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Abstract We consider systems of small, cheap, simple sensors that are organized in
a distributed network and used for estimating and tracking the locations of targets.
The objective is to assign sensors to targets such that the overall expected error of
the sensors’ estimates of the target locations is minimized. The so-called focus of
attention problem (FOA) deals with the special case where every target is tracked
by one pair of range sensors. The resulting computational problem is a special case
of the axial three-index assignment problem, a well-known fundamental problem in
combinatorial optimization. We provide a complete complexity and approximability
analysis of the FOA problem: we establish strong NP-hardness and the unlikeliness
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of an FPTAS, we identify polynomially solvable special cases, and we construct a
sophisticated polynomial time approximation scheme for it.

Keywords Target tracking · Distributed sensors · Sensor assignment · Assignment
problem · Complexity · Approximation · Intractable problem

1 Introduction

Sensors are everywhere. The presence and use of monitoring devices has become
standard in Western societies. For example city centers, shopping malls, and other
public places are continuously being monitored by cameras. Usually such sensors are
organized in a network where they act jointly in order to perform a common task; such
systems are referred to as sensor networks. Sensor networks typically consist of many
small, inexpensive, low power, untethered devices that observe various environmental
parameters. A sensor network is capable of a real-time, fine-grained monitoring of
the surroundings. Such systems are relatively cheap, they are robust, and they are
increasingly being deployed in practice. We refer the reader to Culler et al. [5] or
Tubaishat and Madria [12] for an overview of the developments in sensor networks.

In order to realize the potential of sensor networks, there are at least two fundamen-
tal challenges that need to be addressed. The first challenge comes from the inherent
limitations of individual sensors, as an individual sensor alone is incapable of estimat-
ing the state of a target. The second challenge arises as the measurements provided
by the sensors are strongly corrupted by noise. To overcome these challenges, sensors
must cooperate and groups of sensors are used to estimate the position of a single
target. Central questions are which sensors should be assigned to which targets, and
which measurements should be combined in order to get accurate estimates. These
choices will directly determine the quality of the system.

Isler et al. [9] consider the following concrete (and of course highly simplified)
scenario for target tracking in distributed systems. There are 2n sensors that are to be
assigned in disjoint pairs to n targets. The sensors are located on a straight line, whereas
the (static) targets are positioned somewhere in the plane. Without loss of generality
the straight line is the x-axis, so that the 2n sensors are positioned in 2n points with
coordinates (xi , 0)with 1 ≤ i ≤ 2n; see Fig. 1 for an illustration. Isler et al. [9] discuss
an error measure that is motivated by stereo reconstruction that mainly depends on
the y-coordinates y1, . . . , yn of the n targets: if the i th and the j th sensor together are
assigned to the kth target, then the corresponding incurred error cost amounts to

ci jk = yi
|x j − xk | . (1)

Isler et al. [9] argue that the measure in (1) gives a good error approximation in case
the targets are not too close to the sensors. For more information on this measure and
in particular for its mathematical justification, we refer the reader to Appendix A of
[9]; notice that they also consider other cost metrics as well. The objective in the focus
of attention problem is to find an assignment of disjoint sensor pairs to targets such
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Fig. 1 Six sensors/cameras
C1, . . . ,C6 track three targets
t1, t2, t3

C1 C2 C3 C4 C5 C6

t1
t2

t3

that the sum of all error costs ci jk is minimized. We denote this optimization problem
as IKST-FOA, for short.

Isler et al. [9] derive a polynomial time 2-approximation algorithm for IKST-FOA.
In the equi-distant special case of IKST-FOA, the sensors are at unit distances from
each other in the 2n points (i, 0) with 1 ≤ i ≤ 2n. For this equi-distant special case of
IKST-FOA, [9] design a non-trivial polynomial time approximation scheme (PTAS).

Formulation of problem p-FOA We will investigate a certain version of the three-
dimensional assignment problem that contains problem IKST-FOA as a special case.
This version is based on a real parameter p, and will throughout be denoted as p-FOA.
An instance of p-FOA consists of 3n positive real numbers a1, . . . , an , b1, . . . , bn , and
c1, . . . , cn . The cost-coefficient corresponding to a triple (i, j, k) with 1 ≤ i, j, k ≤ n
is defined as

ci jk = ai
(b j + ck)p

. (2)

The goal in p-FOA is to group the 3n numbers into n triples (where each triple contains
one ai , one b j and one ck) such that the sum of the cost-coefficients corresponding
to these triples becomes minimum. In Sect. 2 we show that for p = 1 this problem
p-FOA coincides with the classic target tracking problem IKST-FOA as discussed
above.

