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THE FULL DECOMPOSITION OF SEQUENTIAL MACHINES 
WITH 

THE OUTPUT BEHAVIOUR REALIZATION 

Lech J6twiak 

Group Digital Systems, Faculty of Electrical Engineering, 
Eindhoven University of Technology (The Netherlands) 

Abst:ract:-The control units of large digital systems can use up to 
80% of the entire hardware implementing the system. Therefore, it 
is very important to reduce the amount of hardware taken by the 
control unit and to simplify the design, implementation and 
verification process. In most cases, the control unit can be 
constructed as a sequential machine. so, the design of control 
units for digital systems leads to the fololowing practical 
problem: 

How to decompose a complex sequential machine into a number of 
simpler submachines in order to : simplify the design, 
implementation and verification process; make it possible to 
optimize separate sumachines, whereas it may be impossible to 
optimize directly the whole machine; make possible to implement 
the machine with existing building blocks. 

The decomposition theory of sequential machines aims to find 
answers to this question. For many years, decomposition of 
internal states of sequential machines was considered. However, 
together with the progress in LSI technology and the introduction 
of array logic into the design of sequential circuits, a real need 
arose for decomposition of not only the states of sequential 
machines but of inputs and outputs too, i.e. for full
decomposition. 

In this work, a general and unified classification of full
decompositions and formal definitions of different sorts of full
decompositions for Mealy and Moore machines are presented and 
some theorems about the existence of full-decompositions with the 
output behaviour realization are formulated and proved. This 
theorems constitute a theoretical basis for the practical 
decomposition algorithms and for the software system calculating 
different sorts of decomposition for sequential machines. 
Similar theorems for the case of full-decompositions with the 
state and output behaviour realization are available in [16]. 

Index Terms-Automata theory, decomposition, logic system design, 
sequential machines. 
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1. Introduction. 

Most of the architectures of todays composed digital systems 
implement Glushkov' s model of the information processing system. 

In these architectures, it is possible to distinguish two basic 
parts: 

- an operat:ive unit:, implementing tools for performing operations 
with the data, 

- a cont:rol unit:, implementing control algorithms of a given 
information processing system. 

A control unit, based on the status of the operative part and 

certain external signals, generates and sends the control signals 

to the operative unit in order to perform the given sequences of 
operations with the data in the operative part (Fig. 1.1). 

data in data out 
OPERATIVE UNIT 

status signals control signals 

control in control out 
CONTROL UNIT 

Fig. 1.1 The basic architecture of a composed digital system. 

The control units of large digital systems can angage up to 80% 

of the entire hardware implementing the system and, therefore, it 
is very important to reduce the amount of hardware used by the 
control unit and to simplify the design, implementation and 

verification process. 

In most cases, the control unit can be constructed as a 

sequential machine (a finite automaton). 

Reducing the amount of hardware neded for implementing a 
sequential machine is a very complicated process which can be 
carry into effect in a number of steps implementing some 

optimization algorithms.This steps inClude: 



3 

- the optimal state reduction, 
- the optimal state assignment, 

- the optimal choice of flip-fops, 

- minimization of the Boolean functions representing the next-

state and output functions of a sequential machine. 

However, the efficiency of these optimization algorithms 
(understood to be a function of such parameters as: the quality of 

the result, the computation time, the memory space used) 

decreases rapidly with the dimensions of a sequential machine. 

So, the design of control units for large digital systems can 

lead to the fololowing practical problem: 
How to decompose a complex sequential machine into a number of 

simpler submachines in order to obtain: 

- the better organization of the system and of the design, 

implementation and verification process, 

- the possibility of optimizing of the separate submachines, 

whereas it may be impossible to optimize the whole machine 

directly, 

- the possibility of implementing the machine with existing 

building blocks. 

The decomposition theory of sequential machines aims to find 
answers to this question. 

Research in the above mentioned field was started in the early 

Sixties (8)[9)[10)[20)[21). For many years, decomposition on 

internal states of sequential machines has been considered 
(4) (12) (17) (18) (19) (20) (21). However, together with the 
progress in LSI technology and the introduction of array logic 

(PAL, PGA, PLA, PLS) into the design of sequential circuits, a 

real need has arisen for decompositions not only of states of 

sequential machines, but of inputs and outputs too, i.e. for full
decompositions. 

An approach to the full-decomposition of sequential machines 

has been presented in (14) and (15). Among other things, the 

definitions and theorems concerning one parallel and two serial 

types of full-decompositions for Mealy machines were introduced. 

In (16), a general and unified classification "of full

decompositions is presented, formal definitions of different 
sorts of full-decompositions for Mealy and Moore machines were 
introduced and theorems about the existence of full
decompositions with the state and output behaviour realization 

were formulated and proved. 
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In this work, theorems about the existence of full-decompositions 
with the output behaviour realization will be formulated and 
proved. These theorems constitute the theoretical basis of the 

practical decomposition algorithms and the software system for 

calculating different sorts of decompositions of sequential 

machines. 

~ Full-decompositions and their sorts. 

DEFINITION ~ A sequential machine M is an algebraic system 

defined as follows: 
M = (I, S, 0, 3, q , 

where: 

I - a finite nonempty set of inputs, 

S - a finite nonempty set of internal states, 

o - a finite set of outputs, 

3 - the 

l the 

next state function, 3: SxI ~ S, 

output function, l: SxI ~ 0 (a Mealy machine) , 

or l: S ~ 0 (a Moore machine). 

If the output set 0 and the output function l are not defined, 
the sequential machine M = (I, S, 3) is called a state machine. 

The machine functions 3 and l can be considered to be sets of 
functions created for each input: 

a = {axl 3x: S ~ Sand XEI} 
and 

l = {lxl lx: S ~ 0 and xEI}, 
where ax:s ~ Sand lx:S ~ 0 are defined by: 

VXEI VSES axes) = 3(S,X), 

lx (s) = l(s,x). 
3x and lx , respectively, are called the next-state function 

and the output function with respect to the input x. 
In the next sections for 3 x (s) and l x (s) the notations s 3 x and 

Slx will be used. 
For xEI and Q ~ S two partial functions: 

ax: 2 s ~ 2 s and ~x: 2 s ~ 2° are defined, 

where: 
VXEI VQ~S Q3 x = {saxl SEQ}, Q~x = {slxl SEQ}. 
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For X.I and Q.S the following two partial functions are also 

defined: 

ax: 2 s ~ 2 s and lx: 2 s ~ 2°, 

where: 

Qa x = {sax 1 SfQ A XfX}, 

Q~x = {slx1 SfQ A XfX}. 

In this work, only simple decompositions (Le. decompositions 

with two component machines) will be taken into account and, 

therefore, the term "decomposition" is assumed to mean "simple 

decomposition". 

Let M = {I, S, 0, a, ~} be the machine to be decomposed and 

M1= {Ip Sp 01' 31' ~1} and M2= {I 2, S2' 02' 3 2 , ~2} be two 

partial machines. 

In a full-decomposition, it is necessary to find the partial 

machines Ml and M2 each having fewer states and/or outputs than 

machine M and/or each calculating its next states and outputs 

using only the part of information about the input of machine M 

and, in combination, forming a machine M'which imitate M from the 

input-output point of view. 

In a state-decomposition, it was necessary to find the 

machines Ml and M2 having only fewer internal states. Inputs and 

outputs needed not be decomposed. 

Before considering the different sorts of full-

decomposition, the definition of realization from (12) will be 

presented. 

DEFINITION 2.2 Machine M' = (I',S',O',a',~') rea~izes (is 

rea~izat;ion of) machine M = (I, S, 0, a , ~) if and on~y if the 

following relations exist: 

';: I ~ I' 
~:S~2So 

8: O'~ 0 

and this relations 

~(S)B''''IX) 
and 

or 

(a function), 

(a function into nonvoid subsets of S'), 

(a surjective partial function) , 

satisfy the following conditions: 

s; ~(S3x) 

(for a Mealy machine) 

s~ = 8(s'~') (for a Moore machine) 

for all SfS, S'f~(S) and xfI. 

Let 1* be a set of all the input sequences X1 X2 ... xn 
...... ..... ....... 

(n=O,l, .•. ), let x = x'x for x' fI and xfI and let ~ and 3 be the two 
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functions calculating the final output and the final state 

reached by a machine from the state s under the input sequence ~ : 
~ ~ ~ ~ ~ 

a: SxI * ~ s, ~ (s, x) = a ( a (s, x' ) , x) , 
~ ~ ~ 1 ~ 

~: SXI* ~ 0, ~(s,x) = ~(a(s,x'),x) (Mealy case), .... .. 
~(s,x) = ~(3(s,x» (Moore case). 

It can be proved that if M' is a realization of M in the sense of .. .. .. 
definition 2.1 then VSfS VS'f~(S) and VXfI* ~(s,x) = .. 
9(~'(s',~(x», i.e. for all possible input sequences outputs 

reached by machine M and its imitation M' are, after a renaming, 

identical. Due to this fact, a realization in the sense of 

definition 2.1 will be called by us: realization of the output 

behaviour. 

