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Fleet readiness: stocking spare parts and high-tech assets

Rob J.I. Basten & Joachim J. Arts

Abstract

We consider a maintenance shop that is responsible for the availability of a fleet of assets,

e.g., trains. Unavailability of assets may be due to active maintenance time or unavailability

of spare parts. Both spare assets and spare components may be stocked in order to ensure

a certain percentage of fleet readiness (e.g., 95%), i.e., having sufficient assets available for

the primary process (e.g., running a train schedule). This is different from guaranteeing a

certain average availability, as is typically done in the literature on spare parts inventories.

We analyse the corresponding system, assuming continuous review and base stock control.

We propose an algorithm, based on a marginal analysis approach, to solve the optimization

problem of minimizing holding costs for spare assets and spare parts. Since the problem is

not item separable, even marginal analysis is time consuming, but we show how to efficiently

solve this. Using a numerical experiment, we show that our algorithm generally leads to a

solution that is close to optimal, and we show that our algorithm is much faster than an

existing algorithm for a closely related problem.

Keywords: Maintenance · Inventory · Fleet sizing

1 Introduction

Many important services and (military) operations depend on the availability of a sufficiently

large fleet of assets. An airline, for example, depends on a fleet of aircraft to service all planned

flights, while railway companies depend on a fleet of rolling-stock to make the train schedule

work. Other examples exist in the defense and maritime industries. In all such cases, the

availability of assets (the fraction of time that they are available to operate) is not the most

appropriate measure of fleet performance. A more accurate measure of performance is the

fraction of time that sufficient assets are available to fulfill the function of the fleet, i.e., the

probability that sufficient assets are available at an arbitrary moment in time. We refer to this

performance measure as fleet readiness.

A fleet readiness of 100% cannot be achieved, because assets are subject to failures and

need maintenance. The maintenance time of an asset consists of two main parts: the active

maintenance time in which the actual maintenance operations occurs (usually the replacement of

line replaceable units) and the maintenance delay time which is the waiting time for maintenance

resources to become available. (Some authors call it time to support.) A major culprit for

maintenance delay is a lack of spare parts needed for replacement.
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High fleet readiness can be achieved by a combination of the following: (1) Buying assets in

addition to what is necessary to run daily operations; (2) Reducing the maintenance delay time

by stocking spare parts; (3) Reducing the required number of maintenance actions by increasing

asset reliability; Or (4) improving the speed of maintenance/replacement operations. This paper

focusses on the first two options as these amount to investment decisions of a logistical nature.

The last two options can usually only be achieved by making asset engineering modifications

that are specific to the technology of the asset.

Buying as many assets as a given budget allows is a popular method to increase fleet readiness

but it is not always effective. The money needed to buy assets and spare parts usually comes

from the same budget. In the last decades of the previous century, the Dutch defense engaged

in what has come to be called “carcass politics”1. Under carcass politics, the available budget

to establish a fleet is spent as much as possible on buying complete assets, and the remainder

is spent on spare parts. Spare parts become short in supply soon after this and as a result,

technicians start using parts from complete assets leaving only a “carcass” behind. This practice

is often referred to as cannibalization. Clearly, this practice does not necessarily lead to high

fleet readiness. There is a trade-off in investing in assets and spare parts to meet a certain fleet

readiness and this paper explores this trade-off.

The trade-off between investing in assets or spare parts to realize a certain fleet readiness

objective is non-trivial. In general, this problem is non-convex and the analysis cannot be

separated into an analysis per spare part type and asset: Its evaluation requires the convolution

of backorder distributions per spare part type. This is in stark contrast with many spare part

inventory problems in which the resulting optimization problems are convex and separable per

item (see, e.g., Sherbrooke, 2004; Muckstadt, 2005; Basten and Van Houtum, 2014). Assets and

spare parts achieve a certain fleet readiness jointly and so their analysis cannot be separated.

In fact, we will show that their joint analysis is mathematically a generalization of multi-

echelon inventory theory, even though we consider only a single stock point. Unfortunately,

this generalization is not susceptible to standard tools such as Clark and Scarf decomposition

(Clark and Scarf, 1960) and METRIC type (Sherbrooke, 1968) inventory models.

