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Summary 

An orthogonally scattered measure is a Hilbert space valued set 

function orthogonal on disjoint sets. It has been proved that a set 

function ~ is an orthogonally scattered measure iff there exists 

a spectral measure E such that ( !J. ) = 
2 

each measur~ble sets 1:::. l' 1:::.2, An alternative approach to the 

theory of the inductive limit space S is given in terms of o.s. measures. 
M 

(cf. the author's paper "On Gelfand Triples Originating from Algebras 

of Unbounded Operators", EUT Report 84-WSK-02) 

Eindhoven, October 1984 
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Foreword 

In the present etude we study Hilbert space valued measures defined 

on the pre-ring of bounded Borel subsets of Cn , 

Although the justification for such a study ar~ses from our attempt 

to descrihe certain inductive limits of Hilbert spaces in terms of so 

called spectral trajectories, we have found the presented results 

interesting for their own sake. For this reason the paper contains 

mostly an expository material and results which are not of an immediate 

use for the further investigation. On the other hand the methods and 

topics presented here seem to be rather simple and perhaps likely 

to infer from well known results of P.Masani and others. Thus we 

address our paper to those who know the subject better. 
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1. C.A.a.S. Me as u:r>es 

Considering the spaces S ~(A) and T ~(A) (cf. [ EGK] ,[EK] ) 

we notice that they can be embedded into so called spaces of spectral 

trajectories. If E is the joint spectral measure for a family of 

mutually commuting self-adjoint operators A ={ At' A
2

, ••• , An} and 

n 
is the family of all bounded Borel subsets of Cn then a function 

ll( fj, ) E H is called "a spectral trajectory" with 

"the generating spectral measure E" if for each t::. I' t::. 2 E n 

= 

Thus the function must be necessarily orthogonally scattered 

( o.s. ) , i.e. for each 
n such that t::. In t::. 2 = ~ 

II ( t::. 1) ..L II ( t::. 2) • In this way we arrived to the well known concept 

of orthogonally scattered measures on a pre-ring • We notice also 

that the functions II are countably additive ( c.a. ) on disjoint sets 

i.e. if { t::.. } 
iE I 

c :t is such that t::. .n t::. j = ~ for 
1. n 1. 

i :/: j and i~ I t::. E :t then (i~ I t::. 
) 

tEl 1. n II . II 
1. 

where the series is convergent in norm in the Hilbert space H. 

We give here the precise definition: 

1.1 Definition ([~ 1]) 

Let H be a Hilbert space and :t be a pre-ring of subsets of 

a space A Then a set function :t 3 t::. ~ II ( t::. )E H is 

called: 

i) a oountabZy additive measuPe (c.a.m.) on :t if for any countable 

family { t::. .} 
1. i E I of disjoint sets, such that t::. • E :t 

1. 

.u t::. E:t ,I ll( t::. . ) = II ( u t::. .) 

1EI i EI 1. i EI 1 
where the series converges 

in norm in H ( unconditionally) • 

(t::. ) 
i' , 
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ii) a countabZy additive orthogonaZZy scattered measure (c.a.o.s.m.) 

if ~ is countably additive and for each pair of disjoint sets 

We notice here that any linear combination of c.a. measures is 

again a c.a. measure. This is obviously not true for the case of c.a.o.s. 

measures. ~owever, if for two measures ~ and v ,which are c.a.o.s., 

the measures ~ + v and ~ + iv are c.a.o.s., then every linear 

combination of ~ and v is a c.a.o.s.m. too. This leads to the 

following notion of compatibility. 

1.2 Definition 

Let :r be a pre-ring and ~ ,v be a couple of C.a.D.S. mesures 

on :r • We say that ~ and v are compatible if for each A I' A 2E:r, 

such that A 1 n A 2 

1 .2. Pro12osition 

Let Jl and v be a couple of c.a.o.s. measures on a nre-rino _ 0 

:r , with values in a Hilbert space H. Then the following conditions 

are equivalent: 

i) Jl and v are compatible, 

H) for each a , B Eel the c.a. measure all + Sv is o.s., 

ii) the c.a. measures ].I + iv 11 + v are o. s .. 

Proof: 

i) ~ ii) ~ iii) is trivial. 

Hi) ~ i) Let A 1 n A 
2 = r/J • 

Then because ].I + i v is o. s. we have: 
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( 11 ( ~l ) v ( ~ 2) ) = ( v ( ~ 1) , 11 ( ~ 2)) 

Similarly for 11 + v we have: 

- ( 11 ( ~] ) v ( ~ 2) ) = ( v ( ~ 1) I 11 ( ~ 2» . 
Hence ( ll( ~1 ) I v ( ~ ) ) = 2 

o . 

J .4. Corollary 

If c.a.o.s. measures.ll and v are compatible then all their linear 

combinations are mutually compatible c.a.o.s. measures. 

Considering again the spectral measure E on L we can produce a 
n 

0 

family of mutually compatible c.a.o.s. meal'lures just taking II (~)= E(~ lX, . x 

where x E H and ~ E L . Thus a natural question arises how general 
n 

is this example. To study this problem we invented the notion of maximal 

set of mutually compatible measures We say that a linear manifold N of 

(mutually compatible) c.a.o.s. measures is maximal if any c.a.o.s.m. 

on L which is compatible with all elements of N belongs to N. 

~ It is clear that such a manifold N is a maximal element in the family 

of all linear spaces of mutually compatible c.a.o.s. measures on L 

ordered by the set inclusion. We are going to associate with any maximal 

manifold N certain spectral measure on L , which is generating 

for all elements of N • Let us define the following linear subspaces 

of H , for each ~ Er putting: 

(l.5.) N ( ~) = {ll (~)I II EN} 
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1.6 Proposition 

Let N be a maximal family of mutually compatible c.a.o.s. measures 

on a (pre-)ring r • Let N ( A ) be as in (1.5). 

Then: 

i) N ( A ) is a closed linear subspace of H. 

ii) For any A, AlE r, At c A , we have N ( A' ) c N (A ) • 

iii) U lV( A) 
AEr 

is a dense linear subspace of H • 

Proof: 

It is clear that for each AEr the set N ( A ) is a linear 

subspace of H. 

i) Let x E N( A ) and let {~ nl nE N C N be such a sequence 

in N that ~n ( A ) x in H. Let , AI E r 

then we have the following orthogonal decomposition for each n E N: 

~n( A ) = ~ (A-....a') n + 

Observe that the map r 3 A -+ II ~ (A) II 2 

is a c.a. R1-valued measure on r for each c.a.o.s.m. ~ 

denoting A" = A ...... A' for each m,n E N we have: 

II ~ (A)- ( A ) 2 
II ~ n ( A' ) - ( A I ) II }J II :: ~ n m m 

+ II ~n ( A"} - ( A ") II 2 
}J . m 

In this way we see that there exist elements of H 

xAI 
:: lim ~ (A'), xA" = lim ~ (A ") n -?<:O n n-?<:O n 

such that x :: 
xA' + xA " I 

Observe that x At 1. N( A") and xA" J.N ( A' ), hence 

( x All X AI' ) = lim (x I l~ ( A") ) = 0, i.e. 
L.Io n-+ro A n 

(1.7) 

