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Abstract

A different approach in modeling reactions between substrate molecules and enzymes is
presented in this report. The reactions are modeled using a discrete event model (DEM),
mostly used in manufacturing or queueing systems. The DEM has been validated with the
most used approach to modeling substrate-enzyme reactions, a set of ordinary differential
equations (ODEs). The substrate-enzyme model is extended with feedback of substrate
and/or product molecules on the enzyme, resulting in inhibition or activation of the
enzyme. A reversible reaction, where the enzyme can react with both the substrate
and the product, is also modeled as a DEM and validated with an ODE model. The
substrate-enzyme reaction models with feedback is extended to a steady-state system by
adding a generator, convertor and exit. Stability of the steady-state system is analyzed
and resulted in three distinct regions.
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Chapter 1

Introduction

In biology, millions of substrate-enzyme reactions occur in every living cell. Enzymes
are the proteins that catalyze chemical reactions. In enzymatic reactions, the molecules
at the beginning of the process are called substrates, and the enzyme reconfigures them
into different molecules, called products. Usually these reactions and networks of these
reactions are modeled by Ordinary Differential Equations (ODEs). In [7], a start in mod-
eling substrate-enzyme reactions as discrete event models (DEMs) has been presented. In
this report we follow this approach, which is mostly used in manufacturing and queueing
models, and model different kinds of substrate-enzyme reactions.

The general substrate-enzyme reaction is modeled and simulated with ordinary differential
equations (ODEs) in Chapter 2. Chapter 3 gives a short introduction of discrete event
models, the stochastic processes and specifies the model parameters before modeling the
substrate-enzyme reaction. This model is verified with the ODE model results. Chapter 4
presents an extension of the DEM model with downstream and/or upstream feedback
molecules affecting the search process. In Chapter 5 feedback is modeled affecting the
reconfiguration process. A reversible reaction is modeled and simulated in Chapter 6.
The substrate-enzyme reaction models with feedback and reversibility are used to model
and analyze the first steps of the EMP-pathway, the most common type of glycolysis in
Chapter 7. This report ends with conclusions and recommendations in Chapter 8.
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Chapter 2

ODE approach

Often biological systems are modeled using Ordinary Differential Equations (ODEs).
Biological ODE models are continuous deterministic models in which variables represent
concentrations of the molecules involved. Models are based on average reaction rates,
measured from experiments which relate to the change of concentrations over time. With
the reaction equation, initial amounts of the concentrations and the rate of every reaction
a model can be constructed.
The general substrate-enzyme reaction scheme is as follows:

S + E ↔ C → P + E. (2.1)

This scheme describes how enzyme E catalyzes a reaction wherein substrate S is converted
via complex C into product P . This reaction takes place in a fixed volume which is
assumed to be well mixed and in thermal equilibrium. This reaction scheme can be
separated into the following three reactions:

S + E
k1−→ C, (2.2a)

C
k2−→ S + E, (2.2b)

C
k3−→ P + E. (2.2c)

When substrate S and enzyme E collide substrate-enzyme complex C is formed which
consists of substrate S bound to enzyme E, see (2.2a). This reaction is characterized
by mass-action rate constant k1 [min−1] and denotes the reaction speed of the search of
the substrate and the enzyme for each other. The complex can undergo two different
reactions. Complex C can disintegrate into enzyme E and substrate S again, see (2.2b).
Rate constant k2 denotes the failure speed to reconfigure the substrate after forming
complex C. In the third reaction, see (2.2c), bounded substrate S in complex C is
reconfigured into product P , whereafter complex C falls apart in product P and enzyme
E. Rate constant k3 denotes successful reconfiguration speed. The dynamics of the
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system can be written as the following set of ODEs:
dCS

dt
= k2CC − k1CSCE, (2.3a)

dCE

dt
= (k2 + k3)CC − k1CSCE, (2.3b)

dCC

dt
= k1CSCE − (k2 + k3)CC, (2.3c)

dCP

dt
= k3CC, (2.3d)

where CS, CE, CC and CP denote the concentration of respectively substrate S, enzyme
E, complex C and product P . Note that enzymes are either unbound represented by
symbol E or bound with substrate S to form complex C.

This system has been described by Leonor Michaelis and Maud Menten for the first time
in 1913 [6]. They assumed that reconfiguration step k3, from C to P and E, was the
bottleneck and much slower than k2. Therefore they neglected k2 in some parts of the
model. In [2], Briggs and Haldane proposed that the total concentration of the enzyme is
much smaller than the substrate concentration. Since this is typically true for biological
reactions, this assumption is usually valid.
Total enzyme concentration CEt is equal to the sum of bound and unbound enzyme
concentrations:

CEt = CE + CC. (2.4)

If CS � CEt a steady state is reached in which complex concentration CC does not change
in time:

dCC

dt
= k1CSCE − (k2 + k3)CC = 0. (2.5)

Using (2.4), (2.5) can be reunited as:

CSCEt = CSCC +
k2 + k3

k1
CC. (2.6)

The relation between the rate constants is defined by the Michaelis-Menten constant Km,
see [5]:

Km =
k2 + k3

k1
, (2.7)

and hence:
dCP

dt
= k3CEt

CS

Km + CS
, (2.8)

The maximal reconfiguration rate of the reaction Vmax is denoted by the rate constant
of the product forming step k3 multiplied by the total enzyme concentration CEt in the
considered volume V.

Vmax = k3CEtV. (2.9)
If unbound enzyme E and complex concentration C do not change in time, the decrease
in concentration of substrate S is equal to the increase in concentration of product P .
The resulting ODEs for the substrate-enzyme reaction with Michaelis-Menten constant
Km are presented in (2.10).

dCP

dt
= Vmax

CS

Km + CS
, (2.10a)

dCS

dt
= −Vmax

CS

Km + CS
, (2.10b)

This reaction scheme is as follows: substrate molecule S binds with enzyme E, the
enzyme reconfigures the substrate molecule into product molecule P and the product
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molecule unbinds from the enzyme. This reaction is described by (2.11) and a graphical
representation of the substrate-enzyme reaction is presented in Figure 2.1.

S + E → P + E. (2.11)

Figure 2.1: Graphical representation of a substrate-enzyme reaction.

The set of ODEs for this system can be numerically solved, given the initial concentrations
and the Michealis-Menten constant. In this case, parameters and initial concentrations
are used from [9], Chapter 7, see Table A in Appendix A.

Results of this ODE simulation for the typical set of parameters and initial conditions are
presented in Figure 2.2. Due to the decreasing concentration of the substrate molecules
in this transient simulation, the reaction speed decreases and eventually all substrate
molecules are reconfigured into product molecules, as expected.

Figure 2.2: Simulation results of the set of ODEs.
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Chapter 3

Manufacturing approach

A different approach as he continuous deterministic ODE-models is what we call the
”manufacturing” approach. For modeling manufacturing and queueing systems discrete
event models (DEMs) are used. A DEM is in discrete time and can contain any given
distribution. The DEMs are modeled and simulated using χ [8]. For modeling a substrate-
enzyme reaction as a DEM, the reaction can be divided into two distinct processes. The
first process, search process, describes the search between substrate molecule and enzyme,
i.e. the time it takes for a substrate molecule to collide with an enzyme molecule. In the
second process, reconfiguration process, the enzyme reconfigures the substrate molecule
into a product molecule and the product molecule unbinds from the enzyme. Both pro-
cesses are stochastically independent and, in contrast with ODE models, DEMs can make
a distinction between them. To model and simulate the search process, a variable τs de-
noting the search time between a substrate molecule and the enzyme is introduced. This
variable depends on substrate concentration CS. For high concentrations of substrate
the hazard of a collision is large and therefore the search time is small and for low con-
centrations the collision hazard is small and therefore search time τs is large. Similar
to the search time, a variable denoting the reconfiguration time τr is introduced for the
reconfiguration process. Reconfiguration time τr corresponds to the process time of the
machine. In this manufacturing approach a machine contains a number of enzymes of
the same kind. Maximal process rate depends on the number of enzymes of one kind in
the considered volume.
A discrete event model representation of the substrate enzyme reaction is presented in
Figure 3.1. The concentrations of substrate molecules S and product molecules P are rep-
resented by two buffers, respectively BS and BP and the reaction process is presented by
RE and depends on the enzyme molecules. From now on we represent reaction processes
by circles and buffer processes by squares.

BS RE BP

Figure 3.1: Discrete event model representation.
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3.1 Parameters

Parameters used in the ODE model are used to obtain parameters for the DEM. With
Michaelis-Menten constant Km given, only search time τs and reconfiguration time τr
have to be calculated. Reconfiguration time is calculated as the minimal processing time
(processing at maximal speed Vmax):

τr =
1

Vmax
=

1
k3 · CEt · V

. (3.1)

Total reaction speed of one molecule is denoted by the specific activity of the enzyme
venz multiplied by the number of enzymes. Total reaction time ∆t, the sum of search
process and reconfiguration process, of one molecule then becomes:

∆t = τs + τr =
1
venz

. (3.2)

Specific activity of the enzyme venz is in this case, as presented in(2.10a):

venz =
Vmax · CS

Km + CS
. (3.3)

With (3.1), (3.2) and (3.3) search time τs can be calculated as:

τs =
(
Vmax

venz
− 1
)
· τr =

Km · τr
CS

. (3.4)

A more detailed description of a DEM in biological systems can be found in [7].

3.2 Stochastic behavior

The search and reconfiguration processes are described by a different probability density.
In this report, the search process is considered exponentially distributed and the reconfig-
uration process is assumed to be Γ distributed, which is explained below. This decoupling
of distributions in the search and reconfiguration process is one of the most important
differences between the discrete event model approach and Gillespie’s algorithm. Since
an arbitrary distribution can be chosen for the reconfiguration process, essentially any
biophysical hypothesis providing the details of the process can be implemented in the
system.

3.2.1 Search process

Gillespie’s algorithm [3] considers different types of reactions which occur in a volume.
In this approach molecules are considered hard spheres. The volume is assumed spa-
tially homogenous where molecules are randomly distributed, in an uniform sense. This
distribution does not depend on time. Also, thermal equilibrium is assumed and there-
fore the collision hazard is independent of time and only depends on the current state
of the system. Based on this algorithm the search process is considered exponentially
distributed. The mean value of the search time is a function of the buffer content. To
draw a sample from an exponential distribution with a changing mean value an inverse
calculation method has been used. Sampled search time τs,s has been calculated based
on an uniform distribution sample u and a mean value equal to the search time τs, as
defined in (3.5):

τs,s = −ln(1− u) · τs (3.5)
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3.2.2 Reconfiguration process

It is not clear what distribution expresses the reconfiguration process. Some experiments
show that it is not exponentially distributed, while Gillespie’s algorithm assumes an expo-
nential distribution.When the substrate molecule collides with the enzyme, two processes
take place. First, the substrate molecule is ’grabbed’ by the enzyme, i.e. the bonds are
established and both the substrate and enzyme change somewhat in their shape. Sec-
ond, the enzyme catalyzes a change in conformation of the substrate molecule and then
releases the molecule as a product molecule. These processes together are labeled as the
reconfiguration process. In this report it is assumed that reconfiguration time τr is Γ
distributed. Coefficient of variation (CV) for the Γ distribution has been chosen to a
value of 3.0.