Our results We completely analyze the complexity and approximability behavior of
problem p-FOA for every value of the parameter p. Sections 3 and 4 provide the
following complexity classification of problem p-FOA:

• For every real p with −1 ≤ p ≤ 0, problem p-FOA is polynomially solvable.
• For every real p with p < −1 or p > 0, problem p-FOA is strongly NP-hard.
• Even the equi-distance special case of IKST-FOA is strongly NP-hard. This settles
a question left open in [9].

On the approximation side, Sect. 5 presents a fast and simple approximation algorithm
for p-FOA with worst case performance guarantee of 2p for the cases where p ≥ 0;
this result is based on the methodology developed in [9]. As our main contribution,
we derive an approximability result in Sect. 6 and a complementary inapproximability
result in Sect. 3 that together fully resolve the approximability status of p-FOA:

• For every real p with p < −1 or p > 0, problem p-FOA possesses a PTAS.
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• For every real p with p < −1 or p > 0, problem p-FOA does not possess an
FPTAS unless P=NP.

In many cases, the development of a (fully) polynomial time approximation scheme
has nowadays become a straightforward exercise. Indeed, when an optimization prob-
lem satisfies certain conditions (see Woeginger [13]), the existence of such a scheme
follows automatically. We stress however that our problems here do not fall into that
category; in fact, the design of our PTAS is quite intricate, and introduces a number
of new ideas to the area.

We also stress that the proof of our inapproximability result is not done by routine
methods. The literature contains a number of negative results (see for instanceTheorem
6.8 in Garey and Johnson [7]) showing that a strongly NP-hard and sufficiently well-
behavedoptimization problemcannot have anFPTASunless P=NP.Herewell-behaved
means that (i) all solutionvalues are positive integers and that (ii) the valueof anoptimal
solution is polynomially bounded in the size of a unary encoding of the instance. Note
that the theorem cannot be applied directly to problem p-FOA, as our objective values
in general are not integral and hence violate condition (i). Our inapproximability proof
is based on the standard approach from the literature, but on top of that introduces an
additional trick for working around integrality.

Further links to the literature The literature contains a number of results on target
tracking where sensors are to be assigned in pairs to targets. There are various ways of
modeling the measurement errors and the resulting error costs, and we only mention
two results that have a strong algorithmic component.Gfeller et al. [6] discuss scenarios
where the error mainly depends on the intersection angle of the two viewing cones
subtended by a pair of sensors. Al-Hasan et al. [1] consider a related scenario with
moving sensors; they introduce an intricate cost model for the movements of the
sensors, and they develop a GRASP routine for cost minimization in this model.

Assignment problems have receivedmuch attention in the literature; see for instance
the book by Burkard et al. [2]. IKST-FOA is related to the (axial) three-index assign-
ment problem (3AP), see Chapter 10 of [2]. Our results here fall into the research
branch that concentrates on the algorithmic behavior of strongly structured special
cases. Let us mention some results that discuss complexity and approximability of
3AP. Burkard et al. [3] discuss an NP-hard special case where the cost-coefficients
are given by ci jk = aib j ck , for positive real numbers a1, . . . , an , b1, . . . , bn , and
c1, . . . , cn . Crama and Spieksma [4] design polynomial time 4

3 -approximation algo-
rithms for special cases where the cost coefficients are decomposable and satisfy a
certain type of triangle inequality, and Spieksma and Woeginger [11] establish NP-
hardness of the corresponding Euclidean special case. Queyranne and Spieksma [10]
exhibit a 2-approximation algorithm for a related problem, again assuming a certain
type of triangle inequality.

2 The Connection Between IKST-FOA and 1-FOA

Consider an instance of IKST-FOA that is specified by 2n real numbers x1, . . . , x2n
and by n real numbers y1, . . . , yn , with costs defined as in (1). Assume that the sensors
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on the x-axis are ordered as

x1 ≤ x2 ≤ · · · ≤ x2n .

A feasible solution is called left-right separating, if it matches every sensor from the
left half 1, . . . , n with one sensor from the right half n + 1, . . . , 2n (and with some
target). We stress that the essence of the following Lemma 2.1 is due to Isler et al. [9].

Lemma 2.1 There exists an optimal solution for IKST-FOA that is left-right separat-
ing.

Proof A feasible solution is specified by a permutation π of 1, . . . , 2n, such that
sensorsπ(2k−1) and π(2k) are assigned to target k for 1 ≤ k ≤ n. Among all optimal
solutions, consider one solutionπ thatmaximizes the auxiliary function

∑n
k=1 |π(2k−

1)−π(2k)|. Ifπ is not left-right separating, it must—at least once—match two sensors
from the left half (say π(1) and π(2)), and it must at least once match two sensors
from the right half (say π(3) and π(4)). Assume without loss of generality that

xπ(1) ≤ xπ(2) ≤ xπ(3) ≤ xπ(4).