• Hence, 

2 
+ 
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Let us consider the map: 

This map is a finitely additive o.s. measure on L 

On the other hand the map: 

L :3 b.' -+ II ~ (b.') II 2 

is the pointwise limit of c.a. measures II ~ 
2 ( • )1 I ,thus by the 

n 

Vitali- Hahn- Saks theorem it is coutably additive ( [DS] Part 1, IV 10.5 

p.321). It is easy to observe that any o.s. measure p is c.a. iff 

II p ( • ) 112 is c.a. Hence ~ is a c.a.o.s.m. on L 

Now let v E N b. 
1 ' 

b. 2 E L b. In b. 2 = 0 

Then we have ( ~ ( b. I) I v ( b.
2

) ) = lim (~ (b. In b. ) I v (b. 2) ) n-+oo n 

It means that ~ is compatible with all elements of N and by the 

maximality of N we have ~ E N , i.e. x E N ( b. ) 

ii) Let b.' c b. b.', b." EL • Then the formula: 

gives a c.a.o.s.m. for each ~ EN. It is obvious that ~ b.' E N 

and hence N (b.') = { ~ (b.nb.') =~b.,(b.) :~EN}cN(b.). 

iii) Because the family L is directed by set inclusion we see 

that in virtue of ii) the set U N ( b. ) is a linear subspace of H. 
b.EL 

).L Now suppose that x E ( U N ( b. ) and x :f: O. 
b.EL 

Put v ( b. ) = X b.(A )x for some A Ell. Then v is a c.a.o.s.m. 

and it is compatible with all elements of N . Hence v EN. But 

x = v ( { A}) ~ U N (b.). This is a contradiction. 
b.EL 

on 

[J 

L 

= O. 



- 7 -

1.8 Corollary 

For each c.a.o.s.m. on the r~ng of all bounded 
n 

Borel subsets of Cn the measure L 3 ~ ~ I I~ (~ ) I I 2 =: p (~ ) 
n 

n extends to a Borel measure on C (in general not finite). 

Proof: 

It is clear that p is a positive finitely additive set function 

on L Let { ~ 
i 

} 
iE 

c: L and let ~. n ~. = (6, for n N n 1 J m 
i :f j. Suppose that the series ~ 

, 
Ii .) converges in H. ~ ~ 

1 
1 m 

QO 00 2 112 = lim Then ~ II j.l ( ~i) II = II ~ j.I ( ~ . ) p (U ~ .) 
~ 1 i=1 i=1 1 i=l 

<X> 

= 

= l: p ( ~ .) 
1· 

Hence we can extend p onto the whole of the (J -'algebra 
i=1 

of Borel subsets of Cn putting ( ~ ) 
<X> 

( fl.) ( possibly 00 ) , p = ~ p , 
~ i=1 00 

for any Borel set ~ and where ~ n ~ ~, i :f j, ~ = U ~ i J i=1 1 

~.E L 
1 n 

It is clear that this definition does not depend on the choice of 

{ ~ i } iE N and gives a countably additive set function, bounde~ on 

compact scts, i.e. a Borel measure on Cn. 

[J 

1 .9 Remark ([ M ] Theorem 1. 8 ) 

If ~ is an o.s. measure on a pre-ring L then the set function: 

L 3 ~ ~ p ( ~ ) := II ~ ( ~ ) 112 

is countably additive iff is countably additive. 

Now we are ready to reconstruct a generating spectral measure for 

a given c.a.o.s. measure. 
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1.10 Proposition 

Let ~ be a c.a.o.s.m. on the pre-ring of bounded Borel 

subsets of 

such that: 

en L • Then there exists a spectral measure E on en , n 

i) For each A ,A' E L 
n 

E( A') ~ ( A ) = ~ ( A n A' ). 

If ~ is bounded, i.e. if 3 C E RI , 
< 

C > 0 V A E L ,! ~ ( A ) II c, 
n 

H) 

then there exists x E H such that V A E L 
n 

~ ( A ) = E( A ) x and IIx'l~ c. 

iii) There exists a Borel function f, bounded on bounded Borel sets in 

n e , and there exists y E H, such that for each A E '- • n' 

~ ( A ) = J f( A ) dE( A ) y =: A E( A ) y, 
A ~ 

where by A = J f( A ) dEC A) we denote the onerator , which is spectral 
~ Cn 

with respect to the measure E. 

Proof: 

Let N be any maximal family of compatible c.a.o.s. measures 

containing ~ • Let E(A ), for A E L , be the orthogonal projection on 
n 

the subspace N( A) in H. Clearly we have E ( A') ~ E( A) for Atcn , 

and E ( A UA t ) E( A ) + E( A') for A n At 

because in this case N (A ) L N ( At) so 

Let r be a Borel set. Then r == U A • 
iEN ~ 

== f/J, A ,A' EL • Moreover, 
n 

E( A ) E(A') = o. 

for some disjoint family 

{ Ai } iEN 
m 

of bounded Borel subsets of en. The sequence of projections 

E == E E( A .) 
m i=1 ~ 

is increasing and bounded by 1 . Hence it tends strongly 
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to a projection, which we denote by E( r). E( r ) does not depend on 

the choice of the family { A i} iE N' Indeed, let r = IJ 
iEN 

A. = 
~ 

U 
iEN 

Then taking A .. = A . n A ~ , we have got the family 
~J ~ J 

{ A .. } 
~J i,jEN 

of disjoint sets in L , such that r 
n m k 

U A .. 
i,jEN ~Jk 

and 
m 

lim L 
m 

E( A.) 
~ 

= lim r L E( A .. ) 
m,k . 1 • I ~J 

= lim L 
j=1 

E( A.) 
J 

i=1 ~= J= 

n In this way we have constructed the spectral measure E on C , such 

that for each x E H the measure A ~ 1 I E( A )11 2 is Borel 

(cf.Corollary 1.8). 

i) Let E be the spectral measure constructed above and let A ,A'EL . n 

Then E( A') ~ (A ) = E( A')( ~ (A' AI) + ~ (A n A'») = 

= E( A') ~ ( A'n A) = ~ ( A n A') since N (A n A')e N( A'). 

ii) Consider the net of vectors {~( A )} A E L ,where the family 
n 

L is directed by the set inclusion : A > A' iff A'~ 
n 

Because the net {~( A )}A E L is uniformly bounded by c, thus 
n 

it has weak cluster points. Let xE H, withl I xii < c , be a cluster point 

of the net. Let A E L 
n 

z E H 

exists A' E L 
n 

I (E( A ) z 

It follows that: 

, A' > A ,such that 

x - ~(A'»I < E 

and E > 0 be arbitrary. Then there 

I ( z I E( A ) x - ~(A» I = I ( E( A ) z 1 x - ~ (A') + ~ (A" A»] ~ 

< ( E( A ) z 1 x - ~ (A'»\ + ( z E( A ) ~ (A' 'A »1 ~ E 

Because E and z were arbitrary we have ~ ( A ) = E( A ) x • 

iii) We assume now that ~ ~s 

we can easily construct such a sequence 

unbounded. Then 

{A }e L 
1Th n 

of subsets in Cn 
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that . u /). = en /).m n /). k = ¢ for m =f. k, . 
m , 

m=l 
for each mE N ].l ( /). m) =f. 0 and for each /). E :r there exists n m 
mEN such that /).c U

o 
/). . 