3.3 Interrupting a process

Interrupting the search or reconfiguration process is possible in a substrate-enzyme model.
The search process can be interrupted when the substrate concentration changes, in order
to recalculate the new search time, or it can be interrupted depending on feedback,
presented in Chapter 4. The reconfiguration process can be interrupted if the enzyme
receives feedback that affects the reconfiguration rate, presented in Chapter 5. Both
processes are described by a different probability density and therefore we first present
interruption of an arbitrary probability density. Next, interrupting the exponentially
distributed search and Γ distributed reconfiguration process are described.

3.3.1 Arbitrary probability density process interruption

Assume that the time to the next event in the process is described by a probability density
p1(t). At time t = a, the probability density describing the process changes to a new
density p2(t). The probability that random variable T > a is defined by z:

z =
∫ ∞
a

p1(t)dt. (3.6)

Number b is defined so that it describes the time in the new distribution that leads to
the same cumulative probability as t = a does for the old distribution:∫ ∞

b

p2(t)dt = z. (3.7)

With τ = t− a, the conditional probability is therefore given as:

Prob{T ∈ [τ, τ + δ]|τ > 0} =
∫ τ+b+δ

τ+b

p2(s)ds (3.8)

The probability density for the new time to finish becomes

p̃2(τ |τ > 0) =
1
z
p2(τ + b) (3.9)

Notice
∫∞
a
p2(τ |τ > 0)dτ = 1 which makes this the density that we can use to pull a

distribution for the end of the process.
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3.3.2 Search process interruption

The search process is considered exponentially distributed (Markovian). If the substrate
concentration changes at time t = a, probability z that the random variable T > a is
defined by:

z =
∫ ∞
a

λ1e
−λ1tdt = −e−λ1t

∣∣∞
a

= e−λ1a. (3.10)

Time b describing the time in the new distribution that leads to the same cumulative
probability z is defined by:

z =
∫ ∞
b

λ2e
−λ2tdt = −e−λ2t

∣∣∞
b

= e−λ2b, (3.11)

b =
λ1a

λ2
. (3.12)

The probability density for the new time to finish then becomes:

p̃2(τ |τ > 0) =
1
z
p2(τ + b) =

λ2e
−λ2(τ+b)

e−λ2b
= λ2e

−λ2τ (3.13)

Hence (and this is true only for Markov processes, i.e. exponential distributions), once
the enzyme is free, a sample is taken from the exponential distribution depending on the
substrate concentration. If the next event is a change in substrate concentration during
the search process, a new sample is taken from the new exponential distribution and this
new sample time is added to the time that has already passed.

3.3.3 Reconfiguration process interruption

In some cases the reconfiguration process is interrupted while reconfiguring a molecule.
Reconfiguration time τr is assumed to be Γ distributed. Since a Γ distribution is non-
Markovian, i.e. it has got a memory, a simple result as with the search process can not be
derived. The remaining searchtime after interruption can be calculated with (3.7)-(3.9).

3.4 Simulation results

Before modeling the DEM some parameters have to be converted. One molecule in the
DEM corresponds to 1 µMol. Another issue is that the model represents a volume, and
buffers work with a list of products. To account for the three-dimensional space a new
molecule is placed into the queue at a position drawn from an uniform distribution. With
search time, reconfiguration time and initial concentrations known a discrete event model
of the substrate-enzyme reaction can be modeled. Figure 3.2 shows the simulation results
of the DEM of the substrate enzyme reaction. The complete model and a description of
the processes are presented in Appendix E.1. It can be seen that the deterministic results
are similar to the ODE results in Figure 2.2. The stochastic results fluctuate around the
deterministic results as expected.

14 Manufacturing approach



Figure 3.2: Simulation results of the DEM.
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Chapter 4

Feedback: Search process

Many substrate-enzyme reactions contain feedback loops that depend on the concentra-
tion of the waiting substrate or the concentration of the created product. The biology
involved is the following: an enzyme has catalytic binding sites for a substrate molecule,
and in addition, it could have a regulatory binding site for a feedback molecule (this
can be a substrate or product molecule and will be called feedback molecule from now
on). If a feedback molecule binds, it inhibits or activates the enzymes catalysation. Such
feedback binding will occur with a typical stochastic time length. In this chapter we
introduce activating or inhibiting feedback by respectively accelerating or inhibiting the
search process of the enzyme. Activation or inhibition by influencing the reconfiguration
process is presented in Chapter 5.

4.1 Inhibiting feedback

When a feedback molecule binds at the regulatory site of the enzyme, this can have an
inhibiting effect on the search process. Figure 4.1 presents a graphical representation of
downstream inhibiting feedback. When an inhibiting molecule binds, the enzyme changes
its structure and prevents substrate molecules to bind at the reconfiguration site until
the feedback molecule unbinds. If the enzyme is already reconfiguring a molecule and
a feedback molecule binds, the molecule under reconfiguration is not affected. After
the product molecule unbinds from the enzyme, search for new substrate molecules is
inhibited.

The model used to simulate the influence of feedback is an enzyme with maximal activity
Vmax = 100.0, Michaelis-Menten constant Km = 40.0 and reconfiguration time τr = 0.01.
It is assumed that the search time between molecules at the regulatory and catalytic
sites are similar and the binding time at the regulatory site is assumed to be 1 second
(0.0167 min) and is denoted byτfb . Results of simulations with a single enzyme receiving
inhibiting feedback from the substrate molecules are presented in Figure 4.2. This figure
presents the reaction rate depending on the substrate concentration. Results with de-
terministic settings are presented in green, stochastic settings are presented in blue and
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Figure 4.1: Graphical representation of inhibiting search time feedback from substrate S.

the dotted line represents the enzymic rate without feedback. It can be seen that both
the stochastic and deterministic system with inhibiting feedback result in a lower activ-
ity. However, the deterministic model gives a much higher activity than the stochastic
system. Since the search processes are similar, both molecules bind at the enzyme when
the search processes start at the same time in the deterministic model. In the stochastic
model, the chance of binding a feedback molecule first is 50%. If a feedback molecule
binds first, the search process at the reconfiguration site is inhibited and a new search
process starts when the feedback molecule unbinds. This explains that the stochastic
curve is about half of the deterministic curve.

The effect of varying the time a feedback molecule is bound to the enzyme is presented in
Figure 4.4. Results of the deterministic system are presented by the blue line and results
of the stochastic system are presented in red. It is expected that for a binding time of
zero the activity is maximal and decreases with increasing binding time, as shown by the
stochastic results. The deterministic results exist of two different regions, τfb < τr and
τfb ≥ τr. Figure 4.3 shows sample paths of a setting in these regions, along with the case
τfb = τr. The arrows represent search times, the red blocks the binding time of a molecule
at the catalytic site and the grey striped blocks the binding time at the regulatory site.
If τfb < τr, enumerated by 1, the reaction rate equals the time two feedback molecules
bind and unbind:

V =
1

2 · τs + 2 · τfb
if τfb < τr, (4.1)

For τfb = τr, enumerated by 2, the reconfiguration rate is not affected by the feedback
molecules and if τfb ≥ τr, enumerated by 3, the reaction rate equals the binding rate of
one feedback molecule:

V =
1

τs + τfb
if τfb ≥ τr, (4.2)

To eliminate these effects and to be able to make a fair comparison between stochastic
and deterministic models only the stochastic feedback models are used in the rest of this
chapter.
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Figure 4.2: Inhibiting search process feedback simulation results.

Figure 4.3: Sample paths of 3 cases with different feedback molecule bound times. Num-
ber of substrate products is 40.

It is possible that the search time for a substrate molecule and the catalytic site is not
equal to the search time for a substrate molecule and the regulatory site. This can
be caused by the positions of the sites on the enzyme or difference in attraction force
of the sites. For different search times of the feedback molecules, different shapes of
specific activity can be modeled. If the influence of the feedback is increased (feedback
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Figure 4.4: Sample paths of 3 cases with different feedback molecule bound times. Num-
ber of substrate products is 40.

molecule binding time of 0.2), and feedback search times are much longer (Km = 20000
and τr = 0.001), specific activity decreases for increasing substrate concentration from a
certain point, see Figure 4.5. Each point has been simulated 5 times, presented by the
blue dots in the upper figure. The red line shows the mean of these simulations and the
lower figure the coefficient of variation of the points.

Figure 4.5: Inhibiting search process feedback simulation results.
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4.2 Activating feedback

In contrast to inhibiting feedback presented in Section 4.1, activating feedback accelerates
the search process. The search process with activating feedback is assumed to be ten
to a hundred times faster than a normal search process. A graphical representation
of activating feedback is presented in Figure 4.6. Results of specific activity V versus
substrate concentration [S] are presented in Figure 4.7. The black dotted line presents
the specific activity without feedback, i.e. the Michaelis-Menten curve. The red and green
lines present the average values from the stochastic simulation results which increases the
search process respectively ten and a hundred times if a feedback molecule is bound. It
can be seen that the specific activity is much higher for activating feedback, as expected,
while the difference between an increase of search time by 10x or 100x does not make a
big difference.

Figure 4.6: Graphical representation of activating search time feedback from substrate
S.
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Figure 4.7: Activating search process feedback simulation results.
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4.3 Inhibiting and activating feedback

In some cases in a pathway consisting of substrate-enzyme reactions, some enzymes are are
inhibited by downstream energy molecules and activated by upstream energy molecules,
see Chapter 7. The enzymes reconfigure a substrate molecule together with an energy
molecule into a product molecule and an energy molecule with lower energy. These
energy-molecules can also bind with the enzyme at the regulatory site and activate or
inhibit the reaction. A discrete event model representation of this situation is presented in
Figure 4.8. Feedback is indicated with ν in the model, and there is downstream inhibition
and upstream activation.

BS

BEn1

E

BP

BEn2
νactνinh

Figure 4.8: DEM representation of a process with inhibiting and activating feedback.

