the tractor is given in equation 3.16. Here the point (x.y) is the absolute position of the
axle between the wheels of the rear trailer.

A
Vo, Wy x=cos(6‘n)-vn
j/=sin(9”)-v"

A

0, =;—-sm(6?n_l “‘9,.)“’,,_

n

1

.1
9,,=-d—-sin(0,._l—9i)-v,._l,i=1,...,n [3.16]
by é, n-1
(Trailer n-1) . 1
. ») 0 6, =—-sin(6,-6,) -,
(Trailer n) . dn
> b, =w
X

Figure 3.12: Schematic view of a tractor pulling n trailers

The non-holonomic constraints now take the following form:

sin(8)-x-cos(8)-7->.d,-(6,-6,)-6,=0 [3.17]
j=i+l
In most cases of controlling a tractor pulling trailers the chained form is used. In order to obtain
this chained form, first a transformation of coordinates from the tractor to the rear trailer should
be made. Then, conversion in the chained form is possible. It goes too far to discuss this
conversion in detail here, but it is worked out in [26].

18

3.5.2 Controller design

In literature many controllers can be found, which are capable of converging more than the
standard number of three parameters to 0. In this section a controller described in [10] will be
discussed.

The basic idea behind this controller is that one state is varied over time, while a second
algorithm tries to converge the other states to 0. The amplitude of the varied state decreases over
time. To obtain this to different control laws are designed. These control laws are too complex to
discuss all their parameters here, but the essence will be briefly described. The complete control
laws can be found in [10]. The first control law is given in equation 3.25:

u =k(x(2))-7(2) [3.21]
Here, f(?) is a sinoid function and k(x(#,)) is a saturated function that depends on the sign of x,, the

function f{¢) and some constant control parameters.
The second control law is given by equation 3.22:

/ T
uzz{F(k(x(ti)),f) z, x(z)=0 (3.22]
10 x(t)=0
Here, z is the state vector and J{k(x(%,)),!) is a set of functions depending on the function f{#) and
its time derivatives and some constant control parameters. For every extra state, an extra
parameter /”is introduced. Adding mores states results in more complex parameters /7, which
then depend on more time derivatives of the function f{z).
Other controllers can be found in literature and most of them work with the same principles as the
one described above. In fact, these controllers can be seen as extended time-varying controllers.
Examples of extended discontinuous time-invariant controllers can also be found, be because of
their extreme complexity, no simulations have been performed with these.

3.5.3 Simulation results

Using the kinematic model discussed in section 3.5.1 and the controller discussed is section 3.5.2,
simulations have been performed with one and two trailers. The distances d; between the axes are
all set to 0.2 [m]. The starting point for the tractor is always (x,y,6) = (0, 0.2, 0), just like the
starting point used with the ordinary point stabilization simulations. The trailers are lined up in a
straight line behind the tractor.

The results for the one-trailer-case are shown in figure 3.13. In this case four states need to be
controlled to 0. A Matlab-file for this simulation is given in appendix C4.

03 3
—aclor =1
s lrgiler = Xy

2
025 /A ﬂ [x 2
4

0.2

a15

/

o1

/
/]
/|

0

0,08
= 04 0.6 08 o 0 20 % 4 30 [f 8 90 100

3 27 [
x[m] Time ()

Figure 3.13: Simulation results for a tractor pulling one trailer

19

It shows from figure 3.13 that the controller converges the four states to 0 quite fast. The x,y-
trajectory shows the typical behaviour of a trailer: When driving backward you need to steer to
the right to make the trailer go to the left.

In figure 3.14 the simulation results for a tractor pulling two trailers are given. Now five states
need to be converged to 0. A Matlab-file for this simulation is given in appendix C5.

04 3

o Tracbor —_— Xy
e Traiber 1 v
035 e Traller2 ____,;
S x
e X4
o /f o
. Iy {n .
£
E ; <
> <
015 g rd 1 k / \ \ \ J U
P f £
04 — U ¥j =
005
P
ot]
e
-005 3
g 2 E 4) 20 30 40 50 60 70 30 %0 100
Xl Tirme fs]

Figure 3.14: Simulation results for a tractor pulling two trailers

Again, these figures show parameter convergence. However some other remarks should be made.
First, in the x,y-trajectory-plot, the distance between the trailers seems to increase and decrease
along the trajectory. In fact, this is just a result of the scaling of the figure. The trailers stay all
fixed at 0.2 [m] from each other. In the second plot the difference between the two controllers u;
and u; is very obvious. The x -state is varied over time, while the other states are converged to 0.
It is possible to make x; converge to 0 faster, but only limited. To fast convergence of x; causes
instability. It is also obvious that every extra trailer makes the convergence process slower.

20

4 Dead-reckoning reconstruction and calibration

In order to implement the controllers discussed in chapter 3, realtime state reconstruction is
needed. In this phase of the project the only way to obtain this is by measuring the wheel
rotations. This kind of so-called dead-reckoning methods is discussed in section 4.1. In order to
make the robot do exactly what we want, it needs to be calibrated. This calibration is discussed in
section 4.2. Some realtime experiments, the adapted Simulink-scheme, and results are given in
section 4.3.

4.1 Dead-reckoning

Dead-reckoning (from deduced reckoning) methods are used in a large amount of applications,
starting from sailboat navigation using a compass and velocity measurements up to almost every
mobile robot [4]. Dead-reckoning methods have two main advantages:

First of all, dead-reckoning sensors like incremental encoders and gyroscopes are cheap and easy
to implement. In our case, the stepper motor input can be used for this purpose, without adding
any hardware to the system.

Secondly, dead-reckoning methods can easily be fused with other measurement systems. In some
cases this fusion increases the accuracy of the system, in other cases this makes less frequent
absolute position updating possible. Dead-reckoning keeps the robot sufficiently on its track,
while its computer generates new coordinates or while its sensors search for new beacons. As a
result, larger computing times are supported and less beacons or landmarks are needed to travel a
given distance.

The main disadvantage of dead reckoning is the fact that only relative positions and orientations
can be measured. As a result small errors will grow larger in time, without the possibility to
correct them. Therefore calibration of the robot and its sensors is very important, since most
systematic errors can be excluded or minimized in advance. Systematic errors include unequal
wheel diameters, wrong wheel-base estimation, the misalignment of the wheels, finite encoders
resolution and finite encoder sampling rate. More difficult to exclude are non-systematic errors,
like travelling over uneven floors, travelling over unexpected objects on the floor and wheel
slippage.

Because our robot drives on a horizontal whiteboard, wheel slippage is the main issue. Slippage is
caused by a slippery floor, over acceleration, internal (castor wheels) and external forces, fast
turning, and non-point wheel contact with the floor. This slippage can never be corrected by
calibration or dead-reckoning reconstruction. One possibility to avoid this is to set a maximum
forward and angular acceleration, as will be discussed in section 4.3.

4.2 Calibration

In order to correct the most of the systematic errors mentioned in the previous section calibration
is needed. The most important errors are in this case unequal wheel diameters and wrong wheel
base estimation. Before we can perform measurements to correct these errors, we need to be sure
1o other errors occur between the PC and the actual wheel rotation. This means we need to check
all components in figure 2.4 on their accuracy.

We assume that dSpace exactly outputs the voltage we want to the voltage to frequency converter
cards. These cards were tested and show perfect linear behaviour (section 2.2). The combination
of microstepping driver and stepper motor results in an accuracy on the wheel rotation of 0.18°.
Since these devices do not provide systematic errors, we will assume the occurring errors are a

21

result of unequal wheel radii and wheelbases. The first way to obtain these parameters is just to
measure them manually. This gives the following results:

r =41[mm], v, =42[mm],

B, =78[mm}, B, =80[mm]
These results can be compared to the results of two calibration experiments, which will be
discussed in the next subsections.

4.2.1 First calibration experiment

The first experiment consists of two parts. In the first part, the robot should drive a straight line.
This means the same wheel rotations are supplied to both wheels. When the two wheels have
equal diameters and the wheel-bases are equal, then the robot should drive a straight line. If not,
the trajectory will typically look like this:

Y

7 %

— (XO: Yo, 90) Xe X

Figure 4.1: Typical trajectory for bad calibrated mobile robot

In the second part of the experiment the robot will rotate around the centre of the axis between the
wheel centres. This can be obtained by making the wheel rotations exactly the opposite of each
other.

The first thing to do is to find out how the wheel diameters and wheelbases are related to the
input variables. We define the wheel radii and bases as given in figure 4.2. Equation 4.1 gives the
relation between the wheel rotations ¢; and ¢, and the forward and angular velocity.

B, - .
&1 [V}__ 1 (2°h B I‘z)'(%):M_[(ﬂl) [4.1]
w) B+B, \ —n o) 2 [

CI'C4—62'C3 p Cl'C4—02'C3
]_-——) 2= >
.. Poa e ™ Pra Pua 4™ Pra e [4.2)
B.— €1 Pr1 —C3 P51 B. = C1 Pra—C3 P2
1_—‘—_—3 2=
Pr1°C2 —PsyCa Pr2"Cq —Ps2C2
i 2
. c ‘ c @
02 CA with: | & |=a1.| 751, (Slam| T
) ¢S,2 Cy wr,Z

Figure 4.2: Definitions of wheel radii and wheelbases

Now the radii and bases can be obtained by doing the straight line experiment with wheel
rotations ¢, and the rotation experiment with wheel rotations ¢, . This results in the equations
given in 4.2.

22

The forward and angular velocity can be computed as follows:

T T
jvdt= Yo O __YeOe jw::ae [4.3]
0 0

sin(9,) 1-cos(d,)’

If both the forward and angular velocity (v,w) and the wheel rotations for both experiments ¢;; are
known, the matrix M can be solved and the wheel radii and bases will be known.

Since we have only dead-reckoning methods available for measuring the position and orientation
of the robot, we should be really careful with the results. If we place the robot on its starting
point, we do not know its exact position. We will now take a look at the straight line experiment.
Lets assume we can place the robot on its starting point with an accuracy of 1 [mm] in the x- and
y-direction, which is quite reasonable. This results in a starting orientation error of:

*
0,, =arctan 2*d =arctan 2 =0.55° [4.4]
0 L 210

with L the length of the robot and d our placing error. We also assume we can measure the end
position of the robot with an accuracy of 1 [mm)] in the x- and y-direction and with an accuracy of
1° in the angular direction. This results in the following measurement errors on the end position
of the robot:

dx =x, —cos(@, +0,,) L+x,, +x, =3[mm]

dy=y,—sin(@, +0,,)L~y +¥,, =12[mm] [4.5]

d$=6, +60,, =1.6°
For the rotation experiments these errors can be estimated the same way.
The straight line and rotation experiments were performed and the following results were
obtained:

n=41x4[mm], r, =43+4[mm],

B, =77+8[mm], B,=80x8[mm]
The uncertainty is about 10% after these experiments, which is too much. The values lay quite
close to those measured by hand. A second experiment will be performed to fine-tune the
parameters.

4.2.2 Second calibration experiment

The second calibration experiment is proposed in [4]. In this experiment the two above mentioned
experiments are combined. A square-formed trajectory is applied to the robot (figure 4.3).

Start
- e s —_— 1
End = \V
? Jy
\}‘ \‘a Square reference trajectory
W\
Y \ Trajectory caused by
. \ / unequal wheel diameters
h \. <// .
Y\ - ;———Trajectory caused by wheel
¥ \ -\\/ e k base uncertainty
A" H
.................... - 4

Figure 4.3: The square path experiment

23

Typically two different types of errors will occur now, which can be recognized easily.

The first error is a result of unequal wheel diameters and appears on the straight parts of the
trajectory. The robot will not follow the straight line, but it will bend off as described in the
straight line experiment in the previous section. The second error is a result of uncertainty about
the wheel-base and appears in the corners of the trajectory. The robot will not make a 90°-turn,
but it will make a larger or smaller turn. The experiment will be performed in both directions.

The advantage of this experiment is that the calibration can be done instinctively by trial-and-
error. By adjusting the parameters and applying the square trajectory to the robot, the effect of the
adjustments becomes clear. Because both the straight line and the rotation are applied four times,
differences in the end position become quite obvious.
This trial-and-error method results in the following values for the wheel radii and wheel bases:

r =40[mm], ry =42[mm],

B, =77[mm], B, =78[mm]
Although these results are different from the results obtained in the previous section, they lay
within the estimated uncertainty domain. The given values will not be the exact values of the
wheel radii and wheel bases, but using these the best performance is obtained. The parameter
values found in this subsection will be used for all realtime experiments performed with only
dead-reckoning reconstruction. As soon as a proper absolute measurement system is available,
this calibration should be performed again to obtain even more accurate parameter values.

4.3 Realtime experiments

Using the dead-reckoning reconstruction method, some realtime experiments can be performed.
The purpose of these experiments will not be the tuning of the applied controllers, but more
gaining the insight in the way they work. Since our calibration is not perfect and non-systematic
errors like wheel-slippage cannot be corrected, it is hard to give a judgement about the
performance of the controller and as a result tuning is not useful. More interesting is the question
if the controllers will still work in the realtime environment with constraints on the velocity and
the acceleration. Because we want to prevent the robot from slipping, we need to apply this
maximum acceleration. This is done by adding a special scheme, which works the same way a
saturation function works. A proper value for this maximum is obtained by trial-and-error
experiments and set to 1 [m/s”]. The maximum angular acceleration is set to 5 [rad/s’].