0 
m=l m 

Let us denote r = 
m 

c = max ( m , r) and put m m 

co 
y = l: 

m=l 

Because co 
E 

m=J 

we have y E H. 

Now we define the 

f( A ) 

J 
-2- 2 
c r m m 

1 
-2-2 11 ].l 

c r m m 

( /). m) II 

function f on n C by: 

= c r 
mm for 

2 112 co 1 = II y < E - <00 
2 

m=l m 

It is clear that f is Borel and bounded on elements of r n 

Thus 

For each /). E :r 
n 

The 9perator A 
].l 

m 
we have /). c Uo 

m=l 

c rIc r m m m m ].l ( 

m 

f f( A ) dE( A ) 
en 

is ess.s.a. 

containing the set U E( /). )H • 
/). E :r 

n 

for some mEN. 
o 

f f( A ) dE( A ) y. 
/). 

with the domain D (A ) 
1.1 

c 
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1.11 Proposition 

A set of c.a. H-valued measures N on L is a maximal family 
n 

of mutually compatible c.a.o.s. measures on L if and only if there 
n 

exists a ( unique ) spectral measure n E on C , which is generating for 

all elements of N 

Proof: 

The existence of a measure E and its uniqueness follows from the 

previous result (cf.l.10). 

Let us prove now that for a given spectral measure 

GE of all spectral trajectories generated by E , i.e.: 

= E( ~ 1 p ( ~t 1 = p ( ~ n ~t 

n E on C 

) } 

the set 

is a maximal family of mutually compatible c.a.o.s. measures. Obviously 

elements of GE are c.a.o.s. measures. Their compatibility follows directly 

from the properties of the spectral measure E. The maximality of 

GE remains to be uroved. 

Let v be a c.a.o.s.m. compatible with all elements of GE• Then 

there exists a spectral measure F which is generating for v and all 

elements of GE • If ~ ,~t€ Ln' then for each p € GE 

F(~') p (A) p ( ~ n A') = E( A') p ( ~ ). 

Thus F( A') ... E( ~') on the dense set A~L E( A )H in H. Hence 
n 

F :: E and v is a spectral trajectory with the generating measure E, 

i.e. v € GE• Hence 
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The compatibility relation between c.a.o.s. measures leads to 

the existence of a common generating spectral measure on a given (pre)-ring 

of subsets of a set A lve are interested however which relation between 

c.a.o.s. measures provides snectral measures which only commute. Let us 

consider the following example: 

Let A and B be a couple of commuting normal operators with the 

snactral measures EA and EB respectively, defined on e
1 

• Let x,yE H. 

Put 6' Borel subsets 

of e 1 
• Let E be the joint spectral measure for A and B , defined on e2

. 

Then the c.a.o.s. measures: ]7(t:) = E( t: ) x and v ( t: ) = E( ~ ) 

are "extensions" of ].I and \l onto e
2

• Observe that these extensions 

are compatible although ].I and \l are not. We say in this situation that 

the measures 11 and \l are "weakly compatible ll
• To be more precise we have 

to define at first the notion of an extension of c.a.o.s.m. 

1 • 12 Denni tion 

Let ].I be a c.a.o.s.m. on L • 
n 

Then a c.a.o.s.m. ].I on the 

(pre)-ring L n+m 

extension of ].I onto 

i) V 6' € L 
m 

L ::1 6 
n 

the map 

of (bounded) Borel sets in en+m is called an 

(onto L ) n+m if: 

].I ( 6 X 6') = ].I 6' (6 ) 

is a c.a.o.s.m. compatible with ].I 

ii) For any increasing family { 6'} C L such that U A' ::: em 
a m ' a a 

the net { 
].I6' 

a 
( 6 ) } = { ]7 ( 6 x 6')} tends to ].I ( 6 ) in H 

(J[ 

for each 6€ L • n 

y, 
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Our example of weakly compatible c.a.o.s. measures was based on 

bounded extensions, constructed via extensions of the spectral measures. 

We will show now that the general construction is essentially the same. 

1.13 Proposition 

Let J..I be a c.a.o.s.m. on L n and let].! be an extension 

of J..I onto en+m• Then there exist 1 E and F on en 
spectra measures 

and em respectively which commute and, for any ~'~1' ~ 2E L n~ 

A'}, ~I e L the following holds: 
2 m' 

= 

F ( Ar}),U' (~x AP = J..I (~x ~i n ~p. 

Moreover the measure ~(A x A'l = E( A ) F( A'), ~ E Ln'~' ELm' 

can be extended to a spectral measure on n+m . f e ,generat1ng or 

Proof: 

Let 

defined for every A' E L . m 

J..I (A X A') be a c.a.o.s.m. on 

J..I 

The family { J..I
A

,} A'Er consits of mutually compatible c.a.o.s. 
m 

measures, which are also compatible with the measure J..I • Hence there 

exists a spectral measure E 
o 

on Cn . f 11 ,generat1ng or a 

and J..I 

Consider now 

defined by: 

v (AI ) = 
A 

the family of c.a.o.s. measures {VA}AE~ 
n 

'iJ ( AxA' ) , for A' E L . m 

on L n 

Since they are mutually compatible, we can find a spectral measure F on em, 
o 

generating for all , A E L . n 



- 14 -

Let 

(1.14) S"" == closed linear span { II ( A ) :A€i: + } 
)l n m 

It is easy to see that the spectral mesures E , F 
o 0 

commute on S~, which 
)l 

is also a reducing subspace for them. Thus we can find spectral measures 

E and F which coincide with E and F on S"'" and fulfil demanded conditions. 
0 0 )l 

,..,. 
The measure E defined on i: x i: by: n m -E( 6 x 6') == E( 6 ) F(6'), for 6€i: , 6 t €i: 

n m' 

gives rise to the spectral measure on Cn+m (cf. [BVS]). 

].15 Corollary 

Let )l be an extension of )l onto en+m. 

i) If )l is bounded with resuect to i: ,then there exist spectral 
m 

measures E and F on en and em respectively, such that: 

E is generating for )l , F and E . commute , and 

II ( 6 X 6' ) == F( 6') )l ( 6 ) , for 6€i: ,6'€i:. n m 

ii) If both)l and )l are bounded we may choose E and F in such 

a way that: 

Jl ( 6 x 6') == 

and )l ( 6 ) == E( 6 ) x, 

for all 6 € i: ,6 1€i: n m and some x€ R. 