Results of stochastic simulations with this model are presented in Figure 4.9. The blue
lines represent the substrate concentration and the red lines represent the product con-
centration. Also results without feedback are presented (dotted lines). Parameters of
the feedback search time are similar to the reconfiguration substrate search time and
the influence of an activating feedback is a 50 times faster search process. The energy
molecules concentrations are similar to the substrate and product concentrations. It can
be seen that in the first part the conversion rate is slower than without feedback, and
after this point the rate is faster than for the corresponding concentrations in the results
without feedback. These results are also expected and this sigmoidal shape is well-known
in biology. Substrate energy concentration is high at the start and therefore a lot of
inhibiting feedback molecules bind at the regulatory site of the enzyme. While the sub-
strate concentration decreases and product concentration increases, less inhibiting and
more activating feedback molecules bind with the enzyme resulting in the fast rate at the
end.
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Figure 4.9: Activating and inhibiting search process feedback simulation results.
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4.4 Combining enzymes

In some processes, like the destruction of Adenosine monophosphate (AMP)[1], specific
activity decreases at a certain concentration and increases for a larger concentration, see
Figure 4.10. In this case AMP is degraded by AMP deaminase and AMP phosphatase.
AMP deaminase has a strong positive cooperativity for AMP and seems to be almost
inactive at normal AMP concentrations, what explains the left part of the figure. For
higher concentrations, AMP acts as an effector for AMP phosphatase resulting in an
increase of degradation for higher concentrations of AMP.

This situation can be modeled by combining an enzyme with downstream inhibiting
feedback and a normal enzyme, see Figure 4.11. Both enzymes are competing for the
substrate molecules. Results are presented in Figure 4.12 and the curve is similar to the
curve in Figure 4.10. Another option is to combine the enzyme with feedback with an
enzyme that becomes active at a certain concentration level. Results of this system are
presented in Figure 4.13, the enzyme becomes active when the substrate concentration
≥ 500.

Figure 4.10: AMP destruction function.

G BS

Efb

E
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d
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Figure 4.11: DEM representation of a combination of a feedback and normal enzyme.
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Figure 4.12: Combination of feedback and normal enzyme simulation results.

Figure 4.13: Combination of feedback and normal enzyme simulation results, normal
enzyme is activated when [S] = 500.
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4.5 Conclusion

In this chapter, inhibiting and/or activating feedback has been implemented in the DEM
of an enzyme-substrate reaction. The activation or inhibition occurs in the search process.
If an inhibiting feedback molecule binds with the enzyme, the enzyme can not receive a
new substrate molecule and therefore the search process is inhibited until the molecule
unbinds. If an activating feedback molecule binds, search process becomes 10-100 times
faster. When the feedback parameters are changed a parabolic shape in the result of the
specific activity versus substrate concentration can be created. Also results of coupling
this enzyme with a ’normal’ enzyme are presented. Only downstream inhibition and
upstream activation are discussed, downstream activation and upstream inhibition can
be modeled and simulated similarly.
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Chapter 5

Feedback: Reconfiguration process

Instead of inhibition or activation by failing or accelerating the search process presented
in Chapter 4, inhibition or activation can also occur by deceleration or acceleration of the
reconfiguration process. This chapter presents feedback of substrate or product molecules
that affect the reconfiguration process of the enzyme. In Section 5.1 we implement in-
hibiting feedback of product molecule P in the DEM of the substrate-enzyme reaction.
In Section 5.2 activating feedback of substrate molecule S is modeled and simulated.
Section 5.3 presents feedback of both substrate and product molecules.

5.1 Inhibiting feedback

In this section inhibiting feedback of product molecule P is implemented in the substrate-
enzyme model from the Chapter 3. A graphical representation of this reaction with
feedback is shown in Figure 5.1. If the concentration of product molecules becomes
larger, reaction speed slows down because more inhibiting feedback molecules will bind.
The binding time of a feedback molecule with the enzyme is chosen to be 0.1 time units.
Effect of this feedback is that the reconfiguration rate halves until the feedback molecule
unbinds from the regulatory site. Results of introducing inhibiting feedback from product
molecules with different parameters for the search time between product molecule and
regulatory site of the enzyme are presented in Figure 5.2. The solid lines present the
results without feedback and the dotted lines present results with feedback. It can be
seen that more feedback slows the reaction down, as expected.
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Figure 5.1: Graphical representation of inhibiting feedback from product P .

Figure 5.2: Results of simulations with inhibiting feedback from P .
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5.2 Activating feedback

The model from Section 5.1 simulated inhibiting upstream feedback to slow down the en-
zyme depending on the product molecules concentration. In contrast, substrate molecules
can give activating feedback to the enzyme depending on the substrate concentration. A
graphical representation of this reaction is shown in Figure 5.3. In this model is assumed
that if a substrate molecule is bound at the regulatory site of the enzyme, reconfigura-
tion rate doubles until the activating enzyme unbinds. Results of introducing activating
feedback from substrate molecules with different parameters for the search time between
substrate molecule and regulatory site of the enzyme are presented in Figure 5.4. It can
be seen that reaction speed increases with increasing feedback.

Figure 5.3: Graphical representation of activating feedback from substrate S.

Figure 5.4: Results of simulations with activating feedback from S.
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5.3 Inhibiting and activating feedback

Upstream inhibiting feedback (from product P ) or downstream activating feedback (from
substrate S) largely regulate the reaction speed in reality, for instance in glycolysis. This
is a combination of the previous two models. Only one feedback molecule can bind at
the enzyme at a time. A graphical representation of this reaction with feedback is shown
in Figure 5.5. Results of the model with motivating feedback from substrate molecules
with different search time rates is presented in Figure 5.6. The legend shows the type of
molecule, νS and νP. If both parameters are set to zero, the enzyme receives no feedback
and the results are similar to the ODE model.

Figure 5.5: Graphical representation of feedback from S and P .

Figure 5.6: Results model with feedback from S and P.

5.4 Conclusion

In this chapter feedback of the substrate or product molecules affecting the reconfiguration
process has been introduced in a substrate-enzyme reaction. An activating feedback of
substrate molecules and an inhibiting feedback of product molecules has been presented.
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Chapter 6

Reversible reaction

A substrate-enzyme reaction can be irreversible or reversible. Reactions described in the
previous chapters have all been irreversible, i.e. enzyme E only reconfigures substrate S
into product P and not the other way around. In reversible reactions the enzyme also
reconfigures product molecule P into substrate molecule S. A reversible reaction scheme
is presented in (6.1).

S + E � P + E. (6.1)

The reaction in (6.2) is one of the reactions in the glycolysis pathway, see [4]. In this reac-
tion Glucose-6-Phosphate G6P is reconfigured (isomerization) into Fructose-6-Phosphate
F6P by enzyme Phosphoglucoisomerase Pgi. This reaction is freely reversible under nor-
mal cell conditions. However, it is often driven forward because of a low concentration of
F6P, which is constantly consumed during the next step of glycolysis. Under conditions
of high F6P concentration this reaction readily runs in reverse. This phenomenon can be
explained with Le Chatelier’s Principle.

G6P + Pgi � F6P + Pgi. (6.2)

In Section 6.1, the reversible reaction has been modeled and simulated as an ODE model.
Section 6.2 presents the reaction modeled and validated as a DEM.
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6.1 ODE model

The set of ODEs for this reaction is:
dCG6P

dt
= −vPgi, (6.3)

dCF6P

dt
= vPgi, (6.4)

with vPgi the specific activity of the enzyme. From [4]:

vPgi =
Vmax ·

(
CG6P − CF6P

Keq,Pgi

)
Km,G6P ·

(
1 + CF6P

Km,F6P

)
+ CG6P

, (6.5)

where Vmax denotes the maximal reaction rate, Cx the concentration of x, Km,x denotes
the Henri-Michaelis-Menten constant for x and Keq,Pgi is the equilibrium constant. The
Pgi parameters are presented in Appendix A, Table A.

Results of simulations with this ODE system with initial CG6P and CF6P amounts set to
respectively 1.0 and 0.0 mMol are shown in Figure 6.1. The equilibrium concentrations
can be calculated (vPgi = 0), if total concentration T is known, by:

CG6P −
CF6P

Keq,Pgi
= 0, (6.6)

CG6P + CF6P = T. (6.7)

For FG6P(0) = 1.0mMol and CF6P(0) = 0.0mMol this results in equilibrium concentra-
tions CG6P = 10/13 = 0.77mMol and CF6P = 3/13 = 0.23mMol.

Figure 6.1: ODE results for CG6P(0) = 1 and CF6P(0) = 0.
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6.2 Discrete event model

The reversible reaction can be modeled as a discrete event model, with a similar approach
as the substrate-enzyme and feedback DEMs. A DEM representation of the reversible
reaction is presented in Figure 6.2. The blocks BS and BP represent the buffers. The
buffers contain the concentration of respectively substrate (G6P) and product (F6P)
molecules . The reaction process (enzyme) is presented by RE . Two different approaches
have been used for modeling the deterministic and stochastic discrete event model of
the reversible reaction. The deterministic approach is described in Section 6.2.1 and the
stochastic approach in Section 6.2.2.

BS RE BP

Figure 6.2: DEM representation of a reversible reaction.

6.2.1 Deterministic approach

The deterministic DEM of the reversible reaction represents the overall activity of the
molecules. When overall activity vPgi equals zero, an equilibrium has been reached and the
model will not reconfigure any substrate or product molecules. Actually, in equilibrium,
the forward and backward reaction rate are constant. For the deterministic model it is
computationally less expensive to simulate the overall rate instead of both the forward
and backward rates, yielding the same results. Overall reaction time ∆t (sum of search
and reconfiguration times) of one molecule is denoted by the absolute value of the specific
activity of enzyme |vPgi| multiplied by the number of enzymes. If vPgi > 0 more G6P
molecules are reconfigured into F6P molecules and if vPgi < 0 more F6P molecules are
reconfigured into G6P molecules. Total reaction time of one molecule is:

∆t = τs + τr =
1

|vPgi| ·V
. (6.8)

Results of simulations with the deterministic DEM for CG6P(0) = 1 and CF6P(0) =
0mMol are presented in Figure 6.3. A comparison between the DEM and ODE simulation
results is shown in Figure 6.4. It can be seen that the DEM results track the ODE results
perfectly with a stepsize of 1µMol.

6.2.2 Stochastic approach

For stochastic simulations the deterministic approach, using the overall rate, is insuffi-
cient. For this approach with stochastic processes, the concentrations of the substrate
and product molecules would fluctuate very little near an equilibrium, since the reac-
tion speed vPgi is almost zero. In real life, the concentrations fluctuate much more due
to the stochastic fluctuations in the forward and backward reaction rates. Therefore,
the stochastic DEM of the reversible reaction describes both the forward and backward
reaction. Forward reaction speed vF is assumed to be:

vF =
Vmax · CG6P

Km,G6P ·
(

1 + CF6P

Km,F6P

) . (6.9)
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Figure 6.3: Deterministic DEM results for CG6P(0) = 1 and CF6P(0) = 0.

Figure 6.4: Comparison between ODE and DEM results for CG6P(0) = 1 and CF6P(0) =
2.