The Simulink scheme is in fact the same as for the simulations (appendix C1 and C2) with two
exceptions: An extra subsystem was added in the System-block to implement the acceleration
constraints. Secondly, dSpace analogue and digital output blocks were added to send signals to
the robot. The reconstruction is still performed by an integration scheme, which uses the applied
inputs for the robot.

All tracking, time-varying and hybrid controllers discussed in chapter 3 have been implemented
and tested successfully. The piecewise continuous controller gave more problems, mostly because
of the discontinuity on the y-axis. All controllers show more or less the same behaviour realtime
as they did in the simulations. The acceleration constraint however makes the most controllers a
little or even a lot slower. As a result of the imperfect calibration, the robot often does not exactly
end on the reference point. In other cases the final orientation does not equal the wanted
orientation. These effects however are more the result of the lack of an absolute position
measurement system than the result of bad functioning controllers. In fact the tested controllers
show promising behaviour for realtime experiments using an absolute position measurement
system.

24

5 Measurement systems

At this point of the project, we can think of several reasons to implement an absolute position
measurement system. First of all, our dead-reckoning reconstruction is not reliable enough. In
order to test this dead-reckoning behaviour, we need absolute position information. Using an
absolute measurement system makes it possible to increase calibration accuracy. Besides, we
might be able to model some kind of errors, like wheel slippage, and add these to the kinematics
of the robot. Finally we are able to reconstruct the state using absolute position information.

In this chapter a survey through several types of measurement systems is performed. Although a
lot of research has been done on the field of beacon navigation and GPS-like systems, the
solutions for small-scale applications like our mobile robot are limited. Five systems will be
discussed, ending up with the comparison and choice in section 5.6.

5.1 The pantograph system

To find both position and orientation of the robot, a simple construction can be built, containin
two arms and three rotational encoders. We will call this system the pantograph system. A sketch
of what this could look like is given in figure 5.1.

Figure 5.1.a: The pantograph measurement system Figure 5.1.b: The encoder arm

When constructing the arm the following parameters should be considered:
— The lengths of the arms.
» The reachable area of the robot depends on the lengths of the arms. Longer arms
enable a larger working area. If the entire workspace is to be covered, both arms
should have the same length. Otherwise the robot cannot reach a circular area (with a
radius equal to the difference between the arm lengths) in the middle of the
workspace.
= The accuracy of the system depends on the arm lengths. The maximum position error
of the robot can be calculated by using the encoder resolutions and the arm lengths as
shown in appendix D. As seen in figure 5.2a longer arms result in larger position
errors. In this figure, the two arm lengths are kept the same and so are the two
encoder resolutions.
— The encoder type.
In order to obtain an absolute position measurement, ordinary rotational encoders are not
sufficient, as they only supply relative rotations. As a result three absolute encoders
should be used. A disadvantage of these absolute encoders is that they are larger, heavier

25

and more expensive than the standard rotational encoders are. Several producers and
distributors of encoders can be found on the Internet [A, B, C, D].

— The encoder resolution.
Together with the arm lengths, the encoder resolutions set the accuracy of the
measurement system. The encoder attached to the frame has the largest influence on the
accuracy, the encoder attached to the robot the least. The relation between the number of
pulses per revolution of the first two encoders and the maximum position error of the
system is given in figure 5.2.b.

Maximum positicn error vs. line counts and armlengths Maximum position error vs. line counts

PN (S
a o S o

Maximum position error [mim}

=)

Maximum position error {[mm}

1000

2000 -
4000

3000
4000

Line count encoder 1 and 2 5000 8000 Line count encoder 1

Line count encoder 2

Arm tength arm 1 and 2 1900 5000

Figure 5.2.a: Arm lengths vs. position error Figure 5.2.b: Encoder resolutions vs. position error

Some problems will be encountered while constructing the pantograph system. The first problem
is how to lead the power supply cable from the robot through or along the arm. When wrongly
constructed, the cable will get suck if the robot makes to much rotations around one of the turning
points (encoders) of the arm. This is a very tricky problem, since all cables should be led through
the arms, which should be constructed hollow, but also through the encoders. Otherwise the
cables will wind up around the encoders. Even when this could be achieved, the cable itself
would wind up when to many rotations in one direction are made.

The second problem is how to protect the robot from driving out of its workspace. Mechanical or
software solutions should be considered to prevent the robot from damaging itself and the
measurement system.

A third problem is that a solution should be found for the situation where the robot drives exactly
over the centre of the workspace. On this spot the might damage itself and the measurement
system if no precautions are made. In this case a mechanical solution should be found.

Finally, the construction should be as light as possible to avoid that the measurement system
influences the robot behaviour. On the other hand the arms should be stiff and they should not
bend down. Deformation of the measurement system reduces the accuracy.

Although the above-mentioned construction problems make the pantograph measurement system
more difficult to realize, it has some serious advantages. The needed components are refatively
cheap and most of them are available at the TU/e. Secondly, the state of the robot is obtained
easily from the rotations of the encoders by using goniometry. Finally, choosing different arm
lengths and encoder resolutions can easily change the accuracy and working area of the system.

5.2 The CAD/CAM-board

CAD/CAM-boards are used by engineers for creating 2D or 3D product drawings. Several types
of transducers are available, which enable the engineer to draw on the board and import this
drawing into the computer [J, K]. By positioning the board horizontally and attaching the

26

transducer to our mobile robot, its position coordinates can be imported into the computer. The
board provides only the position of the robot, since only one transducer at the same time can be
used. To obtain the orientation of the robot as well, another measurement system, like for
example an electronic compass, is needed.

One advantage of the CAD/CAM system is its accuracy, which is approximately 0.05 [mm].
Secondly, the sample frequency, 200 coordinate pairs per second, is very acceptable. However,
there are several serious drawbacks in using the board. In first place, it is a very expensive
system, which will cost at least 3000 Euro. This amount will even increase when considering the
second system to be bought for obtaining the orientation of the robot.

Secondly, the working area of the robot is limited to the dimensions of the board. In the best case
this is about 1.2 x 1.5 [m]. Besides, there are no possibilities to expand the working area.

5.3 The electronic compass

An electronic compass works just like an ordinary compass, but its output is digital instead of
analogue. Most electronic compasses output both heading and tilting information. Conventional
and cheap electronic compasses only work properly in an outdoor environment. Ferrous metals
often magnetise over time, misdirecting magnetic compass readings. Soft iron objects can
misdirect or magnify existing magnetic fields, making indoor calibration of the compass
extremely difficult. More advanced systems use correction algorithms to counter the effects of
both soft and hard iron objects and these maintain a high degree of accuracy, even in demanding
environments [L, M].

The accuracy of the electronic compass is dependent on the tilting. When held level, heading
accuracies up to 1° can be reached, when tilted up to 2°. Tilting accuracy reaches 0.4°. Cheap
electronic compasses cost about 200 Euro, more advanced compasses cost about 800 Euro.
Since the electronic compass does not provide the position of the mobile robot, it is not possible
to use it without any other measurement system. However, it might be a useful addition to other
systems, like the CAD/CAM-board system. '

5.4 Active beacon navigation

Active beacon navigation systems are the most common navigation aids on ships and airplanes.
Perhaps the best-known active beacon navigation systems are GPS-like systems. Active beacons
can be detected reliable and provide accurate information with minimal processing. The
drawback of this kind of systems is often that they are very expensive. A lot of information on
these type of systems can be found in [4].

Two different types of active beacon systems can be recognized: trilateration systems and
triangulation systems. In the first case the distance to three beacons is measured. In the second
case the angles between the signals of three beacons are measured.

In the sense of this project beacon navigation systems using infrared or radio signals or lasers are
far too expensive. Ultrasonic systems however offer a medium- to high accuracy, low-cost
solution for the position measurement problem [E, F]. A drawback is the relative small working
area as a result of the short range of ultrasound. Two general implementations exist. The first
includes a single transducer on the robot and multiple fixed-location receivers; the second
includes a single receiver listening on the robot, with multiple fixed-location transmitters serving
as beacons. The first case is preferable when only one robot is used; the second is preferred when
more robots are used at the same time. Complete systems exist, but these are still quite expensive.
The transmitter-sensor pairs itself can be found starting from 20 Euro per pair. The main
drawback in this case is that the entire measurement system should still be designed, including

27

hardware connection, software development and system calibration, which is a time-consuming
activity. However ultrasonic beacon systems are promising for our wheeled mobile robot.

5.5 The whiteboard system

In daily practise the whiteboard system is used during meetings to import whiteboard notes
immediately into the computer, to send them to a printer or to export them over the Internet.

The whiteboard system consists of a set of sleeves for whiteboard markers, which contain
ultrasonic/infrared transducers, and two receivers, which are attached to the whiteboard. A
pressure switch in the back of the sleeve activates the transducer, when pushing a marker inside a
sleeve on the whiteboard. The sensors measure the elapsed time between the incoming ultrasonic
and infrared signal and by using goniometry the coordinates of the sleeve are obtained. The
system can be compared with the ultrasonic beacon systems discussed in the previous section,
however there are some differences. The whiteboard system has only two receivers and it
measures only two distances instead of three. Normally two possible positions result from two
known distances, but since the receivers are placed on the edge of the board, the second point lies
‘behind’ the receivers and only one point is feasible. To correctly obtain this point, the
assumption that the transmitter is always on the same height from the board should be made.
Several producers of interactive whiteboards can be found on the Internet [G, H, I]. A complete
system costs about 650 Euro. The accuracy of the system is said to be 1 [mm]. The maximum
working area of the system is about 2.4 x 1.5 [m]. The sample frequency is 70 [Hz].

Advantages of this measurement system are its portability and simplicity. Besides, the system can
provide the orientation of the robot, but it requires extra work. The system can read the position
of only one sleeve at the time, so two sleeve transducers should be activated after each other to
obtain the orientation.

5.6 Measurement system comparison and choice

Comparing the measurement systems in the previous subsections results in a choice for the
whiteboard system. The main drawbacks for the pantograph system are the construction
difficulties and the fact that the robot is attached to the measurement system. This reduces the
working area and might influence the robot behaviour.

The CAD/CAM drawing board is too expensive and its working area is limited. Moreover, a
second measurement system, like an electronic compass needs to be used to obtain the
orientation.

Beacon navigation systems are quite promising, but most of them are far too expensive to use for
this project. They are often used for larger robots, working in larger areas. Beacon navigation
using ultrasonic sensors is a promising option, but it requires a lot of work before results can be
obtained, since transmitters and receivers should be tuned and software and hardware needs to be
developed.

The whiteboard system is in fact a simple ultrasonic/infrared beacon navigation system, which
already provides coordinate information. A second advantage of the whiteboard is that it is
relatively cheap. Besides, it is very portable, which makes it ideal for presentations and
demonstrations in combination with a notebook. Finally, both position and orientation can be
measured by using alternating transmitters. Of course, still a lot of adaptations should be made
before the system works properly for our application.

28

6 The eBeam whiteboard system

Among other products the eBeam whiteboard system was the best choice. It has a good price, it is
available from distributors in the Netherlands resulting in a short delivery time and the employees
of the company were very willing to give a helping hand.

A standard eBeam-set consists of a set of four sleeves for markers, one eraser, two receivers, the
connection cables and a CD-ROM containing software, a software development kit and
instructions. This set is shown in figure 6.1.

Figure 6.1: The eBeam whiteboard system components

In section 6.1 the working of the eBeam system is explained. Section 6.2 discussed the system
performance. Section 6.3 describes the adaptations to the system, needed to implement the
measurement system. Finally, section 6.4 gives some comments on realtime experiments using
the whiteboard system.

6.1 How does eBeam work?

The eBeam sleeves each contain four infrared transmitters and four ultrasonic transmitters. These
are connected to a small electric circuitry, which is mounted in the cilindrical part of the sleeve.
The upper end of the sleeve can be opened to insert two 3V-batteries, which supply power for the
circuitry and the transmitters. Also in the back of the sleeve a pressure switch is present, which
activates the transmitters when a marker is pushed on it.

The eraser contains the same elements as the markers and works the same way. The difference is
that it has a large flat brush, with which notes can be removed from the whiteboard.

The receivers (or pods) can be fixed on the whiteboard using suction cups. The left pod contains a
infrared and a ultrasonic receiver. It is connected to the right pod. This pod contains a infrared
and a ultrasonic receiver as well, but it also has a ultrasonic transmitter. By sending a signal with
this transmitter and receiving it with the other pod the width of the board can be measured, which
is needed for proper absolute position measurements. The right pod is connected to the computer
with a 9-pin serial port. Power is supplied by an adaptor, which is connected to the net power
supply.

Together with the eBeam system a USB to serial 9-pin converter was bought. This device, the
PortGear PGSDB9 from Xircom, is useful to connect the eBeam system to the computer. The
advantage of the USB-connection is that it is faster. Together with the converter software and
documentation was supplied.

