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Summagg

An orthogonally scattered measure is a Hilbert space valued set
function orthogonal on disjoint sets. It has been proved that a set
function p 1is an orthogonally scattered measure iff there exists
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(cf. the author's paper "On Gelfand Triples Originating from Algebras

of Unbounded Operators', EUT Report 84-~WSK-02)

Eindhoven, October 1984



Foreword

In the present etude we study Hilbert space valued measures defined
on the pre-ring of bounded Borel subsets of c”.

Although the justification for such a study arises from our attempt
to describe certain inductive limits of Hilbert spaces in terms of so
called spectral trajectories, we have found the pregented results
interesting for their own sake; For this reason the paper contains
mostly an expository material and results which are not of an immediate
use for the further investigation. On the other hand the methods and
topics presented here seem to be rather simple and perhaps likely
to infer from well known results of P;Masani and others . Thus we

address our paper to those who know the subject better.



1. C.A.0.8. Measures

Considering the spaces and T (cf. [ EcK] ,[EK] )

S o) ®(a)
we notice that they can be embedded into so called spaces of spectral
trajectories. If E is the joint spectral measure for a family of
mutually commuting self-adjoint operators A ={ A], AZ’ ey An} and
z n is the family of all bounded Borel subsets of ¢® then a function

I 3A — u( A ) € H is called "a spectral trajectory" with

n

I? A 2 € z n

the gemerating spectral measure E" if for each A
E( A1 ) U(Az) = u ( A1ﬂA2)
Thus the function u must be necessarily orthogonally scattered

( o.s. ) , i.e. for each Al , A 9 € X n such that A 10 A 9 = ¢

w(a ) L w (4, . In this way we arrived to the well known concept

of orthogonally scattered measures on a pre-ring . We notice also

that the functions W are countably additive ( c.a. ) on disjoint sets

i.e. 1if { ﬁi } €1 © z L is such that A iﬂ A ; = ¢ for

i#3j and . A . € X _ N
:E I i n then u (ig 1 A : ) = §€I u (A i

where the series is convergent in norm in the Hilbert space H.

We give here the precise definition:

1.1 Definition ([M 1])
Let H be a Hilbert space and I be a pre-ring of subsets of

a space A . Then a set function Z 3 A » u (A)E H 1is

called:
i) a countably additive measure (c.a.m.) on £ if for any countable
family { A i} ie1 of disjoint sets, such that A : €z ,
,g 4 € ,Tu(A.)Y= yu(UA . , where the series converges
1€l . 1 . 1

i €1 1€l

in norm in H ( unconditionally) .



ii)  a countably additive orthogonally scattered measure (c.a.o.s.m.)

if u 1is countably additive and for each pair of disjoint sets

A 1 A 2€ Z p (A I) 1 v (A 2) .

We notice here that any linear combination of c.a. measures is
again a c.a. measure. This is obviously not true for the case of c.a.o.s.
measures. However, if for two measures u and v , which are c.a.o.s.,
the measures py + v and u S AV are c.a.o.s., then every linear
combination of pyand v is a c.a.o.s.m. too. This leads to the

following notion of compatibility.

1.2 Definition
Let X be a pre-ring and u , v be a couple of c.a.o.s. mesures
on X . We say that p and v are compatible if for each A 1 A 2€ z

such that A i n A 5 = ¢, u(A 1) L v (A 2) .

1.2, Ptoposition

Let p and v be a couple of c.a.o.s. measures on a pre-ring
z , with values in a Hilbert space H. Then the following conditions
are equivalent:
i) ¥ and V are compatible,
ii) for each a , 8 €C1 the c.a. measure aﬁ + By 1s 0.s.,

ii) the c.a. measures p + 7Zv , H + Vv are o.s..

Proof:

i) = ii) = iii) is trivial.
iii) = i) Let A],AZGZ and Alﬂ A2 = ¢ .

Then because ¥ + Zv  is o.s. we have:



il

CuCa) 1 v(a

[2]
Nt
f—

[]

(v(ap uCa,)

Similarly for y + v  we have:

-(u(AI)!v(A (v (AI)Yu(AZ))-

b2
-~
-
0

Hence ( u( Al) l

<
]
[

(8,))

1.4. Corollary

If c.a.o.s. measures y and v are compatible then all their linear

combinations are mutually compatible c.a.o.s. measures.

Considering again the spectral measure E on I o We can produce a
family of mutually compatible c.a.o.s. measures just taking.px(é)= E(A )x,
where x € H and A€ T o Thus a natural question arises how general
is this example. To study this problem we invented the notion of maximal
set of mutually compatible measures We say that a linear manifold ¥ of
(mutually compatible) c.a.o.s. measures is maximal if any c.a.o.s.m.
on I which is compatible with all elements of ¥ belongs to &N .

It is clear that such a manifold ¥ is a maximal element in the family
of all linear spaces of mutually compatible c.a.o.s. measures on X ,
ordered by the set inclusion. We are going to associate with any maximal
manifold N  certain spectral measure on X , which is generating
for all elements of & . Let us define the following linear subspaces
of H , for each A €% putting:

(1.5.) mCA) = {yu (a)uwewnw}



1.6 Proposition

Let J be a maximal family of mutually compatible c.a.o.s. measures
on a (pre-)ring £ . Let N (A) be as in (1.5).

Thené
i) N (A ) is a closed linear subspace of H.
ii) TFor any A ; A€ Y, A'cA ,wehave N (A') < N (A ).
iii) Um( A) is a dense linear subspace of H .

AEY

Proof:

It is clear that for each AEY  the set ¥ (A) is a linear

subspace of H.

i) Let x € y( A ) and let { n} N < N be such a sequence
in §y that py (A) > X in H. Let A'eA , A' E€EEZ ,
n n - o

then we have the following orthogonal decomposition for each n € N:

mp(AY = u _(&a') + y _(a'),
2 1

Observe that themap Z 2A - || ¢ (A )| € R < (1.7)
is a c.a. R1~va1ued measure on L for each c.a.o.s.m. y . Hence,
denoting A" = ANAY , for each m,n € N we have:
- v 2o 'y - ' 2
how CA) pp(an m= o w CAY) LGN +
2
"y 1"
+ |l un( a") U m( A™ T,

In this way we see that there exist elements of H

xAl = %i’[_&m un( A')s XA" = 1];‘3;% u n(A ")
such that X = X, ot X,
Observe that x R N( A") and Xy L ( A' ), hence

(x X 00 ) = lm Cx oy fu (A" ) = 0, de. x4l Xn o



Let us consider the map:

I 3A - u (AY) = € H.