Overall reaction speed vPgi is the forward reaction speed extracted by the backward
reaction speed vB:

vPgi = vf − vb, (6.10)

therefore:

vB =
Vmax · CF6P

keq,Pgi

Km,G6P ·
(

1 + CF6P

Km,F6P

) . (6.11)

Simulation results of the stochastic DEM are presented in Figure 6.5. It can be seen that
after the startup-phase the concentrations fluctuate around the equilibrium levels.

6.3 Conclusion

In this chapter a reversible substrate-enzyme reaction has been modeled as a discrete event
model. The deterministic and stochastic models are constructed with a different approach,
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Figure 6.5: Stochastic DEM results for CG6P(0) = 1 and CF6P(0) = 0.

resulting in less calculations for the deterministic model. Results from simulations with
the deterministic model are verified with results of simulations of a set of ODEs.
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Chapter 7

EMP Pathway

With discrete event models for a substrate enzyme reaction, reactions with inhibiting
and/or activating feedback and reversible reactions a biological network or pathway can
be modeled. As a test-case the first steps of glycolysis are modeled and analyzed in
this chapter. Glycolysis is the metabolic pathway that converts glucose C6H12O6, into
pyruvate C3H3O−3 while releasing energy. Glycolysis is thought to be the archetype of
a universal metabolic pathway. It occurs, with variations, in nearly all organisms. The
wide occurrence of glycolysis indicates that it is one of the most ancient known metabolic
pathways.
The most common type of glycolysis is the Embden-Meyerhof-Parnas (EMP) pathway,
which was first discovered by Gustav Embden, Otto Meyerhof and Jakub Karol Parnas
in 1918. This pathway is a sequence of twelve reactions. We consider the first steps, see
Figure 7.1. The first step in glycolysis is phosphorylation of glucose Gluc by enzymes
called Hexokinase Hk to form glucose-6-phosphate G6P . This reaction consumes high
energy compound adenosine triphosphate ATP and a product is adenosine diphosphate
ADP. G6P is then rearranged into fructose-6-phosphate F6P by enzyme phosphoglu-
coisomerase Pgi. This reaction is freely reversible under normal cell conditions. Enzyme
Pfk works similar as enzyme Hk. It removes a phosphate from ATP and binds it to F6P,
generating fructose-1,6-bisphosphate F1,6bP and ADP.

Figure 7.1: First steps EMP-pathway.

Section 7.1 presents the ODE and DEM models of the EMP-pathway and results of
simulations are compared. In Section 7.2, the model is extended with activating feedback
of ADP molecules and inhibiting feedback of ADP molecules. Section 7.3 presents the
stochastic behavior of the model. The transient model is modified to a steady-state model
in Section 7.4 and results are analysed in Section 7.5.
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7.1 ODE and DEM models

The enzymic reactions from the first steps of the EMP-pathway shown in Figure 7.1 are
decoupled in (7.1).

Gluc + ATP vHk−−→ G6P + ADP, (7.1a)

G6P
vPgi↔ F6P, (7.1b)

F6P + ATP
vPfk−−→ F1,6bP + ADP. (7.1c)

Kinetic rate equations are shown in (7.2) and taken from [4]. Reaction (7.1b) is a re-
versible reaction but can also be considered irreversible. Both kinetic rate equations (7.2b
and 7.2c) are used in this chapter. The parameters used are presented in Appendix A,
Table A.3.

vHk =
Vmax · CGluc · CATP(

Km,Gluc + CGluc

)
·
(

Km,ATP + CATP

) , (7.2a)

vPgi =
VmaxCG6P

Km,G6P + CG6P
, (7.2b)

vPgi,rev =
Vmax ·

(
CG6P − CF6P

Keq,Pgi

)
Km,G6P ·

(
1 + CF6P

Km,F6P

)
+ CG6P

, (7.2c)

vPfk =
Vmax · CnF6P · CATP(

Kn
m,F6P + CnF6P

)
·
(

Km,ATP + CATP

) . (7.2d)

According to (7.1) and (7.2) the ordinary differential equations describing the change in
concentration in the system can be expressed as:

dCGluc

dt
= −vHk + varr, (7.3a)

dCG6P

dt
= vHk − vPgi, (7.3b)

dCF6P

dt
= vPgi − vPfk, (7.3c)

dCF1,6bP

dt
= vPfk − vexit, (7.3d)

dCATP

dt
= −vHk − vPfk + vconv, (7.3e)

dCADP

dt
= vHk + vPfk − vconv. (7.3f)

Results of the DEM and ODEs for these first steps in the EMP-pathway without reversible
Pgi reaction are presented in Figure 7.2. Initial concentrations are CGluc(0) = 1.0mMol,
CATP(0) = 2.0mMol, enzyme concentrations are 0.05 µmol and all other initial concen-
trations are zero. The ODE results are presented by dotted lines and the DEM results
are presented by solid lines. It can be seen that the ODE and DEM results are sim-
ilar. In Figure 7.3, the first steps of the EMP-pathway has been simulated with the
reversible reaction (G6P molecules are reconfigured into F6P molecules and the other
way around). The ODEs and DEM results are similar. A comparison between the results
with and without reversibility is presented in Figure 7.4. With the reversible reaction
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G6P concentration is higher and F6P concentration is lower than without reversibility,
as expected.

Figure 7.2: ODE (dotted line) and DEM (line) results without reversible reaction and
CGluc(0) = 1.0 and CATP(0) = 2.0mMol.
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Figure 7.3: ODE (dotted line) and DEM (line) results with reversible reaction and
CGluc(0) = 1.0 and CATP(0) = 2.0mMol.

Figure 7.4: Results without (line) and with (dotted line) reversibility and CGluc(0) = 1.0
and CATP(0) = 2.0mMol.
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7.2 Including feedback

In Section 7.1 the early steps of glycolysis have been modeled as a DEM. In this model
a number of simplifications that are not biologically justifiable have been made. Among
these, no downstream feedback inhibition or upstream activation on any enzyme in the
pathway has been assumed. In reality, however, the rate of glycolysis is considered largely
regulated by such inhibition and activation. The enzyme phosphofructokinase Pfk, for
example, is widely believed to be the key regulator of glycolysis (and therefore much of
glucose metabolism) in bacteria, yeast and many other organisms. This enzyme catalyzes
the phosphorylation of F6P to F1,6bP, a process that is ATP -dependent. In addition, in
both bacteria and yeast, Pfk is inhibited by ATP. In particular, Pfk has two ATP -binding
domains, one catalytic and one regulatory. When ATP is bound at this regulatory site,
Pfk takes on a conformation with a relatively low ATP affinity at the catalytic site. In
contrast, ADP, the hydrolyzed form of ATP, activates Pfk. That is, when bound to Pfk ’s
regulatory site, ADP increases the enzyme’s catalytic affinity for ATP. These mechanisms
are widely believed to provide the main control of the rate of glycolysis.
When the cell suffers low ATP concentration (and therefore high ADP concentration),
ADP activates Pfk and glycolytic throughput increases. On the other hand, a cell flush
with ATP slows glycolytic throughput as Pfk becomes allosterically inhibited by ATP.
Upstream feedback activation and downstream inhibition on enzyme Hk works similar as
the feedback on enzyme Pfk and it has been assumed that the feedback of ATP and ADP
molecules affect the search time of the reaction.

Figure 7.5 shows the DEM representation with inhibiting feedback ν1 from ATP molecules
and activating feedback ν2 from ATP molecules. The discrete event model can be found
in Appendix E.4.

BGluc EHk BG6P EPgi

BADP

BATP

BF6P EPfk BF1,6bP

ν2 ν2

ν1 ν1

Figure 7.5: DEM representation of the EMP-pathway with feedback.

It is widely believed that when molecules bind at the regulatory site of the Hk or PFK
enzyme their structure changes in such a way that the reconfiguration site is closed (no
new substrate molecules, i.e. search process fails) or that the force of attraction towards
substrate molecules increases (i.e. search process faster). This concludes that feedback
molecules affect the search process. Feedback search time is calculated similar to the
substrate search time. Binding time of the molecule at the regulatory site is assumed
1 second, inhibiting feedbacks pauses the search process until the inhibiting molecule
unbinds and activating feedback accelerates the search process with a factor of 50. A
comparison between simulations of the transient model with and without feedback is
presented in Figure 7.6. Results without feedback are shown with dotted lines and initial
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concentrations CGluc(0) = 1.0mMol and CATP(0) = 2.0mMol. The inhibiting effect of
ATP molecules is very large at the beginning and equal to the activating feedback effect
at 5 minutes. After this period activating feedback effect is dominant. This results in a
slow start of the reactions but due to the activating feedback dominance after 5 minutes,
the system with feedback depletes faster than the system without feedback. This also
shows that the influence of feedback on this system is significant.

Figure 7.6: DEM results with (solid line) and without (dotted line) feedback.

7.3 Stochastic behavior

The effect of stochastic behavior of the search and reconfiguration process has been pre-
sented in this section. The search process is considered exponentially distributed and the
reconfiguration process has a Γ distribution.
Simulation results of the stochastic versus the deterministic transient system are pre-
sented in Figure 7.7. The deterministic results are presented by the red dotted lines and
10 sample paths of the stochastic system are presented by the blue lines. In this case no
reversible reaction or feedback is considered. The stochastic results do not differ much
from the deterministic results. Increasing the coefficient of variation of the reconfigu-
ration processes results in a larger difference between the results of the stochastic and
deterministic system, see Figures 7.8 and 7.9 for a CV of respectively 9 and 30. Extremely
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long reconfiguration times of enzyme Hk cause the wide plateaus in the last figure, like
the results in [7]. A coefficient of variation of 9 or higher is not a realistic estimate for
biological processes.

Figure 7.7: Glucose reconfiguration in transient stochastic setting with CV = 3.

Figure 7.8: Glucose reconfiguration in transient stochastic setting with CV = 9.
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Figure 7.9: Glucose reconfiguration in transient stochastic setting with CV = 30.

Feedback of molecules also occurs in a non-deterministic way. Search time of feedback
molecule and enzyme is considered exponentially distributed, similar to the search time
of substrate and enzyme. When a feedback molecule binds to the regulatory site of
the enzyme it unbinds after a certain period. This binding period is also considered
exponentially distributed.

7.4 From transient to steady-state

The discrete event model from Figure 7.5 is a transient model. This model stops working
when ATP has been depleted or all Gluc molecules are reconfigured. In the system
under consideration ATP is consumed by enzymes Hk and Pfk while producing ADP,
see Figure 7.1. Without ATP enzymes Hk and Pfk cannot reconfigure Gluc and F6P
molecules.
For analyzing a steady-state simulation the DEM must be extended with an influx of
Gluc molecules, the ATP has to be replenished and an outflux of F1,6bP molecules has
to be implemented. The in- and outflux are modeled by respectively a simple generator
G and an exit process X. ATP molecules have to be regenerated to prevent depletion.
This happens outside the EMP-pathway and therefore a conversion process C has been
introduced. This process represents conversion from ADP to ATP. The steady-state
DEM is presented in Figure 7.10. Without ATP or a larger Gluc influx than the enzyme
capacity the system becomes unstable, i.e. substrate molecules are piling up. When the
system is stable, all Gluc molecules can be converted into F1,6bP molecules.

