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Feedforward for Multirate Motion Control:
Enhanced Performance and Cost-Effectiveness

J.C.D. van Zundert, J.L.C. Verhaegh, W.H.T.M. Aangenent, T. Oomen, D. Antunes and W.P.M.H. Heemels
ACC2015_MR_v99(31/05/2018)

Abstract— In traditional feedback control, a single sampling
rate is used for all control loops. Consequently, achieving
higher performance by increasing the sampling rate is generally
costly. The aim of this paper is to develop a multirate control
framework to create a breakthrough in the performance/cost
trade-off in digital controller implementation. In the proposed
approach one of the control loops is implemented at a lower rate
of which the feedforward controller is designed through norm-
based minimalization of the tracking error in this multirate
framework. By designing and implementing one of the control
loops at a lower rate, the cost is reduced and the multirate
problem is addressed. Through simulation the adequate per-
formance of the proposed multirate approach is demonstrated.

I. INTRODUCTION

Nowadays, most digital control systems run at a single
sampling frequency [1], [2]. For these systems high control
performance can be achieved by use of high sampling
frequencies in all control loops. However, this is either
infeasible or extremely costly in terms of required hardware.
Hence, there is a trade-off between performance and cost
since a single-rate approach must settle either with running
every sensor/actuator at a low rate, leading to performance
degradation, or at high rate, leading to expensive hardware
cost, see also Fig. 1.

An alternative to reduce cost while maintaining similar
control performance, or to increase performance for similar
hardware costs, is to use multirate configurations [3], [4], [5],
[6]. In multirate control different control loops may have
different sampling rates and has therefore the potential to
improve the classical cost/performance trade-off in digital
control systems. For example, the overall performance of
the system may be significantly improved by only increasing
the sampling frequency of some of the control loops, see i)
in Fig. 1. Alternatively, reducing the sampling frequencies
of noncritical control loops saves cost while the overall
performance of the system is maintained, see ii) in Fig. 1.

Although multirate control is conceptually promising, at
present its deployment is hampered by the inability to
use existing design techniques in engineering practice. In
particular, typical control design approaches resort to linear
and time-invariant models, whereas multirate systems are
time-variant, see [1, Sec. 3.3]. Hence traditional techniques,
such as in [7], [8], are not applicable. Frequency domain
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Fig. 1. Qualitative plot of achievable performance versus the hardware
costs for a single-rate ( ) and multirate ( ) control framework. i)
higher performance can be achieved for equal costs if a multirate control
framework is used, ii) the same level of performance can be achieved for
lower costs if a multirate control framework is used.

design for linear time varying systems can be found in [9],
[10], [11] and linear time varying feedforward design in [12].
Note that these latter techniques are focused on sampled-data
control, i.e., continuous time systems interconnected with a
single-rate feedback controller.

The main contribution of this paper is to pose and solve
a multirate motion feedforward problem for a dual-stage
actuated motion system. The approach is applied to high
performance wafer scanners which are used in the semicon-
ductor industry for the production of integrated circuits. In
particular, the focus is on the multirate control of the wafer
stage. Related research on feedforward tuning is presented
in [13] and an overview of recent modeling and feedback
challenges is presented in [14]. The resulting control problem
for this paper can, roughly speaking, be perceived as two
coupled control loops of two masses of the wafer stage lying
on top of each other; the so-called short stroke, lying on
top, runs at a high sampling rate, whereas the so-called long
stroke runs at a low sampling rate. The position of the short
stroke is tracked by the control loop of the long stroke.

This paper is organized as follows. In section II, the
multirate control problem is formulated and the objectives
of this paper are given. The model-based feedforward design
framework for the multirate control problem is proposed
in section III. In section IV, a simulation example is pro-
vided that reveals the advantage of the proposed framework.
Finally, conclusions and recommendations are presented in
section V.

Notation Throughout, continuous-time signals are de-
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noted by Roman symbols, e.g., u(t), t ∈ R+ and discrete-
time signals by Greek symbols, e.g., ν[k], k ∈ N0.
Continuous-time signals are represented by solid lines, slow
sampled discrete-time signals by dashed lines, fast sampled
discrete-time signals by dash-dotted lines and intersample
discrete-time signals by dotted lines. All blocks are assumed
to be single-input single-output (SISO) and finite dimen-
sional. Often, scalar signals and systems are tacitly assumed.
Vector valued variables are underlined with 0N , 1N the zero
and unity vector of length N , respectively, and IN the N×N
identity matrix. The Kronecker product is denoted ⊗.