29

The supplied CD-ROM contains software to install the eBeam system. A program, which makes
the whiteboard notes visible on the screen and exportable to other devices or the Internet, is
present. Documentation and instructions are present, as well as a software development kit
(SDK). This SDK, which is written in C, contains information on messages the receivers send to
the PC, the way to handle this messages and how to pick the coordinates and the color of the
sleeve from them. This SDK is essential for writing an application, which imports the coordinates
from the eBeam system and exports them to Matlab/Simulink.

6.2 eBeam performance

Before we are going to use the eBeam system we want to know how good it works. Of interest
are the working area, the accuracy, the repeatability, the sample rate and the effect of certain
disturbances on the system.

The working area of the eBeam system is given in the documentation supplied by the CD-ROM.
The maximum active area is 2.4x1.5 [m], the minimum is 0.6x0.6 [m]. The dimensions of our
whiteboard are 1.5x1.0 [m], so no problem should be expected.

A first indication on the accuracy of the system can be obtained by measuring the width of the
board manually and then measure the width of the board using eBeam. Before we are capable of
doing so, we need to write an software application, which will be described in section 5.4.3. The
width of the board is 1.5 [m] as mentioned before, which is divided in 3000 lines by the eBeam
system, resulting in a line every 0.50 [mm]. Simularly, the height of the whiteboard is 1.0 [m],
which is divided in 1800 lines, resulting in a line every 0.56 [mm]. Concluding, the accuracy is
0.25 [mm)] in the x-direction (width) and 0.28 [mm] in the y-direction (height).

An experiment was performed to test the accuracy of the system. A sleeve was placed on an
arbitrary spot on the board and kept on that position for a while. The coordinates were imported
into Matlab/Simulink. Now it showed that over time not one constant value was exported by
eBeam, but the output jumps between two or three successive values. Two different values can be
easily explained by the fact that the marker could be placed between two lines. Three different
values however indicate some uncertainties in the measurement. The experiment was repeated on
several spots on the board covering the working area, resulting in the same differences as in the
first experiment. This uncertainty is the same in the x- and y-direction. This results in a 0.75 [mm]
accuracy of 0.75 [mm)] in the x-direction and 0.84 [mm] in the y-direction, which is quite
acceptable.

In order to test the repeatability of the system a simple experiment was performed. A sleeve was
placed on an arbitrary spot on the board. After this it was taken off, the software application was
started again and the sleeve was placed on the same spot again. The measured coordinates were
the second time exactly the same as the first time, resulting in a repeatability of the system equal
to the accuracy.

The sample rate of the system was given by an eBeam engineer and said to be 70 coordinate pairs
per second. Simple experiments using a stopwatch and a counter, which value increased every
time a message was received from eBeam, confirmed this value.

Also of interest is the switching behaviour. The sleeves will transmit for 6 samples after the
switch is disconnected, which means the sleeve will stay active for 0.1 second. When the case of
switching between two sleeves, in order to obtain the orientation of the robot, is concerned, the
sample rate is reduced to about 10 coordinate pairs per second. A probable solution for this is to

30

activate the second sleeve only once in a while and using a dead-reckoning method for updating
the orientation of the robot between these moments.

An important effect, which could affect the measurements, is the misalignment of the pods.
Experiments were performed in order to test this effect. A grid was drawn on the whiteboard,
with each line 200 [mm] from each other. Near the pods an extra line was placed in x-direction on
100 [mm] from the last one, in order to measure effects on the edge of the board. A sleeve was
activated on each grid point and these points were plotted in Matlab/Simulink. Five experiments
were done, in which both pods were placed under the same angles of -40°, -20°, 0°, +20° and
+40°. Here -40° means the pods were rotated outwards over this angle. The results are shown in
figure 6.2.

1800 -
B % B &% |{:°
1600 O 40° outwards [
3 40° inwards
1400 =
o ¢ 3 Ed % a el
2 % B 9|86 |6 p o
1200
= 1000 s
4] 1 £ ¥ £t L (3 i
=) b o % o} <] o] D o]
> 800
600} = v . : P
° s 5|8 |8 B
400
Py 5 b
2001 7 o % % el " "
0 o & =] L L)
0 500 1000 1500 2000 2500 3000

x{lines]

Figure 6.2: Results for a misalignment experiment for the pods
Two effects appear from figure 6.2. First, when the pods are placed under certain angle, some
parts of the board cannot be measured any more. In the case of turning the pods outwards, this
area lies between the pods, in the case of turning them inside, this area lies at the sides of the
board. A second effect is the movement of the points along the y-axis. This can be explained by
the fact that the infrared and the ultrasound receivers are no longer on the same line when the
pods are rotated. If for example the distance between the point and the infrared sensor increases
and the distance between the point ultrasonic sensor decreases as a result of the turning of the
pods, the measured time difference between those two signals will be smaller, resulting in a
smaller distance. Since in this experiments the effect is equal for both pods, only movement along
the y-axis results. Experiments in which only one of the pods was rotated also show x-movement,
which confirms the above given motivation.

If the pods are placed properly, or just a few degrees misaligned, the above mentioned effects lie
within the accuracy of the system and can be neglected. More important however, the pods
should not be moved or turned during or in between experiments, since then the measurement
results cannot be compared.

A second issue is to find the effect of activating the transmitters on a certain height above the
board. When the transmitters are placed on the robot, they will not be on the same height as the
receivers are on. The first thing to do is to find out if signals will be received from higher placed
transmitters. It shows that the signal is received well everywhere in the height range needed for
our robot. Correcting the coordinates however does not only involve goniometry but also some
side-effects, which seem difficult to explain. Combining this with the higher risk of signal
blocking by the robot itself when the pods are placed on the board while the transmitters are

31

placed higher, the best solution is to simply place the pods on the same altitude above the board
as the transmitters are on.

A large advantage of the eBeam system is the fact that it provides information on the color of the
sleeve that is writing on the board. A special code is sent with the coordinates, which makes
distinguishing between the sleeves possible. By using this property, the orientation of the robot
can be easily obtained by placing two transmitters on the robot and making them send signals one
after the other as proposed above.

6.3 Adapting the system for eBeam

Before the eBeam system can be used as measurement system a lot of adaptations should be made
to the system. The sleeves should be adapted and mounted on the robot, dSpace should be
replaced by TUeDACS and software should be written. In the next subsections these adaptations
are discussed.

6.3.1 Adapting the sleeves and robot

The first step in adapting the sleeves is taking off all parts we cannot use. In fact we end up with
only the head of the sleeve, containing the transmitters, the piece of electric circuitry and the
power supply/pressure switch connection. These parts are all quite small and this makes them
very useful for mounting on the robot. In order to protect the circuitry a hollow cilinder is glued
on the head. The backside of this cilinder is closed by gluing a metal piece with a thread end to it,
which makes the construction on the robot easy. The power will be supplied externally and
herefore the wires are soldered to the power supply connections. The pressure switch will be
replaced by a relais, which can be switched from Matlab/Simulink. This results in two extra wires
leaving the new transmitter module. The connection scheme of the transmitters is shown in
appendix E2.

A 3D-drawing of the adapted mobile robot is given in figure 6.3.

Figure 6.3: 3D-drawing of the adapted wheeled mobile robot

In order to mount the transmitters on the robot, some adaptations should be made to it. Because
no large obstacles should come between the transmitters and receivers, the transmitter modules
should be mounted above the existing parts. To achieve this a Weidmuller mounting rail is

32

mounted on the robot by two spacer sleeves. This rail is placed over the length axis of the robot
on a 70 [mm] height. The advantage of using this rail is that the voltage-to-frequency converter
cards can be mounted on the robot as well. The first spacer sleeve will be placed on the axis
between the wheel centres and the first transmitter module will be attached to it. This guarantees
that this transmitter is on, or at least very close to, the control point of the robot. Tests are needed
to exactly find the location of this module. The second transmitter module is mounted as far in the
front as possible. The voltage-to-frequency converter cards are mounted at the rear end of the rail.
Finally the power supply and signal connectors are mounted on the rail.

At the sides of the robot two brackets are mounted which are useful for several reasons. In the
first place these brackets protect the transmitters and the rest of the robot hardware. Secondly,
new additional devices can be mounted on these brackets. The height of the brackets is chosen to
make sure no other components will block the transmitter signal. When mounting new
components under the brackets this signal blocking should be considered seriously. The used
brackets are that small that they do not influence the signal sent to the receivers.

A last adaptation should be made to this part of the system. Because the transmitters are now
placed about 140 [mm] from the ground, the eBeam pods should be placed on this height as well.
This is done temporarily by placing the pods on a pile of steel blocks. In the future a final solution
for the height correction should be found.

6.3.2 Switching from dSpace to TUeDACS

Because the eBeam system provides Windows messages to the PC, the TUeDACS system is
more appropriate than the dSpace system. The processing of these messages needs to be done
under Windows. Now keeping the control of the robot under Windows too, is easier and more
efficient than processing that part with dSpace.

Together with the addition of the transmitters and the wish to reduce the number of used power
supplies, this results in a new hardware configuration. A schematic overview of this configuration
is given in figure 6.4. The complete connection scheme is given in the appendices B1, B2 and B3.

Wheel
rotations ‘

24 V supply

Directions
5V supply
Transmitters on/of

Trans-
mitters
On/of

Figure 6.4: Schematic overview of the hardware configuration using TUeDACS

The most important change compared to the system used with dSpace (figure 2.4) is the addition
of the MOBROB device, specially designed for this application. The following functions are
performed by the MOBROB-block:

- The TUeDACS unit supplies the wheel rotations from an analogue output port, but the
output voltage ranges from 2.5 to +2.5 [V]. The voltage-to-frequency converter cards
need a 0 to +10 [V] input voltage. The MOBROB device converts the TUeDACS output
to the voltage-to-frequency cards input using op-amp’s.

33

- The MOBROB unit supplies both the 24 [V] and 5 [V] power needed for the V/f-
converters and step motors and for the microstepping drivers and transmitters
respectively.

- The MOBROB unit contains two relais for switching the transmitters on and off. It
converts the incoming digital 0 or 1 into an actual current.

- All MOBROB output wires are put together into one cable, so no additional cables or
wires have to be connected to the robot.

The TUeDACS now supplies the wheel rotations from two DAC-ports. From the DIO-port the
direction signals and the transmitter on/of signals are supplied. After passing the MOBROB unit,
the wires will all be connected as done before.

6.3.3 Software development

In order to get the coordinates from the Windows-messages sent by the eBeam system, a software
application should be written. It has no use to discuss the developed software in detail here, but
the main idea behind it will be discussed.

The software has been written in Microsoft Visual C++, the same language the supplied software
development kit is written in. This SDX consists of a list of functions, messages and structures
and some documentation about them. Also implementation examples are provided. The functions
can be used to ask a special action from the eBeam system. This includes searching for and
connecting to communication ports, setting or measuring the board width and height and setting
the pod locations. The messages contain information about the success of the called functions.
The output may be an error code or the asked information about coordinates, connection ports or
board width and height. The coordinates are received in a structure format together with the color
of the sleeve. Also all error codes and color codes are each placed in structure formats.

The first step was to connect the eBeam system and then try to make contact with it. Once a
communication port is connected properly, messages will be received from the eBeam system.
The next step is to extract the needed information from those messages and send them to a simple
Windows window. All these programs were application programs with .exe extension. The next
thing to do now is to write a dynamic link library (.dll) file, which contains the same functions as
the previous designed applications. To test this dli-file a small application file (.exe) can be
written. The last step is to write a S-function, which can be used in Matlab/Simulink and has the
same functions as the small test-application. This is done using the template file ‘sfuntmpl.c’. The
S-function file calls the earlier designed dll-file and receives the coordinates and the sleeve color
from it. This S-function can be used in Matlab/Simulink. The C++-code for the software
development kit, the dll-file and the S-function are given in appendix E1, E2 and E3 respectively.

6.4 Realtime experiments using the eBeam system

The final step in this project is to test the robot using the absolute position measurement system.
The system calibration needs to be inproved and algorithms need to be designed to combine the
dead-reckoning with the absolute position measurement and to obtain the orientation. This will be
quite a lot of work and will be the first thing to do for future researchers. Without these
algorithms however, also some interesting experiments can be performed.

We can, for example, perform the same realtime experiments as we did with only the dead-
reckoning reconstruction. We can now measure the position of the robot quantitatively and
qualitatively. The first option is the easiest one. By just starting up the original eBeam software

34

and making the robot move, the driven trajectory can be followed on the screen. This way,
information on the shape of the trajectory is provided.
By using the especially designed new software, we can obtain the robot coordinates in
Matlab/Simulink and process them. Now qualitative performance validation is possible too.
Using the measurement system this way, we can improve the calibration of the robot and gain
more information about wheel slippage and other non-systematic errors. These are topics for
future researchers.

In this project only some experiments to test the performance of several controllers are
performed. Those were done using a notebook attached to the TUeDACS QAD. During the first
experiments, the eBeam receivers were placed on the board without adjusting their height. The
tracking controller described in section 3.2 and the non-smooth time-varying point stabilization
controller described in section 3.4.1 were implemented and the results were plotted by the
standard eBeam software. The results of these experiments are given in figure 6.5.