In some cases, not only the output changes of the machine are 

concerned but also the state changes. The full-decompositions 

with the realization of the state and output behaviour of 

sequential machines has been considered in [16] and their 

definition is only presented below: 

DEFINITION.l....2MachineM' = (I', S', 0', 3', ~'), realizes the 

state and output behaviour of machine M = (I, S, 0, 3, ~) if and 

only if the following relations exist: 

~: I ~ I' (a function), 

~: S'~ S (a surjective partial function) 

9: O'~ 0 (a surjective partial function) 

such that: 

~(s')3x = ~(S'3'~IX,) 
and 

~(s'PX = 9(S'~'~lx,) (for a Mealy machine) 

or 

~(s'P = 9(s'~') (for a Moore machine). 

The realization of state and output behaviour is a special case 

of the realization of output behaviour. If function ~ in 

definition 2.2 maps each state of M onto a single state of M' and ~ 

is a one-to-one function then definition 2.2 is equivalent to 

definition 2.3. 

Since, the partition concept has to be used for analyzing the 

information streams in a machine, a special case of realization 

will be considered for which function ~ maps each state of M onto a 

single state of M',i.e. ~:S ~ S'. 
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DEFINITION z...J. Machine M I = (I I ,8 I ,0 I , 3 I , ~ ') is a single-state 

output behaviour realization of machine M = (I,8,0,3,~) if and 

only if the following relations exist: 

"': I ~ I' (a function), 

~: 8 ~ 8 ' (a function), 

8: O'~ ° (a surjective partial function) , 

and this relations satisfy the following conditions: 

~(S)31"'IXI = ~(sax) 
and 

or 

s~ = 8(~(S)~I) 
for all SE8 and xEI. 

(for a Mealy machine) 

(for a Moore machine) 

8ince in this work only the single-state output behaviour 

realizations are considered, they will be called simply output 

behaviour realizations. 

In a full-decomposition with the output behaviour 

realization of sequential machine M, we have to find the partial 

machines MI and M2 as well as the mappings: 

"': I ~ IIxI2 , 

~: S ~ SlxS 2 , 

8: 0IX0 2 ~ ° , 

that the machines MI and M2 together with the mappings "', ~, 8 

realize the behaviour of a machine M. 

We will say that a full-decomposition is nontrivial if and only 

if: 

1111<111 1\ 1121<111 v 18 1 1<181 1\ 1821<181 v 1° 1 1<101 1\ 

1° 2 1<101, where Izl - number of elements in the set z. 
Decompositions can be classified according to the kind of 

connections between the component machines. 

In general, each of the component machines can use the 

information about the state or output of the other component 

machine in order to compute its own next state and output 

(Fig.3.1) • 
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r-----------------, 
I II °11 

I 
MI 

I 
I °l/SI I 

I' 
I 

°dS 2 
I 

0' 

I 
°2 

12 M2 I 

M' L _______ _ _ ______ J 

Fig 3.1 The information flow between the component machines in 

full-decomposition. 

From the point of view of the strength of the connections between 

the component machines, the following sorts of full

decompositions can be distinguished: 

(i) a parallel full-decomposit:ion - each of the component 

machines can calculate its own next states and outputs 
independently of the other component machine, based only on 
information about its own internal state and partial information 

about the inputs (Fig.3.2), 

(ii) a serial full-decomposit:ion - one of the component 

machines, called the tailor dependent machine (M 2 ), uses the 
information about the outputs or states of the second machine, 

called the head or independent machine (M I ), plus partial 

information about the inputs in order to calculate its own next 

states and outputs (Fig.3.3), 
(iii) a general full-decomposit:ion - each of the component 

machines uses information about the outputs or states of the other 

component machine and partial information about the inputs in 

order to calculate its own next states and outputs (Fig.3.4). 

The parallel full-decomposition and the serial full

decomposition can be treated as special cases of a general full

decomposition with zero information about one submachine used by 

another submachine. 
From the point of view of the sort of information about a given 
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submachine used by another submachine in order to calculate its 

next states and outputs, the following two types of full

decomposition can be distinguished: 

(i) a decomposition with information about the outputs, called 

type 0, 

(ii) a decomposition with information about the internal states, 

called type s. 
A given submachine can use the information about the "present" 

or the "next" state or output of the other submachine. So, the 

following two classes of full-decomposition occur: 

(i) class P - a decomposition with information about the present 

state or output, 

(ii) class N - a decomposition with information about the next 

state or output. 

From the classification above, it immediately follows that the 

following cases of full-decomposition are feasible: 

- one sort of parallel full-decomposition; 

- four sorts of serial full decomposition: PS, NS, PO, and NO 

- two sorts of general full-decomposition: PS, PO. 

r-----------------, 
I 11 0 1 I 
I 

M1 
I 

I <I e I 
I o 

I I 
I 

12 O2 
I M2 

M L _______ _ ________ J 

Fig 3.2 The parallel full-decomposition of a machine Minto 

component machines M1 and M2. 
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r-----------------, 
I 11 °1 I 

I 
M1 

I 

I .; Sd01 9 I 
I ° I I 

I 
12 °2 

I M2 

M L __ _ _____ J 

Fig 3.3 The serial full-decomposition of a machine Minto 

component machines M1 and M2. 

r-----------------, 
I 11 °1 I 
I 

M1 
I 

I .; °l/S l 9 I 
I 

I 
°dS 2 

I ° 
I 

12 °2 
I M2 

M L _______ _ 

Fig 3.4 The general full-decomposition of a machine Minto 

component machines M1 and M2 . 
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For a general full-decomposition, it is possible to have both 

the "pure" cases P8 and PO and the "mixture" of types 8 and 0 and 

classes P and N (the first submachine can use the information 

about the state of the second and the second about the output of 

the first and vice versa ; the first submachine can use the 

information about the present state/output of the second 

submachine and the second can use the information about the next 

state/output of the first) . In this report, "mixed" types are not 

considered because the definitions and theorems for them can be 

formulated easily as "mixtures" of the adequate definitions and 

theorems for the "pure" cases considered here. 

From the considerations above, it follows that full

decomposition can be characterized by the type of connection 

between the component machines. The formal definitions of all 

connection types considered in this work are given below. 

DEFINITION 2.5 A parallel connection of two machines: 

MI = (II' 81' 01' Sl, ~I) 

and 

is the machine: 

where: 

and 

or 

~*«S,t),(XI'X2» = pl(s,xd,~2(t,X2» 
(for Mealy machine) 

~*«s,t» = pl(s),A2(t» 

(for Moore machine) 

DEFINITION 2.6 A serial connection of type PS of two machines: 

MI = (II' 81' 01' 3 1 , ~I) 
and 

, 
for which 12 

is the machine 

where: 

s*«s,t),(xI'X2» = (3 1 (s,xd,S2(t,(s,x2))) 



and 

or 

12 

~*«S,t),(XI'X2» = pl(S,xtl,~2(t,(S,X2») 
(for a Mealy machine) 

~*«s,t» = pl(s),~2(t» 

(for a Moore machine). 

DEFINITION 2..2. A serial connec1:ion of 1:ype NS of two machines: 

MI = (II' SI' 01' ai, ~I) 
and 

, 
for which I2 

xs 
is the machine MI~ M2 = (IIXI2,SIXS2,0IX02,B*,~*) , 

where: 

and 

or 

~*«S,t),(XI'X2» = pl(s,xtl,~2(t,(al(s,xl),X2» 

(for a Mealy machine) 

~*«s,t» = pl(s),~2(t» 

(for a Moore machine) 

DEFINITION 2..J!. A serial connec1:ion of 1:ype PO of two machines: 

MI = (II' SI' 01' ai, ~I) 
and , 

Mz = (I z , , 
for which I2 = °lxI z , 

PO 
is the machine MI~ M2 = 
where: 

or 

a*«s,t),(XI'X 2 » = ca l (S,Xtl,5 z (t,(yl'x 2») 

~*«s,t),(Xl'xz» = pl(S,xtl,~2(t'(YI'X2») 

and YlfO I : YI is the present output of MI 

(the output of MI contemporary with the state s of MI ) 

(for a Mealy machine) 

a* «s,t), (xl'x 2» = cal (s,xtl, 52 (t, pi (s) ,x z»» 

~*«s,t» = pl(S),~2(t).) 
(for a Moore machine) 
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DEFINITION ~ A seria~ connection of type NO of two machines: 

M1 = (11' Sl' 01' a 1 , ~1) 
and 

, 
for which 12 

is the machine 

where: 

or 

a*«s,t),(xl'x2» = (a 1 (s,xtl,a 2 (t,p1(s,xtl,x2») 

~*«S,t),(Xl'X2» = p1(S,xtl,~2(t,p1(S,Xtl,X2») 
(for a Mealy machine) 

a*«s,t),(Xl'X2» = (31(s,xtl,a 2 (t,p1p1(s,X 1»,x2») 

~*«s,t» = p1(s),~2(t» 

