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Numerical modelling of hydraulic fracturing

E.W. Remij & J.J.C. Remmers & J.M. Huyghe & D.M.J. Smeulders
Department of Mechanical Engineering
Eindhoven University of Technology, PO BOX 513, 5600 MB Eindhoven

ABSTRACT: In this paper we present a numerical model for hydraulic fracturing purposes. The rock
formation is modelled as a poroelastic material based on Biot’s Theory. A fracture is represented in a
discrete manner using the eXtended Finite Element Method (X-FEM). The fluid flow is governed by a
local mass balance. This means that there is an equilibrium between the opening of the fracture, the
tangential fluid flow, and the fluid leakage. The mass balance in the fracture is solved with a separate
equation by including an additional degree of freedom for the pressure in the fracture. The fracture can
grow in arbitrary directions by using an average stress criterion. We show a result of hydraulic fracture
propagation for a 2D circular borehole. The fracture direction is consistent with the expected direction.

1 INTRODUCTION

Hydraulic fracturing is the process in which a frac-
ture propagates by applying a high pressure inside
the fracture. In geo-mechanics this process is used
to stimulate oil and gas reservoirs by fracturing
the underground rock formation. The induced frac-
tures remain open, due to the addition of a prop-
pant to the fracturing fluid, and therefore greatly
enhance the permeability in the formation. Numer-
ical models can be used to obtain more insight in
the fracture process and may eventually be used
to optimize the fracture process.
Boone & Ingraffea (1990) developed a numerical

model based on the finite element method (FEM)
for the poroelastic material where a cohesive zone
description was used for the fracture. Using a mesh
adaptation scheme in a poroelastic FEM, Schref-
fler and co-workers (Schrefler et al. 2006, Secchi
et al. 2007, Secchi and Schrefler 2012) simulated
propagating hydraulic fractures in a arbitrary di-
rections. Carrier & Granet (2012) used a similar
approach with a priori placed interface elements
that contained an additional degree of freedom for
the pressure in the fracture.

The eXtended Finite Element Method (X-FEM)
was used by Mohammadnejad & Khoei (2012) for
cohesive crack growth in multiphase porous ma-
terials. They also successfully applied their model
for hydraulic fracturing simulations (Mohammad-
nejad & Khoei 2013).
X-FEM is a common technique in solid mechan-

ics and has as an important advantage compared
to the previously mentioned fracture models; a
fracture can grow in arbitrary directions without
the need to remesh (Belytschko and Black 1999,
Moës et al. 1999). By exploiting the partition of
unity property of finite element shape functions
(Melenk & Babuška 1996), a fracture can be in-
serted in a finite element mesh by adding addi-
tional degrees of freedom to the nodes surround-
ing the fracture (Figure 1). In this contribution
we present a similar X-FEM model as was used
by Mohammadnejad & Khoei (2013) but we also
include the pressure in the fracture as a separate
degree of freedom. Such a formulation ensures that
all the pumping fluid goes into the fracture. The
new model is refereed to as the Enhanced Local
Pressure (ELP) model.
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Figure 1: A two dimensional finite element mesh
crossed by a fracture represented by the black line.
The black nodes surrounding the fracture are en-
hanced with additional degrees of freedom. The
grey elements therefore contain additional terms
in the stiffness matrix and the force vector.

2 KINEMATIC RELATIONS

The total displacement field of the solid skeleton
can, at any time t, be described by a continuous
displacement field û(x, t) and a discontinuous dis-
placement field ũ(x, t) (Belytschko & Black 1999,
Moës, Dolbow, & Belytschko 1999)

u(x, t) = û(x, t) +HΓd
(x)ũ(x, t), (1)

We can also write the pressure field as a sum of the
continuous field p̂(x, t) and a discontinuous field
p̃(x, t).

p(x, t) = p̂(x, t) +Hs
Γd
(x)p̃(x, t). (2)

The functions HΓd
and Hs

Γd
are Heaviside step

functions defined over the fracture as

HΓd
=

{
1 if x ∈ Ω+

0 if x ∈ Ω−,
(3)

Hs
Γd

=

{
1
2

if x ∈ Ω+

−1
2

if x ∈ Ω−.
(4)

With these formulations the pressure inside the
fracture is undetermined. We therefore introduce a
third pressure pd, representing the pressure in the
fracture. The continuous fields are present in all
the finite element nodes. The discontinuous fields
and the pressure in the fracture are only included
in the enhanced nodes (Figure 1).