Figure 6.5: Results of first realtime experiments using the T UeDACS QAD. Left: Tracking controller. Right: Point
stabilization controller.

In both cases some two effects appear: There are disturbances present on the trajectories and there
are gaps in the data. Both seem to be a result of some kind of signal blocking, for example caused
by the connectors on the robot, the brackets or the cable itself. In both cases however, other
effects cause these errors. The disturbances, which can be seen best in the tracking control
experiment, are a result of the height difference between the transmitters and receivers. When
placing the pods on about the same height as the transmitters, this problem is reduced a lot, as can
be seen from simulation results later on in this paragraph.

The gaps in the data are also not the result of signal blocking, but a result of the limited data
processing capability of the used notebook. For further research, a PC with a faster processor and
using Windows 2000 was prepared for experiments. On this PC the latest PCMCIA-drivers were
installed and the same experiments were performed as on the notebook. The eBeam hardware was
connected to this PC too. It appeared that the gaps in the data were absent now, as can be seen
from figure 6.6. To verify if the gaps are really results of slow data processing and data-loss, a
final experiment was performed. Now the robot was controlled by the PC and the eBeam data
was received by the notebook. This way, the notebook has less realtime functions and as a result
more data processing time. In fact, there were less gaps in the data during this experiment, but

35

there were still some present. Concluding, the computer processing speed should be high enough
to both control the robot and gain the eBeam coordinates to obtain proper measurement results.

Ny

Figure 6.6: Experimental results using a PC and high placed pods. Left: Tracking controller. Right: Point stabilization
controller.

From figure 6.6 the following can be concluded: The measurement system provides good position
information. The connectors on the robot do not or merely have influence on the measured signal,
and the same counts for the brackets and the cable on the robot.

Finally, it can be seen from the tracking control experiment that the robot converges to the
reference circle and stays on it. This gives an indication that the calibration experiments have
been successful and the used parameters for the wheel diameters and wheelbases are properly
chosen.

The robot is now ready for all kind of future realtime experiments. ..

36

7 Conclusion and recommendations

The original wheeled mobile robot system has been adapted for better performance and is now
ready for the realtime implementation of non-linear controllers and other applications. Two
voltage-to-frequency converter cards were added to the system successfully, making faster and
smoother movement of the robot possible. A measurement system survey has been performed
resulting in the choice for the eBeam whiteboard system. This proves to be a proper solution for
absolute position measurements. The system uses two infrared/ultrasonic transmitters and
receivers and an accuracy of less than 1 [mm] is obtained. The orientation of the mobile robot can
be obtained when two transmitter units are used alternating. Each transmitter can be recognized
independently. The first available dSpace unit is replaced by a TUeDACS unit and an extra unit,
the so-called MOBROB unit is added for power supplies and signal transformations. Software
was designed to import the coordinates and information about which transmitter is used into
Matlab/Simulink. The robot itself has been adapted for the montage of the transmitters and
voltage-to-frequency cards.

Several non-linear controllers have been tested in simulations and realtime, using dead-reckoning
methods. Simulation results of both tracking controllers and point-stabilization controllers are
presented. The dead-reckoning reconstructions give a first impression on realtime behaviour of
the controllers and the first realtime experiments using the absolute measurement system have
been performed. Those were only tests to validate the dead-reckoning performance however and
improved calibration and realtime absolute position reconstruction still need to be done. In order
to be able to use the dead-reckoning reconstruction method the mobile robot was calibrated first.
Finally some simulations have been performed using the mobile robot as a tractor pulling one or
two trailers.

A lot of recommendations for the future can be made, because this project is just at the start of
several other projects.

- The mobile robot needs to be calibrated using the absolute measurement system so
systematic errors like unequal wheel diameters and wrongly estimated wheel bases can be
corrected properly.

- An algorithm should be designed to combine position, orientation and dead-reckoning
measurements. This includes a strategy on how often the orientation is measured and how
it is reconstructed in between the sample moments.

- The simulated controllers should be tested in the realtime environment in order to obtain
not only their performance but also the robot performance.

- The design of two simple trailers makes the implementation of more complicated
controllers possible, which is certainly an interesting field of research.

37

38

Literature and internet-sites

Literature

[1] Emad Al-Regib, llya Kolmanovsky and N. Harris McClamroch: “Stabilization of wheeled
vehicles by hybrid non-linear time-varying feedback laws”, Proceedings on the 1996 IEEE
International Conference on Control Applications, 1996.

[2] A. Astolfi: «“Discontinuous control of non-holonomic systems”, System and control letters
27, 1996.

[3] A.M. van Beek: «3D measurement systems for robot manipulators”, Project report for the
Eindhoven University of Technology, 1998.

[4] J. Borenstein, H.R. Everett and L. Feng: “Where am 17°, Sensors and methods for mobile
robot positioning”, Technical report from the University of Michigan, 1996.

[5] R.W.Brockett: “Asymptotic stabilization and feedback stabilization”, Differential geometric
control theory, 1983.

[6] Guy Campion, Georges Bastin and Brigitte D’ Andréa-Novel, “Structural properties and
classification of kinematic and dynamic models of wheeled mobile robots”, IEEE
Transactions on robotics and automation, vol 12, nr.1, 1996.

[7] C.Canudas de Wit, H. Khennouf, C. Samson and O.J. Serdalen: “Non-linear control design
for mobile robots”, 1992.

[8] C.Canudas de Wit and O.J. Serdalen: “Exponential stabilization of mobile robots with non-
holonomic constraints”, IEEE T vansactions on automatic control, 1992.

[9] J.F.vanden Eerenbeemt: “Control of a mobile robot”, Project report for the Eindhoven
University of Technology, 2001.

[10] John-Morten Godhavn and Olav Egeland: “A Lyapunov approach to exponential
stabilization of non-holonomic systems in power form”, IEEE Ty vansactions on automatic
control, 1997.

[11] Zhong-Ping Jiang and Henk Nijmeijer: “Tracking control of mobile robots: A case study in
backstepping”, Automatica, 1997.

[12] Zhong-Ping Jiang and Henk Nijmeijer: “A recursive technique for tracking control of non-
holonomic systems in chained form”, IEEE Transactions on automatic control, 1999.

[13] Tlya Kolmanovsky and N. Harris McClamroch: “Developments in non-holonomic control
problems”, IEEE Control Systems, 1995.

[14] Ilya Kolmanovsky and N. Harris McClamroch: “Hybrid feedback laws for a class of cascade
non-linear control systems”, IEEE Transactions on automatic control, 1996.

[15] David A. Lizarraga, Pascal Morin and Claude Samson: “Chained form approximation of a
driftless system. Application to the exponential stabilization of the general N-trailer system”,
International Journal of control, 2001.

[16] Jihoa Luo and Panagiotis Tsiotras: “Exponentially convergent control laws for non-
holonomic systems in power form”, Systems and control letters, 1998.

[17] Robert T. M’Closkey and Richard M. Murray: “Exponential stabilization of driftless non-
linear control systems using homogeneous feedback”, IEEE Transactions on automatic
control, 1997.

[18] H. Michalska and F.U. Rehman: “Set point stabilizing control for a mobile robot with
trailer”, ICAR 97, 1997.

[19] Richard M. Murray and S. Shankar Sastry: “Non-holonomic Motion Planning: Steering
using sinusoids”, IEEE Ti vansactions on automatic control, 1993.

39

_ [

[———— ey

[20] KyuCheol Park, Hakyoung Chung and Jang Gyu Lee: “Point stabilization of mobile robots
via state-space exact feedback linearization”, Robotics and computer integrated
manufacturing, 2000.

[21] I.B. Pomet, B. Thuilot, G. Bastin, G. Campion: “A hybrid strategy for the feedback
stabilization of non-holonomic mobile robots”, IEEE International conference on robotics
and automation, 1992.

[22] Claude Samson: “Control of chained systems, application to path following and time-
varying point-stabilization of mobile robots”, IEEE Transactions on automatic control,
1995.

[23] C. Samson and K. Ait-Abderrahim: “Feedback control of a non-holonomic wheeled cart in
cartesian space”, IEEE International conference on robotics and automation, California,
1991.

[24] Shankar Sastry: Non-linear Systems. analysis, stability and control, Berlin: Springer, 1999.

[25] Jean-Jacques E. Slotine and Weiping Li, Applied non-linear control, London: Prentice Hall
International, 1991.

[26] O.]J. Serdalen: “Conversion of the kinematics of a car with # trailers into a chained form”,
IEEE, 1993.

[27] O.J. Serdalen and O. Egeland: “Exponentiai stabilization of non-holonomic chained
systems”, IEEE Transactions on automatic control, 1995.

[28] Zhendong Sun, S.S. Ge, Wei Huo, T.H. Lee: “Stabilization of non-holonomic chained
systems via non-regular feedback linearization”, Systems and control letters, 2001.

[29] D. Tilbury, O. Serdalen, L. Bushnell and S. Sastry: “A multi-steering trailer system:
conversion into chained form using dynamic feedback”, IEEE Transactions on robotics and
automation, 1995.

[A] www.baumerelectric.com: Homepage of the Baumer Electric company, which produces
rotary encoders and ultrasonic transmitters and receivers.

[B] www.automationdirect.com: Homepage where (price-)information on Koyo rotary encoders
can be found.

[C] www.hengstler.de: Homepage of the Hengstler company, which produces rotary encoders.

[D] www.heidenhain.de: Homepage of the Haidenhein company, which produces rotary
encoders.

[E] www.ultrasonicsensors.com: Homepage of the Senix company, which produces ultrasonic
Sensors.

[F] www.mindspring.com/~sholmes/robotics/ultrasnd.htm: Information and examples for
ultrasonic measurement systems.

[G] www.e-Beam.com: Homepage of the e-Beam whiteboard system form Electronics for
Imaging (EFI).

[H] www.mimio.com: Homepage of the Mimio whiteboard system.

[1] www.pegatech.com: Homepage of the Pegasus whiteboard system from Pegasus
Technologies.

[1] www.gtcocalcomp.com: Homepage for CAD/CAM drawing boards.

[K] www.ICN-Solutions.nl: Homepage for CAD/CAM drawing boards.

[L] www.pnicorp.com: Homepage for electronic compasses.

[M] www.electronic-compass.com: Homepage for electronic compasses.

40

Appendices

Appendix Al:
Appendix A2:
Appendix A3:
Appendix A4:

Appendix B1:

cards

Appendix B2:
Appendix B3:

Appendix C1:
Appendix C2:

Appendix C3:
Appendix C4:

Piinal

Appendix C5:

Appendix D:

Appendix E1:
Appendix E2:
Appendix E3:

Stepper motor connections and specifications

Micro stepping driver and 15-pin interface board specifications
Micro stepping driver and 19-pin interface board specifications
Voltage-to-frequency converter card specifications

Electro technical scheme for step motors, microstepping drivers and V/f-converter

Electro technical scheme for MOBROB unit and eBeam transmitters
Electro technical scheme for TUeDACS QAD

Simulink scheme for tracking controllers

Simulink scheme for point stabilization controllers
Simulation/realtime Matlab initialization file example

Matlab-file for a tractor with one trailer point stabilization simulation

Matlab-file for a tractor with two trailers point stabilization simulation
Maximum position error calculation for the pantograph system
eBeam software development kit C-++-code