Our main contributions in this paper are the following: We consider the problem of deciding

on asset investment and spare part investment jointly, whereas previous work consider them

separately; see also Section 2. This is also what we often see in practice. However, both are

sizeable investments that serve a common purpose in the end: achieving high fleet readiness.

Fleet readiness is usually not used as service measure in this setting because it is untractable.

Indeed, we show that this problem of deciding jointly on asset and spare part investment to

meet a fleet readiness requirement is in general non-convex and non-separable, and enumeration

is required to guarantee finding the optimal solution. Enumeration is impractical for several

reasons. One of those reasons is also a problem for heuristic algorithms: Evaluating the fleet

readiness for a given investment requires the computation of O(n) convolutions, where n is the

number of different spare part types. We develop a greedy heuristic for this problem that is

1The Dutch word is “rompenpolitiek”, see, e.g., Tjepkema (2010)
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computationally efficient, not only because it is greedy, but especially because it involves a novel

technique that reduces the number of convolutions required to compute the readiness in any

iteration. Our technique reduces the number of convolutions that need to be computed from

O(n) to O(log n) after an initial evaluation that still takes O(n) convolutions. Furthermore, we

provide simple bounds that our heuristic uses to decrease the size of the search neighborhood.

In a numerical experiment, we compare our heuristic with enumeration on small instances and

find that our heuristic finds the optimal solution of 51% of our test instances and has an average

optimality gap on the other instances of 3.7%. Our algorithm is 50 times faster on medium size

instances than an existing algorithm that was developed for a related problem. (The existing

algorithm takes too much time to perform a comparison on large instances.)

The remainder of this paper is organized as follows. We discuss related literature in Section 2

and position our work with respect to previous work. In Section 3, we explain the system that

we model and the optimization problem that we focus on. We analyse the system in Section 4;

we show that the problem is not convex, but we can prove some other properties. We use

those to construct an algorithm to solve the optimization problem in Section 5. In Section 6 we

perform a numerical experiment, and we conclude in Section 7.

2 Related literature

We indicated that our main contributions are the combination of the fleet sizing and spare part

investment decisions subject to a service level constraint that is not often used. Accordingly,

this literature review is structured as follows: We discuss the fleet readiness measure in Section

2.1, fleet sizing in Section 2.2 and spare parts optimization in Section 2.3. In Section 2.3, we

specifically focus on a closely related paper by De Smidt-Destombes et al. (2011).

2.1 Fleet readiness

Fleet readiness as a performance measure is not as common as availability. Some authors

however, already noted that in many instances the readiness is a more appropriate performance

measure. Safaei et al. (2011), for instance, consider a deterministic maintenance scheduling

problem subject to a manpower constraint and a fleet readiness constraint. Jin and Wang

(2012) use the fleet readiness measure in the context of performance based contracting. They

approximate this measure by using the availability as the probability that a vehicle is available

at an arbitrary moment in time and then use the binomial distribution to compute the fleet

readiness. This approximation is more tractable than actual fleet readiness but it assumes

that the availability of different vehicles is uncorrelated at any particular time point. A similar

approach has been followed by Costantina et al. (2013) in a multi-echelon, multi-indenture spare

parts inventory setting. Some authors use the term fleet readiness as the average number of

vehicles of a fleet that are available, e.g., Sherbrooke (1971) and Salman et al. (2007). That is,

these authors consider the availability times the size of the fleet rather than the fleet readiness

as we define it.
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A closely related concept from the reliability engineering literature is the availability of a

k-out-of-N system (e.g., De Smidt-Destombes et al., 2004). In this setting, a system consists

of N components and only functions if k out of those N components are operational. The

availability is then defined as the probability that k out of the N components are operational.

In our setting, we would say that a fleet is ready if at least k out of N assets are operational, or

alternatively, if not more that N−k assets are unavailable. Thus these measures are equivalent.

2.2 Fleet sizing

Fleet sizing for vehicles has been studied in different settings. Hoff et al. (2010) and Pantuso

et al. (2014) provide a review of these models in the general and maritime setting, respectively.

Most of these models are deterministic and are concerned with calculating the minimum fleet

size necessary to perform daily operations. Our model takes this minimum number of vehicles

needed as an input and supports the investment decision in additional vehicles (or other assets)

and spare parts to make sure that the fleet is operationally ready with a certain probability at

any moment in time. Hoff et al. (2010) already mention that dealing with uncertainty is an

important aspect to incorporate when making the fleet sizing decision. Our work partially fills

this gap by providing a model that deals with the uncertainty in the number of vehicles down

for maintenance or lack of a spare part.