Generator G generates Gluc molecules with inter-arrival time ta, conversion process C
converts ATP to ADP with conversion time tc iff there are ADP molecules and exit process
X collects F1,6bP molecules with inter-exit time te iff there are F1,6bP molecules. The
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G BGluc EHk BG6P EPgi
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C
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BF6P EPfk BF1,6bP X

Figure 7.10: DEM representation of the steady-state EMP-pathway.

corresponding arrival speed varr, conversion speed vconv and exit speed vexit are:

varr =
1
ta
, (7.4a)

vconv =
1
tc

ifCADP > 0, (7.4b)

vexit =
1
te

ifCF1,6bP > 0. (7.4c)

The set of ODEs for the steady-state system are derived from (7.5) and (7.4):

dGluc
dt

= −vHk + varr, (7.5a)

dG6P
dt

= vHk − vPgi, (7.5b)

dF6P
dt

= vPgi − vPfk, (7.5c)

dF1,6bP
dt

= vPfk − vexit, (7.5d)

dATP
dt

= −vHk − vPfk + vconv, (7.5e)

dADP
dt

= vHk + vPfk − vconv. (7.5f)

Results of both ODE and DEM system with a conversion rate of µconv = 0.05 mMol/minute
is presented in Figure 7.11. In this simulation there was no feedback, no reversibility and
no arrival or exit of molecules. It can be seen that the results are similar and ADP is
converted into ATP. Figure 7.12 presents the difference between a system with ADP con-
version and a system without ADP conversion. In the system without conversion not all
Gluc and F6P molecules are reconfigured due to a lack of ATP and therefore the system
stops. Figure 7.13 shows an unstable system (left figure) with λarr = 0.1 mMol/minute,
µconv = 0.05 mMol/minute and λexit = 0.1 mMol/minute. This system is unstable be-
cause the arrival rate of Gluc molecules is higher than the conversion rate. For a stable
deterministic system the arrival rate can not exceed half of the conversion rate since
reconfiguration of a Gluc molecule to a F1,6bP molecule requires two ATP molecules.
The right figure of Figure 7.12 presents a stable system with λarr = 0.05 mMol/minute,
µconv = 0.1 mMol/minute and λexit = 0.05 mMol/minute. First there are start-up effects
and after the start-up the concentrations do not change.
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Figure 7.11: ODE (dotted line) and DEM (line) results with ADP conversion µconv = 0.05
and CGluc(0) = 1 and CATP(0) = 1.

7.5 Steady-state analysis

To calculate throughput δ of the system, the number of F1,6bP molecules produced has
been counted in a time interval. To obtain better insight, overall average throughput is
scaled to mean input 1

ta
and dimensionless variable ∆ in (7.6) is introduced. If ∆ = 1

the input is equal to the output, i.e. all incoming Gluc molecules will be converted into
F1,6bP molecules. In such a system no buffers blow up, and is therefore called stable.
For measurement purposes ∆ ≈ 1 is assumed to be a stable system.

∆ =
δ

1/ta
= δ · ta. (7.6)

Simulation results of the steady-state system with different inter-arrival ta and conver-
sion tc times are presented in Table 7.1. The concentrations are presented in µMol and
initial concentrations of ATP and ADP are both 100 µMol. Average concentrations
are calculated over the time period of 1000-2000 minutes, after the start-up phase. For
the stochastic results an average concentration of 20 simulations is taken. Average con-
centrations can also be calculated by hand, knowing both Vmax = 1/ta and the ATP
concentration. These results are also presented in Table 7.1. It can be seen that the
stochastic results do not differ much from the deterministic results. Simulation results
with reversible reaction (Rev) and feedback (FB) are presented. The results of the model
with reversible reaction are similar to a system without reversibility, except for the G6P
concentration which is much higher due to the reconfiguration of G6P back into F6P.
The feedback model with an arrival time of 0.009 and conversion time of 0.001 is unstable.
Since the reconfiguration rate is very high, the ATP concentration is almost maximal and
ADP concentration almost minimal. Therefore, lots of inhibiting and almost no activat-
ing feedback molecules bind with the enzyme. For an arrival time close to the minimal
reconfiguration time this system cannot handle the influx and is unstable.
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Figure 7.12: DEM results with (line) and without (dotted line) ADP conversion with
µconv = 0.1, CGluc(0) = 1 and CATP(0) = 1.

Figure 7.13: DEM results of an unstable (left) and stable (right) system with CGluc(0) = 1
and CATP(0) = 1.
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Table 7.1: Comparison between simulations of a steady-state system.

ta tc Gluc G6P F6P ATP ADP

0.009 0.001

Det (hand) 868.0 73.5 487.9 200.0 0.0
Det 868.0 73.0 487.1 199.1 0.0
Stoch 891.4 73.5 490.1 199.0 0.1
Difference (%) 2.7 0.7 0.6 0.1

Det (Rev) 868.0 1760.0 487.1 199.1 0.0
Stoch (Rev) 891.2 1785.0 488.5 199.0 0.1

Det (FB) Unstable

0.016 0.007

Det (hand) 117.3 40.9 292.3 200.0 0.0
Det 118.0 40.0 292.0 198.6 0.4
Stoch 124.7 40.9 293.7 193.2 5.6
Difference (%) 5.7 2.3 0.6 -2.7 1300

Det (Rev) 118.0 1100.0 292.0 198.0 0.0
Stoch (Rev) 124.5 1037.8 293.6 193.3 5.4

Det (FB) 218.7 19.3 190.9 66.6 132.0

0.016 0.008

Det (hand) 117.3 40.9 292.3 200.0 0.0
Det (hand) 665.3 40.9 329.4 100.0 100.0
Det 118.0 40.0 292.0 198.4 0.2
Stoch 360.0 40.9 315.4 128.9 69.7
Difference (%) 205.1 2.3 8.0 -35.0 34750

Det (Rev) 118.0 1100.0 292.0 198.8 0.0
Stoch (Rev) 332.2 1108.5 314.0 198.2 0.6

Det (FB) 361.2 18.9 142.8 5.5 193.1
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7.6 Stability boundary

To analyze the stability boundary, simulations with different arrival and conversion rates
are performed. The model used is the model of the steady-state EMP-pathway without
reversibility and feedback. Results are presented as scaled outflux ∆ as a function of
conversion time tc and arrival time ta in Figure 7.14. Each point in the figure is the mean
value of 5 simulations (CV < 0.004). Also a deterministic value for ∆ is added, and can
be calculated by (7.7). Enzyme Hk is the bottleneck of this system and with maximal
ATP concentration of 200µmol maximal conversion time tGluc is 0.0079 minutes. In the
figure three regimes can be distinguished:

• Overloaded system due to slow regeneration of ATP. For each Gluc molecule enter-
ing the system and exiting as F16bP molecule, two ATP molecules are reconfigured
into ADP molecules. Therefore, ATP regeneration must be at least twice as fast as
the arrival rate to fulfill the need for ATP. For tc/ta ≤ 0.5, ∆ decreases below 1.

• Stable system. tc/ta ≤ 0.5 and ta < 0.0085. For these parameters there is nu pile-up
in the buffers and the outflux is equal to the influx.

• Increasing the glucose influx beyond enzyme capacity. For ta < 0.0085 the incoming
Gluc molecules can not all be reconfigured and ∆ < 1, due to stochastic influence
and minimal reconfiguration time tGluc of 0.0079 minutes

Figure 7.14: Stability boundary of the system without reversibility and feedback.

∆ =

 1 if ta ≥ 2tc and tGluc ≥ ta
ta/2tc if ta < 2tc and tGluc ≥ ta
ta/(max(2tc, tGluc) if tGluc < ta

(7.7)
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The stability boundary of the system with feedback and reversible reaction is presented
in Figure 7.15. It can be seen that in this figure the same regimes can be distinguished.
Due to the feedback and reversibility tGluc has increased, what results in a lower arrival
rate for a stable system.

Figure 7.15: Stability boundary of the system with reversibility and feedback.

7.7 Conversion related to ADP concentration

In the steady-state model from Section 7.4 the conversion of ADP to ATP molecules
was assumed to be at a fixed rate. A more realistic approach for this conversion is to
let the conversion rate depend on the concentration of ADP molecules. In other words,
if the ADP concentration is very low conversion to ATP will be slow and if the ADP
concentration is large conversion to ADP will be faster. We assumed a linear relation
between ADP concentration and conversion rate:

µconv = µc,max ·
[ADP]

[ADP]0 + [ATP]0
, (7.8)

The ADP concentration is divided by the maximal ADP concentration [ADP]0 + [ATP]0
to achieve that if the concentration is maximal, the conversion rate will also be maximal,
see Figure 7.16. In the set of ODEs (7.4b) must be changed into (7.9).

vconv =
1

tc,max
· [ADP]

[ADP]0 + [ATP]0
, (7.9)

Simulation results of the system with conversion depending on the ADP concentration
are presented in Figure 7.17.
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Figure 7.16: Conversion speed related to the ADP concentration.

Figure 7.17: ODE and DEM results of the system with conversion depending on the ADP
concentration, tc,max = 0.01, CGluc(0) = 1 and CATP(0) = 1.

7.8 Conclusion

The EMP-pathway has been modeled as a discrete event model, extended with reversibil-
ity and feedback of ATP and ADP molecules. These transient models are simulated,
verified and finally expanded to steady-state models. The results of these models are
analyzed and the everything seems to work according to the desired behavior. Finally,
we assumed that the conversion of ADP molecules did not occur at a fixed rate, but is
linear dependent on the ADP concentration. As the ADP concentration grows larger,
conversion rate increases and vice versa.
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Chapter 8

Conclusions and recommendations

Modeling substrate-enzyme reactions with discrete event models has been described in
this report. First the substrate-enzyme reaction has been simplified to one reaction; sub-
strate S binds with enzyme E, the enzyme reconfigures the substrate into product P and
unbinds. This reaction has been modeled with a set of ODEs. For modeling the reaction
as a discrete event model, using the manufacturing approach, it has been divided into
two distinct processes. First, the search process describes the time it takes between a
substrate molecule and enzyme molecule to bind, depending on the number of molecules
and corresponds to the setup time of a machine. Second, the reconfiguration process de-
scribes the reconfiguration of the substrate into a product molecule and unbinding from
the enzyme and corresponds to the processing time of a machine.
Results of simulations with the deterministic DEM of the substrate-enzyme reaction have
been verified with the ODEs. An important difference between the commonly used ODEs
and the DEM used in manufacturing lines is that the reaction has been divided over two
distinct processes. This division is important when using stochastic distributions since it
is not clear how the reconfiguration process is distributed. Since an arbitrary distribu-
tion can be chosen for the search or reconfiguration process in the DEM, essentially any
biophysical hypothesis providing the details of the process can be implemented in the
system. Biologists use exponential distributions for the total reaction but experiments
show that this is not (always) the case.