(for a Moore machine) 

DEFINIl:ION 2.10 A genera~ connection of type PS of two 

machines 

and 

where: 

is the 

where: 

and 

or 

M1 = 
, 

(11 S 1 , ° 1 , a 1 , ~ 1 ) 

M2 = 
, 

(1 2 S 2 , °2 , a 2 , ~ 2 ) 

, , 
11 = S2 XI 1 12 = S1 xI 2 , 
machine: p s 

M1~ M2 = (I1XI2,S1XS2,01x02,a*,~*) 

a*«s,t),(xl'X 2» = (a 1 (s.(t,xtl),a 2 (t,(s,X2» 

~*( (s,t), (xl'x 2» = p1 (s, (t,x1», ~2 (t, (s,x 2» 

(for a Mealy machine) 

~*«s,t» = p1(s),~2(t» 
(for a Moore machine) 

DEFINITION 2.11 A genera~ connection of type PO of two 

machines: 

and 

where: 

is the 

where: 

, , 
11 = 02 xI 1 12 = 
machine: PO 

M1~ M2 = 

°1 xI 2 

(11 xl 2 , S 1 xS 2 ,0 1 xO 2 , a * , ~ *) , 

a*«s,t),(xl'x 2» = (31(s'(Y2,x 1»,a 2 (t,(yl'X2») 
~*«s,t),(Xl'X2» = p1(S'(Y2,X1»,~2(t'(Yl'X2») 
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and Y1E01 , Y2E02 (present outputs of M1 and M2) 

(for a Mealy machine) 

3*«s,t), (x ll x 2» = (31 (s, p2 (t) ,xd), 32 (t, p1 (s) ,x 2») 
~*«s,t» = p1(S),~2(t» 
(for a Moore machine) 

DEFINITION 2.12 The machine M1<J> M2 is a full decomposit:ion of 

t:ype <J> of machine M if and only if the connection of a given type 

<J> of machines M1 and M2 realizes M, 

where: 
<J> = II 

PS NS PO NO PS PO 
, --+ I --+ , --+ , --+ , H , H 

Each of the types of a full-decomposition defined above can be 

considered to be a full-decomposition with the realization of the 

output behaviour or a full-decomposition with the realization of 
the state and output behaviour. Full-decompositions with the 

state and output behaviour realization have been considered in 
[16). In the next paragraphs, the theorems concerning the 

existence of different types of a full- decomposition with the 

output behaviour realization will be formulated and proved. Only 

the proves for a Mealy machine are presented in the report, 

because those for a Moore machine are analogous. 

~ Partitions. partition pairs and partition trinities. 

The concepts of partitions and partition pairs introduced by 
Hartmanis [11)[12] and partition trinities introduced by Hou 

[14][15] are useful tools for analyzing the information flow in 
machines or between machines; therefore they were used in this 

work. 
Let S be any set of elements. 

DEFINITION 3.1 Partit:ion ~ on S is defined as follows: 

~ = (Bil Bi~S and Bi n Bj = 0 for i~j and U Bi = S), 

Le. a partition ~ on S is a set of disjoint subsets of S whose set 

union is S. 
For a given SES, the block of a partition ~ containing s is 

denoted as [S]~ and [s]~ = [tl~ is written to denote that sand t 



are in the same block of 1!. Similarly, the block of a partition 1! 

containing S',where S'~ S , is denoted by [S'J1!. 

A partition containing only one element of S in each block is 

called a zero partition and denoted by 1!s (0). A partition 

containing all the elements of S in one block is called an identity 

or one partition and is denoted by 1!s(I). 

Let 1!1 and 1!2 be two partitions on S. 

DEFINITION 3.2 Partition product 1! 1 .1! 2 is the partition on S such 

that [SJ1!I·1!2 = [t]1!I·1!2 if and only if [s]1!1 = [t]1!1 and [s]1!' = 

[t]1!2· 

DEFINITION 3.3 Partition sum 1! 1 +1!2 is the partition on S such that 

[s]1! 1 +1! 2 = [t]'It 1+'It 2 if and only if a sequence: 5=SO' sl' .•• , sn=t, 

sieS for i=l •• n , exists for which either 

[si]1!1 = [sl+I]1!1 either [sl]1!2 = [sl+IJ1!2' 0 ! i ! n-l. 

From the above defini tions, it follows that the blocks of 1! 1 .1! 2 

are obtained by intersecting the blocks of 1!1 and 1!2' while the 

blocks of 1! 1 +1! 2 are obtained by uniting all the blocks of 'It 1 and 1! 2 

which contain common elements. 

DEFINITION 3.4 1! 2 is greater than or equal to 1! 1: 1! 1 ! 1! 2 if and 

only if each block of 1!1 is included in a block of 1!2. 

Thus 'ltl 5 1!2 if and only if 1!1 ·1!2 = 1!1 if and only if 1!1+1!2 = 1!2. 

Let S1! be the set of all partitions on S. Since the relation 5 is 

a relation of partial ordering (i.e. it is reflexive, 

anti symmetric and transitive), (S1!' 5) is a partially ordered 

set. 

Let (Z, 5) be a partially ordered set and T be a subset of Z. 

DEFINITION 3.5 z, z eZ, is the least upper bound (WB) of T if and 

only if 

(i) VteT: z ! t , 

(ii) VteT: if z' ! t then z' ! z. 
z, z eZ, is the greatest lower bound (GLB) of T if and only if: 

(i) VteT: z 5 t, 

(ii) VteT: if z' 5 t then z, ! z. 

DEFINITION 3.6 A partially ordered set L = (Z, 5) , which has a LUB 

and a GLB for every pair of elements, is called a lattice. 
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It is evident that the set of all partitions on S together with 

the relation of a partial ordering ~ form a lattice with 

GLB(~I'~2) = ~1·~2 and LUB(~I'~2) = ~1+~2 . 
Let ~s' Ts' ~l' ~o be the partitions on M=(I, S, 0, W, l), in 

particular: ~s' Ts on S, ~l on I, ~o on o. 

DEFINITION 3.7 

(i) (~s,Ts) is an s-s partition pair if and only if 

VBE~S VXEI : B6 x ~ B', B'ETS • 

(ii) (~I'~S) is an I-5 partition pair if and only if 

(iv) (~l'~o) 

VAE~1 VSES : s6 A ~ B , BE~S 

is an 5-0 partition pair if 

VBE~S VXEI 
or 

VBE~S Bl ~ C , CE~O 
is an I-O partition pair if 

VAE~1 VSES : s lA ~ C , CE~O 
or 

VAE~1 VSES sl ~ C , CE~O 

and only if 

(Mealy case) 

(Moore case). 

and only if 

(Mealy case) 

(Moore case). 

The practical meaning of the notions introduced above is as 

follows: 

(~s , T s) is an S-S partition pair if and only if the blocks of ~ s 
are mapped by M into the blocks of Ts. Thus, if the block of ~s 
which contains the present state of the machine M is known and the 
present input of M too, it is possible to compute unambiguously 

the block of T s which contains the next state of M for the states 
from a given block of ~s and a given input. The interpretation of 

the notions of I-S, s-o and 1-0 partition pairs is similar. 

In the case of a Moore machine, the definition of an 1-0 pair is 

trivial, because each (~I'~S) satisfies it ( the output of M is 

defined by the state of M unambiguously). 

DEFINITION 3.8 Partition ~s has a substitution property (it is an 

SP-partition) if and only if (~s'~s) is an S-S pair. 

DEFINITION 3.9 Partition trinity T = (~l' ~ S , ~ 0) on the machine M = 
(I, S, 0, a, l) is an ordered triple of partitions on sets I, Sand 
0, respectively, which satisfies the following conditions: 

VAE~1 VBE~S : BaA ~ B', B'E~S and BlA ~ C , CE~O • 
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Thus, if ('If I ,'lfs' 'lfo) is a partition trinity on M and the block B 

of 'If s which contains the present state of M is known and the block A 

of 'lf l which contains the present input of M is known too, it is 

possible to compute unambiguously block B' of 'lfs that contains the 

next state of M and block C of 'If 0 that contains the output of M for 

the states from block B and inputs from block A. 

For completely spacified machines, it has been proved that 

('If I , 'If S ' 'If 0) is a partition trinity on M if and only if ('If s , 'If s) is an 

s-s pair, ('If I ,'lfs) is an I-S pair, ('lfs,'lfo) is an s-o pair and 

('If I ,'lfo) is an 1-0 pair on M [14][15]. 

It was shown in [14] that the set of trinities on a machine M 

forms a finite trinity lattice with 

GLB (T I' T 2) = T 10T 2 and LUB (T I' T 2) = T IIBT 2 , 

where 0 and IB are defined as a collection of pairwise operations 

"." and "+" for partitions of the same type (input,state,output) 

of trinities of TI and T2 • 

~ Parallel full-decomposition. 