[J 

Now we can define the weak compatibility relation between two c.a.o.s. 

measures. 
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1.16 Definition 

We say that a c.a.o.s.m. ~ on 

compatibZe with a c.a.o.s.m. 

extensions ].l and 
....., 

with v • t 
nm 

defined by: 

on 

where 

( L ) 
m 

if there exist on 

, such that is compatible 

the map en+m t: ..... 
nm 

is 

their 

Suppose now that there exist mutually commuting generating spectral 

measures for a couple of c.a.o.s. measures ~ and v • Then the 

extensions: '" ].l ( ~ X~I) = F( ~f) ].l ( ~ ) 

and \) ( ~'x~ ) = E ( ~ ) v ( ~ f ) 

are compatible c.a.o.s. measures on en
+
m, which are in a sense product 

measures • Thus it turns out that the measures ].l and \) are weakly 

compatible. Moreover we will show that this construction of extensions 

is always possible for weakly compatible nairs of c.a.o.s. measures. 

1.17 Proposition 

Let J.l and v be weakly compatible c.a.o.s. measures on en and em. 

Th th .' en and em . 1 1 'Ii' en ere eX1st on respect1ve y spectra measures ~ ,E 
].l \) 

generating for J.l, v, which commute.Moreover the extension ~ and v of the 

measures ].l and v admit a common generating spectral measure E on en
+

m, 

such that 

~ ELand ~'E L • 
n m 

Proof: 

Let us consider the family of c.a.o.s. measures defined on 
n 
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( ~'x~ ), where ~, E L • The measures 
m 

are mutually compatible and they are also compatible with the measure ~. 

Moreover , if we define measures ~~, on L n by 

Ln3 ~ ~ V~I( ~ ) := ~ (~x~f) we obtain a compatible family of 

c.a.o.s. measures { ~~f ,V~I' ~ 

generating spectral measure 

the measure E v We have then: 

for each ~, ~1' ~2E L , ~', ~i ' n 

Ell(~l) 11 ( ~ x~t ) = 11 ( 
2 

E]l(~I) '" ( ~'x~ ) 
,..., 

( V = v 2 

E) ~p ( ~x ~, ) = '" ( U 2 
]l 

E) ~j) '" ( ~fX~ ) V '( V = 2 

h'E L} that admits a common 
m 

on en. Similarly we construct 

~tE L 
2 m 

~ In ~ 
2 
x~t ) 

~tx~ 
] n~2 ) 

hx ~'n ~f 
I 2 

) 

~tn ~f x~ 
] 2 ) 

The measures E and E can be chosen to commute. Then extending the 
].l v 

measure L x L 3 ~X~f ~ E ( ~ )E ( ~') onto cn+m we obtain the 
n m 11 v 

desired measure E. 
[] 

].18 Remark 

As an easy consequence of Proposition 1.17 and 1.10 we obtain for 

any couple of weakly compatible c.a.o.s. measures their description by 

means of two ess.s.a. operators A and B , which strongly commute and the 

measures are expressed by the formula ].l ( A ) = 

v ( ~') = B Ev( ~') Y , for some x,yE H and all 

A E ( ~ ) x, 
\.I 

~, E L ~'EL • 
n m 
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In quantum mechanics we consider maximal systems of mutually 

commuting observables. To each'maximal system we ascribe a spectral 

measure E on the joint spectrum of the considered observables. Next we 

can use the measure E in the construction of a family of mutually 

weakly compatible c.a.o.s. measures on the spectrum. An interesting 

question is how to reverse this construction, i.e. how to reconstruct 

a maximal set of observables starting from a given family of c.a.o.s. 

measures. It appears however that the joint spectral measure of a 

maximal system of observables necessarily has the oroperty of 

non-extendibility defined below. Obviously not all spectral measures 

have this property and thus we must impose extra assumptions on an 

initial family of c.a.o.s. measures. In general spectra of e*-algebras 

of observables need not be embedded into finite dimensional complex 

space. This leads to difficulties in a generalization of our theory 

for systems of infinite number of commuting observables. Thus we 

restrict ourselves to the finite dimensional case. 

At first let us consider an example of a maximal system consisting 

of two observables A and B. Let their spectral measures be EA and EB 

respectively. Their values on Rorel subsets of e 1 belong to the 

von Neumann algebra generated by A and B, W*(A,B,I) = { A,B }n. 

By the assumption this algebra is maximal abelian. In particular , 

if E is any spectral measure defined on en, commuting with EA and EB, 

its values must belong to t<1*CA,B,I). Let Ac en be a Borel set. Then 

E( A ) = f 
e2 

meas.ure for 

x (A) dEC A ) ,where E 
tl 
the operators A and Band 

its characteristic function Xl{ is 

projection E('K). The relation 
,..... 

A-.A 

Borel subsets of en into Borel subsets of 

= EA • EB is the joint spectral 

is stich a Rorel subset of en that 

the Gelfand transform of the 

extends to a cr-morphism from 

e2, say cp n 
: B (e ) -+ B(e

2
) , 



such that 

- 18 -

n for each A E B(e ) E( A ) = E( $( A». 

In such a situation we say that the spectral measure E has no non-trivial 

extensions onto en. 

1 • )9 Definition 

A spectral measure E defined on a Lebesgue space A ( cf. [ BVS ] 

R ] ) is called non-extend£bte if for any nE N and each spectral measure 

F on n A xC, such that 

exists a cr-set- morphism 

F(A x en) = E( A) for all AE B( A ), there 

~ : B (en) ~ B ( A ), such that ~ ( en ) = A 

and for all AlE B( A ), A 2 EB( en) 

(1. 20) F( A1x A 2) = E( A) n ~ ( A 2»' 

In other words E has only trivial extensions • 

For a given c.a.o.s.m. in general there may be many generating snectral 

measures. Thus a notion of non-extendibility cannot be properly 

defined for an individual c.a.o.s.m.However it is possible for families 

of c.a.o.s. measures. 

1.21 Definition 

A family N of c.a.o.s. measures on a (pre)-ring of subsets of the 

space A , r , is called non-extendible iff: 

i) There exists a unique spectral measure E on A generating for all 

elements of N 

ii) For any xE H the measure space ( A , cr ( r ), I IE ( • ) x, ,2) is 

a Lebesgue space. 

iii) E is a non-extendible spectral measure. 
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Usually we assume that A = en. Then we have a canonical 

correspondence between non-extendible families of c.a.o.s. measures 

and maximal systems of n mutually commuting observables, described 

above. 

We observe also that a non-extendible family of c.a.o.s. measures 

must be necessarily maximal. 

To deal with families of c.a.o.s. measures which are merely weakly 

compatible we must introduce a notion of common extension of a family 

of measures. At first we denote by _ ( X ) the set all c~a.o.s. 

measures on a (pre)-ring L of subsets of a space X. 

1.22 Definition 

Let M be a family of c.a.o.s. measures on a pre-ring L of 

subsets of a space A • We say that the family M admits a common 

extension onto A x en, for some nE N, if there exists a map 

such that: 

i) V 1.I E M ~ ( 1.I ) is an extension of 1.1 onto A n xc. 

ii) The set ~ (M ) is a compatible family of c.a.o.s. measures 

on A 
n 

xC. 