2.3 Spare parts optimization

The optimization of spare part inventory decisions has a long history that started with the work

of Feeney and Sherbrooke (1966) and Sherbrooke (1968). This line of research has led to a large

stream of literature that has been consolidated in the books of Sherbrooke (2004), Muckstadt

(2005) and the review papers by Kennedy et al. (2002), Guide Jr. and Srivastava (1997), and

Basten and Van Houtum (2014). We already mentioned some work that includes the optimiza-

tion of spare part inventories in Section 2.1. Here, we focus on the most closely related work

that has been done by De Smidt-Destombes et al. (2011). In that paper, the authors consider a

fleet that is taken on a mission with a package of spare parts. The objective is to minimize the

investment in this spare parts package subject to a constraint on the probability that the fleet

remains ready throughout the mission. We extend their model in two ways: (1) We also con-

sider the size of the fleet as a decision variable and (2) we account for the fact that maintenance

itself requires time and renders an asset unavailable. We will show that their constraint on the

probability of readiness at the end of a mission is mathematically equivalent to fleet readiness

as used in this paper. We also show that, even for a fixed fleet size, optimizing the spare parts

package is not a separable and convex problem. Despite this, De Smidt-Destombes et al. (2011)

use a marginal analysis approach and we pursue a similar approach. As a new contribution, we

benchmark this approach with respect to the optimal solution found by enumeration. We find

that our algorithm yields high quality solutions. Furthermore, we provide results that make

algorithms based on marginal analysis more tractable by giving easy to compute bounds so that

gradients do not need to be computed for every direction of ascent. In addition, we provide an
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Figure 1: Modeled system

algorithm that computes the gradient in O(log n) time instead of O(n) time, with n being the

number of distinct spare part types.

3 Model description

The system that we analyze is shown in Figure 1. We consider a fleet of assets that are composed

of line replaceable units (LRUs). We let I denote the set of LRUs. Assets fail randomly due

to a failure in exactly one LRU i ∈ I; such failures occur according to a Poisson process with

intensity λi and the total intensity over all LRUs is denoted by λ0 =
∑

i∈I λi. We reserve the

index 0 for the assets and we denote the set of LRUs plus assets by I0 = I ∪ {0}.
An asset is repaired by replacement of the failed part by a functioning spare part. In the

remainder of this paper, if we refer to (spare) parts, components, or items of LRU type i, we

say parts of LRU i. We assume that disassembly of the failed part takes zero time (i.e., is

instantaneous); assembly of the functioning spare part into the asset takes exactly µi time units

for LRU i ∈ I if a spare part is available immediately from stock (i.e., µi is deterministic). After

being repaired, the asset is sent to the pool of stand-by assets. We also refer to this pool as the

stock of spare assets.

The failed part of LRU i ∈ I is sent to the repair shop; its repair lead time is generally

distributed with mean Ti time units. Repair times of parts of the same LRU are independent

and identically distributed (i.i.d.) and repair times of parts of different LRUs are independent

of each other. In other words, we assume that the repair shop has an infinite number of servers,

or that the repair shop is able to schedule repairs and hire capacity such that it can guarantee a

certain average repair time (we have made an analogous assumption for the maintenance shop).

After being repaired, a part is returned to stock. Repairs may be performed either at an internal

repair shop, or they may be outsourced to an external repair shop. In fact, the model can also
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be used if parts are discarded and replaced by new parts. In that case, repair lead time should

be read as supply lead time or order-and-ship time.

All stock points are controlled using a continuous review (Si − 1, Si) base stock policy (i.e.,

one-for-one replenishment) with Si being the base stock level for the asset (0) or LRU i ∈ I.