THEOREM 4.1 A machine M = (I,S,O, ~,q has a nontrivial parallel 

full-decomposition with the realization of the output behaviour 

if two partition trinities on M: ('If I , 'If S , 'If 0) and (T I , T S , TO) exist 

and they satisfy the following conditions: 

(i) 'lfO·TO = 'lfo(O) , 

(it) I 'If I I < I I I " I T I I < I I I V I 'If S I < I S I "I T s I < I S I V I 'If 0 I < 101 "I TO I < I 0 I 

Proof (for the case of a Mealy machine) 

Let M I = ('If I' 'If S , 'If 0 ' a I , ~ I) and M 2 = (T I' T s , TO' ~ 2 , ~ 2) be two 

sequential machines satisfying the following conditions: 

(1) ('If I ,'lfs,'lfo) and (TI,Ts,To) satisfy the conditions of theorem 

4.1, 

(2) VB1f'lf s VA1f'lf l : B1~1~1 = [BU A d 'If S 

BHI~I = [BHu ] 'If I 

(3) VB2 ET S VA2ET I : B2 ~ 2 A2 = [B2 a A 2] T s 

B2~2A2 = [B2 ~ A 2] T I 

since ('If!, 'lfp 'lfo) is a partition trinity (1), B1B~1 is placed in 

just one block of 'If; and B1>:~ I in only one block of 'lfo • This means, 

that BlBIAI and B1~IAI are defined unambiguously. Similarly, 

since (TI,Ts,To)'is a partition trinity (1), B2a 2
A2 and B2~2A2 
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are defined unambiguously. So, each of the partial machines MI and 

M2 can calculate its next states and outputs unambiguously. 

Let ';: I--+ lI I XTI be an injective function, 

$: S--+ lIsXTs be an injective function, 

9 : 11 OXT 0--+ 0 be a surjective partial function 

and 

(4) .;ex) = ([Xjlll'[xjTI)' 

(5) $(s) = ([sjllp[sjTsl, 

(6) 9(Cl,C2) = C1nC2 if ClnC2 # a . 

It is proved below that the parallel connection of the machines 

MI and M2 defined above realizes a machine M. 

Since 1I0·To = 11 0 (0) (1) , 9 is a one-to-one function and for 

C1nC2#0 : 

(7) (Cl,C2) EO • 

Therefore, VSES VXEI 

$(sp*.;CX) = 

= ([Sjll p [Sj TsP*c Ixlll I ,IXIT I ) 

= ([Sjlls3IIXI1l ,[SjTs32IxIT ) 
I I 

- -
= ([[Sjlls3IXlllIlllp[[SJTs6IxITI1Ts) 

= ([s3 x111p [U x1T;) 

= $(S3 x ) 

and similary: 

9($(sp*.;CX) = 

= 9(([Sll1S'[SlTS)~*CIXlllI,IXITI) 
= e([S]7rs~l(x)1t' ,[S]Ts),2(X1T ) 

I I 

= [SJlIS~IIXlllI n [SlTs~2IXIT'I 

= [[S]lIs1IxI1l 1110 n [[Sll1S1IXIT 1To 
I I 

= [S~xjllo n [SlxjTo 

((4), (5» 

(definition 2.5) 

((2), (3» 

((1» 

((5» 

((4), (5» 

(definition 2.5) 

((6» 

((2), (3» 

((1» 

From the above calculations and definitions 2.4, 2.5 and 2.12, 

it follows immediately that the parallel connection of machines 

MI and M2 realizes M, i.e. M has a parallel full-decomposition 

with the output behaviour realization. If condition (ii) of 

theorem 4.1 is satisfied, then the decomposition is nontrivial. 0 



19 

Theorem 4.1 has the following interpretation: 

Since (~I'~S'~O) is a partition trinity, based only on the 
information about the block of ~I containing the input of M and the 

block of ~s containing the present state of M (i.e information 

about the input and present state of M1 ) machine Ml can calculate 

unambiguously the block of ~s in which the next state of M is 

contained, as well as, the block of ~o that contains the output of 

M for the input from a given block of ~I and the present state from 
a given block of ~s (i.e. Ml can calculate its next state and 
output). Similarly, since (TI,Ts,TO) is a partition trinity, 
machine M2 , based only on the information about its input and 
present state (i.e. knowledge of the adequate block of TI and 
block of Ts), can calculate its next state and output (i.e. the 

adequate blocks of Ts and TO)' 
Since ~o· TO = ~ 0 (0) , the knowledge of of the block of ~ 0 and the 

block of To in which the output of M is contained makes it possible 

to cal cul ate this output. So, the machines M 1 and M 2 together can 

calculate the output of M unambiguously. 

A special case of theorem 4.1 for: 

I ~ 1 I < I I 1111 TIl < I I III ( I ~ s I = I S 1111 ~ 0 I = I 0 I v ITs I = I S 1111 TO I = I 0 I ) 
expresses, in fact, the input redundancy. In this case, machine M 

should be replaced with machine Ml or M2 , having fewer inputs and 
realizing M, instead of being decomposed. Similar special cases 

exist for all the other theorems presented in this report. 

~ serial full-decomposition of typg ps. 

Let TI' Ts' To be partitions on a machine M on I, Sand 0 

respectively. 

DEFINITION 5.1 (TI,TS,TO) is a present-state-dependent trinity 

for an independent state partition t s if and only if T I' T sand TO 
satisfy the following conditions: 

(i) 

(ii) 

(iii) 

(TI' Ts) is an I-S partition pair, 

(TS·ts,Ts) is a S-S partition pair, 

(Ts· t s , TO) is a s-o partition pair 

and 
(TI,TO) is an 1-0 partition pair (for a Mealy machine), 

or 
(TS,TO) is a s-o partition pair (for a Moore machine) 
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In other words, (T I , T, , TO) is a present-state-dependent 

trinity if and only if, based only on the knowledge of the block of 

a partition TI containing the input of M and the knowledge of the 

blocks of partitions T, and E, containing the present state of M, 

it is possible to calculate the block of T, in which the next state 

of M will be contained. In the case of a Mealy machine, based on the 

same information, it is possible to calculate the block of TO in 

which the output of M will be contained for the given input and 

state. While, in the case of Moore machine, based on the knowledge 

of the block of a partition T, in which the state of M is contained, 

it is possible to calculate the block of TO in which the output of M 

will be contained for the state from a given block of TS. 

THEOREM 5.1 A machine M has a nontrivial serial full

decomposition of type PS with the realization of the output 

behaviour if a partition trinity (1\' I'1\', , 1\' 0) and a present-state

dependent partition trinity (T1'T"TO) for Es = 1\', exist and they 

satisfy the following conditions: 

(i) 1\'O·TO = 1\'0(0) , 

(ii) 11\'11<IIIAI1\'sl·ITII<IIlvl1\',I<lsIAIT,I<lslvl1\'ol<loIA 

AITol<lol 

Proof (for the case of a Mealy machine) 

Let M I = (1\' l' 1\' , , 1\' 0 ' B I , ~ ') and M 2 = (1\', X T l' T " TO' a 2 , ~ 2) be two 

machines that satisfy the following conditions: 

(1) (1\'1' 1\'" 1\' 0) and (T l' T" To) satisfy the conditions of the 

theorem 6.1 , 

(2) VBIE1\', VAlE1\'I 

(3) VBl E 1\', VB2 ET , 

I -
BIB ~I = [BIB~ll1\', 

VA2ETr : 

B2B2CBI,A2.=[(B1nB2)BA21T., B2~2cBl,A2.=[(BlnB2)lA21To 
Since (1\'1'1\',,1\'0) is a partition trinity (1), B13u is placed in 

just one block of 1\' sand B1"i A I in only one block of 1\' 0 . This means, 

that BIB'A' and Bl~IAI are defined unambiguously. 

Since (TI,T"TO) is a present-state-dependent trinity (1), 

(BlnB2)3A2 is placed in just one block of TS and (B1nB2)"i~2 is 

placed in only one block of TO. This means, that B2 3 2 C B I , A 2. and 

B2~2CBI,A2) are defined unambiguously. 
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Let '" : I-+ 1I r XT r be an injective function, 

~: S-+ 11 s XT s be an injective function, 

9 : 1IOXTo-+ 0 be a surjective partial function 

and 

(4) ""x) = ([xl1l1'[XlTr), 

(5) ~(s) = ([sl1l s '[SlTs), 

(6) 9(C1,C2) = C1nC2 if C1nC2 ~ 0 • 

It is proved below that the serial connection of type PS of the 

machines Ml and M2 defined above realizes the output behaviour of 

machine M. 

since 1I o oTO = 110(0) (1) , 9 is a one-to-one function and for 

ClnC2~0 : 

(7) (C1,C2) EO . 