C++-code for eBeam.dll
C-++-code for eBeam S-function

41

Stepper motor connections and specifications

Appendix A1

USGIBIMEIQ
U GRS TERES 2 RO i oo
YRS) FIEREE ooy | ¥ BZe5-16)_} on BUA BoA SaA i ijeys way
() [T E5) FIENGES) oMoy ¥E Y27 o [£ L L <SS 20y YIWIN
i) CITE) TR i TR O 1 A g g TSI
o R 120725 M 25 GOMEEAS | DAoH B L k] 8 & ’
GEAORE) QRREE) 55 TRIIS | OMEIENIS P Ity SOV 8"} A g 8% 8 ojfue Ung
“IN-WOR 5] 5 s o Iy (k) Aogaraoe sifve doig
. 2 2 2 2_,_%& 2 2 Y] 0572 g oL [{uipgicd onbio; fupiod
008 or 3 S (unw} oAbt faea
{gpung v 84ajs} wWaveIag pees) % r [rrTpry s
vagseRNeIQ 950 g s S¢ 13 {u5) DOURISISOY
MV 025> GRAA0H ZIEAS. W FREN A 2 i 240 S'C i) jusund pajey
TOMDs i R PE 958" : 5¢ £ § 4 <) 08u0a pRIBY
s x OhE oLr-ovy +99-0v0 85E-0bY 2yvory och-0be aze-0b ou 0018 S
TS E $SE3-151
TTORDS U GoeG-161 : UOREIFIVOIS [BOIYDOL
iy RS S0ES73 61
G [T 6757161
GG GO GEp-0y | Snol Tm
2] W AR [Aaiia WS | SIAISEIE] SO T SRR (] VRLR-16L
“IN-1998 Sd SIS T R reeID | SRR] GNP Y 51¢8-161
3 3 a 2] v [EE) BT o) Eig SIAITCE PaY] QLYY
FoRisod PEET) ARIEEIS)G SRR | Py vgy-Ovh
[EETD) SHUPAUSOIE | OORUMUIOIIOA W T [F3v-0bV
G tagv oyais} JOW RIS : PE) REER) WOTBA SeiE | BRI 22 IR
3 "ou }00)S §H
uty v 7] G [El q] E] v
E] e ;
s S (ECR]
%y [UE] B
K] 3] v NIYIE {g°g T SOnBl) 0} 19}34) SI030W VAN §
¥BER-16) - 6528-161 SINOIS0 S
Ody-0b - Oep-Qvy T RGO TR UESTEY SR 0% FAN T
) WM UEBIE SRS 654 9GEE 561
IR B, REY TR i il 7ECSIB)
BRAAEEIE £) I APOY X528 £ay §OEE-161
- 4ot 10 g LY Taaa X By GG S S0EE° 161
syt A g {onusSet w00 G 0 P~ Sp— 50 10,5001 & KuL9ES Fum 101 Biol 20 1 e i GROIE B8 [IR, 50087151
wos s A GO {2ouaBEBY SIIUCEIOD Gi G A% 10U 0 AU PUB PESARY HIADORAON; SMRL A8 JO S5C) 26 RuidE: Jun 15} DIl 2010 SURIGEHIET S azmm Fii ST T FUAL Sorh
Fa) TG) UHGH BilliA Gep oy
"5U %0015 &6
op OpN apt opy i o8 op ON HEYS B] q fi] 5 a8 X
%4 P £ 2 %4 £C 4 2 azs QU YRAN ToRiE0d
] koS & $ 8 € g SeER uonEneY {} 2By o} 19351} SIOJOW SUM O
X 8 gL &1 1 8 g 81 aue daig
¢) [) g 3 § 3 Fominace sBue dng i ey
50T o021 288 €05 205 92 5R 0 001 enbig; Buigion : £ -
Fil 4L &85 562 e ayi gt 5g o @alios Wsidg 7y o7y
8 g2 o o [o5 8 %@ g BRI K] £ S ¥
v <5 9t oz 52 o8 5 g2 o8] . "
51 oy ') ¥5 ao0 v v e Vo WS o mww mmvwa‘”vww‘ww.w?
g Y 28 £ £5 Bi) 1 2 GBEEOA 2) N s
VRCR-15k | 6208-10) | G90E-1B% | SUTG-Lat | OVES-16) | veEo-lsy | ozes-iel § S0CEGL | eseglol U H301S S8 . §ion A30is SH

42

inued)

ions (cont

d specificat

ions an

Stepper motor connect

Appendix A1

®
@
auoIasu] Ip _Emzume WIOWBRICOIRE AP meEu_mm"a@
o (€] Hp vC@> @ O
Y ——— =
@ ossed-ossed 1pLg) 11030\
ornssurLp ondoy
(@D sepughy sed g sed sinojopy SHOBNIISULP ST
souowINISUL op sefoy
@ osed e osed sopugiy $240301 SunjispuesFunusipog
33[yeoy WOINIISUY
(@D ueinroumpyos-pugin y
e siojopy Bujddeys pugiy —E
8ZL6A 00/50 OJESIIANd ¢ ORI | OpROYqTY / uaqabelstriaH | panssy

43

Appendix A2: Micro stepping driver and 15-pin interface board specifications

i

L]

En;
i

s
HEVEmd

IENTELLIGENT MOTION SYSTEMS

" ™
Secollovice invAlotion

INT- 481

IM481H INTERFACE BOARD
OPERATING INSTRUCTIONS

370 M. MAIN ST., PO BOX 457, MARLBORQUGH, CT 06447
PH. (560} 205-6102, FAX. {660) 295-6107
ternet: hitp:/fimshome.com, E-Mail: info@imshome.com

82675

PIN ASSIGNMENT AND DESCRIPTIONS

DIMENSIONAL AND MOUNTING INFORMATION

NOTE: The IM481H is mounted to the underside of the INT-481 such that
the label on the IM$81H is facing the PC board of the INT-481.

T S T 2!
DIMENSIORS ARE I
INCHES {rom}
330
(%2
@
- Wt 1.02 oz, 28.0 gms.
Does nit inciude
smouating hardwars.
o
7.
IS 0t R
" *% 3632 {M3.5} screw vith 7 2507 (83

An 133 Matne Screw substtution Jor fem “E

D, @ zplit o
may 5& uses but is 1ot 5 3 Q0. fis washer and @ spiit leek

‘washer: This hardwaep is oot supslied. i
Vi

ELECTRICAL SPECIFICATIONS

PARSMETER MIN [TYP [MAX[UNITS
Cpto Supply isoizied Inputs ¢ § 40 v
input Forwerd Current isotated inputs 8 10 | 12 mA
Opto input Forwaed Yoitage |isolated Inputs 15 [47! v
Reverse Breakdown Voltage | isclated loputs | § v
Signat Quiput Current Full Step, Fault 28 mA
Drain-Source Voitage ult Step, Faulf 100 v
Drain-Source Resistance Fult Step, Fauit 6.5 o)
los = 2504

Test Fommaetars: Ta= 25°C, vV = 48V

i
i
i I
PIN# PINNAME DESCRIPTION i 7
1,2 Phase B Fhase B cufput ot
&4 Fhase A Fhase A oulput 2
- i
§ Eaable Aciive hign motor phase enable iaput i
& feset Active Jow teset input é, . Lg
7 Lty +B\iic extarnat epticat isolator power supply INT-184 Interface Bogrd Pdnel {481 Jaterface Boars 1
Dpto Supply B¥iio external eptical isolator powar supply Pouinted witn H451 Heat Sink e 8 Tt Sk
& Direction hicior direction input * The isciating thermal pad { THAE1 § Rom "™ is seppied with the Intorface Boasd {3NT-
451). ¥ the INT-481 % not veed it mest b 0d segaraiely.
Y Blep Tlock saator step clogk Bput ¥ The harderare Baies A" thiy H° are supplied with the Heatsink & { 481}, § ihe Hayd
eors smﬁmﬂmm&mb&mm&mﬁm, * - .
¢ Pl Tper drain favlt ovtpat e BESCRIPTION A o] BESTERTION ey
1 |FuStep Tpen drsin ful step outpit O e 3
%2 Y Supply voltage gt 3 -1 £ Sink 3 © i ot Washar, 25000, 3450, S0 Tk | 2
T |¥- 4Bt solotiog Theroal Pl £ ¢ § RB07st A P Road Sogw z
Graund Supply voltege ground (ratum) NOTE: Torque specification for # T {9ESa Pantiead Soiew 2
" y : 632 INT-481 and M481H F 18 Sl Lok Washer B
Cuserant Ad] Fhase current adiustmant input ounting SCrEWs: T ra a% ety Theeadi Broncig Nt z
GurentRed | Phase cument reduction aput 5.0 - 7.0 in-tbs X _iSpacer B16° 00, 4TI, S0 ong 2
W ARNIN G The heat sink mouniing surfacs must be a
A sthooth; fial surface with no bures, protrusions, cltings or
‘other foreign-chjects.
CURRENT ADJUSTMENT

The INT-481 utilizes the [M481H's nternal current scurce to. adjust the
qutput current of the M481H. To calcuiate both run and hold corrent refer fo
ihe IM481H instuction manual. The figure below shows the resisior
conmections for both run and hold currents.

Curent Curtent
Adjusiment Reduction
Resistor Resistor

NOTE: When connetting both the cureent reference and current reduction
resistors, connections should be made 25 short as possitie 1o
minimize the noise coupled inta the driver,

44

Appendix A2: Micro stepping driver and 15-pin interface board specifications
(continued)

ISOLATED INPUTS

The foliowing schematic shows the oplically isolated inputs to the INT-481
aiong with the assoriztad crcutlry:

OFTO BV
OPTGSUBRLY PINT - O
A

STEP CLOCK PG ooy

GIRECTIDN PN 3 oo

ENABLE PAN § {-roammvrr]

ET PING (s

JUMPERS

JP1: i the shunt is placed on the “OPTO" side of the jurnper the power for
the opio isolators must be provided by the user al the P1 connector. If the
shiunt i placed on thie “+5V* side of the jumper then the opto isolators wifl be
powered by the on board supply and elactrical isolation between the inpuls
and the drive power will be efiminated.

dP%: 1 the shunt is placed on the *ENON” side of ihe jumper then the drives
oulpats wilt be aulomatically disabled approximately .5 seconds after the last
SIS Giock inputs NOTES In this mode-the current reduction resister MUST
NOT be tised of it will cause arratic operation of the driver, if e shunt is
placed on the 'ENOFF” side of fie umper then @ current reduction resister
cam be used fo set the level of cursent in the motor afier the 1ast step clock
it

LED'S
The green LED is conirofied by the on board +8vde power supply.

The red LED Is pontrolied by the fault output of the IMAGTH. If the red LED s
Murminated tum off power and check for a systern faglt. A fault may be caused
by 2 short or miss witing of the moter orpower supply.

2 fault condilion can oaly be reset by cycling power or foggling of the reset
fnpit on 71 pin §, In the case of 2o over temperature faull allow the drive o
coot before re~appiying power.

& troutle shooting information refer to the driverss operating

RESOLUTION STEPS/REV SWITCH 1 SWITCH2 SWITCHZ SWITCH4
idicrostepsistep 1.8° motor Pin 18 Pin 18 Pin 17 Pin 18
DECGIMAL

3 1,008 OR oN O QOFF
0 2,008 OFF ON OR OFF
25 5,000 On OFF ON OFF
58 10,000 OFF OFF ON OFF
25 25,000 ON ON OFF | OFF
250 50,000 OFF ON OFF OFF
BINARY
2 408 o ON O oN
4 800 OFF ON ON
8 4,800 Ol QFF OR OoN
18 3,200 OFF OFF on ON
32 £,400 . ON Ol QFF ON
84 12,800 OFF ON OFF ON
128 25,600 ON OFF OFF ON
256 81,200 OFF OFF OFF. ON
. BLLEGAL SETTINGS
ON OFF OFF OFF
OFF OFF OFF OFF
NOTE: Inthe above table ON is ground and OFF is floating when using

MICROSTEP RESOLUTION SELECTION

The number of microsteps per step is selected by e dip switch (SW1). The
foliowing tabie shows the standard resolution vaiues along with the associated
switch setlings.

the terminal strip inpuls to set the micrestep resolution.

FAULT PROTECTION

The INT-481 adds phase to ground fault profection {0 the iM481H. 1 phase
to ground fault is detected the 148 1H vall latch the signal, set the faulf output
and fhueinate the red fault LED. To dear the faulf condition, the IM48TH will
have 10 be reset or power will nesd 1o be cycled.

The INT-489 buffers the IM481Hs fault ouiput signal through an apen drain
N-channel FET. The signal at the terminal strp s inverted and is active fow.

In the case of an ovgr temperatute faulf, neither e red LED of the fault
cutput become activated. The IM4A8TH'S molor outputs will disable. They will
ot re-cnabie untif the drive cools fa a safe operaling level.

 noise. The shield neads to be grounded at the signal sowrce o AC ground.

Power stpply leads to the driver nieed 1o be twisted. If more han one driver

FULL STEP OUTPUT
The INT-487 buliers the IM48THSs ull step outpul through an open drain
N-channe! FET. The signat available at the terminal srip is inverted and is
antive fow.

RECOMMENDED WIRING

Lopic fevel cables must not run paraliet to power cabies, Power cables wilt
introduce noise into the logic level cables and make your system unreliable.

Logicleve! cables must be shielded to reduce the chance of EMI inducad
The other end of the shield must not be fied to anything, but allowed to fioat,
This aliows the shield to act as a drain.

Motor. cabling in excess of 1 foot requires twisted pair shielded cable b
reduse the transmission of EMI. The shield must be connected to AC ground
at the driver. The other end of the shield must ot be tied fo anyihing, but
allowed 1 float. This allows the shigld to act as a drain, .

is to be connected fo the same power supply, fun separaie power and
ground jeads from the supply to each driver.

Refer to the IM4B1H operating instructions for recommended mator ant
power sugply cables.

45

Appendix A3: Micro stepping driver and 19-pin interface board specifications

™ i DIMENSIONAL AND MOUNTING INFORMATION

DIMENSIONS ARE 1N INCHES (mm)

NOTE: The IM481H is mounted to the underside of the INT-481 such that
the label on the IM481H is facmg the PC board of the INT-481.