Under such a policy, the dynamics of the system can be described as follows: Let Di(t
′, t)

denote the demand for LRU i (or, equivalently, the number of failures in parts of LRU i)

between time t′ and t. Let Xi(t) denote the number of parts of LRU i ∈ I in repair, also called

the pipeline of LRU i, at time t. Then, if the repair lead time is deterministic, it is easily

seen that Xi(t) = Di(t−Ti, t). Due to Palm’s theorem (Palm, 1938), this equality still holds in

distribution if the repair lead time is not deterministic. The number of backorders for LRU i ∈ I
is denoted by Bi(t, Si) and satsifies Bi(t, Si) = [Xi(t)− Si]+. We denote by Y0(t) the number of

assets in the maintenance shop that are actively being maintained at time t (i.e., the assets that

are waiting for a spare part are not included): Y0(t) =
∑

i∈I Di(t− µi, t). (Remember that the

active maintenance time, i.e., assembly time, is assumed to be deterministic). For notational

convenience, we introduce S as the vector of all base stock levels Si for i ∈ I. The pipeline

X0(t,S) of assets in the maintenance shop at time t is:

X0(t,S) = Y0(t) +
∑
i∈I

Bi(t− µi, Si) =
∑
i∈I

Di(t− µi, t) +
∑
i∈I

[Di(t− µi − Ti, t− µi)− Si]+ ,

while the number of assets short is denoted by B0(t,S0) = [X0(t,S)− S0]+, with S0 being the

vector of all base stock levels Si for i ∈ I0. (This can also be interpreted as the number of

backordered assets.) The readiness, R(S0), is equal to the probability of not being any assets

short in steady state: R(S0) = limt→∞ P {B0(t,S0) = 0}.

Remark 3.1. If the asset consists of one LRU only, our system simplifies to a two-echelon serial

inventory system. Specifically, when |I| = 1, Y0(t) can be interpreted as the number of orders

in transit from the upstream stock point to the downstream stock point, while B1(t − µ1, S1)
represents the orders from the downstream stock point that are backordered at the upstream

stock point. By allowing |I| > 1, we are dealing with a generalization of a two-echelon serial

inventory system under base-stock control.

Remark 3.2. When µi = 0 and Ti = T for all i ∈ I, then R(S0) can also be interpreted as

the probability that the fleet remains ready during a mission of length T when a spare parts

package of size S is brought on the mission. (Note that Ti = T for all i ∈ I implies that spare

parts cannot be repaired during the mission.) For a fixed fleet size S0, this is the setting that

De Smidt-Destombes et al. (2004) consider.

The costs of holding spare assets and LRUs are linear in their base stock level: ci per unit

for asset or LRU i ∈ I0. Our goal is to find the base stock levels that minimize the total costs

C(S0) =
∑

i∈I0 ciSi, such that the target readiness Robj is achieved. Formally, our optimization
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problem, Problem (P ), is:

min
S0∈N

|I0|
0

C(S0)

subject to R(S0) ≥ Robj,

with N0 = N ∪ {0} being the set of non-negative integers. We emphasize that problem (P ) is

not separable per item because R(S0) cannot be written as a sum of terms that depend on one

Si only.

4 Analysis

In this section, we give results on the behavior of the fleet readiness as a function of the number

of spare parts and spare assets. We use these results to explain, in Section 5, why we make

certain choices in the algorithm that we use to solve Problem (P ). Since we consider the

system in steady state, we suppress the time parameter in the state variables from now on,

and we show their distributions in Lemma 1. We further introduce additional notation that

we require in the remainder of this section. We then get to the main part of this section: We

give a counter example that shows that the fleet readiness is not in general jointly concave in

S0 and Si. Therefore, we enumerate the asset stock levels in our algorithm and Proposition 2

gives bounds on the optimal asset stock levels. We next show that the fleet readiness is also

not jointly concave in Si and Sj for i, j ∈ I with i 6= j. However, we are able to give some

other convexity results: Lemma 3 states two difference functions and we use the second order

difference function in Proposition 4, which gives convexity results for the fleet readiness as a

function of Si (i ∈ I). Finally, Proposition 5 gives a result that we use in our algorithm to avoid

performing unncessary calculations: Our algorithm uses a marginal analysis approach. In each

iteration, an additional spare part is stocked of that LRU that gives the biggest ‘bang for the

buck’. The result in Proposition 5 gives an upper bound on how much this ‘bang for the buck’

may have changed for a certain LRU from one iteration to the next. That means that we can

use the result to quickly check if the ‘bang for the buck’ of a certain LRU may be sufficiently

high to perform exact calculations. If not, we do not need to perform these time consuming

calculations.