Therefore, VSES VXEI 

~(s)a*",(X' = 

= ([Sl1l s ,[SlT s P*([XI1I
r

,[XIT
1

' «4), (5» 

= ([Sl1lS~1[XI1II,[SlTS~2([SI1IS'[XITI,) (definition 2.6) 
- -

= ([[sl1l,a[XI1I l1l,,[([slT s n[sl1l s P[XIT lTs) «2), (3» 
I I 

= ([saxl1ls,[saxlTs) 

= ~(sax) 

and similary: 

9(~(S)l*li(x,) = 

= 9«[Sl1l,,[SlTsP*([XI1I I ,[XIT r ') 

= 9([Sl1lsl1[XI1Ir,[SlTSl2([SI1ls'[XITr') 

= [Sl1l s l
1

[XI1f I n [SlTSl2C[SI1fs,lXITI' 

«1» 
«5» 

«4), (5» 
(definition 2.6) 

= [[Sl 1f sl[xI1l l1l0 n [([slT s n[sl1f s )l[xIT lTO 
I I 

( (6» 

«2), (3» 

« 1» = [slxl1fo n [SlxlTO 

From the above calculations and definitions 2.4, 2.6 and 2.12, 

it follows immediately that the serial connection of type PS of 

machines Ml and M2 realizes M, Le. M has a serial full

decomposition of type PS with the output behaviour realization. 

If condition (ii) of theorem 5.1 is satisfied, the decomposition 

is nontrivial. 0 
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Theorem 5.1 has a straightforward interpretation. 

since (~I'~S'~O) is a partition trinity, based only on the 

information about the block of a partition ~I containing the input 

and the block of a partition ~s containing the present state of 

machine M (Le. information about the input and present state of 

MI ), machine MI can calculate unambiguously the block of ~s in 

which the next state of M is contained and the block of ~o in which 

the output of M is contained for the given input and present state 

(i.e MI is able to calculate its next state and output). 

Since (TI,Ts,TO) is a present-state-dependent trinity, based 

only on the information about the block of a partition TI 

containing the input and the blocks of partitions TS and ~s 

containing the present state of the machine M (L e. information 

about the primary input and the present state of M2 and about the 

present state of MI being a part if the input to M2), machine M2 is 

able to calculate unambiguously the block of T s in which the next 

state of M is contained and, in the case of a Mealy machine, the 

block of TO in which the output of M is contained for the given 

input and present state (Le. M2 can calculate its next state and 

output). In the case of a Moore machine, M2 is able to calculate 

the block of TO in which the output of M is contained, based only on 

information about the block of Ts in which the state of M is 

contained. 

Since ~O·To = ~o(O), with information about the blocks of ~o 

calculated by MI and the blocks of TO calculated by M2 (i.e. 

information about the outputs of MI and M2), it is possible to 

calculate unambiguously the outputs of machine M. 

~. Serial full-decomposition 2i ~ NS. 

Let TI' TI' To be partitions on machine M, on I, Sand 0 

respectiviely, and Es be another partition on S. 

DEFINITION 6.1 (T I , T I , TO) is a nert-s~a~e-dependen~ ~rini ~y for 

an independent state parti tion ~ s if and only if T I' T S, TO satisfy 

one of the following conditions for a given Es: 

(i) \fs,t(S \fXjlx 2(I: 

if [S]Ts=[t]Ts A 

then [S~xI]Ts=[t'~X2]TI A [SlxI]TO=[tlx2]TO 

(for a Mealy machine), 
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then [s~x lTs=[t~x lTs A [(s~x ) ~lTo=[(t~x )~lTO 
1 2 1 2 

(for a Moore machine). 

In other words, (T I' T I' TO) is a next-state-dependent trinity 

for an independent state parti tion ~ s if and only if, based only on 

the knowledge of the block of a partition TI containing the input 

of machine M , knowledge of the block of a partition T s containing 

the present state of M and knowledge of the block of a partition ~ s 

in which the next state of M is contained for a given input and 

state, it is possible to calculate the block of Ts in which the 

next state of M will be contained and the block of TO in which the 

output of M will be contained. 

THEOREM 6.1 A machine M has a nontrivial serial full

decomposition of type NS with the realization of the output 

behaviour if such a partition trinity (1f I , 1fs' 1(0) and such a next

state-dependent trinity (T I' T I' TO) for ~ 1=1f1 exist that the 

following conditions are satisfied: 

(i) 1fs'Ts = 1f s (O) and 1fo'To = 1fo(O) , 

(ii) 11f11<lrl, l1fsl<lsl, l1fol<lol, l1fsl'ITII<lrl,ITsl<lsl, 

I TO 1<101 . 

Proof (for the case of a Mealy machine) 

Let M 1 = (1f I' 1f S , 1f 0 , a 1 , ~ 1) and M 2 = (1f S x T I' T S , TO' S 2 , ~ 2) be two 

machines for which the following conditions are satisfied: 

(1) (1fI'1fp1fo) and (TI'T8'To) satisfy the conditions of the 

theorem 6.1 , 

(2) VB1f1fS VA1f1f l : BU 1
Al = [B13Al l1f 1 , BU 1

Al = [BUAll1fo , 

(3) VB2fTs VA2fTI VB1'f1fs: 

B2~2IBl"A2) = [{sSxl sfB2, XfA2, sSxfB1')lTs 

B2~2IBl' ,A2I = [(s~xl sfB2, XfA2, sSxfB1' }lTO 

Since (1f I , 1f S' 1f 0) is a partition trinity (1) , BU At is placed in 

just one block of 1f sand B1""i" A 1 is placed in only one block of 1f 0 • 

This means that B1S1Al and B1~lAl are defined unambiguously. 
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since (Tr,Ts,To) is a next-state-dependent trinity for ~s=~s 

(1), the following condition is satisfied: 

(4) 'o'S,tES 'o'xl'x2 EI: 

if [S]Ts=[t]TS A [X 1]Tr=[X 2]Tr A [s3 x ]~s=[t3x ]~s 
1 2 

then [S3 x ]Ts=[t3 x ]Ts A [s~x ]To=[t~x ]To . 
1 2 1 2 

From (4), it follows that B23 2 (BI' ,A21 and B2~2(BI' ,A21 are 

defined unambiguously because (s3 x l sEB2, xEA2, S3 x EB1') is 

located in only one block of Ts and 

(s~xl sEB2, xEA2, S5 x fBl') is in just one block of TO. 

Let ';: 1--+ ~rXTr be an injective function, 

$: S--+ ~SXTS be an injective function, 

9 : ~OXTO--+ 0 be a surjective partial function 

and 

(5) .;ex) = ([x]~l'[X]Tr>, 

(6) $(s) = ([s]~S,[S]Ts), 

(7) 9(Cl,C2) = ClnC2 if ClnC2 1 ° . 
It will be proved below that the serial connection of type NS of 

defined above machines MI and M2 realizes the output behaviour of 

machine M. 

since ~O·TO = ~o(o) (1) , 9 is a one-to-one function and for 

ClnC210 : 

(8) (Cl,C2) EO 

So, 'o'SfS 'o'xEI 

$(s)3'\Hxl) = 

= ([S]~S'[S]Ts)3*([XI~r'[XITr' ((5), (6» 

= ([S]~s51[XI~r,[S]Ts32([.3xl~s'[XITrl) (definition 2.7) 

= ([[S]~S3[XI~ ]~S'[{s3xl [S]TsA[Sax]~sA[X]Tr}]Ts) 
r ((2), (3» 

= ([S5x]~s,[S3x]Ts) ((1» 

((6» 

and similary: 

9($(Sp*,ilxl) = 

= 9(([S]~s,[S]TsP*([XI~r'[XITII) ((5), (6» 

= 9([S]~S~I[XI~I,[S]TSl2([.3~I~s,[XITI,) (definition 2.7) 
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= [S]lIS~I[XI1l1 n [S]TS~2([.3XlllS'[XIT[) «(7» 
= [[S]lIS~[Xlll ]110 n [{S~xl [S]T SA[S3 X]lI SA[X]T[l]TO 

I «2), (3» 
= [S~x]1I0 n [S~x]TO «1» 

( 110· TO=1I0(0) ) 

From the above calculations and def ini tions 2.4, 2.7 and 2. 12, 

it follows that the serial connection of type NS of machines MI and 

M2 realizes M, Le. M has a serial full-decomposition of type NS 

with the output behaviour realization. If condition (ii) of 

theorem 6.1 is satisfied, the decomposition is nontrivial. 0 

Theorem 6.1 has a straightforward interpretation. 

since (1I[,lI S ,1I 0 ) is a partition trinity, based only on the 

information about its own input and present state (Le. knowledge 

of the adequate block of 11 [ and block of 11 s ) , machine M I is able to 

calculate its next state and output (Le. the adequate blocks of 

lis and 110). 

Since (T[,TS,TO) is a next-state-dependent partition trinity 

for ~ s =11 s' based only on information about the block of T I 

containing the input, the block of t s containing the present state 

of M and the block of liS containing the next state of M for the 

given input and present state (Le. information about the primary 

input and present state of M2 and the next state of MI which is part 

of the input of M2 ) , machine M2 is able to calculate unambiguously 

the block of T s in which the next state of M is contained and the 

block of TO in which the output of M is contained for the given 

input and present state (i.e. M2 is able to calculate its next 

state and output). 