II. SYSTEM DESCRIPTION AND PROBLEM DEFINITION

In this paper, a multirate control configuration for a wafer
scanner system is studied. In this section, the concept of
a wafer scanner system is briefly explained, the considered
wafer stage is described, and the corresponding multirate
control configuration is introduced. Finally, the problem
formulation and the feedforward control objective of this
paper are defined.

A. Wafer scanner system

Wafer scanners are state-of-the-art equipment for the auto-
mated production of integrated circuits. In Fig. 2 a schematic
illustration of a wafer scanner system is depicted. Ultra-violet
light from a light source 1 passes through a reticle 2 ,
which contains a blueprint of the integrated circuits to be
manufactured. The reticle is mounted atop the reticle stage
3 which performs a scanning motion. The resulting image of
the reticle is scaled down by a lens system 4 and projected
onto the light sensitive layers of a wafer 5 . The wafer is
mounted on the wafer stage 6 and performs a synchronized
scanning motion with the reticle stage. During this scanning
process, the wafer stage (and reticle stage) must track a
predefined reference signal with extreme accuracy.

1

2
3

4

5

6

Fig. 2. Schematic illustration of a wafer scanner system, where 1 : light
source, 2 : reticle, 3 : reticle stage 4 : lens system, 5 : wafer, 6 : wafer
stage.

B. One degree of freedom wafer stage system

The focus in this paper is on the motion control of a
one degree of freedom wafer stage system consisting of a
short stroke (SS) for nanometer-positioning accuracy and a
long stroke (LoS) for micrometer-positioning accuracy as
schematically depicted in Fig. 3. The short stroke motion
system, whose position is denoted by ySS , is located on top
of the long stroke motion system, whose position is denoted
by yLoS . The short stroke and long stroke are dynamically

long stroke (LoS)

dynamic
coupling

yLoS

~Fr

ySS
eLoS := ySS − yLoS

short
stroke
(SS)

Fig. 3. A schematic illustration of an one degree of freedom wafer stage
system model, consisting of a short stroke (SS) and a long stoke (LoS),
which are dynamically coupled.

coupled through mechanics and electrics. When the short
stroke is actuated a reaction force ~Fr is applied on the
long stroke. For simplicity, both the dynamical coupling and
reaction force are not accounted for in this paper.

C. Multirate control configuration

The control architecture of the short and long stroke is
depicted in Fig. 4. There is a fast control loop for the short
stroke and a slow control loop for the long stroke. The control
loops are interconnected by so-called downsamplers D which
introduce time-variance.

The sampling frequencies of the short stroke and long
stroke control loops are denoted fh, f l, respectively. In ad-
dition, a extreme high sampling frequency fh

∗
is defined for

performance evaluation. The relation between the sampling
frequencies is given by

fh
∗

= Mfh = Lf l, fh = Ff l, M,L, F ∈ N+.

First, consider the control loop for the short stroke as
depicted in the upper part of Fig. 4, which operates at high
sampling frequency fh. Specifically, the superscript h refers
to the high sampling frequency fh. Note that in the control
configuration of Fig. 4, fast sampled signals (at the rate
fh) are represented by dashed-dotted lines. Here, ψhSS =
P d,hSS ν

h
SS , where P d,hSS denotes the discrete-time model of the

short stroke plant, νhSS denotes the sampled force input to
the short stroke plant (at rate fh) and ψhSS denotes the fast
sampled short stroke position ySS . Furthermore, the control
loop consists of a stabilizing feedback controller Cd,hSS,FB ,
feedforward controller Cd,hSS,FF , and an input shaping filter
Kd,h
ψ . In particular, Kd,h

ψ is introduced to deal with the zeros
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D↓F

