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Supplementary material:

Practical synchronization in networks of

diffusively coupled non-identical systems

E. Steur, T.G.M. Vromen, H. Nijmeijer

This document is attached as supplementary material to the manuscript
entitled “Training a network of electronic neurons for control of a mobile robot”.
In this document a general theoretical framework for practical synchronization
in networks of diffusively coupled non-identical systems is described.

1 Introduction

We consider a network of i = 1, 2, . . . , k systems{
ẋi = fi(xi) +Biui
yi = Cixi

(1.1)

that interact via diffusive coupling functions

ui = −σ
k∑

j=1,j 6=i

γij(yi − yj), (1.2)

with constants σ > 0 and γij ≥ 0 denoting the coupling strength and interaction
weights, respectively, xi ∈ Rn is the state of system i, ui ∈ Rm with 1 ≤ m ≤ n
is its input, yi ∈ Rm its output, a sufficiently smooth vectorfield fi : Rn → Rn
and constant matrices Bi and Ci are of appropriate dimension. It is assumed
that

• fi(s) = f(s) + ∆fi(s) with f : Rn → Rn and ∆fi : Rn → Rn sufficiently
smooth;

• Bi = B + ∆Bi with rank(Bi) = rank(B) = m;

• Ci = C + ∆Ci with rank(Ci) = rank(C) = m;

• CiBi and CB are similar to a positive definite matrix of rank m;

• the matrix

Γ =


∑k
j=2 γ1j −γ12 · · · −γ1k

−γ21

∑k
j=1,j 6=2 γ2j

. . .
...

...
. . .

. . . −γ(k−1)k

−γk1 · · · −γk(k−1)

∑k−1
j=1,j 6=2 γkj


is irreducible.
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We remark that Γ is an irreducible matrix if and only if it is the (weighted)
Laplacian matrix of a strongly connected digraph [2].

Note that the Hindmarsh-Rose model is written in the form (1.1) and satisfies
the assumptions on the system matrices and the coupling functions.

2 Ultimately bounded solutions

Definition 1. The system {
ẋ = g(x, u)
y = h(x)

(2.1)

with state x ∈ Rn, inputs and outputs u, y ∈ Rm, 1 ≤ m ≤ n, sufficiently
smooth functions g : Rn × Rm → Rn, h : Rn → Rm, is called strictly semi-
passive with storage function S : Rn → R+ if there exist strictly increasing
functions s0, s1, s2 : R+ → R+, sj(0) = 0 and limr→∞ s(r) = ∞, j = 0, 1, 2,
such that

s0(‖x‖) ≤ S(x) ≤ s1(‖x‖)
and

Ṡ(2.1)(x) ≤ y>u−H(x)

where H : Rn → R+ satisfies

H(x) ≥ s2(‖x‖)−M

for some constant M > 0.

The Hindmarsh-Rose model of the dynamics of the membrane potential of
a neuron is a strictly semi-passive system [7].

Lemma 1. Suppose that each system (1.1) is strictly semi-passive with storage
function S : Rn → R+, then the solutions of the coupled systems (1.1), (1.2) are
uniformly ultimately bounded.

Proof. We let

x =

x1

...
xk

 , u =

u1

...
uk

 , y =

y1

...
yk

 .

Note that u = −(Γ⊗Im)y with Im them×m identity matrix. For any irreducible
Γ there is a vector ν with strictly positive entries νi, i = 1, . . . , k, such that
ν>Γ = 0. (This follows immediately from the Perron-Frobenius theorem, cf.
[2].) Consider the function

V (x) = ν1S(x1) + . . .+ νkS(xk).

Then the strict semi-passivity property of the systems implies that

Ṡ(1.1)(xi) =

(
∂S

∂xi

)>
(fi(xi) +Biui) ≤ y>i ui −Hi(xi)

such that

V̇ (x) ≤ −ν1H1(x1)− . . .− νkHk(xk)− y>(diag(ν)⊗ Im)u

= −ν1H1(x1)− . . .− νkHk(xk)− σy>(diag(ν)Γ⊗ Im)y,
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where diag(ν) is a diagonal matrix with the entries of ν on its diagonal. It is
not difficult to show that

diag(ν)Γ + Γ>diag(ν)

is positive semi-definite, hence

V̇ (x) ≤ −ν1H1(x1)− . . .− νkHk(xk).