This basic model has been extended with inhibiting and/or activating feedback. The
enzyme has, along with the catalytic site where substrates are reconfigured, a regulatory
site where upstream substrate and/or downstream product molecules can bind. These
molecules act as feedback molecules when bound at the regulatory site, affecting the
reaction speed. Feedback on the enzyme can influence both search or reconfiguration
process. If the search process is influenced, no substrate molecules can bind at the en-
zyme while an inhibiting feedback molecule is bound at the regulatory site and while an
activating feedback molecule is bound the attraction between a substrate molecule and
the reconfiguration site increases. The reconfiguration process is influenced by increasing
or decreasing the reconfiguration rate while respectively an activating or inhibiting feed-
back molecule is bound to the regulatory site of the enzyme.

A combination of an enzyme with feedback and a basic enzyme both competing for
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the same substrate molecules resulted in a activity function similar to a decay rate that
is experimentally found in literature, but hasn’t been well defined.

The basic substrate-enzyme model has also been extended into a reversible reaction,
i.e. product molecules can also be reconfigured back into substrate molecules. The de-
terministic reversible DEM uses the overall reaction rate, while the stochastic model uses
both forward and backward reaction rates. This is to make sure stochastic fluctuations
occur, which would not be the case if the reaction is in equilibrium using the overall
reaction rate. The deterministic DEM has been verified with a model of ODEs.

With these enzymes the first steps of glycolysis, the archetype of a universal metabolic
pathway, have been modeled. This is model consisting of three reactions. The DEM
model has been verified with an ODE model. Steady-state simulations have been con-
ducted to compare the deterministic and stochastic models. With these settings there
has been no significant difference. Analysis of the stability boundary showed three dis-
tinct regimes depending on the arrival rate of new substrates and the conversion between
energy molecules.

The χ models used for the DEM simulations have been constructed from small pro-
cesses. With correct linking between these processes other pathways and reactions can
be modeled and simulated.

Extension of the current steps of the glycolysis pathway with the current processes is
a topic for further research. The models representing substrate-enzyme reactions can
also be used as building blocks for other pathways.

In order to check if the DEM represents real-life behavior, comparison with experimen-
tal results is necessary. Also simplifications and assumptions in the model, like using
Michaelis-Menten equations can be a topic for further research.
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Appendix A

Parameters

Table A.1: Parameters and initial concentrations from [9].

Parameter Value
[S]0 5.0·10−7

[E]0 2.0·10−7

[P ]0 0
k1 1.0 ·106

k2 1.0 ·10−4

k3 0.1
Km 1.001 ·10−7
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Table A.2: EMP parameters based on [4].

Enzyme Parameter Value
Hk C Hk 0.05 µMol

V max 225 µMol·min−1·mg−1

K m,Gluc 0.12 mMol
K m,ATP1 0.50 mMol
kHk,inactivation 0.29 min−1

K eq,Hk,inactivation 2.72
DEM V max 442.63982475 τr = 1

Vmax

Pgi C Pgi 0.05 µMol
V max 1511 µMol·min−1·mg−1

K m,G6P 3.0 mMol
K m,F6P 0.16 mMol
K eq,Pgi 0.30

DEM V max 4647.60935 τr = 1
Vmax

Pfk C Pfk 0.05 µMol
V max 145 µMol·min−1·mg−1

K m,F6P 0.46 mMol
K m,ATP2 0.04 mMol
n 1.9

DEM V max 252.5465 τr = 1
Vmax

Table A.3: Specific weight of enzymes.

Enzyme gr/Mol
Hk 34717

Pgi 61517

Pfk 34834
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Appendix B

Types

The only type used in the Chi models is the molecule, it consists of the id number and
the time it entered the system:

type mol = ( nat, real ) // id, timein

61



62 Types



Appendix C

Functions

All functions used for the DEM in this report are presented in this appendix with a small
description.

C.1 injBuff

Function injBuff injects new molecule x in list s according to a value from uniform
distribution p, and returns the new list:

func injBuff( val xs: [mol], x: mol, p: real ) -> [mol] =
|[ var s: nat
:: s:= i2n ( floor (( len(xs) + 1) * p ))
; xs:= take (xs, s) ++ [x] ++ drop (xs, s)
; ret xs

]|

C.2 meanST

Function meanST calculates the mean search time with values Km,S, Km,ADP and τr of
the enzyme and the buffer content blevel:

func meanST( val km, tr: real, blevel : nat ) -> real =
|[ ret (( km + blevel ) / blevel - 1 ) * tr ]|

63 meanST



C.3 meanST1

Function meanST calculates the mean search time with values Km and τr of the enzyme
and the buffer contents of the substrate and ATP molecules conc1 and conc2:

func meanST1( val km1, km2, tr, n: real , conc1,conc2 : nat ) -> real =
|[ ret ((( km1^n + conc1^n )*( km2 + conc2 )) / ( conc1^n * conc2 ) - 1 ) * tr ]|

C.4 calcVpgi

Function calcVpgi calculates specific activity without reversibility:

func calcVpgi ( val kms,kmp,keq,Vmax: real , concS,concP: nat ) -> real =
|[ ret ( Vmax * concS ) / ( kms + concS ) ]|

C.5 calcVpgiRev

Function calcVpgi calculates specific activity with reversibility:

func calcVpgi ( val kms,kmp,keq,Vmax: real , concS,concP: nat ) -> real =
|[ ret ( Vmax * (concS - concP/keq)) / (kms * (1 + concP/kmp) + concS) ]|

C.6 cond

Function cond calculates if the upstream or downstream reconfiguration rate is dominant:

func cond ( val Vpgi: real, concS,concP: nat ) -> int =
|[ ( Vpgi < 0.0 and concP > 0 -> ret -1

| Vpgi = 0.0 or Vpgi < 0.0 and concP = 0 -> ret +0
| Vpgi > 0.0 and concS = 0 -> ret +0
| Vpgi > 0.0 and concS > 0 -> ret +1
)

]|
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Appendix D

Processes

The Chi models used in this report consist of several modules. These modules, buffers
enzymes and functions are presented in this appendix. Appendix E presents the complete
chi models.

D.1 Buffers

Basic buffer B

This is a basic buffer, it can receive molecules at all times via channel a and if the buffer
is non-empty it can send molecules via channel b. Chi file:

E B E
a b

Figure D.1: DEM representation of buffer B.

proc B( chan a?,b!: mol, dt!: (string,nat), val S0: nat, id: string ) =
|[ var xs: [mol] = []

, x: mol
, uni: -> real = uniform ( 0.0 , 1.0 )
, i: nat = 1

:: i <= S0
*> ( xs:= injBuff ( xs, (i,time), sample uni ); i:= i + 1 )

; *( dt !!( id , len (xs))
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; ( a?x; xs:= injBuff ( xs, x, sample uni)
| len (xs) > 0 -> b!hd(xs); xs := tl(xs)
)

)
]|

Model input:

|| B(a,b,dt,S0,id)

D.1.1 Communication with one enzyme B1

This buffer sends its bufferlength when changed to upstream or downstream enzymes over
channel r channel.

E B1 E
a b

r

Figure D.2: DEM representation of buffer B1.

Chi file:

proc B1( chan a?,b!: mol, r!: nat, q!:void, p?: bool
, dt!: (string,nat), val S0: nat, id: string
) =

|[ var xs: [mol] = []
, x: mol
, uni: -> real = uniform ( 0.0 , 1.0 )
, i: nat = 1
, search: bool = false

:: i <= S0
*> ( xs:= injBuff ( xs, (i,time), sample uni ); i:= i + 1 )

; r!len(xs)
; *( dt !!( id , len (xs))

; ( a?x; xs:= injBuff ( xs, x, sample uni)
| len (xs) > 0 -> b!hd(xs); xs := tl(xs)
)

; r!len(xs)
; ( search -> q!!
| not search -> skip
)

)
|| *p?search
]|

Model input:
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|| B1(a,b,r,dt,S0,id)

D.1.2 Communication with two enzymes B2

This buffer is almost similar to Figure D.2 but instead of communicating with one enzyme,
it can communicate with both the upstream and downstream enzyme, see Figure D.3.

E B2 E
a b

r1

r2

Figure D.3: DEM representation of buffer B2.

Chi file:

proc B2( chan a?,b!: mol, r1!,r2!: nat, q1!,q2!:void, p1?,p2?: bool
, dt!: (string,nat), val S0: nat, id: string
) =

|[ var xs: [mol] = []
, x: mol
, uni: -> real = uniform ( 0.0 , 1.0 )
, i: nat = 1
, search1,search2: bool = ( false, false )

:: i <= S0
*> ( xs:= injBuff ( xs, (i,time), sample uni ); i:= i + 1 )

; r1!len(xs); r2!len(xs)
; *( dt !!( id , len (xs))

; ( a?x; xs:= injBuff ( xs, x, sample uni)
| len (xs) > 0 -> b!hd(xs); xs := tl(xs)
)

; r1!len(xs); r2!len(xs)
; ( search1 -> q1!!
| not search1 -> skip
)

; ( search2 -> q2!!
| not search2 -> skip
)

)
|| *( p1?search1 | p2?search2 )
]|

Model input:

|| B2(a,b,r1,r2,dt,S0,id)
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D.1.3 Exit BX

In Figure D.4 a buffer is presented which has incoming channel a.

E BX
a

Figure D.4: DEM representation of buffer BX.

Chi file:

proc BX( chan a?: mol, dt!: (string,nat), val id: string ) =
|[ var xs: [mol] = [], x: mol, i: nat = 0
:: *( dt!!( id , i ); a?x; i:= i + 1 )
]|

Model input:

|| BX(a,dt,id)

D.2 Enzymes

D.2.1 Basic, one molecule E1

This process represents an enzyme that receives a substrate molecule via channel a after a
search time calculated with function meanST. The enzyme reconfigures the substrate and
sends the product molecule via channel b. Communication about bufferlength with the
upstream buffer is via channel r. The DEM representation of this process is presented in
Figure D.5.

B E B
a

r

b

Figure D.5: DEM representation of process Enz1.