NN

This map is a finitely additive o.s. measure on X

On the other hand the map:

T3A sy (A |1 2

is the pointwise limit of c.a. measures ||y n( AR 2 , thus by the
Vitali- Hahn- Saks theorem it is coutably additive ( [DS] Part 1, IV 10.5
p.321). It is easy to observe that any o.s. measure p 1is c.a. iff

e C.) ||2 is c.a. Hence yu 1is a c.a.o.s.m. on X

Now let vEN , A A €x, A .NA =0 .

1? 2 1 2
Then we have ( u ( A 1) | v ( AZ) ) = lim (u n( A NA Yl v (A 2) ) = 0.
It means that y is compatible with all elements of ¥ and by the

maximality of ¥ we have y € § , i.e. x€ N (A)

ii) Let A' <A , A', A''€X . Then the formula:

UA'(A")i u ( A'ﬂL’\." )

gives a c.a.o.s.m. for each y € N . It is obvious that Al €EN

and hence N (AY) = { p (ANA"Y) =y A,( A) :u €N }N(A)

iii)  Because the family X 1is directed by set inclusion we see

that in virtue of ii) the set U ¥ (A) is a linear subspace of H.
AEY 1
Now suppose that x€ (U Ny (A)) and x # 0.
AEY
Put v (A) = ¥ A(A )x for some A € A . Then v is a c.a.0.s.m. on X
and it is compatible with all elements of ¥ . Hence v € ¥ . But
x= v{({Ar} €U N (A). This is a contradiction.
AEY



i.8 Corollary

For each c.a.o.s.m.  on the ring I n of all Dbounded

2

Borel subsets of C" the measure & a 34 -1y (a) 1l =1 p (A)

n * v *
extends to a Borel measure on C ( in general not finite).

Proof:

It is clear that [ 1is a positive finitely additive set function

z ., A, . . . =
on 0 Let 1 : } ie N = i o and let ;0 A 3 @, for
i # j. Suppose that the series £ u (A i) converges in H.
i=1 m
© 2 1 @© 2 . . .
© i=1 i=1 i=1
= I o (A i) . Hence we can extend p onto the whole of the o -algebra
i=1
of Borel subsets of C", putting p (A ) = ¥ p ( Ai) ( possibly = ),
i=1 @
for any Borel set A and where A , N A ;= g, i#i,A= U A i
i=1
AiE z .

It is clear that this definition does not depend on the choice of

{a;} i€ N and gives a countably additive set function, bounded on

. n
compact sets, i.e. a Borel measure on C .

1.9 Remark ([ M ] Theorem 1.8 )
If pu is an o.s. measure on a pre-ring ¥ then the set function:
IT3A - p(A) :=1lnu(A) 1!2

is countably additive iff y  is countably additive.

Now we are ready to reconstruct a generating spectral measure for

a given c.a.0.s. measure.



1.10 Proposition
Let be a c.a.o.s.m. on the pre-ring of bounded Borel
subsets of Cn, z - Then there exists a spectral measure E on ct
such that:
i) TFor each A ,A' € Zn
ECAY u (A)=u (AanaA).
ii) If u 1is bounded, i.e. if 3 c € Rl, c>0 VAE Zn!!u (Al = c,
then there exists x € H such that VA € X n
w(a)= E(A)x and Il xIl < c.
iii) There exists a Borel function f, bounded on bounded Borel sets in
Cn, and there exists y € H, such that for each A€ T a’
p(A) = Jf(k)dE(A)y=:Au E(A) v,
ﬁhere by Au =Afnf( X ) dE( X ) we denote the onerator , which is spectral

c
with respect to the measure E.

Proof:

Let N be any maximal family of compatible c.a.o.s. measures
containing u . Let E(A ), for A € Zn , be the orthogonal projection on
the subspace N( A ) in H. Clearly we have E ( A') < E(A ) for A'cA ,
and E( AUA' ) =E(A) + E(A'") forana' =¢, A LA EXn. Moreover,

because in this case N (A )Y L N ( A') so ECA ) E@A') = 0.

Let T be a Borel set. Then I' =U A ; for some disjoint family
i€N
{ Ai } {EN of bounded Borel subsets of C". The sequence of projections
m
Em = L E(A i) is increasing and bounded by 4 . Hence it tends strongly

i=1



to a projection, which we denote by E( T ). E( T ) does not depend on

the choice of the family { A .} . . Indeed, let T = Y A, = U AY,
17 e N ien ' qen *t
. = ' i P S
Then taking Aij AN Aj , we have got the family { A iJ} i,jeN
of disjoint sets in Zn, such that T = U Ai' and
n m ok i,jeN “k
1ém I E( Ai) = %}E i§1 'El E( Aij) = ltm 'i] E( Aj) .
i=1 - J= J

In this way we have constructed the spectral measure E on Cn, such
that for each x € H the measure A - || E( A )II 2 is Borel
(cf.Corollary 1.8).
i) Let E be the spectral measure constructed above and let A ,A'EZn.
Then  E(A") uw (A) =E(AN(u (AN A)+u (ANAY) =

= E(A'") w (AN A) =u (ANA')Y since N (A0 A" N(CAY).

ii) Consider the net of vectors {uCa)} , where the family

A€ Zn
Zn is directed by the set inclusion : A > A' iff A'cA .

Because the net { u( A )} is uniformly bounded by c, thus

A€ X a
it has weak cluster points. Let x€ H, with!| x|| < ¢, be a cluster point
of the net . Let A € Zn , 2€H and € > 0 be arbitrary. Then there
exists A' € Zn , A' > A , such that

| (ECAYz | x- p(AY)]| <e¢

It follows that:

[Cz TECA) x- u(A)) | =]CECA) z 1 x-u (A +u (A'~NA D] <
= | C(ECA)Yz | x=- u (A"))] + | (z!E(A)pw @'~A)] <«
Because € and z were arbitrary we have u (A ) = E(A) x .
iii) We assume mnow that u 1is  unbounded . Then