εlLoS

Kd,h
ψ

ρh ρhψ εhSS

Cd,hSS,FF

Cd,hSS,FB
νhSS

+

+

ψhSS

D↓F

+

+

+

−

+

−

νh
∗

LoSνlLoS

P d,lLoS P d,h
∗

LoS
uLoS ũLoS ψlLoS

ψh
∗

SS

+

−

εh
∗

LoS

ψh
∗

LoS

H↑M Hh∗ DθSS PSS Sh∗νh
∗

SS

P d,hSS

D↓M

P d,h
∗

SS
uSS ũSS

ψlSS

ySS

yLoS

eLoS
+

−

νhSS,FF

νlLoS,FFρl
Cd,lLoS,FF

Cd,lLoS,FB H↑L Hh∗ DθLoS PLoS Sh∗ D↓L

Fig. 4. The multirate control configuration for a wafer stage system. The short stroke system P d,hSS runs at high sampling frequency fh with input
shaping Kd,h

ψ and feedforward control Cd,hSS,FF . The long stroke system P d,lLoS runs at low sampling frequency f l with feedfoward control Cd,lLos,FF to
be designed.

of the short stroke dynamics. The design of the short stroke
filters Kd,h

ψ and Cd,hSS,FF is based on the technique presented
in [15]. Moreover, let ρh denote the known reference signal,
ρhψ the shaped reference, and εhSS the short stroke servo error.

Second, consider the control loop for the long stroke as
depicted in the lower part of Fig. 4, which operates at low
sampling frequency f l. In Fig. 4, ψlLoS = P d,lLoSν

l
LoS , where

P d,lLoS denotes the discrete-time model of the long stroke plant
operating at a low sampling frequency f l. The superscript
l refers to the low sampling frequency f l, νlLoS denotes
the sampled force input to the long stroke plant and ψlLoS
denotes the sampled long stroke position yLoS (at rate f l).
Note that the slowly sampled signals in Fig. 4 are represented
by dashed lines and εlLoS denotes the long stroke servo
error at rate f l. In addition, the control loop consists of
a stabilizing feedback controller Cd,lLoS,FB and feedforward
controller Cd,lLos,FF . In this paper, the long stroke feedforward
controller with Cd,lLos,FF ∈ P is optimized. The structure P
is specified later on.

D. Long stroke feedforward control goal

During the scanning process of the wafer, which is posi-
tioned on top of the short stroke, the controllers of the long
stroke system operating at sampling frequency f l aim that
yLoS tracks the position ySS of the short stroke.

The tracking goal of the feedforward controller Cd,lLos,FF
is to attain a small continuous-time error eLoS := ySS −
yLoS during the scan of the wafer. Since the continuous-time
signals ySS and yLoS are generally not available, it is aimed
to minimize the error εh

∗
LoS := ψh

∗
SS − ψh

∗
LoS at extremely

high rate fh
∗
. This is done by minimalization of the 2-norm

of εh
∗
LoS . The main problem considered in this paper is the

following.

Problem 1. Given the closed-loop multirate control con-
figuration in Fig. 4, determine the optimal long stroke

feedforward controller

Cd,l,optLos,FF := arg min
Cd,lLos,FF∈P

V (Cd,lLos,FF ),

where

V (Cd,lLos,FF ) := ‖εh
∗
LoS‖22.

The specific choice of parametrization P is discussed in
section III.

III. PROPOSED APPROACH TO MULTIRATE FEEDFORWARD

In this section, the solution to the multirate control prob-
lem is provided after introducing finite-time descriptions of
time-invariant and time-varying operators, and defining the
feedforward structure of the long stroke feedforward con-
troller. Finally, the potential of designing and implementing
the long stroke feedforward filter at high-rate is studied.

A. Finite-time system description

Consider the discrete-time system P d,h with Markov pa-
rameters mh

i , i ∈ [0, Nh − 1] operating over a finite-time
interval [0, Nh − 1]. Then, the input-to-output behavior is
represented by

ψh = P d,hνh,

P d,h =


mh

0 0 0 · · · 0
mh

1 mh
0 0 · · · 0

mh
2 mh

1 mh
0 · · · 0

...
...

...
. . .

...
mh
Nh−1 mh

Nh−2 mh
Nh−3 · · · mh

0

 .