Then |xπ(2) − xπ(1)| ≤ |xπ(3) − xπ(1)| and |xπ(4) − xπ(3)| ≤ |xπ(4) − xπ(2)|. Therefore
switching the values π(2) and π(3) in π will not worsen the objective value, whereas
it does increase the auxiliary function. This contradiction completes the argument. ��

Next, let x∗ with xn ≤ x∗ ≤ xn+1 be a real number that separates the sensors in the
left half from the sensors in the right half. Then the IKST-FOA instance can be rewritten
as an instance of 1-FOA in the following way: Let a1, . . . , an denote the positive real
numbers y1, . . . , yn ; let b1, . . . , bn denote the positive real numbers x∗−x1, . . . , x∗−
xn ; let c1, . . . , cn denote the positive real numbers xn+1 − x∗, . . . , x2n − x∗. Define
the cost-coefficient corresponding to a triple (i, j, k) as in (2).

Vice versa, every instance of 1-FOA can be rewritten as an instance of IKST-FOA, if
a1, . . . , an play the role of y1, . . . , yn , and if b1, . . . , bn together with −c1, . . . ,−cn
play the role of x1, . . . , x2n . Notice that these constructions map a solution to an
instance of IKST-FOA to a solution of an instance of 1-FOA with the same value, and
vice versa; we call such a pair of instances equivalent. We summarize our findings in
the following theorem.

Theorem 2.2 The problems IKST-FOA and 1-FOA are equivalent in the following
sense: there exist simple linear time reductions that translate an instance of one prob-
lem into an instance of the other problem with the same optimal objective value.
Furthermore, any polynomial time approximation algorithm for one problem yields a
polynomial time approximation algorithm for the other problem with the same worst
case guarantee.

3 Hardness and Inapproximability

In this section we establish strong NP-hardness and inapproximability (with respect to
fully polynomial time approximation schemes) of p-FOA.We first recall the following
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formulation (3) of the Hölder inequality; see for instance Theorem 13 in the book [8]
of Hardy, Littlewood & Pólya. For a non-zero real number q with q < 1, and for 2n
positive real numbers α1, . . . , αn and β1, . . . , βn we have

n∑

�=1

α
1/q
� β

(q−1)/q
� ≥

(
n∑

�=1

α�

)1/q (
n∑

�=1

β�

)(q−1)/q

(3)

Most importantly, equality holds in (3) if and only if the sequences αi and βi are
proportional, that is, if and only if there exists a real number λ such that αi = λβi for
1 ≤ i ≤ n. We will use these facts in the following hardness proofs.

3.1 Hardness and Inapproximability of p-FOA

Throughout this section, let p be some fixed real number with p < −1 or p > 0.
Our reduction is from the strongly NP-hard problem Numerical Matching with Target
Sums (NMTS); see Garey and Johnson [7]. Given target sums Ak (1 ≤ k ≤ n), and
given positive integers Bi (1 ≤ i ≤ n) and C j (1 ≤ j ≤ n), can we find a collection
of n triples (i, j, k) such that Ak = Bi + C j holds for each triple and such that each
element is used exactly once? Without loss of generality, we assume that the sum
S := ∑

Ak equals
∑

Bi + ∑
C j .

We consider an instance of NMTS, and transform it into an instance I of p-FOA by
setting ak := Ap+1

k , and bi := Bi , and c j := C j for all 1 ≤ i, j, k ≤ n. The optimal
objective value of instance I is denoted OPT(I ). We claim that OPT(I ) ≤ S if and
only if the NMTS instance has answer YES.

Lemma 3.1 If the NMTS instance has answer YES, then OPT(I ) ≤ S.

Proof We interpret the triples in the solution for NMTS as a feasible solution for p-
FOA. Then any triple (i, j, k) with Ak = Bi +C j in this feasible solution contributes

Ap+1
k /(Bi + C j )

p = Ak to the objective value. Hence, the corresponding objective
value for p-FOA equals S. ��
Lemma 3.2 If OPT(I ) ≤ S, then the NMTS instance has answer YES.