. . N
we can easily construct such a sequence { A m}c z n of subsets in C
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. - on -
that mEJAm-C, AN Ak-—@ for m # k,
for each me N u (A m) # O and for each A € Zn there exists
m
m0 € N such that A Uo A o "
m=1
Let us denote r, = [y (A m)H » € = max (m, rm) and put
@ 1
m=] c T
m m
1 2 1
Because T —TZHp(A )112 =1l v !l < % —— <o
m = 2
m=] c r m=1 m
m m
we have y € H,
Now we define the function £ on C" by:
f(r)=cr for AEA .,
mm m
It is clear that f is Berel and bounded on elements of X 0
m
For each A € Zn we have A «© u° A o for some mo€ N.
me= ]
Thus
Ty
u(a)= 2 cmrm/cmrm u(AﬂAm)=If(}\)dE(7\)y.
m=1 A
The operator An = fnf( X ) dE( ) 1is ess.s.a. with the domain D (A u)
c
containing the set U E(ADJH .
AEgE X

n



-1} -

1.11 Proposition

A set of c.a., H=-valued measures ¥ on Zn is a maximal family
of mutually compatible c.a.o.s, measures eon Zn if and only if there
. . n . . .
exists a ( unique ) spectral measure E on C , which is generating for

all elements of N .

Proof:

The existence of a measure E and its uniqueness follows from the
previous result (cf.1.10).

Let us prove now that for a given spectral measure E on c® the set

Gy of all spectral trajectories generated by E , i.e.:

6 = tx Ip:iz > B E(A)u(AT)=n(ana )}
is a maximal family of mutually compatible c.a.o.s. measures. Obviously
elements of GE are c.a.0.s. measures. Their compatibility follows directly
from ‘the properties of the spectral measure E. The maximality of
GE remains to be nroved.

Let v be a c.a.o.s.m. compatible with all elements of Cp- Then

there exists a spectral measure F which is generating for v and all

elements of GE . If A ,A'E Zn’ then for each u € Cp

F(A")Y w (&) =p(ANA")Y = E(A"Y) p (A).
Thus F( A') = E( A') on the dense set AgZ E(ADH in H. Hence
: n
F= Eand v 1is a spectral trajectory with the generating measure E,

i.e. v € GE' Hence N = GE.
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The compatibility relation between c.a.o.s. measures leads to
the existence of a common generating spectral measure on a given (pre)-ting
of subsets of a set A ., We are interested however which relation between
c.a.o.s. measures provides spectral measures which only commute. Let us
consider the following example:

Let A and B be a couple of commuting normal operators with the
snactral measures EA and EB respectively, defined on CI. Let x,y€ H.

Put p (A) = E (A ) x, v(AY) = E (a') y for & , A' Borel subsets

of C]. Let E be the joint spectral measure for A and B , defined on Cz.

Then the c.a.o.s. measures: o (A )= E(A)x and v (A ) =E(R) y,
are "extensions" of y and Vv onto Cz. Observe that these extensions
are compatible , although u and v are not. We say in this situation that

the measures 1 and v are "weakly compatible". To be more precise we have

to define at first the notion of an extension of c.a.o.s.m.

1.12 Definition

Let g be a c.a.o.s.m. on Zn. Then a3 c.a.o.s.m. ? on the
. R n+m .
(pre)-ring Zn+m of (bounded) Borel sets in C is called an
. + .
extension of pu onto CO O (onto zn+m) if:

i) vaAt € X o the map
I 3 A - u(AxA')=:uA.(A)

is a c.a.o.s.m. compatible with u .,

ii) For any increasing family { A&} cx o such that U A& ="
o
the net { Hat (A )} ={Y ( Ax A&)} tends to u (A ) inH

for each A€ Xn.



- 3 -

Our example of weakly compatible c.a.o.s. measures was based on
bounded extensions, constructed via extensions of the spectral measures.

We will show now that the general construction is essentially the same.

1.13  Proposition

n

Let y be a c.a.o.s.,m., on ¥ in C° and let §{ be an extension

n

I+ . n
of yu onto ¢™™™. Then there exist spectral meagures E and F on C

and C" respectively which commute and, for any A , Bys B € X s

A;,

Aé g Zm , the following holds:
ECap w € a) = uw(pnay
FOA'™ DY (A xa) =% (ax A} nab.
Moreover the measure (A x A') = E(A) F(A"Y, A€ I A €T,

' n+m . ~
can be extended to a spectral measure on C , generating for 1y

Proof:

Let b3 n3A epA'( A )?= % (A x A') be a c.a.o.s.m. on I, s
defined for every A' € ¥ o

The family { uA'}>A'e§m consits of mutually compatible c.a.o.s.
measures, which are also compatible with the measure 1y . Hence there
exists a spectral measure Eo on Cn, generating for all Mpy A'Ex,
and ¢ .

Consider now the family of c.a.o.s. measures {v on

7 { A}AGZn > n

defined by:

VA(A' ) = W (Axat ), for A' € e

Since they are mutually compatible, we can find a spectral measure Fo on Cm,

generating for all Ve »BE Zn.
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Let
(1.14) SE = closed linear span { n( A ):thn+m }
It is easy to see that the spectral mesures Eo’ Fo commute on Sg, which
is also a reducing subspace for them. Thus we can find spectral measures
E and F which coincide with E_ and Foi on ng and fulfil demanded conditioms.
The measure E; defined on an z n by:

E(AxA') = E(A) F(A", for A€T , A'€L,

gives rise to the spectral measure on cm (cf. [BVS]).

1.15 Corollary
Let 1§ be an extension of u onto cm,
i) If u 1is bounded with resmect to ¥ » then there exist spectral
measures E and F on C" and C" respectively , such that:
E is generating for u , F and E ~ commute , and
T (AXxA'") =F(A'"Y) u (A) , for 2T, A'EX .
ii) If both py and i are bounded we may choose E and F in such

a way that:

T (A xAY

ECA) F('A'Y) x

and u(a) ECA) x,

for all A€ Zn,A'EZ o and some x€ H.

Now we can define the weak compatibility relation between two c.a.o.s.

measures.
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1.16 Definition

We say that a c.a.o.s.m. u on ¢ (= n) is weakly

compatible with a c.a.o.s.m. Vv on c® ( Zm) if there exist their
. "~ ~ n-l»m ~ " .
extensions u and v on C , such that u 1is compatible
. ~ + + .
with v et s where  the map t " s "M s
nm nm
defined by: tnm( g],g grenes €n+m) = ( €n+l’ €n+2"'°’ gn+m’g1"'€n) .