— -

Ul

INTELLIGENT MOTION SYSTEMIS

Sxcollonce inMotlior™
’NT" 481 We: .04 0z, 296 g
iM481H INTERFACE BOARD mounting hardiare.
OPERATING INSTRUCTIONS

370 N. MAIN ST., PO BOX 457, MARLBOROUGH, CT 08447
PH. (860) 295-6102, FAX. (860) 205-6107
Internet: http:/fimshome.com, E-Mail: Enfo@lmshome com

N . . ** #5532 (M3.5) screw with @ .250° (6.3}
An M4 Metric Serew substiuion for fem “E” -~~~ 0.5, flal washer and 3 spit look

may ba used but is not supplied, / washer. This hardware is not supplied

H
i
PIN ASSIGNMENT AND DESCRIPTIONS 3
PIN# PIN NAME DESCRIPTION :
1.2 Phase B Phase B output
34 Phase A Phase A output
i1y 5 |Enabte Active high motor phase enable input
8 Reset Active Jow reset input X(
AAEANL/
{ ical i 1 Int 1
. 7 Opto Supply +5Vdc external oplical isolator power supply lm-ds.d m’&,‘ﬁ’.“m nel m-ad g‘l't'a'g&c:l 331”?‘!«: o
& . {Direcuon Iiolor direction inpuf, . IS B4 * Tha isolating thermat pad { TH481) item “4" is supplied wnn the interface Board (INT-
. W e e e i 481)71 the INT-4B1 is NOLUSEG it masst be OIJURT SOPOICITHY. .
i 9 Step Clock Motor step clock input 4% The hardware Rems "A° thni “H" are sipplied with the-Heatsink kit { H-481) Hthe HABY

is not used no mounting hardware is supplied,

¢ 10 Fault Open drain fault output aiy. TTEM BESCRIPTION av.
. : " 1 {IM4BTH Micsostepping Ditver | 3 A [¥6-3245/8" Pan Head Sciow, 2
o k3! Full Step Open drain full step output T T s G 5 TSR 3
12 |+v Supply voltage input 3 {H-481 Heel S0k 1 G §#6 Fiet Wosher. 250 0D, 345 1D, D30 Thick | 2
4 {71~ 481 Isotsting ThemnalPad | 1 D b#s-32x1 %€ Pan Head Suow 2
PN 13 Greund Supply voltage ground {return) NOTE: Torque ification for # £ [#8-32x2" Pac Hend Sceew 2z
& " " - 6-32 INT-481 and IM481H |8 Spit Lock Washer 2
14 Current Adj. Phase current adjustment input mounting screws 3 G _[#8-32 intemaly Tiveaded Broaching Nut 2
15 |CumentRed. | Phase curent reduction input 50-7.0in-bs 1 _[Spacer, s16° 0D, 17430, S00 ong 2
1 16-16 |Res. Sel 0-3 | Microstep resolution selection inpuis 0-3

CURRENT ADJUSTMENT

The iNT-481 utilizes the IM481H's intemal curent source to adjust the
output current of the IM481H. To calculate both run and hold current refer to

ELECTRICAL SPECIFICATIONS

the IM481H instruction manual. The figure below shows the resistor
PARAMETER MIN| TYP | MAX | UNITS connections fer both run and hold currents.
'va TEEEEEETESTETTenE
I RYELLIGERS
Input Forward Current Isolated inputs 7115 mA Uﬁﬁs“" 7}'[: {
Input Forward Voltage Isolated inputs 15| 1.7 v i ; L—ﬁ
Reverse Breakdown Voltage | isolated inputs | 5 v ,
Signal Qutput Current Fult Step, Fauit 25 mA
Drain-Seurce Voltage Fuli Step, Fault 100 v
Current Cuyrent
Drain-Source Resistance | Fult Step, Fault 65 Q Adjustment Reduction
Ips = 26mA Resistor Resistor
Quiescent Current Inputs/Outputs 45 mA| | NOTE: When connecting both the current reference and current reduction
(including IM481 ,}) Flgaﬂng Py resistors, connections should be made as short as possible to
M minimize the noise coupled into the driver.

46

Appendix A3: Micro stepping driver and 19-pin interface board specifications
(continued)

ISOLATED INPUTS MICROSTEP RESOLUTION SELECTION
Tne foliowing schematic shows the optically isolated inputs to the INT-481 | The number of microsteps per step is selected by the dip swilch (SW1} or by
atong with the associated cireuitry pins 16 through 19 on the terminal steip with the dip switch in the off position.
CETO SUPPLY PINT {3 e When using the terminal strip, the resolution sefection inputs are pulled up
through 10K resistors to +6 VDG. These are non-isciated inputs and care
should be taken when connecting the controlier and driver grounds. Refer to
> the IM481H operating instructions for mere information.
STEP CLOCK PN S O
The following table shows the standard resolution values along with the
associated switch and input setiin s -
» o ﬁg?-'i’ﬁa‘g rIts P i b N
SIRECTION PiN 8 o L
RESOLUTION STEPS/REV SWITCH 1 SWITCHZ SWITCH3I SWITCH4
Microstepsistep 1.8” motor Pin 12 Pin8 Pin 17 Pin 16
i P o
EHABLE PINS O . DECIMAL ~ »mor 1 Z7=h =R ghegh
o 5 1,000 0] on. | ON | OFF
S 10 2,600 OFF on oN oFF
BESET PING - o :
B 25 5,000 oN OFF: ON OFF ~
The iscfated inputs may be powered by a DC voltage other than +5vdc.in 50 10,000 OFF OFF ON OFF
doing s0, care should be taken NOT TO EXCEED the maximu input forward 125 TiCON <] oM OFE orin
current, To do o, an external resistor should be placed in series with the S - I
input pins {5.6,8,9). 250 OFF oN OFF OFF |
The value of the resistor is cafculated as followers: BINARY
SERIES RESISTOR = ((Opto Supply Vollage - 1.5) + .007) - 470 2 400: ON “ON - ON
E. PLE: Opto Supply Vol 24vd 2 i o N o
MPLE: Opte tage = 24vde: - _ “
XA pla Supply Voltage 8 1,600] OFF oN:il ON
({24 - 4.5} + .007} - 470 = 2,700 obms 6 3,200 OFF OFF ON oN
! 32 6400 ON) on
FAULT PROTECTION 64 2,800 OFF ON
The INT-481 adds phase to ground fault protection to the IM481H. H a.phase AR 2800 T ONE ol o
to ground Tault is detected the IMA81H Will latch the'signal, set the fault output o - -
and illuivinate the red fault LED, To clear the fault condition, the IM481H will 256 51,200 OFF OFF OFF hidad
have 1o be reset or power will need to be cycied. ILLEGAL SETTINGS R
The INT-481 buffers the IM481Hs fault output signal through an open drain — -~ - x =T -
N-channel FET. The signal at the terminal strip is inverted and is active Jow. : o 5z 2O OFE OFF..
OFF OFF OFF OFF
FULL STEP QUTPUT
The INT-481 buffers the H481Hs full step output through an open drain NOTE: Inthe above table ONis s " £
N p © PR) H ground and OFF is floating when us!
;4;;5:1;:;& FET. The sighal available at the terminal strip is inverted and is the terminal strip inputs to set the microstep resolution.
BLOCK DIAGRAM - RECOMMENDED WIRING
12 PHASES . Logic fevel cables must niot run paraiiel fo power cables. Power cables will
ot NG introduce noise info the logic level cables and make your system unreliable.
34 PHASEA -} 21
. - » . Logic level cables must be shielded to reduce the chance of EM] induced
o9 1ASELOS o7 noise. The shield neads to be grounded at the signal source to AC ground.
5 ENABLE The other end of the shieid must not be tied to anything, but aliowed lo fioat.
§ RESET 2 . This allows the shield to act as a drain.
& oreerion B D 0ks -l 17021635
o STEPOLOCK Motor cabling in excess of 1 fool requires twisted pair shielded cable to
+ omto suPpLY 1 IM481H reduce the transmission of EMI. The shield must be connected to AC
ground at the driver. The other end of the shield must not be tied to anything,
10 FAULT OUT ¥ but allowed to foat. This allows the shietd to act as a drain.
43 FULLSTEP QUT 13
Power supply feads {o the driver need to be twisted. If more than one driver
is to be-connected to the same power supply, run separate power and
_ | ground leads from the supply to each diiver.
2w Refer to the IM481H operating instructions for recommended motor and
power supply cables.
3 GROUND . > ; t
T4 CURRENT ADJUIST & -t
15 CURRENT REDUCTION a

47

Appendix A4: Voltage-to-frequency converter card specifications

Frequency signal conditioners
« frequency outputs

« | ED-indicators

« switchable frequency output

u/
F

important for installation:

By converting analog signals into frequencies, it
is possible to read in analog values into the
cortrolier counter-nputs.

Here it is also recommended that twisted ang
shielded pairs be used.

Schematic circuit diagrams

MCZ VFC

.10V

MCZ CFC
0..20mA

1 2 3 4 DIP switch

k3 3] 4] o 0,,,16 kidz

g 3 Q o .8 kiz

& o 1 T 0.4 KHz

4 & 4] 1 S...1 kHz

]

: Ordering data Type iCaiNe. f Tee . Catie Type Cat, No,
for TS B8 s MCZ VG 846147 | MCZCFC 845148 MTILEC 846149

Techsical data
Input ranges 010V 4.9 6 L9
Overload fimils. mput 30V 50 mA 53 mif
Input smpedance 100 kO 300
Vottage grop, Nput 1Vat20mA 58. 64 a1 20 A
Quigut
Qutput Fequency. final value % xHz, 4 kHz, B M2, 16kHz ¢ | 1 KMz 4 kHz, S ke (6 kelz 1 kiz, 4 &Mz, 8 kHz, 16 keiz
Frequency seiting DIP switch DIP switch DIP switch
Readustment range £10 %, internally 210 %, internally 38 %, interamiy
Craput level NP UR- 0TV PNR Us- .7 V PNPUL- 07V
QUITU curent max. 20 mA max. 20 mA max, 20 mb
Display LED, i LED, ahernating LEG, aliematng

: £

Supply voitage 24 Vie =10% 24 Vde =18 % 24 Vae 220%
Current consumption: 14 mA, no fead 14 mA, na lgag 14 18, no ined
Making curxent limit 200 mA Z00mA
Poiarizalion protecticn yes ¥es vos
Precision £.2 % v FSR 0.2 % v. FSR .15 % v. FSR
Temperatuce cosfiicient < 250 poG < 250 ppm/°C < 268 pami°C

Isolation coordinates acc. to EN 50178 T ’
Voitage praof input/outout 1 kv, 3 Kvde
Rated voliage 100V 10V 180 v
Rated suge 15KV 15KV 2.5
Quervoliage category 1t il il
Vollage progt, input/outaut mounting rasl 4 Riew 1 min 4 KVet 1 min 4 KV, 1 min
Operating temperature Q°C..A50°C 0 °C..+50°C 0°C..463C
Siorage temparature -25°C...+85 °C 25 °C..+85°C <2570, +856 “C
Torat width 6 mm 6 min 8 mewn
Conduezoe cross-section 3.5 mm 1.6 rn? 15 0u¥

48

ing

tepp

ICros

Electro technical scheme for step motors, mi

inkgs

aafstmotl

2L 5 +5¢

HEERY

G D

drivar rachts

motor lLinks

iinks

wd

Rege

nC

5
53
<@
o
3

mohile

drivers and V/f-converter cards

Appendix B1

robot

Honk van den

Berg

49

drsterker!d 7

Electro technical scheme for MOBROB unit and eBeam

VOEDING
220V 168

aanst mpel rech
&35

sfEE

is

Appendix B2
transmitters

[

50

zEnder

2,

Appendix B3: Electro technical scheme for TUeDACS QAD

P =
[B
oo o
o
<< ®
by
o
fu]
-V v
®
e
RE &
o ad
fazd BRE ¢
= ‘
jin]
It |
A e
BRE € pBL i
Z iz :5" ‘
5 i
= =3 i
et }\53
s o

51

Appendix C1: Simulink scheme for tracking controllers

Overview:
T, wr —— = urr wu o x
¥
Theta Th
xryr,Thr —Je{ xr,yr, Thr
ele2e3 | ——lelezed dvdw| System
Reference
%y, Th
Error equations Contrelier
. .
L————| r_input L 9P input
To Workspace3 » dinput To Wotkspacei
|—’
Lo | 1_state state To Workspace2
To Worlspaced To Worspace
Reference:
Vr

| "8

T - Tim:

Clock

[C
] Switch

@—J_.Cosinus

cos

sin

Sinus

xryr, Thr

T
X —
| x
Product Discrete-Time
Integrator2
x— & (D
z1 ¥
Product1 Discrete-Time
Intagratord
T
— —
z1 Th

Discrete-Time
Intagrator

52

Appendix C2: Simulink scheme for point stabilization controllers

Overview:
input —=i dinput
To Worspace To Wonspace2
v i v,
Ky, Th xi,x2, x3 p—Jpe{x" %, v, Th state
dv dw X, y. Theta
To Wotspacet
Transfermation controller System

Transformation:

—

u[1]* cos(u[31} ulZ] sin(u[ED

Feon

u[1Tsinu[3]rul2}" cosulE])

(71— uBsl
=% Th
Fen2
!
System:

-—————PI
LAY

Fond

ulz]

=, ¥, Theta

Fen

g T
X p——w» —
z1
cos Product Discrete-Time
I ! Intagrator2
Cosinus
in _" T
) M =
sin ——7 =1
Sinus Producti Discrete-Ti
Integrator!
T
+ —_—
z1