The properties of Hi imply that

V̇ (x) ≤ s3(‖x‖)

for ‖x‖ > R for some R > 0 and s3 ∈ K∞. An application of Theorem 4.1.16 of
[1] proves the lemma.

For a constant c > 0 we let

Ωc := {w ∈ Rn|S(w) < c}.

Lemma 2. Suppose that each system (1.1) is strictly semi-passive with storage
function S : Rn → R+. Let constant c0 be such that for all i = 1, 2, . . . , k

Hi(xi) > 0

on Rn\Ωc0 . Then the solutions of the coupled systems (1.1), (1.2) converge to
the compact set

Ωkc0 := Ωc0 × · · · × Ωc0︸ ︷︷ ︸
k times

.

Proof. Let
c1 := sup

w∈Ωc0

S(w)

and

S̃(xi) :=

{
0 if xi ∈ Ωc0 ,
S(xi)− c1 otherwise.

Consider
Ṽ (x) = ν1S̃(x1) + . . .+ νkS̃(xk).

It follows from the arguments of the proof of Lemma 1 that there exists a
continuous function W : Rkn → [0,∞) that is positive definite with respect to
the set1 Ωkc0 such that

˙̃S(x) ≤ −W (x).

An application of Theorem 4.1.18 of [1] proves the lemma.

1We refer to [1] for a definition of a function to be positive definite with respect to a set.
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3 Practical network synchronization

Let, for some constant ε > 0,

Mε = {x = col(x1, x2 . . . , xk) ∈ Rkn| ‖xi − xj‖ ≤ ε for all i, j = 1, 2, . . . , k}.

The set Mε is the practical synchronization manifold. The set M0 is the syn-
chronization manifold; For any solution of (1.1), (1.2) onM0 the corresponding
solutions of the individual systems are indistinguishable.

Definition 2. Let φ(·; t0, x0) denote the unique solution of (1.1), (1.2) through
x0 ∈ Rkn at t = t0 defined on the interval [t0, t1), t1 > t0. The coupled systems
(1.1), (1.2) practically synchronize with bound ε if for each ε > ε there is a
T = T (ε), T < t1 − t0, such that

φ(t; t0, x0) ∈Mε ∀t ≥ t0 + T

Since each CiBi is similar to a positive definite matrix, there is a linear,
invertible change of variables

xi 7→ (zi, yi)

with zi ∈ Rn−m and yi ∈ Rm. See [6] for the details. In new coordinates the
systems’ dynamics read {

żi = qi(zi, yi)
ẏi = ai(zi, yi) + CiBiui

(3.1)

with sufficiently smooth functions qi : Rn−m × Rm → Rn−m and ai : Rn−m ×
Rm → Rm. Since fi(xi) = f(xi) + ∆fi(xi) with f and ∆fi sufficiently smooth,
qi(zi, yi) = q(zi, yi) + ∆qi(zi, yi) and ai(zi, yi) = a(zi, yi) + ∆ai(zi, yi) with
q,∆qi, a,∆ai sufficiently smooth. Without loss of generality we assume that
CiBi is a diagonal matrix, hence a diagonal matrix with strictly positive entries.
In addition we assume that:

Assumption 1. There are sets Z ⊂ Rn−m and Y ⊂ Rm such that

zi(t) ∈ Z, yi(t) ∈ Y, ∀t ≥ t0 ∀i.

It follows from Lemmas 1 and 2 that this assumption is satisfied, possibly
after re-defining t0, if the systems are strictly semi-passive with a common
storage function. In addition we assume that:

Assumption 2. There exist a positive definite matrix P ∈ R(n−m)×(n−m) such
that the symmetric matrix

Q(zi, yi) :=

(
∂q

∂zi
(zi, yi)

)>
P + P

(
∂q

∂zi
(zi, yi)

)
is uniformly negative definite on Rn−m×Ym, i.e. for any (zi, yi) ∈ Rn−m×Ym
the eigenvalues of Q(zi, yi) are negative and separated away from zero.

It can easily be shown, cf. [5], that this assumption implies the existence of
a positive constant α such that

(zi − zj)>P [q(zi, yi)− q(zj , yi)] ≤ −α ‖zi − zj‖2 ∀zi, zj ∈ Rn−1 ∀yi ∈ Y.