Suppose now that there exist mutually commuting generating spectral

measures for a couple of c.a.o.s., measures u and Vv . Then the

extensions: 3 (AaxA'Y) = F(AY u (A)
and V(A'xA) = ECA) v (A"
are compatible c.a.o.s. measures on Cn+m’ which are in a sense product

measures . Thus it turns out that the measures u and v are weakly
compatible. Moreover we will show that this construction of extensions

is always possible for weakly compatible pairs of c.a.o.s. measures.

1.17 Proposition

A T m
Let u and v be weakly compatible c.a.o.s. measures on C and C .
. n m .
Then there exist on C and C respectively spectral measures Eu , Ev
generating for p, v, which commute.Moreover the extension u and v of the
. . ~ n+m
measures |t and Vv admit a common generating spectral measure E on C 7,

such that E(Ax CH = E (&) and E( c™x A" = E,(A'), for all

A€EX and A' € L .
n m

Proof:

Let us consider the family of c.a.o.s. measures defined on X n
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z em ' 1
by n 3A vA,( A) :=v ( A'xA ), where A' € Zm. The measures vA,

are mutually compatible and they are also compatible with the measure u.

Moreover , if we define measures on z n by

uAt
EHB A uA,( A) := U ( AxA' ) we obtain a comnatible family of

c.a.o.s. measures { Mot > Vars

generating spectral measure Eu on C". Similarly we construct

u s A'€ Zm} that admits a common

the measure Ev . We have then:

for each A, AI’ Ak ¥ , A, A},

T (A N oA

1
n A2€ Zm

r~

Eu( AI) u ( ﬁzxA’ )

1t

*8" )

e ' - 1
EU( AI) v ( A xAZ ) v (A xA] ﬂA2 )
1y 1 - 1 1
Ev( A]) u ( Ax A2 ) w ( Ax Alﬂ A2 )
1y o 1 A H T
Ev( ﬁl) v ( AZXA Y= v ( Afﬂ AZXA )

The measures Euand Ev can be chosen to commute,Then extending the
measure I x I3 AxA' > E (AJE(A) onto c™™ e obtain the

desired measure E .

1.18 Remark

As an easy consequence of Proposition 1.17 and 1.10 we obtain for
any couple of weakly compatible c.a.o.s. measures their description by
means of two ess.s.a. operators A and B , which strongly commute and the
measures are expressed by the formula : 1 (A ) = A Eu( A) x,

v (A') =B Ev( A') vy, for some x,y€ H and all A € P A’EZm.
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In éuantum mechanics we consider maximal systems of mutually
commuting observables. To each maximal system we ascribe a spectral
measure E on the joint spectrum of the considered observables. Next we
can use the measure E #n the construction of a family of mutually
weakly compatible c.a.o.s. measures on the spectrum. An interesting
question is how to reverse this construction, i.e. how to reconstruct
a maximal set of observables starting from a given family of c.a.o.s.
measures. It appears however that the joint spectral measure of a
maximal system of observables necessarily has the property of
non—extendibility defined below. Obviously mnot all spectral measures
have this property and thus we must impose extra assumptions on an
initial family of c.a.o.s. measures. In general spectra of C*-algebras
of observables need not be embedded into finite dimensional complex
space. This leads to difficulties in a generalization of our theory
for systems of infinite number of commuting observables. Thus we
restrict ourselves to the finite dimensional case.

At first let us consider an example of a maximal system consisting
of two observables A and B. Let their spectral measures be EA and EB
respectively. Their values on Borel subsets of C} belong to the
von Neumann algebra generated by A and B, W*(A,B,1) = { A,B }".

By the assumption this algebra is maximal abelian. In particular ,

if E is any spectral measure defined on Cn, commuting with EA and EB,
its values must belong to W*(A,B,I).r Let Ac C" be a Borel set. Then
E(A) = ¥ O dE( A ) , where £ = E, - E_ is the joint spectral

2 T X A B
measure for the operators A and B and A is such a Borel subset of c” that

its characteristic function N is the Gelfand transform of the
projection E( & ). The relation A = A extends to a o-morphism from

Borel subsets of Cn into Borel subsets of Cz, say ¢ @ B(Cn) - B(CZ),
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2

such that ¢(Cn) = " and for each A € B(Cn) E(A) = E( o A ).

In such a situation we say that the spectral measure E has no non-trivial

. n
extensions onto C .

1.19 Definition
A spectral measure E defined on a Lebesgue space A  ( cf.[ BVS ]
[ R1) is called non-extendible if for any n€ N and each spectral measure
Fon AxC", such that F(A x C") = E(A) for all A€ B( A ), there
exists a o-set- morphism ¢ : B (Cn) -+ B ( A), such that ¢ ( ¢t Y = A
and for all A€ B(A), A, €B( c™
(1.20) F( Alx A 2) = E( Al ne (A 2)).

In other words E has only trivial extensions .

For a given c.a.o.s.m. in general there may be many génerating snectral
measures. Thus a notion of non-extendibility cannot be properly
defined for an individual c.a.o.s.m.However it is possible for families

of c.a.0.s8. measures.

1.21 Definition

A family ¥ of c.a.o.s. measures on a (pfe)-ring of subsets of the
space A s Z , i8 called non-~extendible iff:
i) There exists a unique spectral measure E on A generating for all
elements of ¥ ,
ii) For any x€ H the measure space ( A , o( X ),I1E{ +) xllz) is
a Lebesgue space.

iii) E is a non-extendible spectral measure.
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Usually we assume that A = c". Then we have a canonical
correspondence between non—extendible families of c.a.o.s. measures
and maximal systems of n mutually commuting observables, described
above.

We observe also that a non-extendible family of c.a.o.s. measures
must be necessarily maximal.

To deal with families of c.a.o.s. measures which are merely weakly
compatible we must introduce a notion of common extension of a family
of measures. At first we denote by £ ( X ) the set all c.a.o.s.

measures on a (pre)-ring I of subsets of a space X.

1.22  Definition

Let M be a family of c.a.o0.s. measures on a pre-ring L of
subsets of a space A . We say that the family M admits a common
extension onto A x CU , for some n€ N, if there exists a map

Y+ M -

tny

( A xc™

such that:

i) YV p€ENM ¥ {( u ) is an extension of u onto A x c™.

ii) The set ¥ (¥ ) is a compatible family of c.a.o.s. measures

on A x Cn.

1.23 Definition
We say that an extension ; of a c.a.o0.s. measure 3 on a space
n . . . . . .
A onto the space Ax C is trivial if there exists a c-set-morphism
¢ ¢+ I n - I .