Since TO·1I0 = 110(0) , with information about blocks of 110 

calculated by MI and blocks of to calculated by M2 ' it is possible 

to calculate unambiguously the outputs of machine M. 
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~ Serial full-decomposition of ~ PO. 

Let ~; and Eo be partitions on M on Sand 0 respectively. 

DEFINITION 7.1 ~; is a state partition induced by an output 
partition Eo if and only if one of the following conditions is 

satisfied: 

(i) Vs,t£s Vx,y£I : if [s~x]Eo = [t~y]~o 
then [sax]~; = [tay]~; 

(for a Mealy machine), 

(ii) Vs,t£s : [s]~; = [t]~; if and only if 

[s~]Eo = [t ~] Eo 
(for a Moore machine) . 

In other words, if~; is a state partition induced by an output 

partition ~o and, if it is known that the present output y of M is 

contained in a block C: C£~o , then, it is known that the present 

state s of M is contained in a block B: BE~;, where block B is 

indicated unambiguously by block C. It can be said, that block B of 

~; is induced by block C of ~o and denoted by: B = ind(C). 

Let TI' TS' TO be partitions on a machine M, on I, 5 and 0 
respectively, and Eo be the other partition on o. 

DEFINITION 7.2 (TI,TS,TO) is a partition trinity induced by an 

output partition ~o if and only if such a state partition ~; 

induced by ~o exists, that TI' Ts and TO satisfy the following 
conditions for this ~;: 

(i) (TI,TS) is an I-S partition pair, 

(ii) (Ts·~s',TS) is a S-5 partition pair, 

(iii) (ls·~s',IO) is a 5-0 partition pair, 
and 
(II,To) is an 1-0 partition pair (for a Mealy machine), 

or 
(T"TO) is a 5-0 partition pair (for a Moore machine). 

In other words, (II,ls,IO) is a trinity induced by an output 
partition ~ 0 if and only if, based on the knowledge of the block of 
a partition T I containing the input of M and the knowledge of the 
block of a partition Ts and the block of an induced partition ~! 
containing the present state of M, it is possible to calculate the 
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block of T s in which the next state of M will be contained. In the 

case of a Mealy machine, based on the same information it is 

possible to calculate the block of TO in which the output of M will 

be contained for the given input and state. While, in the case of a 

Moore machine, based on the knowledge of the blocks of partitions 

TS and 11S' containing the state of M, it is possible to calculate 

the block of TO containing the output of M for the given state. 

THEOREM 7.1 A machine M has a nontrivial serial full
decomposition of type PO with the realization of the output 

behaviour if such a partition trinity (11 I ,11 S,11 0) and such a 

partition trinity (T1,Ts,TO) induced by ~o = 110 exist that the 
following conditions are satisfied: 

(i) 11 0 'TO = 110(0) , 

(ii) 11111<IIIAI1101'ITII<I1lvl11sl<lsIAITsl<lslvl1101<10IA 

AI Tol<lol 

Proof (for the case of a Mealy machine) 

Let Ml = (111 ,11S ,110' ~l, ll) and M2 = (11 0XTI' TS' TO' a 2, l2) be the 
two machines for which the following conditions are satisfied: 

(1) (11j111p11o) and (TjlTSlTO) satisfy the conditions of the 
theorem 7.1 , 

1 -(2) VBIE11s VA1E111 Bl~ Al = [Bl~Al]11S , Bl. 1
A1 = [Bl. A1 ]11 0 

(3) VCIE110 VB2Hs VA2ETI : 

B2~2(Cl,A21=[{s~xl sEB2 A sEind(Cl) A XEA2}]T S' 

B2. 2(Cl,A21=[{s.xl sEB2 A sEind(Cl) A XEA2}]To. 

Since (11 1,11 $I11ol is a partition trinity (ll, BU 1 Al and BU \ 1 

are defined unambiguously. 

Since (TjlT$lTO) is a trinity induced by ~0=110 (1), the 
following conditions are satisfied: 

(4) (Ts'11 S ',TS) is a s-s pair, 

(5) (Ts'11;',TO) is a s-o pair, 

(6) (TI' Ts) is an 1-S pair, 
(7) (TjI TO) is an 1-0 pair. 

From (4) and (6) , it follows that {sa x I s EB2AS lind (Cl) AXEA2} is 

located in just one block of Ts. From (5) and (7), it follows that 

{s.xl sEB2AsEind(Cl)AXEA2} is located in just one block of TO. 

This means, that B2a 2 ,Cl,A21 and B2. 2 ,Cl,A21 are defined 
unambigously 
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Let "': I--+ 1f I XTI be an injective function, 

~: S--+ 1fSXTs be an injective function, 

9 : 1fOXTo--+ 0 be a surjective partial function 

and 

(8) ,,-<x) = ([x)1f I ,[X)Td, 

(9) ~(s) = ([s)1f1' [S)Ts)' 

(10) 9(Cl,C2) = ClnC2 if ClnC2 # 0 • 

It will be proved below that the serial connection of type PO of 

the machines Ml and M2 defined above realizes the output behaviour 

of machine M. 

Since 1fO·To = 1fo(O) (1) , 9 is a one-to-one function and for 

ClnC2#0 : 

(11) (Cl,C2) £0 • 

Therefore, Vs£S Vx£I 

~(s)a*",(X' = 

= ([S)1f s ,[S)T s )a*(IXI1f I ,IXIT
1

' «8), (9» 

= ([s)1fsal[XI1fI,[S)Tsa2(ISI1fs,[XITI') (definition 2.8) 

= ([[S)1f s8[XI1f )1fp[([S)Tsn[S)1fs')8[XIT )TS> «2), (3» 
I I 

= ([sax)1fs,[S~x)Ts) 

= ~(s~x) 

and similary: 

9(~(S)~*",(X') = 

= 9«[S)1fp[S)TSP*([XI1f I ,[XIT
J
') 

= 9([S)1fS~1[XI1fI,[S)TS~2( [SI1f s,[XIT
1
') 

= [S)1fS~l[XI1fI n [S)Ts~2([SI1fs'[XITJ' 

«1» 

«5» 

«8), (9» 

(definition 2.8) 

= [[s)1fS~[xl1f ] 1f o n [([s]T s n[s]1f S 'n[xIT ]TO 
I I 

«10) ) 

«2), (3» 

« 1) ) 

From the above calculations and definitions 2.4, 2.8 and 2.12, 

it follows immediately that the serial connection of type PO of 

machines Ml and M2 realizes M, Le. M has a serial full

decomposition of type PO with the output behaviour realization. 

If condition (ii) of theorem 5.1 is satisfied, the decomposition 

is nontrivial. 0 
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The interpretation of theorem 7.1 is as follows: 

Since (nI,nS,nO) is a partition trinity, based only on the 

information about its own input and present state (i. e. knowledge 

of the adequate block of n I and block of n s ) , machine M 1 is able to 

calculate its next state and output (Le. the appropriate blocks 

of ns and no). 

Since (TI,Ts,TO) is a partition trinity induced by no, based 

only on the information about the block of a partition TI 

containing the input, the block of a partition Ts containing the 

present state and the block of a partition no containing the 

output of machine M (L e. information about the primary input and 

the present state of M2 and about the present output of Ml which is 

a part of the input of M2), machine M2 is able to calculate 

unambiguously the block of T s in which the next state of M will be 

contained. In the case of Mealy machine, based on the same 

information M2 is able to calculate the block of TO in which the 

output of M will be contained for the given input and present state 

In the case of Moore machine, M2 is able to calculate the block of 

TO in which the output of M will be contained using only 

information about the block of Ts in which the state of M is 

contained. So, M2 is able to calculate its next state and output. 

Since no·To = no(O), with information about blocks of no 

calculated by Ml and blocks of TO calculated by M2 ' it is possible 

to calculate unambiguously the outputs of machine M. 

~ Serial full-decomposition of ~ NO. 

Let TI' Ts' TO be partitions on a machine M, on I, S, 0 

respectiviely, and ~o be the other partition on O. 

DEFINITION 8.1 (TI,Ts,TO) is a (next) output-dependent trinity 

for the independent output partition ~ 0 if and only if T I' T sand 

TO satisfy one of the following conditions for a given to: 

(i) \ts,t£s \tx 1 ,X2 £1: 

if [S)Ts=[t)TS A 

then [sax )Ts=[ta x )TS A [s~x )TO=[t~x )TO 
1 2 1 2 

(for a Mealy machine), 
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if [S]T,=[t]t, A 
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then [S3 x1 ]t,=[t3 x2 ]t, A [(S3 x1 )l]to=[(t3 x2 )l]to 

(for a Moore machine). 

In other words, (tI' t" 1'0) is an output-dependent trinity for 

the independent output partition Eo if and only if, based on the 

knowledge of the block of a partition tl in which the input of a 

machine M is contained, the block of a partition ts in which the 

present state of M is contained and the block of a partition Eo in 

which the outputs of M are contained for inputs from a given block 

of tI and states from a given block of t" it is possible to 

calculate the block of t s in which the next state of M is contained 

and the block of to in which the output of M is contained for the 

present state from a given block of t, and input from a given block 

of TI. 