1 .23 Denni tion 

A 

We say that an extension 1.1 of a c.a.o.s. measure 11 on a space 

onto the space 

such that n 

is trivial if there exists a a-set-morphism 

and for each ~'E L ,~EL 
n 

~ ( ~ x ~, ) = 11 ( ~ n ~ (~'» . 
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A simple result follows. 

1.24 ition 

A family M of c.a.o.s. measures on the pre-ring L of 
m 

bounded Borel subsets of Cm is non-extendible iff it is maximal comnatible 

and admits only trivial common extensions. 

1.25 Cor61larl 

There is a canonical correspondence between maximal systems of 

n mutually (strongly) commuting normal operators in H and families 

of c.a.o.s. measures in Cn having none but trivial common extensions. 

We say that a c.a.o.s.m. v is basic or cyclic if the set 

{ v (6 ) : 6 E L} is total in H • 

1.26 Remark 

i) There exists only one generating spectral measure for a basic 

c.a.o.s.m. 

ii) For any basic c.a.o.s.m. v there is the unique maximal 

family of compatible c.a.o.s. measures containing v 

1.27 Proposition 

Let N be a maximal family of compatible c.a.o.s. measures on Cn • 

Then N contains a basic measure if and only if it is non-extendible. 
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We notice now that elements of a family of c.a.o.s. measures 

which admits common extensions are mutually weakly compatible. Thus we 

arrived to the main result of this section. 

I .28 Theorem 

There is a canonical correspondence between maximal systems of 

2n mutually commuting observables and non-extendible families of mutu-

ally (weakly) compatible c.a.o.s. measures on the ring 

n bounded Borel subsets of e • 

Proof: 

L of 
n 

By Proposition 1.27 we may assume that we are given a basic measure 

n 
on e , say ~ • Let E be the unique generating spectral measure for a 

non-extendible family of c.a.o.s. measures M containig ~ t defined 

on en. Let us consider the family of s.a. operators ~, k == J,2, ••• ,2n, 

defined by: 

~ == fn Re Ak dE( A ) for k = 1,2, ... ,n 
e 

~= -if 1m A k-n dE( A ) for k = n, ••• , 2n. 
en 

The operators ~ have the common dense domain ~~ L E( ~ ) H 
n 

The e*-algebra generated by operators I, (~ - i1 ) -1 will be 

denoted by A We will show that A is maximal abelian. By the Segal 

theorem ([T], Theorem 5, Sect.S, [ Ma J Ch.VII1, Sect. 4 Theorem 1 ) 

this is equivalent to the existence of of a cyclic vector. By 

Proposition 1.10 the c.a.o.s.m.'ll is of the form].1 (~) == A E( ~) x 

for some xE H and where A is an ess.s.a. operator affiliated with the 

von Neumann algebra W*( E ) generated by the spectral projections E(~ ). 
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A E( 8 ) € W*( E ). 
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A E( 8'n8 ) for all 8,8 t €:t • Horeover 
n 

We will show that the vector x is a cyclic vector for A • 

At first we show that this vector is cyclic for l~( E ). Indeed, the 

linear span of the set{ A E( 8 ) x 8 € :t } is dense in H, so must be 
n 

the set W* ( E ) x • Thus W*( E ) is a maximal abelian C*algebra. 

Clearly A c W*( E). Let UEA f and let U x = O. Since U commutes 

with all (~- i1 )-1, it commutes with the spectral measure E 

Thus U € W*( E)' and it follows that U = O. It follows that x is 

peparating for A' ([ T ]).1n particular it means that x is cyclic for A 

In this way we have shown that { ~}is a so called complete system of 

observables since the algebra A is a maximal abelian C*- algebra, 

generated by n normal generators ( or 2n s.a.). 

To prove the converse statement it is enough to take as a family 

of c.a.o.s. measures }1 the unique maximal family of compatible 

c.a.o.s. measures containing the c.a.o.s.m.defined by: 

:t 38 -+ 
n 

E( A ) W 

where E is the joint spectral measure of a given family of observables 

and w is the cyclic vector associated with them. 

1.29. Corollary 

tJ 

There is a canonical correspondence between basic c.a.o.s. 

measures on C
n 

and maximal systems of 2n strongly commuting observables 

(possibly unbounded). 
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2. Duality 

Let N be a maximal family of mutually compatible c.a.o.s. 

measures on a ring E of subsets of A • Let I 1·1 !~denote the 

seminorm on N , defined byl I lil I~= I l].l(~) , 'H'11 E N. 

Let T be the l.c. topology generated by these seminorms on N • 

2. I Proposition 

The l.c. topological vector space (N ,T ) is a projective 

limit of the family of Hilbert spaces N( ~ ), with the system of 

projections given by: rr~,~: N (~) ~ N(~'), where for 11EN and ~fC ~ 

rr~f~ li( ~) = E( ~t) 11 (~) = 11 (~I) , and where E is the spectral 

measure associated with N 

Proof: 

a - the projective limit topology on N is defined as the pr 

weakest l.c. topology for which all projections rr~ N ~ N ( ~ ) 
rr~ 

defined by N 3].l ~ ].l( ~ )E N ( ~) are still continuous. From this 

it follows that T is stronger than a pr 

On the other hand let {l1a}aElc N be a null net with respect 

to apr topolgy. For each projection rr~ ,~E E , the net rr~l1a= ].la ( ~ ) 

tends to 0 in N( ~ ). Hence ].l + 0 in the topology T • Thus a 
a pr 

is equivalent to T • 

c 

2.2. Corollary 

Each family N which is maximal with respect to the set-inclusion 

of families of mutually compatible c.a.o.s. measures, when endowed 

with the topology T is a complete I.e. topological vector space. 
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2.3. Proposition 

Let N be a maximal family of mutually compatible c.a.o.s. 

measures on a pre-ring E • Then N endowed with the tODology apr 

of projective limit of the family N( ~ ) ,~E E, is a complete, 

barreled, reflexive, Mackey I.e. topological vector space. 

Proof: 

The completeness follows from general properties of projective 

limits of complete spaces. Similarly N is semi-reflexive as a 

projective limit of Hilbert spaces. 

To show the reflexivity we should prove that N is infra-barreled, 

i.e. every convex, circled, c!osed subset of N , absorbing all bounded 

sets in N is a neighborhood of O. 

Let U be such a barrel absorbing all bounded sets in N 

Suppose at the contrary that U does not contain any neighborhood 

of 0 in N, in particular , that there exists a sequence of elements 

of L , say {~i} i E N' such that U n N( ~.);: N(~.) for 
1 1 

infinitely many indices. In the 

the set is u n n N ( ~ .) 
• 1 
1 

not absorb all bounded sets in 

i 
n N ( ~.) 