Proof We interpret the triples in the feasible solution for p-FOA with cost at most S
as a feasible solution for NMTS. We use inequality (3) with q = 1/(p + 1); note that
for p < −1 and for p > 0, the corresponding q indeed satisfies q < 1. Furthermore,
we set α� = Ak and β� = Bi + C j in (3), where j and k are the indices that occur
together with index i in the �th triple (i, j, k) in the feasible solution. For the objective
value this then yields

S ≥
∑

Ap+1
k (Bi + C j )

−p

≥
(∑

Ak

)p+1 (∑
Bi + C j

)−p = S p+1 · S−p = S. (4)
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Hence all inequalities in this chain are actually equalities. As we are dealing with the
case of equality in (3), the values α� = Ak and β� = Bi + C j must be proportional
to each other. Since

∑
α� = ∑

β�, the factor λ of proportionality is λ = 1. This
yields Ak = Bi +C j for all triples (i, j, k) in the feasible solution, so that the NMTS
instance has answer YES. ��

Lemmas 3.1 and 3.2 establish the correctness of our reduction from NMTS, and
hence yield the following theorem.

Theorem 3.3 For all real p < −1 and for all real p > 0, problem p-FOA is strongly
NP-hard.

Now let us turn to the inapproximability result. Lemma 3.2 essentially states that if
the NMTS instance has answer NO, then OPT(I ) > S. By looking a little bit deeper
into the proofs of the above lemmas, we will establish the following strengthening.

Lemma 3.4 If the NMTS instance has answer NO, then OPT(I ) > S + S−2p.

Proof Letπ andσ denote two permutations of 1, . . . , n that yield the optimal objective
value for the p-FOA instance I .

OPT(I ) =
n∑

k=1

ak
bπ(k) + cσ(k)

=
n∑

k=1

Ap+1
k

(Bπ(k) + Cσ(k))p
> S. (5)

If Ak = Bπ(k) +Cσ(k) holds for all k, then we get the contradictionOPT(I ) = S from
the proof of Lemma 3.1. Hence, we will assume without loss of generality that A1 <

Bπ(1) + Cσ(1). To simplify notation, we set x := A1 and y := Bπ(1) + Cσ(1) and we
note that 1 ≤ x < y < S. Then

∑n
k=2 Ak = S−x and

∑n
k=2(Bπ(k) +Cσ(k)) = S− y,

and in an analogous fashion as in (4) the Hölder inequality (3) with q = 1/(p + 1)
yields

n∑

k=2

Ap+1
k

(Bπ(k) + Cσ(k))p
≥ (S − x)p+1

(S − y)p
. (6)

We conclude from (5) and (6) that

OPT(I ) ≥ x p+1

y p
+ (S − x)p+1

(S − y)p
. (7)

Let us consider the right hand side of (7) as a function f (x) of variable x . It is easily
seen that this function is strictly convex, and that it attains its unique minimum in the
point x = y with the value f (y) = S. Now in our situation x is an integer from the
range 1 ≤ x < y, which implies f (x) ≥ f (y − 1) > S. Finally, we note that the
value f (y−1) is a rational number whose denominator is at most y p(S− y)p < S2p.
Since the smallest rational number above S with such a denominator is greater than
S + S−2p, we conclude f (y − 1) > S + S−2p. Then (7) yields the desired lower
bound OPT(I ) > S + S−2p. ��
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Theorem 3.5 For all real p < −1 and for all real p > 0, problem p-FOA does not
possess an FPTAS (unless P=NP).

Proof Suppose that p-FOA does possess an FPTAS. We take a p-FOA instance I as
in the above NP-hardness proof, and we execute the FPTAS with an approximation
guarantee of ε = S−2p−1. The time complexity of the resulting algorithm is polyno-
mially bounded in the instance size and in 1/ε = S2p+1. As p is a fixed real number,
this time complexity is pseudo-polynomially bounded in the instance size.

We let V denote the objective value found by the FPTAS. We claim that V ≤
S + S−2p if and only if the underlying instance of NMTS has answer YES. Indeed,
if the NMTS instance has answer YES, then OPT(I ) ≤ S by Lemma 3.1. Since the
objective value V is at most a factor 1 + ε above the optimal objective value, we
conclude that

V ≤ (1 + ε)OPT(I ) ≤ (1 + S−2p−1) S = S + S−2p.

On the other hand if the NMTS instance has answer NO, then Lemma 3.4 implies

V ≥ OPT(I ) > S + S−2p.

Hence, by looking at the output of the FPTAS we could decide in pseudo-polynomial
time whether the NMTS instance has answer YES (in case V ≤ S + S−2p) or answer
NO (in case V > S+S−2p). This yields a pseudo-polynomial time decision algorithm
for a strongly NP-hard problem, and consequently implies P=NP. ��

3.2 Hardness and Inapproximability of IKST-FOA

Next, let us discuss the equi-distant special case of IKST-FOAwhere the sensors are at
unit distances from each other in the 2n points (i, 0) with 1 ≤ i ≤ 2n. The equivalent
instance of 1-FOA has bi = ci = i − 1

2 for i = 1, . . . , n.
We use a similar reduction and the same notation as in the preceding section. Yu

et al. [14] have shown that Numerical Matching with Target Sums is NP-hard even
if Bi = Ci = i holds for i = 1, . . . , n. We start with an NMTS instance Ak , Bi ,
C j (1 ≤ i, j, k ≤ n) of this particular form, and define a new (equivalent) NMTS
instance with A′

k = Ak − 1, B ′
i = Bi − 1

2 and C ′
j = C j − 1

2 . Then B ′
i = C ′

i = i − 1
2

holds for all i , and the reduction in Theorem 3.3 for p = 1 yields the desired NP-
hardness argument. Also the inapproximability argument goes through in the same
way as before in Lemma 3.4 and Theorem 3.5.