Discrete-Time
Integrator

53

Appendix C3: Simulation/realtime Matlab initialization file example

oe

init tracking.m: Initialization for tracking controllers models:
sim tracklin, rt_tracklin, sim _tracknonlin and rt_tracknonlin

o0

clear all; close all;

Reg = 1; % Controller choice: Reg = 1 -> linear controller, Reg = 2
$ -> non-linear controller

mode = 1; s Mode choice: mode = 1: simulation, mode = 2: realtime

% Time variables
dt = 0.001; Tsim = 15; T_init = 2;

% Control parameters
ksi = 1.5; b = 0.000; e3_min = le-9;

o°

Starting point:
0; y0O = 0; ThO = 0; v0 = 0; w0

0

0;

™

¢ Reference trajectory and starting point:
Vr = 0.3; Wr = 1; xr0 = 0; yr0 = -0.3; ThrO = 0;

g Calculation maximal wheel velocity:
msr = 50;

o

micro-stepping rate

ns = 200; nr. of steps per revolution
f max = 16000; maximal frequency

phi max = 2*pi*f max/ (ns*msr); $ maximal wheel velocity

oe

oe

$ Maximal forward and angular acceleration:
dv_max = 1; dw_max = 5;

% Matrix M parameters:
rl = 0.0402; r2 = 0.0417; Rl = 0.077; R2 = 0.078;

if mode == % Simulation
v_max = (rl*R2+ r2*R1)/ (R1+R2) *phi_max;
w_max = (rl+r2)/ (R1+R2) *phi max;

)

% To Simulink
if Reg ==

sim sim tracklin
elseif Reg ==

sim sim_tracknonlin
end

$ From Simulink:

x = state(:,1); y = state(:,2); Th = state(:,3);

xr = r state(:,1); yr = r_state(:,2); Thr = r_state(:,3);
v = input(:,1); w = input(:,2);

vr = r input(:,1); wr = r_input(:,2);

dv = dinput(:,1); dw = dinput(:,2);

if mode == 2 % Realtime
a = r1*R2/(R1+R2); b = r2*R1/(RI+R2); c = -r1/(R1+4R2); d = r2/(R1+R2);
M=[a b;c d];

end

54

Appendix C4: Matlab-file for a tractor with one trailer point stabilization
simulation

2 Trailerl.m: Point stabilization control for tractor with one trailer
clear all; close all;

% Time parameters
dt = 0.002; T_end = 100; t = 0:dt:T_end;

% Matrix initialization

Zero = zeros (size(t)); V0 = Zero; V = Zero; W = Zero;

X = Zero; Y = Zero; THL = Zero; X0 = Zero; Y0 = Zero; THO = Zero;
GZ = Zero; kk = Zero; GAM2 = Zero; GAM3 = Zero; GAM4 = Zero;
%1 = Zero; Z2 = Zero; Z3 = Zero; Z4 = Zero;

Ttel = 2*pi; Teller = 0;

kappa = 1; K = 2; 2 =1; L3 =1; L4 = 1; % Control parameters
dl = 0.2; % length trailers

% Starting position REAR trailer (!) and starting orientations
x =0; y=1; ThO = 0.07; Thl = 0.1;

for it = 2:length(t)+1l
T = t(it-1);

¢ Transformation to chained form
21 = x; z2 = tan(Th0-Thl)/(dl*cos(Thl)"3); z3 = tan(Thl); z4 = y;

oe

Control parameter calculation
= sqrt(2272+2372+24"2); Gz = kappa*z”0.25;

N

£ = (l-cos(T))/2; df = 0.5*sin(T); ddf = 0.5*cos (T);
beta = 1/pi:
if z1 == 0
z1l = le-9;
end

Ttel = Ttel+dt;
if Ttel >= 2*pi;
k = -(zl+sign(zl)*Gz) *beta;
if abs{(k) >= K
k = sign(k)*K;
end
Ttel = 0;
end

% Controller 1 for state zl:

v0 = k*f; pl = cos(Thl); v = cos (Thl) *cos (ThO-Thl) *v0;
% Controller 2 for state z2,z3 and z4
Gam2 = -L2 - L3*£"3 - L4*f"5;
Gam3 = -f* (L2*L3*f + L2*L4*£~4 + 2*L3*df + 8*L4*df*f"2 + L3*L4*£76) /k;
Gamd = -f* (L2*L3*L4A*£ 5 + 4*L2*LA*df*f + 6*L3*L4*df*£74 + B*L4*df"2 + 4*L4*ddE*f) /k"2;

w = Gam2*z2 + Gam3*z3 + Gamé4*z4;

% Calculate new state:
Thl d = tan(Th0-Thl)*v/(dl*pl); Thl = Thl + dt*Thl d;
x d=v; x=x+ dt*x_d; y_d = tan(Thl)*v; y = y + dt*y d;

ThO_d = w; ThO = ThO + dt*Th0_d;
x0 = x + dl*cos(Thl); y0 = y + dl*sin(Thl);

¢ Save variables in matrices
X(it-1) = x; Y(it-1) = y; TH1(it-1) = Thl;
X0 (it-1) = x0; YO(it-1) = yO0; THO(it-1) = ThO;
71(it-1) = zl; z2(it-1) = z2; 2Z3(it-1) = z3; 724 (it-1) = z4;
V0 (it-1) = v0; V(it-1) = v; W(it-1) = w;
GAM2 {(it-1) = Gam2; GAM3(it-1) = Gam3; GAM4 (it-1) = Gam4;
kk(it-1) = k; GZ(it-1) = Gz;
end

55

Appendix C5: Matlab-file for a tractor with two trailers point stabilization
simulation

o Trailer2?.m: Point stabilization simulation for tractor pulling two trailers
% Initialize matrices:

Nul = zeros (size(t)):

X=Nul; Y=Nul; TH2=Nul; X1=Nul; Y1=Nul; TH1=Nul; X0=Nul; YO=Nul; THO=Nul;
vV0=Nul; V=Nul; W=Nul; 7Z1=Nul; 2Z2=Nul; %Z3=Nul; Z4=Nul; Z5=Nul;

Ttel = 2*pi; omega = 1;

dt = 0.002; T end = 100; t = 0:dt:T_end; % Time variables

kappa=3; K=2; L2=1; L3=1; L4=1; LS5=1; eps=le-9; % Control paramaters

dl = 0.2; d2 = 0.2; % length trailers

% Starting position REAR (!) trailer and starting orientations
x = 0; y = 0.2; ThO = 0.2*pi; Thl = 0; Th2 = 0;

for it = 2:length(t)+1

T = t(it-1)~;

% Transformation to the chained form

pl = cos{(Th2)*cos(Thl-Th2); p2 = cos(Th2);

£f1 = tan(Th0-Thl)/(dl*pl); £2 = tan(Thl-Th2)/(d2*p2); c2 = pl~3*p2*dl*d2;
tau2=((—l—tan(Thl—ThZ)“Z)/(dZ*cos(ThZ)“3)+3*tan(Th1—Th2)*sin(ThZ)/(dZ*cos(Th2)“4))*fz;
z1l=x; z2=tan(Th0-Thl)/c2+tau2; z3=tan (Th1-Th2)/ (d2*cos (Th2)"~3); z4 = tan(Th2); z5=y;

% Calculation control parameters
z = sqrt(z272+z3"2+2z472+25"2); Gz = kappa*z” (1/6); beta = omega/pi;
f=(1—cos(omega*T))/2;df=0.5*omega*sin(T);ddf=0.5*omegaA2*cos(T);d3f=—0.5*omegaA3*sin(T);
if z1 == 0
z1l = le-9;
end
Ttel = Ttel+dt;
if Ttel >= 2*pi

k = - (zl+sign(zl) *Gz) *beta;
if abs(k) >= K
k = sign{k)*K;
end
Ttel = 0;

end

% Controller 1 for state zl
v0 = k*f; v = cos(Th2)*cos (Thl-Th2) *cos (Th0-Thl) *v0;
% Controller 2 for state z2,z3,z4 and z5
g23 = -L3 -L4*f"2 - L5*f"4;
g24 = -L3*L4*f~4 - L3*L5*f"6 - L4*L5S*f"8 - 4*L,4*df - 12*L5*df*£"2;
g25 = -L3*L4*L5*£710 - 6*L3*L5*df*f"4 - 10*LA*L5*df*f~6 - 24*L5*df~2 - 6*L5*ddf*f;
dg23 = -2*L4*df*f - 4*L5*df*£°3;

dg24 = -4*L3*L4*df*£"3 - 6*L3*L5*dL*E"5 - 8*L4*L5*df*£~7 - 4*L4*ddf - 12*L5*ddf*£"2 -
24*L5*df 2> £;
dg25 = -10*L3*L4*L5*df*£"9 - 6*L3*L5*ddf*f"4 - 24*1L3*L4A*dEf 2*£+3 — 10*L4*L5*ddf*f"6 ...

G60*LA*L5*dE 2% FA5 —~ 48*L5*ddf*df - 6*L5*d3f*f - 6*L5*ddf*df;

Gam2 = ~L2 + £73*g23;

Gam3 = f* (L2*£*g23 + 2*df*g23 + £*dg23 + £72*g24) /k;
Gam4 = f£* (L2*f*g24 + 2*df*g24 + f£*dg24 + £72*g24) /k"2;
Gam5 = f£*(L2*f*g25 + 2*df*g25 + f*dg25)/k"3;

w = Gam2*z2 + Gam3*z3 + Gamd*z4 + Gam5*25;

% Nieuwe toestand bepalen
xd=v; x=x+dt*x_d; Thl d = fl*v; Thl = Thl + dt*Thl d;
Th2_d = f2*v; Th2 = Th2 + dt*Th2 d; y d = tan(Thl)*v; y =y + dt*y_d;

ThO d = w; ThO = Th0 + dt*Th0_d; x1l = x + d2*cos (Th2);
yl = y + d2*sin(Th2); %0 = x1 + dl*cos(Thl); y0 = yl1 + dl*sin(Thl);

% Save variables in matrices
X(it-1)=x; Y(it-1)=y; TH2 (it-1)=Th2; X1(it-1)=x1; Y1(it-1)=yl; TH1 (it-1)=Thl;
X0 (it-1)=x0; YO0 (it-1)=y0; THO(it-1)=Th0; VO (it-1)=v0; V(it-1)=v; W(it-1)=w;
Z1(it-1)=zl; Z2(it-1)=22; 2z3(it-1)=z3; Z4(it-1)=z4; Z5(it-1)=z5;

end

56

Appendix D: Maximum position error calculation for the pantograph system

In figure D1 the encoder arm position error is illustrated.

A
y

Xc, = cos(6,)- L, + cos(é'1 +6,) L,

ve, =sin(6,)- L, +sin(6, +6,)- L, [D.1]

X, =cos(61 +;/1)-L1 +cos(91 +6, +7 +7/2)-L2
e, =sin(491 +;/1)-L1 +sin(t91 +6, +7; +7’2)'L2
[D.2]

Figure D1 : Sketch of the position errors of the encoder arm

In this figure the solid line shows an arbitrary configuration for the encoder arm. The first
encoder A is attached to the framework. The first arm, between encoder A and B, has an
orientation angle 6; and a length L;. The second arm has an orientation angle 6 compared to
the first arm and a length of L;. The third encoder C is attached to the robot.
The dashed line represents the encoder arm when both the encoder A and B have finite
accuracy. The maximum orientation errors of encoder A and B are y; and 7 respectively.
The resulting position errors are & and &,.
The position of the point C;, which is the robot position in the ideal situation, is given in
equation D.1; the position of the point Ce, which is the robot position in the non-ideal
situation, is given in equation D.2.
Now, the position errors can be calculated:

Ex = xC,- - xCL,

&y=yc, ~Jc, [D.3]

/ 2 2
Er =y Ex tTE,

The total orientation error is given by:

2. 1 1 1

y=rt+r; +7’3=—4—‘(—+_+_J [D.4]
Zy Z; Z3

Here, z;, z; and z;3 are the line counts of the encoders. The factor 4 is the results of the fact
that most encoders have two disks above each other. This way not only the direction of the
rotation can be obtained, but also more accurate measurement, since four different states can
be recognized as shown in figare D.2:

Encoder disk 1

é%

W ——=m=t——
N ————

Encoder disk 2

-l e
N ——mem

Figure D.2: Gained accuracy when using two encoder disks

57

Appendix E1: eBeam software development kit C++-code

// The following ifdef block is the standard way of creating macros which make exporting
// from a DLL simpler. All files within this DLL are compiled with the WBAPI_EXPORTS

// symbol defined on the command line. this symbol should not be defined on any project

// that uses this DLL. This way any other project whose source files include this file see
// WBAPI_API functions as being imported from a DLL, wheras this DLL sees symbols

// defined with this macro as being exported.