Chi file:

proc E( chan a?,b!: mol, r?: nat, q?: void, p!:bool
, val Vmax, km, tr: real

) =
|[ var x: mol

, searchStart , delayTimeS, delayTimeP: real
, concS: nat
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, search: bool = false
:: *( concS > 0 -> searchStart := time

; delayTimeS := ( searchStart + meanST( km, tr, concS )
- time ) max 0.0

; search:= true; p!search
; search
*> ( delay delayTimeS; search:= false

| q?
; ( concS > 0 -> delayTimeS := ( searchStart +

meanST( km, tr, concS ) - time ) max 0.0
| concS = 0 -> search:= false
)

)
; p!search
; ( concS > 0 -> a?x

; delayTimeP:= 1 / Vmax
; delay delayTimeP
; b!x

| concS = 0 -> skip
)

)
|| * r?concS
]|

Model input:

|| E1(a, b, r, Vmax, Km, tr)

D.2.2 Basic, two molecules E2

This process is almost similar to the basic enzyme with one molecule, but it requires two
different substrate molecules befor it can start the reconfiguration process, the model is
presented in Figure D.6.

B

B

E

B

B

a b

c d

r1

r2

Figure D.6: DEM representation of process E2.

Chi file:

Model input:

|| E2(a,b,c,d,r1,r2,Vmax,km1,km2,tr,n)
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D.2.3 Feedback search process (inhibiting)Efb st inh

Up- or downstream inhibiting feedback affecting the search process. The DEM represen-
tation of this feedback process is presented in Figure D.7.

B EFB B
a

r

b

Figure D.7: DEM representation of process Efb st inh and Efb st act.

Chi file:

proc Efb ( chan a?,b!: mol, r?: nat, f?,q?: void
, t!,p!:bool, val Vmax,km,tr: real
) =

|[ var x: mol
, procTime, ts, tStart : real
, boundTime: real = 1/60
, concS: nat = 0
, search, processing, fb: bool = ( false, false, false )

:: *( concS > 0 and fb= false -> tStart:=time
; search:= true
; p!search
; search
*> ( ts := ( tStart + meanST( km, tr, concS )

- time ) max 0.0
;( delay ts; search:= false
| q?
; ( concS > 0 -> skip
| concS = 0 -> search:= false
)

)
)

; p!search
; ( concS > 0 -> a?x

; procTime:= 1/Vmax
; delay procTime
; b!x

| concS = 0 -> skip
)

)
|| * r?concS
|| *( f?

; fb:= true
; t!fb
; delay boundTime
; fb:= false
; t!fb

)
]|
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Model input:

|| Efb(a, b, r, Vmax, Km, tr)

D.2.4 Feedback search process (activating)Efb st act

Up- or downstream activating feedback affecting the search process. The DEM represen-
tation of this feedback process is presented in Figure D.7.

Chi file:

proc Efb ( chan a?,b!: mol, r?: nat, f?,q?: void
, t!,p!:bool, val Vmax,km,tr: real
) =

|[ chan u: void
,var x: mol

, procTime, ts, tStart : real
, boundTime: real = 1/60
, concS: nat = 0
, search, processing, fb: bool = ( false, false, false )

:: *( concS > 0 and fb= false -> tStart:=time
; search:= true
; p!search
; search
*> ( ts := ( tStart + meanST( km, tr, concS )

- time ) max 0.0
;( delay ts; search:= false
| (q?|u?)
; ( concS > 0 -> skip
| concS = 0 -> search:= false
)

)
)

; p!search
; ( concS > 0 -> a?x

; procTime:= 1/Vmax
; delay procTime
; b!x

| concS = 0 -> skip
)

)
|| * r?concS
|| *( f?

; tr:= tr / 50
; t!true
; ( search -> u!
| not search -> skip
)

; delay boundTime
; tr:= tr * 50
; ( search -> u!
| not search -> skip
)
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; t!false
)

]|

Model input:

|| Efb(a, b, r, Vmax, Km, tr)

D.2.5 Feedback search process Efb st

This enzyme processes two molecules, with an upstream activating feedback and down-
stream inhibiting effect. The feedback influences the search process. The DEM represen-
tation of this feedback process is presented in Figure D.8.

B

B

EFBst

B

B

a
r1

b

d

r3

c

r2

Figure D.8: DEM representation of process Efb st.

Chi file:

proc Efb2( chan a?,b!,c?,d!: mol, r1?,r2?: nat, f1?,f2?,q1?,q2?: void
, t1!,t2!,p1!,p2!:bool, val Vmax,km1,km2,tr,n: real

) =
|[ chan u: void
, var x1,x2: mol

, tStart, ts, tp, mst, un: real
, boundTime: real = 1/60
, concS1,concS2: nat = ( 0, 0 )
, search, Inh, Act: bool = ( false, false, false )

:: *( concS1 > 0 and concS2 > 0 and Inh = false -> tStart:= time
; search:= true
; p1!search; p2!search
; search
*> ( ts := ( tStart + meanST1(km1,km2,tr,n,concS1,concS2)

- time ) max 0.0
;( delay ts; search:= false
| ( q1? | q2? | u? )
; ( concS1 > 0 and concS2 > 0 -> skip
| concS1 = 0 or concS2 = 0 -> search:= false
)

)
)
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; p1!search; p2!search
;( concS1 > 0 and concS2 > 0 -> a?x1 ; c?x2

; tp:= 1 / Vmax
; delay tp
; b!x1; d!x2

| concS1 = 0 or concS2 = 0 -> skip
)

)
|| *( r1?concS1 | r2?concS2 )
|| *( ( f1?; Inh:= true

| f2?; Act:= true; tr := tr / 50
;( search -> u!!
| not search -> skip
)

)
; t1!true; t2!true
; delay boundTime
; ( Inh -> Inh := false
| Act -> Act := false; tr := tr * 50
;( search -> u!
| not search -> skip
)

)
; t1!false; t2!false

)
]|

Model input:

|| Efb2(a,b,c,d,r1,r2,r3,Vmax,km1,km2,tr,n)

D.2.6 Feedback reconfiguration process Efb r

The process of Section D.2.1 is extended with activating feedback from an upstream
buffer and with inhibiting feedback from a downstream buffer. The feedback molecules
affect the reconfiguration process. The DEM representation of this feedback process is
presented in Figure D.9.

B EFB B
a

r1

r2

b

Figure D.9: DEM representation of process Enz r.

Chi file:

proc Efb( chan a?,b!: mol, r?: nat, nuS?,nuP?,q?: void
, tS!,tP!,p!:bool, val Vmax, km, tr: real
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) =
|[ var x: mol

, searchStart , delayTimeS, readyTimeP : real
, procStart , delayTimeP, boundStart : real
, boundTime: real = 0.1
, concS: nat = 0
, processing, search: bool = ( false, false )
, bindS, bindP, newS, newP: bool = ( false, false, false, false )

:: *( concS > 0 -> searchStart := time
; search:= true; p!search
; search
*> ( delayTimeS := ( searchStart + meanST( km, tr, concS )

- time ) max 0.0
; ( delay delayTimeS; search:= false
| q?
; ( concS > 0 -> skip
| concS = 0 -> search:= false
)

)
)

; p!search
; ( concS > 0 -> a?x

; procStart:= time
; readyTimeP:= procStart + 1 / Vmax
; newS:= true; newP:= true
; processing:= true
; processing
*> ( delayTimeP:= ( readyTimeP - time ) max 0.0

;( delay delayTimeP; processing:= false
| bindS and newS ->

readyTimeP:= time + ( readyTimeP - time ) / 2
; newS:= false

| not bindS and not newS ->
readyTimeP:= time + ( readyTimeP - time ) * 2

; newS:= true
| bindP and newP ->

readyTimeP:= time + ( readyTimeP - time ) * 2
; newP:= false

| not bindP and not newP ->
readyTimeP:= time + ( readyTimeP - time ) / 2

; newP:= true
)

)
; b!x

| concS = 0 -> skip
)

)
|| * r?concS
|| *( ( nuS?; boundStart:= time; bindS:= true

| nuP?; boundStart:= time; bindP:= true
)
; tS!true; tP!true
; delay boundTime
; bindS:= false; bindP:= false
; tS!false; tP!false
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)
]|

Model input:

|| Efb(a, b, r1, r2, Vmax, Km, tr)

D.2.7 Feedback reconfiguration process, 2 substrates Efb2

The process of Section D.2.6 is extended with an extra incoming and outgoing channel.
The DEM representation of this feedback process is presented in similar to the represen-
tation in Figure D.8.

Chi file:

proc Efb2( chan a?,b!,c?,d!: mol, r1?,r2?: nat, f1?,f2?,q1?,q2?: void
, t1!,t2!,p1!,p2!:bool, val S1,S2: nat, Vmax,km1,km2,tr,n: real
) =

|[ var subs,atp: mol
, searchStart , delayTimeS : real
, procStart , delayTimeP: real
, boundTime: real = 0.1
, concS,concATP: nat = (S1,S2)
, search, processing: bool = ( false, false )
, bindS, bindP, newS, newP: bool = ( false, false, false, false )

:: *( concS > 0 and concATP > 0 -> searchStart := time
; search:= true; p1!search; p2!search
; search
*> ( delayTimeS := ( searchStart + meanST1(km1,km2,tr,n

,concS,concATP) - time ) max 0.0
;( delay delayTimeS; search:= false
| ( q1? | q2? )
; ( concS > 0 and concATP > 0 -> skip
| concS = 0 or concATP = 0 -> search:= false
)

)
)

; p1!search; p2!search
; ( concS > 0 and concATP > 0 -> a?subs ; c?atp

; procStart:= time
; delayTimeP:= ( procStart + 1 / Vmax - time ) max 0.0
; newS:= true; newP:= true
; processing:= true
; processing
*> ( delay delayTimeP; processing:= false

| bindS and newS ->
delayTimeP:= ( (delayTimeP + procStart - time) / 2 ) max 0.0
; newS:= false

| not bindS and not newS -> delayTimeP:=
( (delayTimeP + procStart - time) * 2 ) max 0.0
; newS:= true

| bindP and newP ->
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delayTimeP:= ( (delayTimeP + procStart - time) * 2) max 0.0
; newP:= false

| not bindP and not newP ->
delayTimeP:= ( (delayTimeP + procStart - time) / 2 ) max 0.0
; newP:= true

)
; b!subs; d!atp

| concS = 0 or concATP = 0 -> skip
)

)
|| *( r1?concS | r2?concATP )
|| *( ( f1?; bindS:= true

| f2?; bindP:= true
)
; t1!true; t2!true
; delay boundTime
; bindS:= false; bindP:= false
; t1!false; t2!false

)
]|

Model input:

|| Efb2(a,b,c,d,r1,r2,r3,Vmax,km1,km2,tr,n)

D.2.8 Reversible Erev

The reversible reaction is presented in Figure D.10. The molecules flow in the direction
calculated by function cond with a speed calculated by calcVpgiRev.

B ERev B

a

d

rF,q

pF
c

b

rB,q

pB

Figure D.10: DEM representation of process Erev.