T (AxA" )Y =u( AN (AY) .

such that ¢ (C) = A and for each A'€ T_,A€T
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A simple result follows.

1.24 Proposition
A family M of c.a.o.s. measures on the pre-ring Zm of
bounded Borel subsets of C" is non-extendible iff it is maximal compatible

and admits only trivial common extensions.

1.25 Corollarz

There is a canonical correspondence between maximal systems of
n mutually (strongly) commuting normal operators in H and families

. oD . ex .
of c.a.o.s. measures in C having none but trivial common extensions.

We say that a c.a.o.s.m. v is basic or cyclic if the set

{v (A ) :A€EZT} is total in H .

1.26 Remark

i) There exists only one generating spectral measure for a basic
c.a.o.s.m.

ii) For any basic c.a.o.s.m. v there is the unique maximal

family of compatible c.a.o.s. measures containing v .

1.27 Proposition

. . . n
Let ¥ be a maximal family of compatible c.a.o.s. measures on C .

Then N contains a basic measure if and only if it is non-extendible.
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We notice now that elements of a family of c.a.o.s. measures
which admits common extensions are mutually weakly compatible. Thus we

arrived to the main result of this section.

1.28 Theorem

There is a canonical correspondence between maximal systems of
2n mutually commuting observables and non-extendible families of mutu-
ally  (weakly) compatible c.a.o.s. measures on the ring X n of

bounded Borel subsets of Cn.

Proof:

By Proposition 1.27 we may assume that we are given a basic measure
on Cn, say u . Let E be the unique generating spectral measure for a
non-extendible family of c.a.o.s. measures M containig y , defined

n

on C'. Let us consider the family of s.a. operatoers Ak’ k=1,2,...,2n,

defined by:

Ak = jn Re Ak dE( 2 ) for k= 1,2,...,n
C
A= -ifcn Im Ay dE( » ) for k =mn,...,2n.

The operators A, have the common dense domain ECA )H .

U
A€ Zn
The C*-algebra generated by operators 1, ( Ak -1 ) -1 will be
denoted by 4 . We will show that 4 is maximal abelian. By the Segal
theorem ( [T ], Theorem 5, Sect.5, [ Ma ] Ch.VIII, Sect. 4 Theorem 1 )
this is equivalent to the existence of of a cyclic vector. By
Proposition 1.10 the c.a.o.s.m.y is of the formy (A ) = AE(A) x

for some =x€ H and Where A isan ess.s.a. operator affiliated with the

von Neumann alfebra W*( E ) generated by the spectral projections E(A ).
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Clearly E( A') AE(A ) = AE(A'NA ) for all A,A'€Zn. Moreover
AE(A) € W(E).

We will show that the vector x is a cyclic vector for 4 .
At first we show that this vector is cyclic for W¥( E ). Indeed , the

linear span of the set{ A E( A ) x

.

AE Zn} is dense in H, so must be
the set W¥( E ) x . Thus W*¥( E ) is a maximal abelian C*algebra.

Clearly 4 « W¥( E ). ﬂ;t UEA! and let U x = 0. Since U commutes
with all ( Ak -1 )—1, it commutes with the spectral measure E .
Thus U € W*( E )’ and it follows that U = 0. It follows that % is
separating for A" ([ T 1).In particular it means that x is cyelic for 4 .
In this way we have shown that { Ak}is a so called complete system of
observables since the algebra4 is a maximal abelian C*~ algebra,
generated by n normal generators ( or Zn s.a.).

To prove the converse stétement it is enough to take as a family
of c.a.o.s. measures ) the unique maximal family of compatible
c.a.0.s. measures containing the c.a.o.s.m.defined by:

I 34 - E(A)w

where E is the joint spectral measure of a given family of observables

and  1is the cyclic vector associated with them.

1.29, Corollary

There is a canonical correspondence between basic c.a.o.s.

n .
measures on € and maximal systems of 2n stronglv commuting observables

(possibly unbounded).
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2. Duality

Let N be a maximal famiiy of mutually compatible c.a.o.s.
measures on g ring X of subsets of A . Let §I-|!Adenote the
seminorm on ¥ , defined by]|| u]lA= I Hua)y I!H,u € N.

Let T be the l.c. topology generated by these seminorms on N .

2.1 Proposition

The l.c. topological vector space ( N ,t ) is a projective

limit of the family of Hilbert spaces N( A ), with the system of

projections given by: WNTE N (A) - ©N(A'), where for py€¥ and A'c A
LININ u( A) = E(A')py (A)= yu (A') , and where E is the spectral

measure associated with W

opr - the projective limit topology on N 1is defined as the
weakest 1l.c. topology for which all projections My * N - N (A)
defined by N 3 uné w(A)EN (A) are still continuous. From this

it follows that T 1is stronger than o

On the other hand let f: N be a null net with respect

{ua}a€

to Gpr topolgy. For each projection LY\ A€ X , the net AR, My (A)
tends to 0 in N( A ). Hence ua»~0 in the topology 7t . Thus O r

is equivalent to 1 .

2.2. Corollary
Each family N which is maximal with respect to the set-inclusion
of families of mutually compatible c.a.o.s. measures, when endowed

with the topology 1t is a complete 1l.c. topological vector space.
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2.3. Proposition

Let N be a maximal family of mutually compatible c.a.o.s.
measures on a pre-ring % . Then ¥ endowed with the topology Oor
of projective 1limit of the family N( A ) ,A € I, is a complete,

barreled, reflexive, Mackey l.c. topological vector space.

Proof:

The completeness follows from general properties of projective
limits of complete spaces. Similarly N 1is semi-reflexive as a
projective limit of Hilbert spaces.

To show the reflexivity we should prove that ¥ 1is infra-barreled,
i.e. every convex, circled, closed subset of ¥ , absorbing all bounded
sets in N 1is a neighborhood of O,

Let U be such a barrel absorbing all bounded sets in § .
Suppose at the contrary that U does not contain any neighborhood
of 0 in ¥ , in particular , that there exists a sequence of elements

of ¥ , say { A, } i ¢ y° Such that U n w{( Ai) #  N( Ai) for

€
infinitely many indices. In the projective topology of L ( Ai)
the set un U Ny (A i) is not a neighborhood of O andlit does
not absorb all boinded sets in q y ( Ai) . This yields a contra-
diction since the projective topolog; in ¥ ( Ai) is induced by the
topology of ¥ . *

By the Theorem 5.6. and Corollary 5.3 Ch. IV ‘Sect. 5 in [Sch]
N is reflexive. By the way we infer that V¥ is barreled. Again

following [Sch] we see that N is Mackey.
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2.4, Corollary

The strong dual of the space ( N, Opr ), Né,is a reflexive,

barreled, Mackey space,

We will show now that the strong dual of N has also a nice
representation which connects our present approach with our previous
theory of inductive~projective limits of Hilbert spaces (cf. [EGK] , [EK]).