For causal SISO LTI systems, P d,h ∈ RNh×Nh is a square
lower triangular Toeplitz matrix that maps input vector νh =(
νh0 νh1 νh2 . . . νhNh−1

)> ∈ RNh to output vector

ψh =
(
ψh0 ψh1 ψh2 . . . ψhNh−1

)> ∈ RNh .
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Finite-time expressions for the downsampler D↓F and
multirate zero-order-hold H↑F can be constructed with block
Toeplitz matrices [12] as

D↓F = INh ⊗
[
1 0>F−1

]
∈ RN

h×FNh ,

H↑F = INh ⊗ 1F ∈ RFN
h×Nh ,

respectively. Note that D↓F and H↑F are non-square block
Toeplitz matrices, which correspond to sample rate conver-
sions and hence to time-varying behavior.

The finite-time mapping ρh 7→ εh
∗
LoS is given by

εh
∗
LoS = ψh

∗

SS
− ψh

∗

LoS

and follows from the finite-time mappings ρh 7→ ψh
∗

SS
and

(ρh, ψh
SS

) 7→ ψh
∗

LoS
, which are provided by the following

lemma.

Lemma 2. For the system depicted in Fig. 4, the closed-loop
finite-time mappings ρh 7→ ψh

∗

SS
and (ρh, ψh

SS
) 7→ ψh

∗

LoS
are given by

ψh
∗

SS
= P d,h

∗

SS H↑MS
d,h
SS (Cd,hSS,FF

+ Cd,hSS,FBK
d,h
ψ )ρh ∈ RN

h∗
,

where Sd,hSS := (INh + Cd,hSS,FBP
d,h
SS )−1 ∈ RNh×Nh , and

ψh
∗

LoS
= P d,h

∗

LoSH↑LS
d,l
LoSC

d,l
Los,FFD↓F ρ

h

+ P d,h
∗

LoSH↑LS
d,l
LoSC

d,l
LoS,FBD↓Fψ

h

SS
∈ RN

h∗
,

where Sd,lLoS := (IN l + Cd,lLoS,FBP
d,l
LoS)−1 ∈ RN l×N l .

Proof. Both follow from the interconnection structure of
Fig. 4 and the relation (I +AB)

−1
A = A (I +BA)

−1.

Note that both the mapping ρh 7→ ψh
∗

SS
and the mapping

(ρh, ψh
SS

) 7→ ψh
∗

LoS
are time-varying. Indeed, time variance

of ρh 7→ ψh
∗

SS
is best explained by considering the fact that

the delay operator Dτ , τ ∈ R+ applied to ρh corresponds
to time steps hh, whereas the delay operator Dτ applied to
ψh

∗

SS
corresponds to time steps hh

∗
.

B. Feedforward filter parameterization

In this paper, a finite impulse response (FIR) structure
is exploited for the feedforward controller of the long
stroke, see Definition 3. This parameterization encompasses
a common parameterization in feedforward and input shaping
design for motion systems, see also [15], [16], [17], [13].

Definition 3. The long stroke feedforward controller is
parameterized in coefficients β ∈ Rnβ+1 with Cd,lLos,FF ∈
PFIR where

PFIR =
{
B(z, β) | β ∈ Rnβ+1

}
,

with

B(z, β) =

nβ∑
i=0

βiϑi(z),

where ϑi(z), i = 0, 1, 2, . . . , nβ are basis functions

C. Optimal solution

The relation between β and εh
∗
LoS is provided by the

following theorem.

Theorem 4. For the closed-loop system in Fig. 4, the
operator mapping β 7→ εh

∗
LoS is given by

εh
∗
LoS(β) := ψh

∗

SS
− ψh

∗

LoS
= b−Mβ ∈ RN

h∗
,

where

b = P d,h
∗

SS H↑MS
d,h
SS (Cd,hSS,FF + Cd,hSS,FBK

d,h
ψ )ρh

− P d,h
∗

LoSH↑LS
d,l
LoSC

d,l
LoS,FBD↓Fψ

h

SS
∈ RN

h∗
,

M = P d,h
∗

LoSH↑LS
d,l
LoSD↓FΦ ∈ RN

h∗×(nβ+1),

β =
(
β0 β1 β2 . . . βnβ

)> ∈ Rnβ+1,

with

Φ = T d,hρ

[
Inβ+1 ⊗ e1

0(Nh−F (nβ+1))×(nβ+1)

]
Q ∈ RN

h×(nβ+1),

T d,hρ =


ρh0 0 0 · · · 0
ρh1 ρh0 0 · · · 0
ρh2 ρh1 ρh0 · · · 0
...