$ifndef _WBAPI H
#define _ WBAPI H

$ifdef WBAPI_EXPORTS

#define WBAPI_API _ declspec(dllexport)
#else

#define WBAPI_API _ declspec(dllimport)
#endif

/[mmm oo ----

enum WB_COLOR {WBBLACK = 0, WBRED = 1, WBBLUE = 2, WBGREEN = 3, WBERASE = 4};

struct WBStruct

{
WB_COLOR color;
short x;
short y;

}i

enum POD_LOCATION {TOP, BOTTOM, LEFT, RIGHT};

enum WB_ PORT {INVALID_PORT=0, COM1_PORT=1, COM2_PORT=2, COM3_PORT=3, COM4_PORT= 4,
COM5 PORT=5, COM6_ PORT=6, COM7_PORT =7, COM8_PORT =81};

No problem
Cannot gain access to com port

Cannot gain access to com port

Cannot detect eBeam system

H/W version unsupported

eBeam found but could not cal
Not a supported COM port
Operation tried on un-open port

enum WB_ ERROR CODE { WB NO ERROR=0, //
WB | ERROR COM_UNAVAILABLE_SYNC, //
synchronously
WB_ERROR_COM UNAVAILABLE_ASYNC, /7
asynchronously
WB_ERROR_NO_EBEAM FOUND, //
WB_ ERROR UNSUPPORTED VERSION, /7
WB_ "~ ERROR_ _CALIBRATION FAILED, //
WB_ERROR PORT_NOT_VALID, //
WB_ERROR_PORT_NOT_OPEN}; //
J /== e e
// Function definitions
[/ = e e m

// Attempt to detect eBeam on specified port.

// If eBeam is found, messages will be send to windowHandle
WBAPI_APT WB_ERROR_CODE WBOpenPort (WB_PORT portToOpen, HWND windowHandle) ;

// Attempt to autodetect eBeam. Returns the port on which eBeam was detected
// or INVALID PORT if no eBeam could be detected. If no eBeam is detected,

// the find port error structure contains the error codes for each port that
// was attempted. As above, messages will be sent to windowHandle.

typedef struct
{
WB_ERROR_CODE comlError;
WB_ERROR_CODE com2Error;
} SFindPortError;

WBAPI_API WB_PORT WBFindPort (HWND windowHandle, SFindPortError *sFindPortError) ;

// Close a previously opened port.
WBAPI_API WB_ERROR CODE WBClose (WB_PORT portToClose);

// Change the window to which messages are sent.

// Returns the old HWND or NULL if an error occured.
WBAPI_APT HWND WBSetHWND(WB_PORT port, HWND hwndNew) ;

58

Appendix E1: eBeam software development kit C++-code (continued)

// The pods may be located on any edge - TOP, LEFT, RIGHT, or BOTTOM.
WBAPI_API WB_ERROR CODE WBSetPodLocation (WB_PORT port, POD_LOCATION newPodLocation);

// If the BOTTOM or RIGHT is chosen, the DLL needs also to know the board
// "height" - defined to be the dimension away from the pods
WBAPI API WB_ERROR_CODE WBSetBoardHeight(WB_PORT port, UINT newBoardHeight);

// Retrieve the board width - defined as distance between the pods.
// This is in the same units as the (x,y) coordinates sent in the messages.
WBAPI_API WB_ERROR CODE WBGetBoardWidth(WB_PORT port, UINT *boardwWidth);

// Retrive the upper bound on the board height for the system.

// Height is the distance perpendicular to the width - see WBSetPodLocation

// and WBSetBoardHeight.

WBAPI_ API WB_ERROR_CODE WBGetMaxBoardHeight(WB_PORT port, UINT *maxBoardHeight);

// Retrive a string containing the version information for the eBeam pods.
WBAPI_API WB_ERROR_CODE WBGetBoardVersion(WB_PORT port, char* versionString):;
// The above version string is guarantee to be shorter than this.

#define MAX VERSION STRING LENGTH 20

/e e it
// Messages sent to the window specified by windowHandle

/e e il et T
// Pen down: Start of stroke

#define WM _BOARDPENDOWN (WM_APP + 1)

// Pen move: Stroke continuing

#define WM_BOARDPENMOVE (WM_APP + 2)

// Pen up: End of stroke

#define WM_BOARDPENUP (WM_APP + 3)

// For the above WM_BOARDPEN* messages, the WPARAM parameter is a pointer to

// a WBStruct and the LPARAM value is the WB_PORT where writing is taking place.
// =--Warning: THE APPLICATION SHOULD NOT FREE THE MEMORY FOR THE WBStruct*——-
#define WM_BOARD ERR (WM_APP + 4)

// WM_BOARD _ERR possible WPARAM values contain the following error codes.

// The LPARAM is the WB_PORT that originated the error.

enum WM_BOARD ERR CODES {WM TWOPENSDETECTED, WM_SYSTEMRESET, WM_LOWBATTERY};

// * This message indicates a major breakdown in communcations and should not be
// received.

#define WM COMM ERR (WM_APP + 6)

// This message indicates that the eBeam system is no longer responding.

// It usually means that the cables have been unplugged.

#define WM _BOARDCOMMLOST (WM_APP + 7)

#endif

59

)i g

Appendix E2: C++-code for final.dll

/*
/* Final.cpp, file for het creating final.dll.

/* Needed to gain the coordinates and sleeve color from the eBeam system

/*

/* Defines, includes and declarations

#define STRICT
#include <windows.h>
#include <stdio.h>
#include <string.h>
#include <iostream.h>
#include "wbapi.h"

static short XX, YY; static short Kleur = -1; static UINT width;
static WB_PORT portNr; HANDLE HINST;

// declare WndProc
LONG WINAPI WndProc (HWND hWnd, UINT message, WPARAM wParam, LPARAM

/* DllMain

BOOL APIENTRY DllMain(HANDLE hModule,
DWORD ul_reason_for_call,
LPVOID lpReserved)
{ HINST=hModule;
switch (ul_reason_fop_call)
{ case DLL_PROCESS_ATTACH:
case DLL_THREAD_ATTACH:
case DLL_THREAD DETACH:

case DLL PROCESS_DETACH

[&]]

break; }
return TRUE;
}

/* WBThread

static DWORD WBThreadID;
DWORD WBThread (LPVOID) ;

// Define function WBStart
extern "C" _declspec(dllexport) int WBStart (void)
{ CreateThread (NULL, 0, (LPTHREAD START ROUTINE) WBThread,
(LPVOID) NULL,O, &WBThreadID);
return 0; }

// Define WBThread

DWORD WBThread (LPVOID param)

{ char szAppName{] = "voorbeeld";
WNDCLASS wndclass; HWND hWnd; MSG msg;

// define windowclass

wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc = WndProc;
wndclass.cbClsExtra = 0;

wndclass.cbWndExtra = 0;

wndclass.hInstance = (HINSTANCE) HINST;
wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);

wndclass.hbrBackground = (HBRUSH)GetStockObject (WHITE_BRUSH) ;

wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = szAppName;
if (!RegisterClass(&wndclass)) return FALSE;

60

*/
*/
*/
*/

Appendix E2: C++-code for final.dll (continued)

// Create window
hWnd = CreateWindow(

szAppName, "E-Beam output", WS_OVERLAPPEDWINDOW, 0, 0, CW_USEDEFAULT,

CW_USEDEFAULT, NULL, NULL,

// Open eBeam communication port
WB_ERROR_CODE open_error = WB_NO_ERROR;
WB_PORT portNr = COM2_PORT;

open_error = WBOpenPort (portNr, hWnd) ;

// Gain board width

WB_ERROR CODE width error = WB_NO_ERROR;
width = 4000;
width error =

WBGetBoardWidth (portNr, &width);

ShowWindow (hWnd, SW_HIDE);

(HINSTANCE) HINST,

NULL) ;

/* SW SHOW if window needs to be visable

/* SW_HIDE if window needs to be invisable

UpdateWindow (hWnd) ;

// Messageloop

while (GetMessage (&msg, NULL, O,

{ TranslateMessage (&msg) ;
DispatchMessage (&msg); }

0))

return 0;

/,* __________________ */
/* __________________ 'k/

LONG WINAPI WndProc (HWND hWnd, UINT message, WPARAM wParam,
{ struct WBStruct *pcoor;

switch
{ case

(message)
WM_DESTROY:
PostQuitMessage (0); break;

case WM_BOARDPENDOWN:
break;

case WM_BOARDPENMOVE:
pcoor = (WBStruct*) wParam;
XX = pcoor[0].x;
YY = pcoor[0].y;
Kleur = pcoor[0].color;
break;

case WM_BOARDPENUP:
Kleur = 5; XX = 0; YY = 0;
break;

case WM_BOARD_ERR:
Kleur = -1; XX = 0; YY = 0;
break;

case WM_COMM_ERR:
Kleur = -1; XX = 0; YY = 0;
break;

case WM_BOARDCOMMLOST:
Kleur = -1; XX = 0; YY = 0;
break;

default:

return DefWindowProc (hWnd, message,

}

return OL;

61

wParam,

LPARAM lParam)

lParam) ;

*/
*/

Appendix E2: C++-code for final.dll (continued)

/* e B —— x/
/* Define functions WBInfo (coordinates and color), WBStatus (system status), */
/* WBPort (connected port) and WBWidth (board width)

*/
/o e */
extern "C" _declspec(dllexport) int WBInfo(short* pXX, short* pYY, short* pKleur)
{ pXX[0]1=XX;

pYY[0]1=YY;

pKleur[0]=Kleux;

return 0;

}

extern "C" declspec(dllexport) int WBStatus (void)

{ if (Rleur < 0)
{ return 0; }
else
{ return 1; }

}

extern "C" _declspec(dllexport) int WBPort (int* pPort)
{ pPort (0] = portNr;

return 0;

}

extern "C" _declspec(dllexport) int WBWidth (int* pWidth)
{ pWidth[0] = width;

return 0;

—

62

Appendix E3: C++-code for eBeam S-function

/* ebeam.c: Import eBeam-coordinates into Matlab/Simulink
* More information in: "sfuntmpl.doc”

* Copyright 2002, Henk van den Berg, Version 1.0 */
/* *

* Defines en includes *

* */

#define S_FUNCTION_LEVEL 2
$define S_FUNCTION NAME eBeam
#include "simstruc.h"

#include <string.h>

#include <windows.h>

#include <stdio.h>

// Functions from final.dll

extern int WBStatus (void):

extern int WBStart (void):

extern int WBInfo (short*, short*, short¥):;
extern int WBWidth (int*);

extern int WBPort {int*);

static short x,y,color;
static int width;
static int portNr;

/'k *
* mdlInitializeSizes *
* */

static void mdlInitializeSizes (SimStruct *S)

{ // Start WBStart
printf{"Starting WBThread... \n");
WBStart () ;

// Wait until initialization is complete
while (!WBStatus())

{ Sleep(100);}

printf("Initialisation ok... \n");

// Check port
WBPort (&portNr);
printf ("Communicatie via poort: %d\n", portNr);

// Check board width
WBWidth (&width);
printf ("Breedte bord: %d\n", width);

ssSetNumSFcnParams (S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams (S) != ssGetSFcnParamsCount(S)) {
/* Return if number of expected != number of actual parameters */
return;

}

ssSetNumContStates (S, 0);
ssSetNumDiscStates (S, 0);

// No input-ports
if (!ssSetNumInputPorts (S, 0)) return;

// 4 output-ports (x, y, color, width)
if (!ssSetNumOutputPorts (S, 4)) return;
ssSetOutputPortWidth(s, 0, 1);

ssSetOutputPortWidth(s, 1, 1);

ssSetOutputPortWidth(s, 2, 1);

ssSetOutputPortWidth (s, 3, 1);

63

Appendix E3: C++-code for eBeam S-function (continued)

ssSetNumSampleTimes (S, 1);
ssSetNumRWork (S, 0);
ssSetNumIWork (S, 0):
ssSetNumPWork (S, 0):
ssSetNumModes (3, 0);
ssSetNumNonsampledZCs (S, 0);

ssSetOptions (S, SS_OPTION_EXCEPTION_FREE CODE);
}

/* *
* mdlInitializeSampleTimes *
* */

static void mdlInitializeSampleTimes (SimStruct *S)

{
ssSetSampleTime (S, 0, CONTINUOUS SAMPLE TIME);

ssSetOffsetTime (S, 0, 0.0);

/* ========== *
* mdlOutputs *
* —mmmmmmme—= % /

static void mdlOutputs (SimStruct *S, int_T tid)

{
real T *xlong = ssGetOutputPortRealSignal(s,0); // poort 1l: x-coordinaat
real T *ylong = ssGetOutputPortRealSignal(s,1); // poort 2: y-coordinaat
real T *colorlong = ssGetOutputPortRealSignal(S,2); // poort 3: kleur
real T *widthlong = ssGetOutputPortRealSignal(s,3); // poort 4: breedte bord

// send signal to specified output ports
WBInfo (&x, &y, &color);

{ printf ("x=%d y=%d color=%d\n",x,y,color);}
xlong[0} = (int_T) x;

ylong[0] = (int_T) y:

colorlong{0] = (int_T) color;

WBWidth (&width) ;
{

widthlong[0] = (int_T) width;
}
}
/% =m=s=smmm————= *
* mdlTerminate *
S ——

static void mdlTerminate (SimStruct *S)

{
}

/* *
* Required S-function trailer *
* */

#ifdef MATLAB_MEX FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c” /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif

64