Let E be the spectral measure associated with a maximal family

N  of compatible c.a.o.s. measures on a {(pre-) ring I

Let S=U E(A)H be the inductive limit of the family
ACY
E(A)H of Hilbert spaces. The family of embeddings is given by
the natural embeddings E( A ) Hc § . The topology Ting OO S

is the strongest l.c. topology in S for which all these embeddigns

are still continuous. Clearly S is a Hausdorff strict inductive limit.

2.5. Proposition

The inductive limit space S is a complete, reflexive, barreled,

bornological l.c. topological vector space.

Proof:
The result is just a quotation of 6.6 Ch, II Sect.6, 5.8 Ch.IV

Sect.6 and Corollary 1, 8.2 Ch.II Sect.9 of [Sch] .

2.6. Theorem
The spaces ¥ and S are in duality that makes them representations

of strong duals of each other.
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Proof:

The duality is defined as follows:
Let y €y, s € 8, Then
2.7)  <uls> = (xlu(a))y >
where s = E{( A ) x for some AEL, x € H.
The definition 2.7. does not depend on the decomposition of s

into the form E( A ) x . Indeed, let s = E(A) x = E(A') x'-=

EC ANA' ) x = E( ANA') x'. Then

o~

x| u(A Ny = (ECA) x| p(a)),= (E@ N A" x| ua nAT)) =

(ECAD x']y (AN = Cx' 1A, .

it

Hence the formula 2.7. gives a continuous embedding of § into Né and
of y into Sé . Because of the reflexivity these embeddings are equiva-
lent. We are going to show that actually they are equalities.

Let ¢ € Sé . Then its restriction to every E( A ) H is
a continuous linear functional on the Hilbert space N (A ) = E( A ) H.
Thus there exists a vector, say ¢( A ) € N(A ) , such that

C ¢Cadl wCad) < ¢| ECA) p>.

vCaA)
Because for every A,A' € ¥ we have EQA' ) ¢ (A) = ¢ (A'NA)

the function ¥ 3 A - ¢ (A ) € H is a spectral trajectory, i.e. it is
a c.a.o.s. compatible with all elements of X . Hence ¢ € ¥ and

Sé < § . Because this embedding is continuous we have eventually

= Sé and S = Né as l.c. topological vector spaces.

There are properties of spaces S and ¥ which can be easily

described in terms of the spectral measure E.
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2.8. Corollary
i) If the algebra W*( E( A ); A € £) is countably decomposable

then the space S 1is of the type (LF).
ii) TFor each A€EY E( A ) 1is finite dimensional iff the space

S 1is Montel. Then ¥ is Montel too.

Proof:

i) By the assumption there exists an at most countable sequence
of elements of I ,{ Ai} ieN such that V AEX 3 Ai€ T with the
property that E( A ) < E( Ai).

Thus it is easy to see that S is a strict inductive limit of the
sequence of Hilbert spaces E( Ai) H .

ii) The result follows from the fact that the unit ball is

compact only in a finitely dimensional Hilbert space.

If N is a family of c.a.o.s. measures on c" then for each
1 €N there exists an operator Au’ spectral with respect to E,and

a vector Xu€ H such that for every A€X u( A ) = Au ECA) X
(cf.Proposition 1.10).

Let © denote the collection of all overators obtained in this
way. Let @ = {E(A) : A€ZI}. Then, following the results of
[EK-2] we can prove that the inductive limit topology on S 1is given
by the family of seminorms S 3 s -» || Ls |], where L € otc (the strong
bicommutant of @ ). In particular it follows that the space S is
Hausdorff.

On the other hand it is easy to see that for each L €0°C the

measure L 3 A - LE(A ) x € H ,where x € H, belongs to § .
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Thus we have Qcccﬁ.

Let us consider the topology Toom SQ= S defined by means of

the family of seminorms S 3 s - ||lAsi! , A€ 0.

The topology 1, is stronger than T

2 ind’

On the other hand each set of the form:

Ta= {Hp g uA,X(A)=AE(A)x,H x [l 1}
is bounded in N . Let s € E(A ) H . Since || Asl| =sup |( Asl x)| =
I xfi<l
=sup |(u, CA)Is)I = supl<u |s >|
Hxll<] i u €T,

the topology T is weaker then the Mackey topology on Sp, i.e. weaker

than T Thus 1

ind . Thus we arrived to the following result:

o " Tind
2,9. Proposition

Let z be the ring of bounded Borel subsets of c®, ¥ be
a maximal family of mutually compatible measures, and let © be the
collection of spectral operators associated with § .

Then the strong tonology on the dual Né of ¥ 1is generated by
the family of seminorms

N' 3 s - I} A s |] where Age ©

This topology is equivalent to the inductive limit topology on

N, induced by the family of Hilbert spaces { N(A) : A€X} .

The following problem arises:

As we have seen in Proposition 1.10, all measures in N can be described
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by simply constructed operators A11 . The collection © consists
of apparently more operators than just { A‘J : uEN}.It would be desirable
to avoid the abundance of the elements of © in the description

- !
of the topology Tin in N'.

d
Obviously the Mackey topolgy in N'is stronger than the topology

of uniform convergence on (bounded) sets of the form:

T = {

A PALx ot MA Lx
H H y

for a fixed Ah€ e .

(A) =4 ECa) x, Ixllg 1)

On the other hand changing Ap we can enrich this topology
up to equivalence with Tind*
Let us consider now the particular case of a family N containing
a basic c.a.o.s. measure u . It has been mentioned before that in
such a case the von Neumann algebra W*( E( A ) ;AEY ) has a cyclic
vector and hence it is a maximal abelian C*-algebra. It is also clear

that the maximal family of compatible measures containing p is unique

as well as the associated spectral measure E . We have shown in

Proposition 1.18 in [EK-2] that the strong bicommutant 9%¢ of

the family © ={ E( A ) : A€ Xn} is monotonuously generated by
the von Neumann algebra W*( E( A ) A€En) . In such a case the

topology on Né is generated by a family of - finite Borel

functions in the following sense:
the seminorms of the form

Né?)s -’llénf(k)dE(A)sll

where f 1is a Borel function on Cn such that

vV AEX sup [f(A)]| < o
AEA

generate & l.c. topology on Né equivalent to the strong dual topology B.
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This simple situation may be modified if we take instead of
a maximal family of compatible measures some other family (smaller),
containing the basic measure u . Under certain conditions we will show
that the dual of this family can be represented in the form Sﬁ , for
some adequate generating family of operators & , commuting with the
spectral measure E .