1 
projective topology of 

not a neighborhood of o and it does 

n N ( ~.) • This yields a contra-
1 

1 

diction since the projective topology in n N ( 
i 

~.) is induced by the 
1 

topology of N 

By the Theorem 5.6. .!.Dr'!. Coro llary 5.3' Ch. IV 'See t. 5 in [S ch] 

N is reflexive. By the way we infer that N is barreled. Again 

following [Sch] we see that N is Mackey. 

o 



- 25 -

2.4. Corollary 

The strong dual of the space (N, apr) , NS,is a reflexive, 

barreled, Mackey space. 

We will show now that the strong dual of N has also a nice 

representation which connects our present approach with our previous 

theory of inductive-projective limits of Hilbert spaces (cf. rECK] , [EK]). 

Let E be the spectral measure associated with a maximal family 

N of compatible c.a.o.s. measures on a (pre-) ring L 

Let S = U E( A ) H be the inductive limit of the family 
AEL 

E( A ) H of Hilbert spaces. The family of embeddings is given by 

the natural embeddings E( A ) H c S • The topology lind on S 

is the strongest l.c. topology in S for which all these embeddigns 

are still continuous. Clearly S is a Hausdorff strict inductive limit. 

2.5. Proposition 

The inductive limit space S is a complete, reflexive, barreled, 

bornological l.c. topological vector space. 

Proof: 

The result is just a quotation of 6.6 Ch. II Sect.6, 5.8 Ch.IV 

Sect.6 and Corollary 1, 8.2 Ch.II Sect.9 of [Sch] 

2.6. Theorem 

o 

The spaces Nand S are in duality that makes them representations 

of strong duals of each other. 
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Proof: 

The duality is defined as follows: 

Let ~ € N, s € S. Then 

(2.7.) 

where s = E( ~ ) x for some ~€L, x € H. 

The definition 2.7. does not depend on the decomposition of s 

into the form E( ~ ) x • Indeed, let s'" E( ~ ) x = E( ~') x' ,.. 

E ( AM. , ) x,.. E ( ~n~') x'. Then 

= 

Hence the formula 2.7. gives a continuous embedding of S into NS and 

of N into s~. Because of the reflexivity these embeddings are equiva­

lent. We are going to show that actually they are equalities. 

Let $ € s~ . Then its restriction to every E( ~ ) H is 

a continuous linear functional on the Hilbert space N ( ~ ) ,.. E( ~ ) H. 

Thus there exists a vector, say $( ~ ) € N( ~ ) , such that 

( 
].I ( ~ » N( ~ ) 

,.. 

Because for every ~,~' € r we have E(~' ) $ ( ~) = ~ (~fn~) 

the function r 3 ~ ~ $ ( ~ ) € H is a suectral trajectory, i.e. it is 

a c.a.o.s. compatible with all elements of r. Hence $ € Nand 

Sl eN. Because this embedding is continuous we have eventually 
a 
N ,.. 5' and S = N' 

13 a as l.c. topological vector spaces. 

There are properties of spaces Sand N which can be easily 

described in terms of the spectral measure E. 

[] 
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2.8. Corollary 

i) If the algebra ~~( E( 6 ); 6 E ~) is countably decomposable 

then the space S is of the type (LF). 

ii) For each 6E~ E( 6) is finite dimensional iff the space 

S is Montel. Then N is Montel too. 

Proof: 

i) By the assumption there exists an at most countable sequence 

of elements of ~,{ 6 i } i EN' such that V 6E~ 3 6.E ~ with the 
1 

property that E( 6 ) < E( 6.). = 1 

Thus it is easy to see that S is a strict inductive limit of the 

sequence of Hilbert spaces E( 6.) H • 
1 

ii) The result follows from the fact that the unit ball is 

compact only in a finitely dimensional Hilbert space. 

If N is a family of c.a.o.s. measures on Cn then for each 

~ EN there exists an operator A , spectral with respect to 
~ 

a vector x E H such that for every 6E~ ~(6) = A E( 6 ) x 
~ ~ ~ 

(cf.Proposition 1.10). 

E,and 

Let e denote the collection of all onerators obtained in this 

way. Let n = { Ee 6 ) : 6 E ~ }. Then, following the results of 

[EK-2] we can prove that the inductive limit topology on S is given 

by the family of seminorms S 3 s ~ I I Ls I I, where L E nCc (the strong 

bicommutant of n). In particular it follows that the space S is 

Hausdorff. 

On the other hand it is easy to see that for each L Encc the 

measure ~ 3 6 ~ L E( 6 ) x E H ,where x E H, belongs to N. 

o 
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Thus we have gCcce. 

Let us consider the topology Teon Sg= S defined by means of 

the family of seminorms S:3 s ... IIA s I! , A E 0. 

The topology L8 is stronger than 

On the other hand each set of the form: 

T = A {llA : ,x llA (fl) = A E ( fl ) x , ,x 

Lind' 

II x ! 1< J } = 
is bounded in N. Let sEE (fl ) H • Since I' As! I = sup I ( As' x) , = 

I! xll~J 

= sup I (llA (fl)1 s )1 
I ,x 
Ixll~1 

the topology Te is weaker then the Hackey topology on Sg' Le. weaker 

than Lind Thus Le ~ T. d' Thus we arrived to the following result: 
- 1n 

2.9. Proposition 

Let L be the ring of bounded Borel subsets of en, N be 
n 

a maximal family of mutually compatible measures, and let e be the 

collection of spectral operators ass@ciated with N, 

Then the strong topology on the dual Ne of N is generated by 

the family of seminorms 

N' :3 s II A s II where A E e 

This topology is equivalent to the inductive limit topology on 

N ,induced by the family of Hilbert spaces { N( fl ) : fl E Ln} • 

The following problem arises: 

As we have seen in Proposition 1.10, all measures in N can be described 
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by simply constructed operators A • The 
~ 

collection e consists 

of apparently more operators than just {A : ~EN}.It would be desirable 
~ 

to avoid the abundance of the elements of e in the description 

of the topology T. d 
~n 

in Nt. 

Obviously the ~Ackey topolgy in N'is stronger than the topology 

of uniform convergence on (bounded) sets of the form: 

TA = 
1l 

for a fixed 

{ 
llA x 

ll' 
A E e . 
~ 

On the other hand changing 

up to equivalence with T. d' 
~n 

= A E( A ) 
~ 

x , Ilxll~ l} 

we can enrich this topology 

Let us consider now the particular case of a family N containing 

a basic c.a.o.S. measure 1l • It has been mentioned before that in 

such a case the von Neumann algebra W*( E( A ) ;AEL ) has a cyclic 

vector and hence it is a maximal abelian e*-algebra. It is also clear 

that the maximal family of compatible measures containing 1l is unique 

as well as the associated spectral measure E • We have shown in 

Proposition 1.18 in [EK-2] that the strong bicommutant nCc 
of 

the family Q = { E( A ) : AE L } is monotonuously generated by 
n 

the von Neumann algebra W*( E( A ) ; AEL ) . In such a case the 
n 

topology on NS is generated by a family of 

functions in the following sense: 

the seminorms of the form 

Nt 3 s -+11 f f ( A ) dE ( A ) s II S en 

L - finite Borel 
n 

where f is a Borel function on e n such that 

y AEL sup If( A ) I < co 
n AEA 

generate a l.c. topology on Nt 
B 

equivalent to the strong dual topology S. 
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This simple situation may be modified if we take inste~d of 

a maximal family of compatible measures some other family (smaller), 

containing the basic measure ~. Under certain conditions we will show 

that the dual of this family can be represented in the form S~, for 

some adequate generating family of operators ~, commuting with the 

spectral measure E • 

Let us recall the definition of a generating family of operators. 