Theorem 3.6 The equi-distant special case of IKST-FOA is strongly NP-hard, and it
does not possess an FPTAS (unless P=NP).

4 A Polynomial Time Result for p-FOA

In this section we discuss the parameter range −1 ≤ p ≤ 0 for p-FOA with cost
coefficients of the form (2). These problems are almost trivial and can essentially be
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solved by sorting. The following lemma settles the case with input sequences of length
n = 2.

Lemma 4.1 Let a1 ≤ a2 and b1 ≥ b2, c1 ≥ c2 be six positive real numbers that form
an instance of p-FOA with −1 ≤ p ≤ 0. Then the matching a1, b1, c1 and a2, b2, c2
forms an optimal solution.

Proof For any real s ≥ 0, the function f (x) = a1x−p + a2(s − x)−p is concave on
the range 0 < x ≤ s. This implies that in the p-FOA instance the minimum cost is
attained on the boundary of the domain, and that the optimal solution either matches
a1, b1, c1 and a2, b2, c2, or a1, b2, c2 and a2, b1, c1. Since −1 ≤ p ≤ 0 implies

(a2 − a1)

(
1

(b1 + c1)p
− 1

(b2 + c2)p

)

≥ 0,

the first one of these two candidate solutions gives the minimum cost. ��
Repeated application of Lemma 4.1 now yields the following theorem.

Theorem 4.2 Let a1 ≤ · · · ≤ an together with b1 ≥ · · · ≥ bn and c1 ≥ · · · ≥ cn
form an instance of p-FOA with −1 ≤ p ≤ 0. Then an optimal solution is given by
the triples (i, i, i) with 1 ≤ i ≤ n.

5 A Simple Approximation Algorithm for p-FOA

In this section we discuss the approximability of p-FOA with cost coefficients of the
form (2). Without loss of generality we assume that the numbers a1, . . . , an are in
non-decreasing order

a1 ≤ a2 ≤ · · · ≤ an . (8)

The well-known rearrangement inequality (see for instance Theorem 368 in the book
[8] of Hardy, Littlewood&Pólya) states the following: If two finite sequences 〈αi 〉 and
〈βi 〉 of equal length, are given except in arrangement, then the value of the sum

∑
i αiβi

is minimum if the two sequences are monotonic in opposite order. An immediate
consequence of the rearrangement inequality and of (8) is that any reasonable feasible
solution of p-FOA with triples (k, π(k), σ (k)) for 1 ≤ k ≤ n satisfies

bπ(1) + cσ(1) ≤ bπ(2) + cσ(2) ≤ · · · ≤ bπ(n) + cσ(n). (9)

Indeed, if one of the inequalities in (9) would be violated, then rearranging the sums
bπ(k)+cσ(k) into non-decreasingorderwould improve the objective value. In particular,
any optimal solution will satisfy (9).

Isler et al. [9] consider the following simple polynomial time approximation algo-
rithm for 1-FOA, and they establish that it has a worst case performance guarantee
of 2:

1. For k = 1, . . . , n match the kth largest number among b1, . . . , bn with the
kth smallest number among c1, . . . , cn . Denote the n resulting sums bi + c j by
s1 ≥ s2 ≥ · · · ≥ sn .
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2. Match the sums s1, . . . , sn according to the rearrangement inequality with the
numbers a1, . . . , an .

This algorithm can also be applied to instances of the general p-FOA problem with
p ≥ 0. The only minor modification is that in Step 2 we now assign the sums s p1 ≥
s p2 ≥ · · · ≥ s pn according to the rearrangement inequality to the numbers a1, . . . , an .
Note that, compared to the case p = 1, only the objective value changes, whereas the
set of triples (k, π(k), σ (k))with 1 ≤ k ≤ n (and hence the feasible solution) remains
the same.

Now consider an optimal solution for some p-FOA instance, and denote by s∗
1 ≥

s∗
2 ≥ · · · ≥ s∗

n the corresponding sums bi + c j that the optimal solution matches with
the numbers a1, . . . , an . The following result is essentially due to [9].