Let us recall the definition of a generating family of operators.

2.10, Definition ([EK~2] Def.1,1.)

Let ® be a family of bounded operators in a Hilbert space H.
Then ® is called a generating family of operators if it has the
following properties:
i) Ya€®f 0<as< i1 ( positivity and boundedness)
ii) v a,b€ R ab = ba (commutativity)
iii) vV a,b,be® 3 c€R a<c and b<c¢ (directedness)

iv) Ya€R3IbeER a< bz (sub-semi~-group property)

For each 2 €R put aH = {ax | x € H }. aH becomes a Hilbert
space when endowed with the scalar product
(axlay) =(x@@ x| x(a) y)y

where r(a) is the right (hence left) supvort of a (cf. [8a] ).

2.11. Definition
By S‘R we denote the inductive limit of the family
{al : a€f } of Hilbert spaces defined above for the generating

family of operators ] .
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We can put S8, = U al with the l.c. topology defined

2t
aeR
as the strongest topology on Sﬁ for which all embeddings g,: al - SR
are still continuous. Sﬁ is Hausdorff for the embedding Sgc H is

continuous. We notice that for each a€ ® the map H 3 x - ax € Sﬁ
is continuous.

For a given generating family & of operators we will consider
the space Sﬁ as the dual of certain space of o.s. measures on the
spectrum A of the W¥-algebra generated by & . Known examples
of such a situation suggest that we must properly choose the (pre-) ring

£ of subsets of A . Thus nut

(2.12) £ = {A < A,A is a Borel set,3 a€ & ,3 c€ Rl, c>0 (r)< ca(ar)}

) Xp

where 3 is the Gelfand transform of the operator a considered as an

element of the C*¥-algebra W*( & ) generated by ® and 1 , XA is the
characteristic function of the set A .
)X is a ring of sets since & 1is directed and it is easy to see
that all Borel subsets of elements of ¥ belong to I .
Let E be the joint spectral measure of the family & . Let us

denote by SQ the inductive limit of Hilbert spaces { E( A ) H]AEZ}

introduced before. By the previous results each continuous linear
functional on SQ can be represented as a c.a.o.s.m. on the spectrum A
of W¥( & ). It follows from 2.12. that for each AEX there exists beR
such that b-1 E( A ) is bounded . Thus we have Sd: %R . Moreover
by the spectral theorem it is easy to see that SQ is dense in Sq
in the inductive limit topology. The embedding Sd: Sais continuous.
Indeed , each Hilbert space E( A ) H , A€L , is a subspace of

some Hilbert space bH , b€ K. Hence, if a set U 1is open in Sq
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then UN bH is open for each b€ & and thus U N E(A ) H is open for
each A €X. In this way we see that U ﬂSQ is open in the inductive
1imit topology in SQ .

Then it follows that S& c Sé , where the embedding is continuous
in the strong dual topologies. In particular it means that each
continuous linear functional on §g can be represented as a c.a.o.s.m.
on I . It is given by the (unique) extension of a c.a.o.s.m. to an

"integral" defined on elements of ®. This concept is explained by the

following lemma.

2.13. Lemma

Let 2€ Sé . Then there exists a c.a.o.s.m. u on Z such that for
each a€fl there exists a vector wu(a) € H with the properties:

1) V s € SR 2(s) = (u () x , where s = a x,

)H
i1) VAT E(A ) u(a) =aupu (A).

Proof:

For each a€ & the map H3x - %(a x) is continuous linear.
Thus there exists the vecter p(a) € H fulfilling 1i). On the other hand
L |SQ is continuous and hence can be represnted as a c.a.o.s.m.u on Xz .
We have then R( E(A)lax)=(u (A) | ax )H = ( pw( | ECA) x )H'
The last relation holds for all x € Hso E(A ) pu (@) =au (A),

since a is s.a.

u]
We call the element wu(a) of H an integral with respect to a
c.a.0.8.m. ¥ since it is an extension of a linear functional 2|S
9]
defined on " simple functions " S_ onto wider class of "functions" §

Q ®°
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2.14, Definition
Let & be a generating family of operators and u be a spectral
trajectory with respect to the spectral measure E associated with & .
Then 1y is called a &-bounded c.a.o.s.m. on I iff
for each a € & the c.a.0.5. measure L d2A=->au (A)€EH

is bounded. The set of ®-bounded c.a.o.s.measures is denoted by T, .

2.15. Remark

If a c.a.0.8.m. y 1is @&~bounded then for each a€ & there
exists the vector 1u(a) € H such that 2.13.ii) holds. Moreover
Iy (@l = supllap(a)l .

AET

The set Ta is a linear set consisting of mutually compatible
c.a.0.s. measures on the ring ¥ . Let us introduce in Iq a l.c. topology
generated by the family of seminorms:
(2.16.) Tﬂ3u - tuall =: lu Ha , where a € & .

Let us denote now the topological dual of Ta endowed with the

topology 2.16. by Té . We have the following algebraic result.

2,17, Theorem
The following dualities take place:

3 = ?
i) Sﬁ = T

®]
re L
ii) Sﬁ = Tﬁ
Proof:

At first we establish the notation.

< | >S denotes the duality between Sgand S ,< | >T duality between

Tg and Té . We will prove the existence of the following embeddings:



o, % By ., B
Sﬁ c 2ﬁ < %ﬁ and T, < s! <
and the relations:

(2.18.) a, « o, = id
(2.19.) «
(2.20.) BZ . Bl = id

(2.21.) B, - B, = id

i) At first we will show the existence of the embedding o -

For each s € SR we define a linear functional on the space T& by:

*

) <u Ial(s)>i= (u (@l x), where s = ax, a€ &, x € Hu€ Tq -
To see that this definition does not depend on the decomposition of s
put ax=a' x' =5, with a'€e 8 , x' € H,

Then for each A€X , (E(A)Yp @I x)= (apuy(a)l x) =

=(a'py(a) x'")=(E(A)Y u (a")! x') . Thus we have ( u (a)l x ) =

i

(uw(a")l x') forallpy€T,.
The continuity of the functional ( * ) follows from the estimation:

| <u [31(3 X)>T| = 1 (v @I =)I<h u@ = =1 wil 0 xl

o

To show the existence of the embedding o, we have to find out
a proper representation of every ¢ € Té in the space Sg .