THEOREM 8.1 A machine M has a nontrivial serial full

decomposition of type NO with the realization of the output 

behaviour if such a partition trinity (nl,n"no) and such an 

output-dependent trinity (tI,t"tO) for Eo=no exist that the 

following conditions are satisfied: 

(i) no·to = no(o) , 

(ii) InII<IIIAlnol.ltII<IIlvlnsl<lsIAltsl<lslvlnol<loIA 

Altol<lol 

Proof (for the case of Mealy machine) 

LatMl = (nlln"no,3 1,ll) andM 2 = (n oxtI,t"To,a 2,l2) be two 
machines for which the following conditions are satisfied: 

(1) (nI,n"nO) and (tI,T"TO) satisfy the conditions of theorem 

9.1 , 
(2) VB1En, VA1En I : BUlAt = [BU At ]n, A Bl l 1 At = [BU A tl no , 
(3) VB2 H$ VA2 HI VC1Eno: 

2 [{S3 x l SEB2, xEA2, SlxECl } ] T, B23 CC1,A21 = , 
B2l 2

CC1 ,A21 = [{slxl sEB2, XEA2, SlxECl }]TO 

since (n l , n" no) is a partition trinity (1) , B13 A 1 is placed in 

just one block of n, and BllAl is placed in just one block of no. 
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This means that B1al~1 and B1~IAI are unambiguously defined. 

Since (T1,Ts,To) is an output dependent trinity for to=~o 

(1), the following condition is satisfied: 

(4) 't/s,teS't/x l ,X 2 EI: 

if [slTs=[tlTs A 

then [SBx lTs=[tBx lTs A [s~x lTo=[t~x lTo . 
I 2 I 2 

From (4), it follows that B2 a 2 1 C I , A2) and B2 ~ 2 1 C I , A2) are 

defined unambiguously, because (saxl seB2, xEA2, s~xeC1) is 

located in just one block of Ts and 

{s~xl seB2, xeA2, s~xeC1} is in just one block of TO. 

Let .; : I--I ~IXTI be an injective function, 

$: S--I ~sXTs be an injective function, 

e: ~OXTO--l 0 be a surjective partial function 

and 

(5) («x) = ([xl~I'[X1TI)' 

(6) $(s) = ([sl~s'[slTs)' 

(7) e(C1,C2) = C1nC2 if C1nC2 to. 

It will be proved below that the serial connection of type NS of 

the machines MI and M2 defined above realizes the output behaviour 

of machine M. 

since ~O·TO = ~o(O) (1) , e is a one-to-one function and for 

C1nc2to : 

(8) (C1,C2)eO 

So, 't/seS 't/xeI 

$(s) a*';1 x) = 

= ([Sl~s,[SlTslS"'ClXI~I'(XITI) «5), (6» 

= ([sl~Sal(Xl~I,[SlTS321[.~xl~o'[XITI) (definition 2.9) 

= ([[Sl~S8[XI~ 1~s,[{S3xl [slTsA[s~xl~oA[xlTI}lTs) 
1 «2), (3» 

= ([s3xl~S'[s3xlTs) «1» 

«6» 

and similary: 

e($(sp*';lx)l = 

= e«[sl~S'[SlTsP*I[Xl~I'[XITI) «5), (6» 

= e ( [S 1 ~ s A I ( x I ~ 1 ' [s 1 T S ~ 2 1 [ • A x I 7r 0 ' [ x I T I,) (def ini tion 2.9) 
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= [S]lISAI[xlll n [S]TSA2([.~ 111 [xIT) «7» 
I x 0 I I 

= [[S]lISA[xlll ]110 n [(sAxl [S]T,A[SA x]1I0A[X]TI}]TO 
1 «2), (3» 

= [SA x ]1I0 n [sAx] TO «1» 

From the above calculations and def ini tions 2.4, 2.9 and 2.12, 

it follows that the serial connection of type NO of machines MI and 

M2 realizes M, i.e. M has a serial full-decomposition of type NO 

with the output behaviour realization. If condition (ii) of 

theorem 8.1 is satisfied, the decomposition is nontrivial. 0 

Theorem 8.1 has the following interpretation: 

since (1I 1 ,lI s ,1I0) is a partition trinity, machine MI , based 

only on the information about its input and present state (i.e. 

knowledge of the adequate block of 11 1 and block of 11 s ), is able to 

calculate its next state and output (i.e. the appropriate blocks 

of lis and 11 0), 

Since (T I' T S' To) is an output-dependent partition trinity for 

~ 0=11 0' based only on information about the block of T 1 containing 

the input, the block of T s containing the present state of M and 

the block of 110 containing the output of M for the given input and 

present state (i.e. information about the primary input and 

present state of M2 and the output of Ml which is a part of the 

input of M2), machine M2 is able to calculate unambiguously the 

block of T s in which the next state of M is contained and the block 

of TO in which the output of M is contained for the given input and 

present state (i.e. M2 is able to calculate its next state and 

output). 

Since TO·1I 0 = 110(0) , with information about blocks of 110 

calculated by MI and blocks of TO calculated by M2 , it is possible 

to calculate unambiguously the next states and outputs of machine 

M. 
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~ General full-decomposition of typg PS 

THEOREM 9.1 A machine M has a nontrivial general full

decomposition of type PS with the realization of the output 

behaviour if two present-state-dependent partition trinities: 

(~I'~S'~O) and (TI,Ts,TO) exist and they satisfy the following 

conditions: 

(i) ~O·TO = ~o(O) , 

(11) 1 T S 1 • 1 ~ I 1 < 1 II" 1 ~ s 1 ·1 TIl < 1 I 1 vi ~ s I < I S I "I T sI < 1 S 1 vi ~ 0 I < 101" 
"ITol<lol 

Proof (for the case of a Mealy machine) 

Let MI = (TsX~I'~P~O,~I,ll) and M2 = (~sXTI'TpTO,S2,l2) be 

the two machines for which the following conditions are 

satisfied: 

(1) (~I'~S'~O) and (TI,Ts,TO) satisfy the conditions of theorem 

9.1 , 

(2) VB1£~s VB2£T; VAI£~I : 
I - I -

BU (B2,AII=[(B1nB2)SAI1~s, BU (B2,UI=[(B1nB2)lAI1~0 

(3) \lB1<~s \lB2fTs \lA2fTl : 
2 - 2 

B2S (BI,A2I=[(B1nB2)sulTp B2l (BI,A2I=[(B1nB2)l A2 1To 

since (~I'~S'~O) and (TI,T;,TO) are the present-state

dependent trinities (1), (B1nB2) ~ A I is placed in just one block of 

~ p (B1nB2) is placed in just one block of ~ 0, (B1nB2) ~ u is placed 

in only one block of T; and (BlnB2)"i" A 2 is placed in only one block 

of TO. This means, that B1 S I ( B 2 , A I I , BIll ( B 2 , A I I , B2 S 2 ( B I , A 2 I 

and B2l 2 (BI,A21 are defined unambiguously. 

Let '" : I---i ~IXTI be an injective function, 

(j): S---i ~sXT s be an injective function, 

9: ~OXTO---i 0 be a surjective partial function 

and 

(4) .;ex) = ([Xl~l'[xlTJl, 

(5) (j)(s) = ([Sl~s<[slTs)' 

(6) 9(C1,C2) = C1nC2 if C1nC2 # 0 • 

It will be proved below that the general connection of type PS 

of the machines MI and M2 defined above realizes the output 

behaviour of machine M. 



34 

since ~O'TO = ~0(0) (1) , 9 is a one-to-one function and for 

C1nC2;!0 : 

(7) (Cl,C2) EO 

Therefore, VSES VXEI 

$(sP'\HXI = 

= ([S]~p[S]Ts)a*c [xl~I,[xITII ((4), (5» 

= ([S]lIsaIC[SITs,[XllIII,[S]Tsa2C[Sllls,[XITII) 

_ (gefinition 2.10) 
= ([ ( [S]lI S n [S] T S ) a [X III 1]11 P [ ( [s] T s n [S]lI S ) S [xl T I] T s ) 

((2), (3» 
= ([SSx]lI,,[SSx]Tsl «1» 

((5» 

and similary: 

e($(s)~'\lIx,) = 

= 9(([S]1I,,[S]T s ) ~*c [xlll
I

,[XIT
1

I) ((4), (5» 

= 9([S]~S~IC[SITS'[XlllII,[S]Ts~2C[.I~s'[XITII) 

(definition 2.10) 
= [S]lIS~Ic[SITS,[XlllI1 n [S]TS~2C[.llIs'[XITII ((6» 

= [([s]lI s n[s]TSP[xlll ]110 n [([s]Tsn[S]lIsl ~[xIT ]TO 
I I 

((2), (3» 
= [s~x]1to n [S~x]To ((1» 

From the above calculations and definitions 2.4, 2.10 and 

2.12, it follows that the general connection of type PS of 

machines MI and M2 realizes M, i. e. M has a general full

decomposition of type PS with the output behaviour realization. 