Lemma 5.1 For 1 ≤ k ≤ n, these sums satisfy the inequality s∗
k ≤ 2sk .

Proof Let the multi-set Tk contain the k largest values among b1, . . . , bn and
c1, . . . , cn , and let tk denote the smallest value in Tk . Then the first step of the algo-
rithm ensures sk ≥ tk . If one of the k sums s∗

1 , . . . , s
∗
k matches two values in Tk with

each other, then another such sum must match two values outside Tk with each other;
this sum is at most 2tk . If each of the k sums s∗

1 , . . . , s
∗
k matches some value in Tk

with some value outside Tk , then the smallest such sum is at most 2tk . In either case
we have the desired inequality s∗

k ≤ 2tk ≤ 2sk . ��
Theorem 5.2 For every p ≥ 0, the above polynomial time approximation algorithm
for p-FOA has a worst case performance guarantee of 2p. This bound is tight.

Proof Whenever the optimal solution uses a cost coefficient ai/(s∗
k )

p, the approximate
solution uses a cost coefficient ai/(sk)p ≤ ai/(s∗

k /2)
p. By summing these inequalities,

we get that the approximate objective value is at most a factor of 2p above the optimal
objective value.

Tightness of the bound 2p can be seen from the instance a1 = b1 = c1 = 1,
a2 = t2, and b2 = c2 = t for some huge number t . Then the approximation algorithm
matches the numbers as (1, 1, t) and (t2, t, 1), whereas the optimal solution matches
the numbers as (1, 1, 1) and (t2, t, t). As t tends to infinity, the ratio between the two
objective values tends to 2p. ��

For parameter values p < −1, the above approximation algorithm does not have
a finite performance guarantee. For the instance a1 = b1 = c1 = 1 and a2 = b2 =
c2 = t with huge t , the optimal solution would match the numbers as (t, 1, 1) and
(1, t, t)with objective value t2−p+(2t)−p. The approximation algorithmmatches the
numbers as (1, 1, t) and (t, 1, t) with objective value (t + 1)1−p. A similar example
shows that even for the polynomially solvable cases of p-FOA with −1 ≤ p < 0, the
approximation algorithm does not have a finite performance guarantee.

6 An Approximation Scheme for p-FOA

In this section we derive a polynomial time approximation scheme for p-FOA. To
keep the analysis simple, we will throughout concentrate on the cases with p > 0.
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In Sect. 6.3 we briefly sketch how to settle the remaining cases with negative p by a
similar approach.

Hence consider an arbitrary instance I of p-FOA (where cost coefficients are of
the form (2)). Without loss of generality we assume that the numbers a1, . . . , an are
in non-decreasing order (8). Recall from the preceding section that any reasonable
solution of p-FOA will consist of triples (k, π(k), σ (k)) with properties as described
in (9).

The worst case guarantee in our PTAS will be of the form (1+ ε)2p, where ε with
0 < ε < 1/2 is a fixed real number that can be chosen arbitrarily close to zero. We
introduce L as the smallest integer satisfying

ε (1 + ε)L−1 ≥ 1. (10)

Some straightforward calculations show that L is of order O((1/ε) ln 1/ε). Since ε is
a constant whose value does not depend on the input, all expressions that only depend
on ε and L will also be fixed constants that are independent of the size of the input.

We start with a rounding phase, in which we round down all the numbers b1, . . . , bn
and c1, . . . , cn in instance I to the next integer power of 1 + ε. This rounding is
harmless, since it changes the objective value by at most a factor of (1 + ε)p. Define
K as the largest integer for which (1 + ε)K occurs among these rounded values
b1, . . . , bn and c1, . . . , cn . We stress that the value of K is polynomially bounded in
the input size and in the reciprocal value of ε: If z is the maximum value among the
b1, . . . , bn and c1, . . . , cn , then K is O(ln(z)/ε).

6.1 Definition of the Auxiliary Instances

We introduce a family of auxiliary instances I ′ that encode certain useful sub-instances
of the original instance I . This family has two crucial properties. First, the family
is small: It contains only a polynomial number of auxiliary instances. Secondly, the
auxiliary instances in this family are easy to approximate: Every instance in the family
can be approximated by reducing it to several smaller instances in the family. The
appropriate choice of these auxiliary instances is rather delicate, and constitutes the
main step in deriving the PTAS.

Part of the structure of an auxiliary instance I ′ is determined by a quadruple
(m, k, β, γ ) which is called the type of instance I ′. The quadruple consists of:

• An integer m with 1 ≤ m ≤ n.
• An integer k with 0 ≤ k ≤ K .
• Two non-negative integers β and γ with 0 ≤ β, γ ≤ m.