Let ¢ € Té . By the continuity of ¢ and directedness of & we
can choose a€R such that for all u€ Tﬁ |w (udl < dl p “a , for
some constant ¢ > 0. We notice that if u,v€ T and r(a) v (A& ) =
=r(a) v (A) foreach A€X then @ (pu) =¢ (v ). Indeed:
we have | @ (p~v )| < el o~ v ”a =
= csupll ar{@(u (A)-v (ANl =0.

AEX

Observe that ¢ defines a continuous (bounded) linear functional a on the

linear manifold { u(a)| LET, } by O (u@)=0(u).
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® is well defined and bounded in the Hilbert space r(a) H in which
the set { u(a): uy € T“ } is dense. Thus we can represent © (hence @)
by a vector v € r(a) H such that for each y € Ty © (u (a)) =

= (v | u (a)). Now put

* % =

( ) 02( ©® ) ave€ S, .

Then we have:

for each y€ To © () = (v | @) =<ul a,(0) > .

To see that a, is well defined suppose that ¢ has two representants
of this form, i.e. that there exist a,a' € f and v,v' € H such that
@ (p)= (v | pa)) = (v'" 1 u(a")) for all € T - Because the

measures i, defined by I3A'> uA( A') = u ( ANA') belong to T for

R
any y € TB’ we have:
(v 1y @ )= CaviuCa) = (v ny (@) = (a2’ v'iu (a))
for all A€ I , and all f-bounded measures yu , in particular it
holds for all measures of the form I3A~» E(A ) y , vy € H. It follows
that av=a v

Now we will show the relations 2.18. and 2.19.

et ax=38€ Sﬁ and o, ¢ O (s) =by .Then for each u € %ﬁ
we have: (p @I x)=C(Cu M) y) . In virtue of Remark 2.15. we

have :
(ECA)Yp (@] x)=(ap (A) x)=(u(Aa)lax)=( p(A)I by)
Thus by =ax, i.e. 2.18. holds.
Let @ € ?é - Let us compute o, - 32( ©) = al(b y) , where
for each p€ Ta < | Q>T = (pu M) y). Then < al(b y) lu>, =

T
=(u® ly)=<uply >p+ Hemce  a, -Gz( ©)=¢ , i.e. 2.19. holds.
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In this way we proved the relation i), i.e. Sﬁ = T& .

ii) In virtue of the considerations preceding Lemma 2.13, every

element of the dual S& of S(R can be regarded as a c.a.o.s.m.

on the joint spectrum A of the family & . Let £ € Sé . We put:

(k% ) Bz( 2) =1y , where the existence of the c.a.o.s.m.
p  is established by Lemma 2.13. We will show that u€ T - For
this it is enough to notice that Fup hauy (Aa)l =
= s FECAY w@NI = I y@ll <

Now we will show the existence of By: Tg - S&
Let u€ Tﬁ . By Remark 2.15. there exists u (a) € H such that
VAL E(A)p(a) =ayu(A). Let B](u)bethelinear
functional defined on Sﬁ by:
(Fxkx ) < Bl( p)l s> =(u(a)l x) , where s=ax¢€ Sq >
with a€® and x € H.

As before we can show that this definition does not depend on
the decomposition of s into the form a x.

To show that Bi( p)E Sé we notice that the set:
U= {s€Sp| |<B,(u)dl s><17}isopen in S, . Indeed,

let b, b'€ R be such that b% <b.ThenvY y€EH,VAET

| CECA Y u® 1 y) | = [(vtucad vly)y| <

< 0 bpru(adnuntyn <uvhne®m yH b W (a) <
i

< 0 bEU N r®) oyl u®GY I .

So |<p,(udl s > =1lim| (ECA)u® | y) | <
A7 A
< I b% B w@®™) I led) v I

1 -
It means that ¥V bE R 3 £y> 0 ( < I PHuGHD ])

“b
such that { s € bH| || s “b < gy }Jec Un bH
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So U N bH is open in the Hilbert space bH thus U is open in
Sq - This proves continuity of the functional B]( u)on S .
In order to prove the relations 2.20. and 2.21. we can use
arguments similar to those in proving 2.18. and 2.19. Namely we
have:
For each u € T and all A €% ( ( BZ . Bl)( p)(a)l x) =
=<8 (u)IE(A) x> =(u(b)lx),so B, B (n)= u.
Now for any 12 € Sg - for all a x € Sg and A €ZX , we have
< Bl . 32( £) | aE(A)Y x> =(a Bz( LY(A)Y I x) =

=<2 |l aE(A)x >, so B 32( 2)Y= 2 .

1

2.22. Corollagz

The relations i) and ii) of Theorem 2.17. are adjoint to each
other in the sense that: V s € S&’ Vu € T& .

<ols) lw>, =<B(u)ls >

T
and V GE T} V4 €S}

8

< 2l a, (@) >S= <o IBZ( 2) >T .
2.23. Conjecture

The space Tp with the topology 2.16. is identical with the
projective limit of the family of normed spaces {Ta l a€ R } of
a-bounded c.a.o0.s.measures on the joint spectrum of the family & .
Under conditions similar to those imposed on ® in our paper [EK-2]
the dualities 2.17. yield reflexivity of the snaces Tg and  Sg

turning them into topological duals of each other.
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Final Remarks

In this hastily prepared paper we included certain ideas
concerning c.a.o.s. measures that are already known in wider context.
The authors are grateful to Prof.P.Masani for pointing out very
rich bibliography on the subject which we unfortunately ignored
while preparing this paper.

Concerning connections with our previous works on generalized
functions spaces the idea of a possibility of an introduction of
"spectral trajectories" into the theory belongs to Prof. Jan de Graaf.

In our paper we used the notion of a pre-ring of subsets ,
which seems to be tooc  general for our goals. The reader should
assume that all pre-rings in our paper are in fact rings of subsets.

Also the idea of c.a.o.s. measures defined on such abstract

spaces as spectra of C*~algebras needs more careful investigation.
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