...
...

. . .
...

ρhNh−1 ρhNh−2 ρhNh−3 · · · ρh0

 ∈ RN
h×Nh ,

e1 =

[
1

0F−1

]
∈ RF ,

Q =

{
qi,j = (−1)j−1

(
i−1
j−1
)
, ∀i ≥ j,

qi,j = 0, ∀i < j.

Proof. Due to space restrictions, the proof is omitted.

By Definition 3 and Theorem 4, Problem 1 reduces to the
least-square problem

βopt = arg min
β
‖b−Mβ‖22,

with solution

βopt = (M>M)−1M>b.

D. Long stroke feedforward at high rate

Up to this point, the feedforward controller Cd,lLos,FF for
the multirate control configuration of Fig. 4 is designed
explicitly at the low sampling frequency f l. By explicitly
designing the controller at the higher sampling frequency fh,
the reference signal ρh at rate fh can be exploited. Hence,
there is more design freedom which potentially yields better
performance in terms of the tracking error εh

∗
LoS . This concept

is schematically illustrated in Fig. 5. From the noble identity
it follows that the set of Cd,hLoS,FF includes the set of Cd,lLoS,FF
as special case, i.e., with Cd,hLoS,FF at least the same level of
performance can be achieved as with Cd,lLoS,FF . It should be
noted that the solution approach presented in the previous
section remains applicable.
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Cd,l
LoS,FF

D↓FCd,h
LoS,FF

D↓F
ρh

ρh

ρl

νhLoS,FF νlLoS,FF

νlLoS,FF

≡

(a) Noble identity: Cd,lLoS,FFD↓F is equivalent to
D↓FCd,hLoS,FF , the converse is generally not true.

Cd,l
LoS,FF

Cd,h
LoS,FF

(b) Class Cd,lLoS,FF
is a subclass of
Cd,hLoS,FF .

Fig. 5. Implementing the feedforward controller at high rate fh potentially
yields better performance..

IV. SIMULATION EXAMPLE

To illustrate the proposed method in section III and to give
further insight on the potential of multirate control, a sim-
ulation example is presented. In particular, the performance
achievements of the multirate control with feedforward at
low and high sampling frequency are compared with those
of the single-rate control configuration.

A. Setup

Both the short stroke system PSS and the long stroke sys-
tem PLoS are modeled as mass-spring-damper-mass systems
as depicted in Fig. 6, with parameters as in Table I.

m1,LoS
ũLoS

yLoS

m1,SS m2,SS

dSS

ũSS

ySS

eLoS = ySS − yLoS

m2,LoS

kSS

dLoS

kLoS

Fig. 6. Mass-spring-damper-mass mechanical system P .

SS LoS
m1 [kg] 2 6
m2 [kg] 18 54
d [Ns/m] 225 70.37
k [N/m] 2.8× 108 8.84× 106

θ [s] 0.22h∗ 0.43h∗

TABLE I
PARAMETER VALUES OF WAFER STAGE IN SIMULATION EXAMPLE.

The feedback controllers Cd,hSS,FB and Cd,lLoS,FB are de-
signed as stabilizing controllers using loop-shaping tech-
niques, each yielding a bandwidth of 200 Hz. The reference
signal ρh for both loops is given by the trajectory depicted
in Fig. 7 and has sampling frequency fh = 20 kHz. The

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

τh [ms]

ρ
h

[m
m

]

Fig. 7. Fourth order reference signal ρh.

extremely high sampling frequency is set to fh
∗

= 100 kHz,
i.e., M = 5.

Inspired by [16], [15], the basis functions in PFIR (Defi-
nition 3) are selected as

ϑi(z) = (1− z−1)i, i = 0, 1, 2, . . . , nβ ,

and β0 is fixed to zero such that zero feedforward is
generated during steady state. The order nβ of PFIR and f l

are varied. For comparison, the buffer-length τ̄ is introduced
as the operating time-span of the feedforward controller (in
[s]), i.e.,

τ̄ := nβf(CLoS,FF ),

with f(CdLoS,FF ) the sampling frequency of CdLoS,FF .