Assumption 2 holds for the Hindmarsh-Rose neuron with P the identity
matrix [7]. Thus both assumptions hold for Hindmarsh-Rose neurons.
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Theorem 1. Consider the network of diffusively coupled systems (3.1), (1.2)
and suppose that assumptions 1 and 2 hold. There exists a constant σ̄ > 0
such that for any σ ≥ σ̄ the network of diffusively coupled systems (3.1), (1.2)
practically synchronizes with bound ε.

Proof. Let
Γ̄ = diag(C1B1, . . . , CkBk)(Γ⊗ Im)

and note that Γ̄

• is irreducible since Γ is irreducible and each CiBi diagonal;

• has m zero eigenvalues since Γ has a simple zero eigenvalue, hence Γ⊗ Im
has m zero eigenvalues;

• has all non-zero eigenvalues in C+, the open right half-plane of the complex
plane.

The second property of Γ̄ follows from the fact that Γ is the Laplacian matrix of a
strongly connected weighted digraph and the multiplicity of the zero eigenvalue
equals the number of strongly connected components. The third property of Γ̄
is a direct consequence of Gerschgorin’s Disc theorem, cf. [2].

Let

U =

(
1 0>

1 −Ik−1

)
∈ Rk×k

where 0 (1) is a vector of appropriate dimension with all entries equal 0 (1).
Then

(U ⊗ Im)Γ̄(U ⊗ Im)−1 =

(
0 ?

0 Γ̃

)
with Γ̃ ∈ R(k−1)m×(k−1)m and ? denotes some m × (k − 1)m matrix. It is
straightforward that the eigenvalues of Γ̃ are the non-zero eigenvalues of Γ̄. Let

z̃j = z1 − zj , ỹj = y1 − yj , j = 2, . . . , k.

Then 
˙̃z1

...
˙̃zk−1

 =

 q(z1, y1)− q(z1 − z̃1, y1 − ỹ1)
...

q(z1, y1)− q(z1 − z̃k−1, y1 − ỹk−1)

+ q̃(z1, y1z̃, ỹ)

and
˙̃y1

...
˙̃yk−1

 =

 a(z1, y1)− a(z1 − z̃1, y1 − ỹ1)
...

a(z1, y1)− a(z1 − z̃k−1, y1 − ỹk−1)

−Γ̃

 ỹ1

...
ỹk−1

+ã(z1, y1z̃, ỹ)

with z̃ = col(z̃1, . . . , z̃k−1), ỹ = col(ỹ1, . . . , ỹk−1),

q̃(z1, y1z̃, ỹ) =

 ∆q1(z1, y1)−∆q2(z1 − z̃1, y1 − ỹ1)
...

∆q1(z1, y1)−∆qk(z1 − z̃k−1, y1 − ỹk−1)


5



and

ã(z1, y1z̃, ỹ) =

 ∆a1(z1, y1)−∆a2(z1 − z̃1, y1 − ỹ1)
...

∆a1(z1, y1)−∆ak(z1 − z̃k−1, y1 − ỹk−1)

 .

Consider the positive definite function

V (z̃, ỹ) = z̃>(Ik ⊗ P )z̃ + ỹ>P1ỹ

with P as in Assumption 1 and positive definite matrix P1 is such that ‖P1‖ = 12

and
−Γ̃P1 − P1Γ̃> ≤ −ηI

for some positive constant η. The existence of such matrix P1 is guaranteed by
the fact the −Γ̃ is a stable (Hurwitz) matrix.

Assumption 1 and smoothness of the functions qi, ai implies the existence of
positive constants Bq and Ba such that

‖(Ik ⊗ P )q̃(z1, y1z̃, ỹ)‖ ≤ Bq, ‖P ã(z1, y1z̃, ỹ)‖ ≤ Ba.

Assumptions 1, 2 and smoothness of the function q implies the existence of
positive constants κ0, κ1 such that

z̃>(Ik ⊗ P )

 q(z1, y1)− q(z1 − z̃1, y1 − ỹ1)
...

q(z1, y1)− q(z1 − z̃k−1, y1 − ỹk−1)

 ≤ −κ0 ‖z̃‖2 + κ1 ‖z̃‖ ‖ỹ‖ .