2.10. Definition ([EK-2] Def.I.I.) 

Let ~ be a family of bounded operators in a Hilbert space H. 

Then ~ is called a generating family of operators if it has the 

following properties: 

i) V a € ~ 0 ~ ~ 1 (positivity and boundedness) 

ii) V a,b € ~ ab = ba (commutativity) 

iii) V a,b,€ ~ 3 c € ~ a ..;;; c and b ..;;; c (directedness) 

iv) V a €~ 3b € ~ (sub-semi-group property) 

For each a €~ put aH = {ax I x € H }. aH becomes a Hilbert 

space when endowed with the scalar product 

( a x a y) = ( rea) x a I rea) y )H 

where rea) is the right (hence left) SUODort of a (cf. [Sa] ). 

2.11. Definition 

By we denote the inductive limit of the family 

{aH : a €~} of Hilbert spaces defined above for the generating 

family of operators ~ 
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We can put s = IR U 
aEIR 

as the strongest topology on 

aH with the I.e. topology defined 

SIR for which all embeddings g a: aH .... SIR 

are still continuous. SIR is Hausdorff for the embedding S~ H is 

continuous. We notice that for each aE IR the map H 3 x .... ax E SIR 

is continuous. 

For a given generating family IR of operators we will consider 

the space SIR as the dual of certain space of o.s. measures on the 

spectrum A of the W*-algebra, generated by IR • Known examples 

of such a situation suggest that we must properly choose the (pre-) ring 

L of subsets of A. Thus put 

(2.12) L = {A C A,A is a Borel set,3 aE IR 1 
,3 cE R c > 0, X

A 
( A)<; c a ( A )} 

where a is the Gelfand transform of the operator a considered as an 

element of the C*-algebra W*( IR ) generated by IR and 1 , X
A 

is the 

characteristic function of the set A 

L is a ring of sets since IR is directed and it is easy to see 

that all Borel subsets of elements of L belong to L • 

Let E be the joint spectral measure of the family IR. Let us 

denote by the inductive limit of Hilbert spaces { E( A ) HIAEL} 

introduced before. By the previous results each continuous linear 

functional on Sn can be represented as a c.a.o.S.m. on the spectrum A 

of W*( IR). It follows from 2.12. that for each AEL there exists bEIR 

such that b- I E( A ) is bounded. Thus we have 

by the spectral theorem it is easy to see that Sn is dense in SIR 

in the inductive limit topology. The embedding 

Indeed, each Hilbert space E( A ) H ,AEL, is a subspace of 

some Hilbert space bH, bE IR. Hence, if a set U is open in SIR 
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then un bH is open for each bE ~ and thus U n E( ~ ) H is open for 

each ~ EL. In this way we see that U ns~ is open in the inductive 

limit topology in S~. 

Then it follows that s' c S' ,where the embedding is continuous 
~ ~ 

in the strong dual topologies. In particular it means that each 

continuous linear functional on S~ can be represented as a c.a.o.s.m. 

on L • It is given by the (unique) extension of a c.a.o.s.m. to an 

"integral" defined on elements of ~. This concept is explained by the 

following lemma. 

2.13. Lemma 

Let tE S~ • Then there exists a c.a.o.s.m. ~ on L such that for 

each aE~ there exists a vector ~(a) E H with the properties: 

i) V s E S~ Hs) (~(a) I x)H ,where s = a x, 

ii) V ~EL E( ~ ) ~ (a) a ~ ( ~ ). 

Proof: 

For each aE ~ the map H :3 x ... tea x) is continuous linear. 

Thus there exists the vector ~(a) E H fulfilling i). On the other hand 

t IS is continuous and hence can be represnted as a c.a.o.s.m.~ on L 
~ 

We have then t( E( ~ )Ia x ) = ( ~ (~ ) I a x )H = ( ~(a) I E( ~ ) x )H' 

The last relation holds for all x E H so E( ~ ) ~ (a) = a ~ ( ~ ), 

since a is s.a. 

We call the element ~(a) of H an integral with respect to a 

c.a.o.s.m. ~ S1nce it is an extension of a linear functional tis 
~ 

[J 

defined on " simple functions " s~ onto wider class of "functions" S~. 
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2.]4. Definition 

Let ~ be a generating family of operators and ~ be a spectral 

trajectory with respect to the spectral measure E associated with ~ • 

Then ~ is called a ~-bounded c.a.o.s.m. on L iff 

for each a E ~ the c.a.o.s. measure L 3 6 ~ a ~ ( 6 ) E H 

is bounded. The set of ~-bounded c.a.o.s.measures is denoted by T~. 

2.15. Remark 

If a c.a.o.s.m. ~ is ~-bounded then for eaeh aE ~ there 

exists the vector ]J(a) E H such that 2.13.ii)' holds. Moreover 

II )..l (a) II = sup II a Jl ( 6 ) II 
6EL 

The set T~ is a linear set consisting of mutually compatible 

c.a.o.s. measures on the ring L Let us introduce in T~ a l.c. topology 

generated by the family of seminorms: 

(2.16.) =: II]J II ,where a E IR • 
a 

Let us denote now the topological dual of TIR endowed with the 

topology 2.16. by T~. We have the following algebraic result. 

2. 17. 

i) 

ii) 

Proof: 

Theorem 

The following dualities take place: 

s = IR- T' IR 

TIR 

At first we establish the notation. 

denotes the duality between S~and S~ ,< I >T duality between 

T~ and T~ • We will prove the existence of the following embeddings: 
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a l a 2 61 s' 
62 

SIR c: T~ c: SIR and TIR c: IR c: TIR 

and the relations: 

(2.18.) a • a l = ids 2 

(2.19.) a
l 

• a Z = idT, 

(2.20.) 6 . 61 = idT 2 

(2.21.) 6] . 62 = ids' 

i) At first we will show the existence of the embedding a], 

For each s E SIR we define a linear functional on the space TIR by: 

( * ) <v lal(s»T= ( ~ (a)1 x), where s = a x, a E IR, x E H,~E TIR • 

To see that this definition does not depend on the decomposition of s 

put a x = a' x' = s, with a'E IR , x' E H. 