Chi file:

proc Erev( chan a?,b!,c?,d!: mol, rF?,rB?: nat, q?: void, pF!,pB!:bool
, val Vmax,kmF,kmB,keq,tr: real

) =
|[ var x: mol

, procTime: real
, Vpgi, searchStart , delayTimeS : real
, concS , concP: nat = ( 0, 0 )
, search: bool = false
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, side: int = +0
:: *( concS /= concP / keq -> Vpgi:= calcVpgi( kmF,kmB,keq,Vmax,concS,concP)

; side:= cond( Vpgi, concS, concP )
; searchStart := time
; search:= true; pF!search; pB!search
; search
*> ( delayTimeS := ( searchStart + (Vmax / ( abs(Vpgi)) - 1 )

* tr - time ) max 0.0
; ( delay delayTimeS; search:= false
| q?
; Vpgi:= calcVpgi ( kmF,kmB,keq,Vmax,concS,concP )
; side:= cond( Vpgi, concS, concP )
; ( side /= +0 -> skip
| side = +0 -> search:= false
)

)
)

; pF!search; pB!search
; ( side /= +0 -> procTime:= 1 / Vmax

; ( side = +1 -> a?x | side = -1 -> c?x )
; delay procTime
; ( side = +1 -> b!x | side = -1 -> d!x )

| side = +0 -> skip
)

)
|| *( rF?concS | rB?concP )
]|

Model input:

|| Erev(a,b,c,d,rF,rB,q,pF,pB,S0,P0,Vmax,kmF,kmB,keq,tr)

D.3 Convertor

D.3.1 Constant rate C0

The conversion process C0 converts molecules with rate muC, see Figure D.11.

B C B
a b

Figure D.11: DEM representation of conversion process C0.

Chi file:

proc C0( chan a?,b!: mol, val muC: real ) =
|[ var x: mol, at: real
:: *( a?x; at:= 1 / muC; delay at; b!x )
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]|

Model input:

|| C0( a, b, muC )

D.3.2 ADP dependent C1

The conversion process C1 converts molecules with rate a rate that depends linearly on
the upstream buffer concentration and is maximally muC, see Figure D.12.

B C B
a

r,q

p

b

Figure D.12: DEM representation of conversion process C1.

Chi file:

proc C( chan a?,b!: mol, r?:nat, q?:void, p!:bool
, val adpmax: nat, muC: real

) =
|[ var x: mol

, adp: nat
, at: real
, conv: bool
, convStart: real

:: *( a?x
; r?adp
; convStart:= time
; at:= 1 / ( muC * (adp + 1) / adpmax )
; conv:= true
; p!conv
; conv
*> ( delay at; conv:= false

| q? ; r?adp
; at:= (convStart + 1 / (muC * (adp + 1) / adpmax) - time) max 0.0

)
; p!conv
; b!x

)
]|

Model input:

|| C1( a, b, r, q, p, ADP0 + ATP0, muC )
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D.4 Data tracker DT

Process DT is always ready to receive data from all processes and prints them along with
the time the data is received:

proc DT( chan dt?: ( string, nat ) ) =
|[ var k: nat, name : string
:: *( dt?( name , k); !! time , "\t", name , "\t", k, "\n" )
]|

D.5 Generator G

Process G generates substrate molecules with rate lambdaG (input variable) and sends
them to the downstream buffer:

proc G( chan a!: mol, val lambdaG: real ) =
|[ var i: nat = 1, at: real
:: *( a!(i,time); at:= 1 / lambdaG; delay at; i:= i + 1 )
]|

D.6 Exit X

Process X receives molecules from the product buffer with rate lambdaE (input variable).

proc X( chan a?: mol, val lambdaE: real ) =
|[ var x: mol, at: real
:: *( a?x; at:= 1 / lambdaE; delay at )
]|
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Appendix E

Chi models

Every χ model discussed in this report consists of molecule buffers, one or more enzymes
and some functions. Since a lot of the processes and functions in the models are similar
we present the chi model as a composition of processes and functions. These processes
and functions are connected as a parallel composition.
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E.1 Substrate enzyme reaction

The model of Chapter 3 is presented below. Figure E.1 shows the processes and com-
munication channels of the substrate-enzyme reaction. The model with processes and
functions is presented in Table E.1.

B1 E

DT

BX
a

dt dt

r
b

Figure E.1: Discrete event model representation.

Table E.1: Substrate enzyme reaction model.
Chi code Reference
type mol = ( nat, real ) // id, timein

Process B1 (D.1.1)
Process BX (D.1.3)
Process E (D.2.1)
Process DT (D.4)
Function injBuff (C.1)
Function meanST (C.2)

The model is defined by:

model L( val S0,P0: nat ) =
|[ chan a,b,g: mol

, r: nat
, q: void
, p: bool
, dt: (string , nat)

:: DT(dt)
|| B1(g,a,r,q,p,dt,S0,"S")
|| E (a,b,r,q,p, 20.0, 100.1, 0.05) // value Vmax, Km, tr
|| BX(b,dt,"P")
]|
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E.2 Substrate enzyme reaction with feedback

The steady-state substrate-enzyme model with feedback from substrate S and product P
of Chapter 5 is presented in Table E.2. Figure E.2 shows the processes and communication
channels of the steady-state substrate-enzyme system with feedbacks from substrate and
product molecule buffers.

G B1 EFB

DT

B1 X
a b

dt dt

r1 r2

c d

Figure E.2: Discrete event model

Table E.2: Substrate enzyme reaction with feedback model.
Chi code Reference
type mol = ( nat, real ) // id, timein

Process G (D.5)
Process B1 (D.1.1)
Process Efb (D.2.6)
Process X (D.6)
Process DT (D.4)
Function injBuff (C.1)
Function meanST (C.2)

The model is defined by:

model L( val S0,P0: nat, parS,parP,lambdaG,lambdaE: real ) =
|[ chan a,b,c,d: mol

, r,r1 : nat
, dt: (string , nat)
, nuS,nuP,q,q1: void
, tS,tP,p,p1: bool

:: DT(dt)
|| G(a,lambdaG)
|| Bfb1(a,b,r,nuS,q,tS,p,dt,parS,S0,"S")
|| Efb(b,c,r,nuS,nuP,q,tS,tP,p, 20.0, 100.1, 0.05)// value Vmax, Km, tr
|| Bfb0(c,d,nuP,tP,dt,parP,P0,"P")
|| X(d,lambdaE)
]|
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E.3 Reversible substrate enzyme reaction

The model of Chapter 6 is presented in this section. Figure E.3 shows the processes and
communication channels of the steady-state reversible substrate-enzyme reaction. The
buffers contain the concentration of respectively the substrate G6P and product F6P
molecules. The code is presented in Table E.3.

G B1 EREV

DT

B1 X
a d

b

dt dt

a

rF

d

c
rB

Figure E.3: DEM representation of a steady-state reversible reaction.

Table E.3: Reversible substrate enzyme reaction model.
Chi code Reference
type mol = ( nat, real ) // id, timein

Process G (D.5)
Process B1 (D.1.1)
Process Erev (D.2.8)
Process X (D.6)
Process DT (D.4)
Function injBuff (C.1)
Function cond (C.6)
Function calcVpgiRev (C.5)

The model is defined by:

model L( val S0,P0: nat, lambdaG,lambdaE: real ) =
|[ chan a,b,c,d: mol

, rF,rB: nat
, dt: (string , nat)
, q: void
, pF,pB: bool

:: DT(dt)
|| G(a,lambdaG)
|| B1(a,b,rF,q,pF,dt,S0,"S")
|| Erev(b,c,d,a,rF,rB,q,pF,pB,4647.60935 // value Vmax

,3000.0,160.0,0.3,215.16438338347e-6) // kmF,kmB,keq,tr
|| B1(c,d,rB,q,pB,dt,P0,"P")
|| X(d,lambdaE)
]|
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E.4 EMP pathway

The model of Chapter 7 is presented here. Figure E.4 shows the processes and com-
munication channels of the EMP pathway. The dt channels from each buffer to process
DT are not shown for complexity of the figure, but are present in the system. This is a
steady-state model but can also be used as a transient model if the generator and exit
speeds are equal to zero. The conversion process can convert molecules at a given rate
or it can convert molecules depending on the ADP concentration. The code is presented
in Table E.4.

G BGluc EGlk BG6P EPgi

BADP

C

BATP

BF6P EPfk BF1,6bP

gen a
r1a

b c

b

r2F
d

e

r2B r3a
e f

z

r1c

cv2

cv1

z

r3c

y y

r1b r3b

Figure E.4: DEM representation of the EMP-pathway.

Table E.4: EMP pathway model.
Chi code Reference
type mol = ( nat, real ) // id, timein

Process G (D.5)
Process B1 (D.1.1)
Process B2 (D.1.2)
Process BX (D.1.3)
Process Efb2 (D.2.7)
Process Erev (D.2.8)
Process X (D.6)
Process C (D.3)
Process DT (D.4)
Function injBuff (C.1)
Function cond (C.6)
Function calcVpgiRev (C.5)
Function meanST1 (C.3)

The model is defined by:

model L( val c1,c2,c3,c4,c5,c6: nat, lambdaG, muC: real ) =
|[ chan a,b,c,d,e,f,y,z,gen,cv1,cv2: mol
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, r1a,r1b,r2F,r2B,r3a,r3b: nat
, q1a,q1b,q2,q3a,q3b: void
, fS1,fP1,fS2,fP2: void
, p1a,p1b,p2F,p2B,p3a,p3b: bool
, tS1,tP1,tS2,tP2: bool
, dt: (string , nat)

:: DT(dt)
|| G (gen,1/lambdaG)
|| B1 (gen,a,r1a,q1a,p1a,dt,c1,"Gluc") //GLUC
|| Efb2 (a,b,y,z,r1a,r1b,fS1,fP1,q1a,q1b,tS1,tP1,p1a,p1b

,442.63982475,120.0,500.0,2259.1731337432e-6,1.0) //e GLK
|| B1 (b,c,r2F,q2,p2F,dt,c2,"G6P") // G6P
|| Erev (c,d,e,b,r2F,r2B,q2,p2F,p2B

,4647.60935 ,3000.0,160.0,0.3,215.16438338347e-6) //e PGI
|| B2 (d,e,r2B,r3a,q2,q3a,p2B,p3a,dt,c3,"F6P") // F6P
|| Efb2 (e,f,y,z,r3a,r3b,fS2,fP2,q3a,q3b,tS2,tP2,p3a,p3b

,252.5465 ,460.0,40.0,3959.6668336326e-6,1.9 ) //e PFK
|| BX (f,dt,"F16bP") // F16bP
|| B2fb1 (cv2,y,r1b,r3b,fS1,fS2,q1b,q3b,tS1,tS2,p1b,p3b,dt

,500.0,2259.173e-6,40.0,3959.67e-6,c5,"ATP") // ATP
|| B2fb0 (z,cv1,fP1,fP2,tP1,tP2,dt

,500.0,2259.173e-6,40.0,3959.67e-6,c6,"ADP") // ADP
|| C0 (cv1,cv2,1/muC)
]|

86 Chi models