Assumption 1 and smoothness of the function a implies the existence of positive
constants κ2, κ3 such that

ỹ>P1

 a(z1, y1)− a(z1 − z̃1, y1 − ỹ1)
...

a(z1, y1)− a(z1 − z̃k−1, y1 − ỹk−1)

 ≤ κ2 ‖z̃‖ ‖ỹ‖+ κ3 ‖ỹ‖2 .

Thus

V̇ (z̃, ỹ) ≤ −κ0 ‖z̃‖2 + κ1 ‖z̃‖ ‖ỹ‖+ κ2 ‖z̃‖ ‖ỹ‖

+ (κ3 − ση) ‖ỹ‖2 +Bq ‖z̃‖+Ba ‖ỹ‖

= −
(
z̃
ỹ

)>
W

(
z̃
ỹ

)
+Bq ‖z̃‖+Ba ‖ỹ‖

with

W =

(
κ0 −κ1+κ2

2
−κ1+κ2

2 ση − κ3

)
.

Note that W is positive definite for

σ > σ̄ = 1
η

(
κ3 + (κ1+κ2)2

4κ0

)
.

2Given a matrix A, ‖A‖ = max‖x‖=1 ‖Ax‖.
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Thus there is a positive constant µ = µ(σ) = λmin(W ) such that for σ > σ̄

V̇ (z̃, ỹ) ≤ −µ(‖z̃‖2 + ‖ỹ‖2) +Bq ‖z̃‖+Ba ‖ỹ‖

such that
V̇ (z̃, ỹ) ≤ −µ(1− ρ)(‖z̃‖2 + ‖ỹ‖2), ρ ∈ (0, 1),

if

‖z̃‖ =
Bq
ρµ

and ‖ỹ‖ =
Ba
ρµ
.

Standard techniques, cf. Lemma 9.2 of [3], imply that for any σ > σ̄ the systems
practically synchronize with bound

ε =

√
λmax(diag(Ik ⊗ P ), P1)

λmin(diag(Ik ⊗ P ), P1)

B2
q +B2

a

ρ2µ2
,

where λmin(·) and λmax(·) are the smallest, respectively, largest eigenvalue of a
symmetric matrix.

4 Practical output-synchronization of two cou-
pled systems

Consider two systems (1.1) that interact via coupling

u1 = σ(1− η)[y2 − y1]
u2 = ση[y1 − y2]

(4.1)

with constant η ∈ (0, 1).

Definition 3. Let yi(·; t0, x0), i = 1, 2, denote the unique output solution of
(1.1), (4.1) through x0 ∈ R2n at t = t0 defined on the interval [t0, t1), t1 > t0.
The coupled systems (1.1), (4.1) practically output-synchronize with bound εy
if for each εy > εy there is a T = T (εy), T < t1 − t0, such that

|y1(t; t0, x0)− y2(t; t0, x0)| < εy ∀t ≥ t0 + T

Of course, whenever the conditions of Lemma 1 and Theorem 1 are satisfied
the two coupled systems (1.1), (4.1) practically output-synchronize with some
bound εy, provided that σ > σ̄.

We assume for the systems (1.1)

C1B1 = C2B2

and let

z̃ = z1 − z2,

ỹ = y1 − y2.

Then we get

˙̃z = q1(z1, yi)− q2(z2, y2),

˙̃y = a1(z1, yi)− a2(z2, y2)− σỹ.
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We observe that these dynamics, which describe the synchronization error, do
not depend on the weight parameter η. Consider

V (ỹ) = 1
2 ỹ

2.

Using similar reasoning as in the proof of Theorem 1, we deduct that

V̇ (ỹ) ≤ c1 + c2ỹ − σỹ2

where constants c1 and c2 depend on the functions q1(z1, yi) − q2(z2, y2) and
a1(z1, yi)− a2(z2, y2) given the bounds of the solutions yi(·) and zi(·). A direct
application of LaSalle’s invariance principle, cf. [4], shows that we can find a
σ̄ > 0 such that if σ > σ̄ then V̇ (ỹ) < 0 for all ‖ỹ‖ > εy = εy(σ) and, moreover,
the larger σ the smaller εy with

lim
σ→∞

εy(σ) = 0.
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