In the following, a real number x will be called k-small if x < ε(1+ ε)k−1, and it will
be called k-medium if ε(1+ε)k−1 ≤ x ≤ (1+ε)k . Every auxiliary instance I ′ of type
(m, k, β, γ ) consists of 3m real numbers a′

1, . . . , a
′
m , b

′
1, . . . , b

′
m , and c

′
1, . . . , c

′
m that

satisfy the following:

• The numbers a′
1 ≤ · · · ≤ a′

m coincide with a1, . . . , am , that is, they form the m
smallest elements in the enumeration (8).
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• The list b′
1 ≤ . . . ≤ b′

m consists of the β largest k-small elements among b1, . . . , bn ,
together with m − β arbitrarily chosen k-medium elements from b1, . . . , bn .

• The list c′
1 ≤ · · · ≤ c′

m consists of the γ largest k-small elements among c1, . . . , cn ,
together with m − γ arbitrarily chosen k-medium elements from c1, . . . , cn .

• At least one of b′
m and c′

m equals (1 + ε)k .

We note that for some of the types there is no corresponding auxiliary instance, as
sequence b1, . . . , bn or sequence c1, . . . , cn do not contain sufficiently many k-small
and k-medium elements. We also stress that the original instance I occurs among the
auxiliary instances.

Let us estimate the overall number of auxiliary instances: there are O(n3K ) quadru-
ples that describe a type. For every type (m, k, β, γ ) all values a′

i , all the k-small values
b′
i , and all the k-small values c′

i in any instance of that type are fixed. The k-medium
values b′

i are integer powers of 1 + ε that lie between the bounds ε(1 + ε)k−1 and
(1 + ε)k . Inequality (10) yields that they must occur among the L + 1 numbers

(1 + ε)k−L , (1 + ε)k−L+1, · · · · · · , (1 + ε)k .

Hence there are onlyO(nL )possible choices for the k-mediumvaluesb′
i . An analogous

argument shows that there are only O(nL) possible choices for the k-medium values
c′
i . Altogether this yields a polynomial upper bound of O(K · n2L+3) on the number
of auxiliary instances.

6.2 Approximation of the Auxiliary Instances

Throughout we denote byOPT(I ) the optimal objective value of instance I . For every
auxiliary instance I ′, we will compute in polynomial time an approximate objective
value f (I ′) that satisfies

OPT(I ′) ≤ f (I ′) ≤ (1 + ε)p · OPT(I ′).

The computation is done in the order of increasing values of m: Whenever we are
handling an auxiliary instance with 3m numbers, all auxiliary instances with 3(m−1)
numbers have already been settled. The computation of f (I ′) in the cases withm = 1
is trivial.

Now consider an auxiliary instance I ′ of type (m, k, β, γ ) withm ≥ 2. An optimal
solution matches element a′

m with two partners b∗ and c∗, and the rearrangement
inequality and (9) tell us that the sum b∗ + c∗ of these two partners must be relatively
large. Since (by the definition of an auxiliary instance) at least one of b′

m and c′
m takes

the value (1+ ε)k , we certainly have b∗ + c∗ ≥ (1+ ε)k , and this means that at least
one of b∗ and c∗ is a k-medium element. Our strategy is to enumerate many cases, and
to try out all possibilities for such a k-medium partner b∗ or c∗. The case checking
covers two possible scenarios.

In the first scenario both partners b∗ and c∗ are k-medium. Hence we check all
O(L2) possibilities for b∗ and c∗. In every check, we remove the corresponding three
numbers a′

m, b∗, c∗ from the instance I ′ and thus create a residual instance I ′′ of type
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(m − 1, k′, β ′, γ ′) for appropriate integers k′, β ′, γ ′. Then f (I ′′) + a′
m/(b∗ + c∗)p

yields a (1+ε)p-approximation for the objective value of the best solution thatmatches
a′
m with b∗ and c∗.
In the second scenario one partner, say the partner b∗, is k-small (while c∗ is k-

medium). Then b∗ + c∗ ≥ (1 + ε)k and b∗ < ε(1 + ε)k−1 together imply c∗ >

(1 + ε)k−1. We conclude b∗ < ε c∗, and hence

b∗ + c∗ ≤ (1 + ε) c∗ ≤ (1 + ε) (b′
1 + c∗),

where b′
1 is the minimum of b′

1, . . . , b
′
m . Rewriting this last inequality yields

a′
m

(b′
1 + c∗)p

≤ (1 + ε)p
a′
m

(b∗ + c∗)p
. (11)