B. Comparison and evaluation

The proposed multirate control configuration is evaluated
by comparing it with a single-rate control configuration. For
the single-rate case, the short stroke and long stroke both
run at f l = fh = 20 kHz (L = 5). The influence of the
buffer length τ̄ on V = ‖εh∗

LoS‖22 is depicted in Fig. 8 ( ).
As expected, the value of V decreases for increasing τ̄ due
to more design freedom. For the multirate configuration, the

0 0.2 0.4 0.6 0.8 1 1.2
10−20

10−15

10−10

10−5

τ̄ [ms]

V
=

‖ε
h
∗
L
o
S
‖2 2

[m
2
]

Fig. 8. The squared 2-norm of the error εh
∗
LoS versus the buffer length

τ̄ of the FIR filter for three configurations: single-rate ( ), multirate with
Cd,lLos,FF at low rate f l (), and multirate Cd,hLos,FF at high rate fh ( ).

long stroke runs at f l = 10 kHz (L = 10) and the results are
depicted in Fig. 8 (). Also for the multirate configuration, V
decreases as τ̄ increases.

Note that for both configurations the same sampling fre-
quency is used for the short stroke control loop. Since in
the single-rate configuration, the long stroke control loop

5



runs at a higher sampling frequency than in the multirate
configuration, better performance is obtained. The key obser-
vation is that with the multirate configuration, although the
sampling frequency of one of the control loops is reduced
by a factor two (and hence the cost are reduced), the
performance degradation is relatively small. This trade-off
between reducing cost at the expense of performance is in
line with the ideas outlined in section I, and in particular as
illustrated in Fig. 1.

The results for the multi-configuration with Cd,hLos,FF , i.e.,
at high rate fh, are depicted in Fig. 8 ( ). With Cd,hLos,FF
( ), a lower value V for all τ̄ is obtained than with Cd,lLoS,FF
(). Generally, implementation of the feedforward controller
at high sampling frequency is rather inexpensive while the
performance improvement can be significant, as can be
observed from Fig. 8.

To provide further insights, the time domain intersample
errors εh

∗
LoS of the three configurations are provided in Fig. 9

for the value τ̄ = 1 ms. Also from this figure the differences
between the three configurations in terms of performance is
clearly visible.

0 10 20 30 40 50

−40

−20

0

20

40

τh
∗

[ms]

εh
∗
L
o
S

[n
m

]

Fig. 9. The long stroke intersample error εh
∗
LoS for buffer length τ̄ = 1 ms

for single-rate ( ), multirate with Cd,lLos,FF at low rate f l ( ), and
multirate with Cd,hLos,FF at high rate fh ( ).

The simulation example shows that the proposed multirate
configuration addresses the trade-off outlined in section I. In
particular, designing the feedforward controller of the slow
loop at the high sample rate fh is beneficial in terms of εh

∗
LoS

over designing it at low sample rate f l.

V. CONCLUSIONS

The performance/cost trade-off of classical single-rate
control can be broken with multirate control. In this paper, a
new multirate control framework is presented consisting of
two control loops in which the control loop at high sampling
rate is tracked by the control loop at low sampling rate.
To achieve proper tracking performance, the feedforward
controller of the slow control loop is designed through norm-
based minimalization of the tracking error. An analytic solu-
tion to this multirate control optimization problem is obtained
by exploiting finite-time system descriptions for both time-
invariant and time-varying operators. Through simulations
it is demonstrated that satisfactory tracking performance
is achieved with the multirate configuration, which hence
addresses the performance/cost trade-off. Finally, it is shown

that enhanced performance is achieved by designing and
implementing the feedforward controller at high instead of
low sampling rate.

Ongoing work includes experimental verification to vali-
date the concept of Fig. 1.

REFERENCES

[1] T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems.
London, Great Britain: Springer, 1995.

[2] K. J. Astrom, B. B. Wittenmark, K. J. Åström, and B. B. Wittenmark,
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