Then for each 6 E L ( E( 6 ) ~ (a) I x ) = (a ~ (6 )1 x ) = 

= ( a' ~ (6 )! x' ) = ( E( 6 ) ~ (a')1 x'). Thus we have ( ~ (a)1 x ) = 

= ( ~ (a')! x') for all V E TIR 

The continuity of the functional (*) follows from the estimation: 

I<ll lal(ax»T' = , (ll (a)1 x )1"" ll(a)II II xii = II ~ II a II x II 

To show the existence of the embedding a Z we have to find out 

a proper representation of every ~ E T~ in the space SIR 

Let ~ E T~ • By the continuity of ~ and directedness of IR we 

can choose aEIR such that for a11 VE TIR Ill' ( V )1 " ell II "a ,for 

some constant c > O. We notice that if 1l,vE T and rea) ~ ( 6 ) = 

= r (a) v ( 6) for each 6 E L then lp ( ~ ) = lp ( v ). In . .:ieed: 

we have' lp (~ - v ) ! ~ c'lI II - v II a 

= C'sup II a r(a)( II (6) - v (6 »11 = O. 
6€L 

= 

Observe that ~ defines a continuous (bounded) linear functional ~ on the 

linear manifold {v(a) i vETIR } by ~ ( J.l (a) ) = lp ( ~ ). 
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,.., 
~ is well defined and bounded in the Hilbert space r(a) H in which 

the set { ~(a): ~ E T~} is.dense. Thus we can reoresent ~ (hence ~) 

by a vector v E rea) H such that for each '" ~ ( ~ (a» = 

= (v! ~ (a». Now put 

( * * ) 
Then we have: 

for each ~E T~ ~ ( ~ ) = (v 

To see that a 2 is well defined suppose that ~ has two representants 

of this form, i.e. that there exist a,a' E ~ and v,v' E H such that 

(v I ~(a» = (v' I ~(a'» for all ~E T~ • Because the 

measures ~A defined by L3A'~ ~A( A') := ~ ( AnA') belong to T~for 

any ~ E T~, we have: 

(v I~A(a» = ( a v I ~(A » = ( v'l ~A(a'» = (at v'l ~ (A » 

for all A E L , and all ~-bounded measures ~ , in particular it 

holds for all measures of the form L3A ~ E( A ) y , y E H. It follows 

that a v = at v' . 

Now we will show the relations 2.18. and 2.19. 

Let a x = s E S~ and a 2 • a (s) = b y .Then for each ~ E T~ 

we have: ( ~ (a)! x) = ( ~ (b)1 y) . In virtue of Remark 2.15. we 

have : 

( E( A ) ~ (a)! x) = (a ~ (A)I x) = ( ~ (A ) I a x ) = ( ~(A)I by) 

Thus b y = a x , i.e. 2.18. holds. 

Let ~E T' 
~ 

• Let us comoute a} • a
2 

( ~ ) = a
1 

(b y) , where 

for each ~E T~ <~I ~>T = ( ~ (b) I y ). Then < a
1 

(b y) 1 ~ > = T 

= ( ~ (b) ! y ) = < (0 ! ~ >T' Hence a) ·a2 ( <P ) = ~ , i.e. 2.19. holds. 
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In this way we nroved the relation i), i.e. s~ = T~ 

ii) In virtue of the considerations preceding Lemma 2.13. every 

element of the dual s' of 
~ 

s~ can be regarded as a c.a.o.s.m. 

on the joint spectrum A of the family ~. Let t E s~ . We put: 

(*** ) where the existence of the c.a.o.S.m. 

]J is established by Lennna 2.13. l.;re will show that ]JE T6t . For 

this it is enough to notice that !~~" a ]J ( I:::. ) II = 

= !~ II E ( I:::. ) ]J (a) " = II l1(a)1I < 00 

Now we will show the existence of ~1: T6t ~ s~ 

Let ]JE T6t . By Remark 2.15. there exists ]J (a) E H such that 

V I:::.EL E( I:::. ) ]J (a) = a ]J ( 1:::.). Let ~1( ]J ) be the linear 

functional defined on S6t by: 

(****) < ~1 ( ]J ) Is> = ( ]J (a) I x) , where s = a x E S6t • 

with 

the 

u = 

let 

aE6t and x E H. 

As before we can show that this definition does not depend 

decomposition of s into the form a x. 

To show that ~ I ( ]J ) E S' 6t we notice that the set: 

b, b'E 6t be such that 

s >1< 1 } is open in S6t • Indeed, 

b~ ~ b'. Then V y E H • V I:::. E L 

( E ( I:::. ) II (b) I y) \ = 1 ( b~ ]J ( 1:::.)1 b! y ) \ <;; 

\I b! II ( I:::. ) II \I b! y 1\ <;; II b!1I II r (b) y 1\ II b' II ( I:::. ) \I <;; 

I 

<;; "b:1"" r (b) y II II]J (b ') II 

So 1< ~1 ( 1l)1 s >\ = lim I ( E( I:::. ) ]J (b) I y) I <;; 
1 I:::. f A 

II b 2 II II II (b ') II II r (b) y II 

It means that V bE 6t 3 Eb> 0 

such that {s E bHI II s lib < e:b} C U n bH 

on 
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So u n bH is open in the Hilbert space bH thus U is open in 

S~ • This proves continuity of the functional B]( ~ ) on S~ 

In order to prove the relations 2.20. and 2.2]. we can use 

arguments similar to those in proving 2.18. and 2.19. Namely we 

have: 

For each 1l E T~ and all h. E 1: « B 2 • B 1 ) ( ~ ) ( h. ) I x ) = 

= «31 ( ~ ) I E ( h. ) x > = ( ~ ( h. ) I x ), so B 2 • B I ( ~ ) = ~ . 

Now for any , for all a x E S~ and h. E 1: , we have 

< B • 
1 

a E( h. ) x> = (a B
2

( J/, )( h. ) 1 x) = 

= < R, I a E( h. ) x > so 

2.22. Corollary 

The relations i) and ii) of Theorem 2.]7. are adjoint to each 

other in the sense that: Y s E S~, YJ.! E T~ , 

< a 1 (s) ).I >T = < B ( 1 
).I ) I s >S 

and Y (P€ T' 
~ ,V9.. ES.fi 

< 9..1 a 2( q> ) > = S 
<q> IB

2
( J/,) >T • 

2.23. Conjecture 

The space T~ with the topology 2.16. is identical with the 

projective limit of the family of normed spaces {Ta I aE ~ } of 

a-bounded c.a.o.s.measures on the joint spectrum of the family ~ 

Under conditions similar to those imposed on ~ in our paper [EK-2] 

the dualities 2.J7. yield reflexivity of the snaces T~ and S~, 

turning them into topological duals of each other. 
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Final Remarks 

In this hastily prepared paper we included certain ideas 

concerning c.a.o.s. measures that are already known in wider context. 

The authors are grateful to Prof.P.Masani for pointing out very 

rich bibliography on the subject which we unfortunately ignored 

while preparing this paper. 

Concerning connections with our previous works on generalized 

functions spaces the idea of a possibility of an introduction of 

"spectral trajectories" into the theory belongs to Prof.. Jan de Graaf. 

In our paper we used the notion of a pre-ring of subsets 

which seems to be too general for our goals. The reader should 

assume that all pre-rings in our paper are in fact rings of subsets. 

Also the idea of c.a.o.s. measures defined on such abstract 

spaces as spectra of C*-algebras needs more careful investigation. 
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