We construct instance I ′′ by removing a′
m, b′

1, c
∗ from instance I ′, and we construct

instance I ′′′ by removing a′
m, b∗, c∗ from instance I ′. From b′

1 ≤ b∗ we derive
OPT(I ′′) ≤ OPT(I ′′′). This yields

f (I ′′) ≤ (1 + ε)p · OPT(I ′′) ≤ (1 + ε)p · OPT(I ′′′). (12)

Now how dowe proceed in this second scenario?We check all O(L) possibilities for a
k-medium partner c∗ > (1+ ε)k−1. In every single check, we match element a′

m with
the elements c∗ and with b′

1. The residual instance I
′′ then is of type (m−1, k′, β ′, γ ′)

for appropriate integers k′, β ′, γ ′. The inequalities (11) and (12) show that

f (I ′′) + a′
m

(b′
1 + c∗)p

≤(1 + ε)p ·
(

OPT(I ′′′) + a′
m

(b∗ + c∗)p

)

= (1 + ε)p · OPT(I ′).

Therefore the value f (I ′′) + a′
m/(b′

1 + c∗)p yields a (1 + ε)p-approximation for the
objective value of the best solution that matches a′

m with b∗ and c∗.
In the end, the value f (I ′) is defined as the best approximation detected in all the

explored cases under both scenarios.

6.3 The Approximation Scheme

Let us now summarize themain steps of the approach outlined in the above paragraphs.
Consider an arbitrary instance I of p-FOA with p > 0.

1. Round down all b1, . . . , bn and c1, . . . , cn to the next integer power of 1 + ε.
2. Enumerate all possible auxiliary instances I ′ of all possible types (m, k, β, γ ).
3. Determine the value f (I ′) for every auxiliary instance I ′.
4. Output the approximate objective value f (I ′) for the auxiliary instance I ′ that

coincides with the original instance I .

The running time of this approach is polynomial: The overall number of auxiliary
instances is polynomially bounded by O(K ·n2L+3), and every single value f (I ′) can
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be computed in polynomial time. Also the approximation guarantee (1+ ε)2p is easy
to see: The rounding in Step #1 introduces a multiplicative error of at most (1 + ε)p,
and the computation of the function values f (I ′) introduces another factor of at most
(1 + ε)p. All in all, this yields the following theorem.

Theorem 6.1 For all real p, problem p-FOA possesses a PTAS. ��
Finally let us briefly discuss the cases of p-FOA with p < 0, for which a PTAS can

be constructed in a very similar fashion. We modify the above PTAS in the following
way: First, we reverse all inequality-signs in (8). Secondly, in the rounding phase
instead of rounding down we round all the numbers up to the next integer power of
1+ε. Thirdly, in the definition of the auxiliary instances we perform two changes: For
the list b′

1 ≤ · · · ≤ b′
m we now choose the β smallest (and not the β largest) k-small

elements among b1, . . . , bn , and for the list c′
1 ≤ · · · ≤ c′

m we choose the γ smallest
k-small elements among c1, . . . , cn . Finally, in the second scenario in Sect. 6.2 we do
not match element a′

m with the elements c∗ and the smallest k-small element b′
1, but

we match a′
m with c∗ and with the largest k-small element. The rest of the analysis

goes through just as before, and all the (straightforward) details are left to the reader.
We conclude that for all real p (positive or negative) problem p-FOA allows a PTAS.

7 Conclusion

We have provided a complete complexity and approximability analysis of the focus of
attention problem p-FOA. In a nutshell, the problem is stronglyNP-hard and possesses
a polynomial time approximation scheme, but does not allow a fully polynomial time
approximation scheme (unless P=NP).

One can consider different variants of p-FOA.Our problem p-FOA is a special case
of the axial three-dimensional assignment problem. Next, a natural generalization to
a four-dimensional assignment problem takes four positive real sequences a1, . . . , an ,
b1, . . . , bn , c1, . . . , cn , and d1, . . . , dn . The cost-coefficient for a quadruple (i, j, k, �)
with 1 ≤ i, j, k, � ≤ n is defined as

ci jk� = ai
(b j + ck + d�)p

.

The goal in the generalization is to group the 4n numbers into n quadruples (each
containing one ai , one b j , one ck , and one d�) such that the sum of the cost-coefficients
of these quadruples is minimized.We note without proof that all our results for p-FOA
can be carried over to this four-dimensional generalization (and also to appropriately
defined higher-dimensional generalizations as long as the number of dimensions is a
fixed constant): the generalized problem is strongly NP-hard, possesses a PTAS, but
does not allow an FPTAS.

Another variant is the bottleneck version of p-FOA where the goal is to minimize
the maximum cost over all triples in a feasible solution. We restrict ourselves to noting
here that the resulting problem is (strongly) NP-hard (by a similar reduction), and that
the PTAS described here can be adapted to deal with this variant.
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