If condition (ii) of theorem 9.1 is satisfied, the decomposition 

is nontrivial. 0 

The interpretation of theorem 9.1 is similar to the 

interpretation of theorem 5.1. 
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10. General full-decomposition of ~ PO 

THEOREM 10.1 A machine M has a nontrivial general full

decomposition of type PO with the realization of the output 

behaviour if two partition trinities (11 1,11 S ,110) induced by to 2 = 

TO and (T 1 , T S , TO) induced by to I = 11 0 exist and they satisfy the 

following conditions: 

(i) 1I0'TO = 11 0 (0) , 

(ii) I TO I • 111 1 I < I I 1111 0 I • I TIl < I I I Vilis I < I S I td T s I < I S I V 111 0 I < 101 1\ 

I\I Tol<lol 

Proof (for the case of a Mealy machine) 

Let M, = (TOXlIl,lIs,1I0,~I, ~I) and M2 = (1I0XTI,TS,TO,~2, ~2) be 

the two machines for which the following conditions are 

satisfied: 

(1) (1I1,lI S,1I0) and (TI,Ts,TO) satisfy the conditions of theorem 

10.1 , 

(2) VC2ETo VBIE7!s VA, E1I1 : 

Bl a I I C 2 , A I , = [(s~x I sEBl 1\ s find(C2) 1\ x EAl) 11 S , 
Bl. ~ 1 I C 2 , A I , = [(s~xl sEBl. 1\ s find (C2) 1\ XEAl.)1I0 , 

(3) \fClElI O \fB2 ET s \fA2 ET 1 : 

B2 ~ 2 I C I , A 2 , = [{s~xl sEB2 1\ s find (Cl) 1\ x EA2 } ) T S , 

B2 ~ 2 I C I , A 2 , = [(s~xl sEB2 1\ s find (Cl) 1\ XEA2})TO' 

Since (lIplls,1I0) is a partition trinity induced by t02=TO and 

(TI,T$,TO) is a partition trinity induced by tOI=7!O (1), the 

following conditions are satisfied: 

(4) (11 s • , T S , T s) is a s-s pair, 

(5) (lIS'Ts',lIs) is a S-S pair, 

(6) (lI s "Ts,TO) is a S-O pair, 

(7) (lIs'Ts',1I0) is a s-o pair, 

(8) (lIItllS) is an I-S pair, 

(9) (lIIt1l0) is an 1-0 pair, 

(10) (TI' TS) is an I-S pair, 

(11) (TIt TO) is an 1-0 pair. 

From (5) and (8), it follows that {s~xl sEBll\sEind(C2)I\XEAl} 

is located in just one block of liS' From (7) and (9), it follows 
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that {s~xl sEB1AsEind(C2)AXEA1} is located in only one block of 

11 o. This means, that B1 ~ 1 ( C 2 , ~ 1 ) and B1 ~ 1 ( C 2 , ~ 1 ) are 
unambiguously defined. 

Similarly, from (4) and (10), it follows that {saxl 

s EB2AS find (C1) AXEA2} is located in just one block of T s and, from 

(6) and (11), it follows that 

{s ~x I S EB2AS find (C1) AXEA2} is located in just one block of TO. sO, 
B2S2(Cl,~2) and B2~2(Cl,~2) are unambigously defined. 

Let ';: 1--+ lI IXTI be an injective function, 

$: S--+ lIsXTs be an injective function, 
9: 11 OXT 0--+ 0 be a surjective partial function 

and 

(12) .;ex) = ([X]lI Jt [X]TI)' 

(13) $(s) = ([S]lIs,[S]Ts), 

(14) 9(C1,C2) = C1nC2 if C1nC2 # 0 . 

It will be proved below that the general connection of type PO 

of the machines Ml and M2 defined above realizes the output 
behaviour of machine M. 

Since 1I0'TO = 11 0 (0) (1) , 9 is a one-to-one function and for 
C1nC2#0 : 

(11) (C1,C2) EO • 
Therefore, VSES VXEI 

$(S)3*~(X) = 

= ([S]lI p [S]Ts)3*([XIlI I ,[XIT
1

) 

= ([S]lIs31([SITS,[XllII),[S]Ts32([Sllls,[XITI) 

«12), (13» 

_ (definition 2.11) 
= ([([S]lIsn[S]Tsl)~[XllII]lIs,[([S]Tsn[S]lIs')~[XITI]Ts) 

((2), (3» 
= ([S~x]lIS1 [S~x]TS) ((1» 

((13» 

and similary: 

9($(SP'\Hx) = 

= 9(([S]lI p [S]T s P*([XllI I ,[XIT 1 '} «12), (13» 

= 9([S]lIS~11[SITS,[XI1l[),[SlTS~2([SllIs'[XITI) 

(definition 2.11) 
= [S]lI S ~ 1 I [ • ITS' [ x I 11 I) n [s] T S ~ 2 I [ • I 11 S ' [ x I T I ) ( (14) ) 
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= [([S]1f S n[S]T S 'P[XI1f
r

]1f O n [([S]T S n[S]1f S ')X[XIT
r

]TO 

((2), (3» 
( (1» 

From the above calculations and definitions 2.4, 2.11 and 

2.12, it follows immediately that the general connection of type 

PO of machines Ml and M2 realizes M, i.e. M has a general full

decomposition of type PO with the output behaviour realization. 

If condition (ii) of theorem 10.1 is satisfied, the decomposition 

is nontrivial. 0 

The interpretation of theorem 10.1 is similar to the 

interpretation of theorem 7.1. 

11. Conclusion. 

The notions and theorems presented in the previous sections 

have straightforward practical interpretations and they 

constitute the theoretical basis for practical algorithms and for 

a system of programs for computing the different sorts of 

decompositions. These algorithms and some practical conclusions 

will be presented in a separate report. 

The results presented in this report can be extended easily in 

order to cover the case of incompletely specified sequential 

machines. This can be done by using the concepts of the weak 

partition pairs or extended partition pairs introduced by 

Hartmanis [12]. 

From Chapter 2, it follows that a full-decomposition with the 

state and output behaviour realization is such a special case of 

the full-decomposition with the output behaviour realization 

that the partial machines Ml and M2 imitate a given machine M not 

only from the input-output point of view but also from the input

state point of view. It is easy to observe that if the condition: 

1f s • T S = 1f S (0) is added to the assumptions of the theorems 

formulated in this work, the theorems proved in [16] are obtained 

concerning the existence of full-decompositions with the state 

and output behaviour realization. So, the theorems proved in [16] 
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are special cases of the appriopriate theorems proved here for 

1Is"T, = 11,(0) 

Similarly, considering a state machine M = (I, S, 3) to be a 

Moore machine M'= (I, S, 0, 3, A) where 0 = S and ~ is an identity 

function or a Mealy machine Mil = (I, S, 0, 3, ~) where 0 = S and ~ = 

3, the appriopriate theorems 12.1 - 12.4 from [16] concerning the 

existence of full-decompositions for state machines can be 

obtained directly from the theorems 4.1, 5.1, 6.1 and 10.1 proved 

in this work. 

In some practical cases, it is more economical to consider 

separately the realization of the next-state function 3 and the 

output function ~ rather than to consider them simultaneously. It 

is possible to abstract from the output function ~ and to 

decompose first the state machine defined by the next-state 

function 3. Then, it is passible to realize the output function ~, 

where ~ is treated as a function of inputs (in the Mealy case) and 

states of the partial state machines obtained in a full

decomposition of the state machine defined by 3. 

From the practical point of view, full-decompositions of type 

N are not so attractive as decompositions of type P, because 

decompositions of type N introduce timing problems. In 

decompositions of type N, one of the component machines has to be 

able to compute its next state or output, before the second 

component machine, using the information about the computed next 

state or output of the first submachine, can compute its own next 

state or output. If it is assumed that computing the next-state 

and output for one component machine requires one time interval, a 

valid next-state and output for the whole machine will appear 

after two such time intervals. In this situation, the frequency of 

input signals need to be limited and a two-phase clock is 

required. 

Solving 

parallel 

the practical cases 

full-decomposition 

starts with trying to find a 

which satisfies the given 

requirements and, only in the case of failure, is there need to 

look for a serial decomposition or, in the case of failure, for a 

general decomposition. In the case of the serial and general 

decompositions, the connections between the partial machines 

have to be implemented and the functional dependences between the 

input, state and output variables of the partial machines are in 

most cases decrising from a parallel through serial to a general 

decomposition, i.e. the complexity of the combinational logic of 
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each of the component machines is usually least for parallel 

decompositions and greatest for general decompositions. 

The practical decomposition algorithms should implement some 

optimization criteria. The full-decomposition of sequential 

machines can be a tool for making it possible to implement the 

machine with existing building blocks, to design, implement and 

verify the machine more easily or to optimize the separate 

submachines, whereas, it may be impossible or very difficult to 

optimize the whole machine directly. However, it may be a suitable 

optimization tool itself. 
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