The pressure in the fracture is a one dimensional
variable that can be used to describe the fluid mass
balance in the fracture. Integrating the local mass
balance gives

q+
Γd

· nd − q−
Γd

· nd + [u̇]n + un〈
δu̇s

δs
〉− (5)

un
δ

δs
(kd

δpd
δs

) +
un

Mf

ṗd = 0,

with q+
Γd

and q−
Γd

being the fluid flow from the
fracture into formation for the fracture side of the
Ω+ and the Ω− domain, respectively, [u̇]n denoting
the time derivative of the normal opening of the
fracture, us being the shear opening of the fracture,
and kd being the permeability in the fracture.
Assuming a Couette flow, the latter is given by

kd =
u2
n

12µ
, (6)

where µ is the viscosity of the fluid, and un the
opening of the fracture. The derivation of this
equation can be found in Irzal et al. (2013).
Using the cohesive zone approach, the damaging

of the material is described by a traction acting on
the fracture. This traction is coupled to the hydro-
static pressure in the crack. Assuming continuity
of stress from the formation to the fracture, we can
write the local momentum balance as

σ · nd = td − pdnd, (7)

3 NUMERICAL FORMULATION

The time discretization is performed with an im-
plicit Euler scheme. The non-linear system of equa-
tions is finally solved by using a Newton-Raphson
iterative procedure. We consider the porous mate-
rial to be fully saturated with a fluid and subjected
to small variations in the displacement gradient.
The bulk poroelasticity is based on Biot theory.
The propagation time and the propagation di-

rection of the fracture are based on an average
stress criterion. The stress values surrounding the
tip of the cohesive zone are weighted with a Gaus-
sian function (Jirásek 1998). The average stress is
then the weighted sum of stresses in these integra-
tion points.
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Figure 2: Schematic representation of a material
with at the crack tip the global x-y coordinate
system and the local coordinate system, described
with a normal unit vector n and a tangential unit
vector s.

σav =

nint∑
i=1

wi

wtot

σe,i with wtot =

nint∑
j=1

wj. (8)

Here nint is the number of integration points in the
domain, σe,i is the current effective stress state in
integration point i which has a weight factor wi

defined as

wi =
(2π)

2
3

l3a
e

−r2i
2l2a , (9)

with ri being the distance between the tip of the
cohesive zone and the integration point ni, and la
being a length scale parameter defining how fast
the weight factor decays as a function of the dis-
tance between the integration points and the co-
hesive zone tip. Based on the average stress, an
equivalent traction is calculated (Camacho & Or-
tiz 1996)

teq(θ) =

√
< tn >2 +

1

β
t2s , (10)

with

< tn >=

{
0 if tn ≤ 0
tn if tn > 0

, (11)

where tn and ts respectively are the normal and
shear traction

tn = nTσavn ts = sTσavn. (12)

Here n is the normal vector and s is the tangent
vector to an axis η which is rotated by an angle θ
with respect to the x-axis (Figure 2). If the maxi-
mum equivalent traction exceeds the yield strength
τult of the material the fracture is extended in the
direction of angle θ through one element. The frac-
ture is assumed to open as a cleavage crack. The
traction separation relation is given by (Camacho
& Ortiz 1996)

tn = tn0

(
1− vn

vncr

)
, (13)

ts = ts0

(
1− vn

vncr

)
sgn(vs).

Here vn and vs are respectively the normal and
sliding the displacement, sgn(·) is the Signum func-
tion. The parameter vncr is the length of the fully
developed traction-free crack. This parameter de-
pends on the fracture toughness Gc and the initial
normal traction tn0
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Figure 3: The normalized tractions across the frac-
ture as a function of the displacement jump in.

vncr =
2Gc

tn0

. (14)

The initial tractions, tn0 and ts0 , are taken equal to
the normal and shear tractions at the time of prop-
agation, respectively. Self-contact of the fracture is
simulated by using a penalty stiffness method. A
detailed description of the numerical implementa-
tion can be found in the work (Remmers, de Borst,
& Needleman 2008) and the usage of X-FEM in
porous materials is given in (Kraaijeveld & Huyghe
2011, Réthoré, Borst, & Abellan 2007).
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Figure 4: The results of the numerical solution and
analytical solution for the Kirsch problem plotted
over the x-axis.

4 EXAMPLES

The performance of the numerical model is ad-
dressed by considering a 2D borehole problem
(Figure 5). The rock formation is assumed to be a
squared specimen with a dimension of 10.0m. The
circular hole has a radius of 1.0m. The confining
stress is taken as σ0=5.0[Mpa] in y-direction, and
is taken twice as large in the x-direction. The ma-
terial parameters are given in Table 1.
Applying the confining stress leads to consolida-

tion effects in the bulk material due to a poroelas-
tic response. In order to obtain an initial equili-
brated state we perform one time step with a pre-
scribed zero pressure in all the nodes. After this
first step we release the pressure, place the initial
fractures and start the fluid inflow q0.
The initial stress field is compared with Kirsch

analytical solution for a circular hole in an infi-
nite elastic solid (Kirsch 1898). The radial stress
and the circular stress over the x-axis are shown
in Figure 4.

Inintial
fractures
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p = 0
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x

Figure 5: Scheme of the borehole fracture problem.

Table 1: Model Parameters used in the borehole
fracture problem.

Name Symbol Value
Young’s modulus E 17.0 GPa
Poisson’s ratio ν 0.2
Ultimate strength τult 1.25 MPa
Fracture toughness Gc 120.0 Nm−1

Fluid viscosity µ 1.0e−4 Pa · s
Fluid injection rate q0 0.05 ms−1

Bulk modulus solid Ks 36.0 GPa
Bulk modulus fluid Kf 3.0 GPa
Biot coefficient α 0.75

The preferred propagation direction of a hy-
draulic fracture is perpendicular to the minimum
confining stress (Hubbert & David 1972). In or-
der to investigate if the numerical model can pre-
dict this behaviour we also perform the simulation
with only the initial fracture in the y-direction.
The time evolution of this fracture is shown in
Figure 6a. If we consider both initial fractures, in-
deed only the fracture that is perpendicular to the
minimum confining stress propagates, as shown in
Figure 6b.

5 CONCLUSIONS

The performance of the ELP model is addressed
in a 2D circular borehole problem. In the first case
only the initial fracture perpendicular to the high-
est confining stress is included in the simulation.
This is the unfavourable direction of fracture prop-
agation.
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Figure 6: Contour plots of the hydrostatic pressure
for the borehole problem at 3 different times. The
deformed mesh is magnified 100 times. (a) A prop-
agating fracture turns in the direction of the min-
imum confining stress. (b) Only the fracture per-
pendicular to the minimum confining stress propa-
gates. The second fracture in the y-direction is not
visible because it is closed.

The propagated fracture indeed turns in the direc-
tion of the highest confining stress. In the second
case also the fracture that is already in the di-
rection of the highest confining stress is included.
Now only the second fracture grows while the frac-
ture that is initially perpendicular to the highest
confining stress remains closed. This behaviour is
consistent with findings in the literature (Hubbert
& David 1972).
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