The following lemma gives the distributions of the state variables in steady state. The proof

follows directly from the discussion in Section 3 and is therefore omitted.

Lemma 1. In steady state, the state variables are distributed as follows:

(i) For i ∈ I, the pipeline, Xi, is Poisson distributed with mean λiTi, i.e.:

P {Xi = x} =
(λiTi)

x

x!
e−λiTi , ∀x ∈ N0.

7



(ii) For i ∈ I, the distribution of the number of backorders, Bi(Si), is given by:

P {Bi(Si) = b} =


∑Si

x=0 P {Xi = x} , if b = 0;

P {Xi = Si + b} , if b ∈ N.

(iii) The number of assets in active maintenance, Y0, is Poisson distributed with mean
∑

i∈I λiµi,

i.e.:

P {Y0 = y} =

(∑
i∈I λiµi

)y
y!

e−
∑

i∈I λiµi ,∀y ∈ N0.

(iv) The distribution of the pipeline, X0(S), is given by:

P {X0(S) = x} =
x∑
y=0

[
P {Y0 = y}P

{∑
i∈I

Bi(Si) = x− y

}]
,∀x ∈ N0.

(v) The distribution of the number of assets short, B0(S0), is given by:

P {B0(S0) = b} =


∑S0

x=0 P {X0(S) = x} , if b = 0;

P {X0(S) = S0 + b} , if b ∈ N.

We use additional notation in this section: Let ei be a vector of length |I0| with all zeros,

except at the location corresponding to the base stock level of spare assets (i = 0: S0) or spare

LRUs (i ∈ I: Si). Furthermore, notice that concavity in i ∈ I0 implies that R(S0+ei)−R(S0) ≥
R(S0 + 2ei)−R(S0 + ei), while joint concavity in i, j ∈ I0 implies that R(S0 + ej)−R(S0) ≥
R(S0 + ei + ej)−R(S0 + ei).

The problem that we consider is not in general jointly concave in S0 and Si with i ∈ I.

As a counter example, consider an asset consisting of one LRU, indexed 1, with λ1 = 2 and

µ1 = T1 = 1. Evaluating R(S0) gives the following results: R(0, 0) ≈ 0.1353, R(1, 0) ≈ 0.4061,

R(0, 1) ≈ 0.2707, and R(1, 1) ≈ 0.6090. It is easily seen that if either S0 or S1 is increased,

the readiness increases. However, R(0, 1)− R(0, 0) ≈ 0.1353 < R(1, 1)− R(1, 0) ≈ 0.2030, and

R(1, 0) − R(0, 0) ≈ 0.2707 < R(1, 1) − R(0, 1) ≈ 0.3383. This means that the problem is not

jointly concave. For larger values of S0, the problem does show concavity.

Because there exists no joint concavity in general, we are going to enumerate the number of

spare assets; Proposition 2 gives bounds on its optimal value.

Proposition 2. The optimal number of spare assets for problem P , denoted as S∗0 , is bounded

as follows:

(i) S∗0 ≥ SLB
0 , with SLB

0 being the smallest integer S that satisfies P {Y0 ≤ S} ≥ Robj.

(ii) S∗0 ≤ SUB
0 , with SUB

0 being the smallest integer S for which it holds that there exists

S0
′ =

(
S′0, S

′
1, . . . , S

′
|I|

)
with SLB

0 ≤ S′0 ≤ S, C(S0
′) < c0(S + 1) and R(S0

′) ≥ Robj.
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Proof. For part (i): Since X0(S)
d
=Y0 +

∑
i∈I Bi(Si) by definition (

d
= denotes equality in dis-

tribution), we have that P {X0(S) ≥ x} ≥ P {Y0 ≥ x} for all x ∈ N0 because Bi(Si) are non-

negative random variables. The readiness constraint in Problem (P ) requires P {X0(S) ≤ S0} ≥
Robj, so a feasible S0 must satisfy P {Y0 ≤ S0} ≥ Robj.

For part (ii): S0
′ represents a feasible solution, since R(S0

′) ≥ Robj. If the costs of that

feasible solution are lower than the costs of storing S+1 spare assets (without any spare LRUs),

and thus also of storing more than S + 1 spare assets, then S is an upper bound on S∗0 .

Problem P is not in general jointly concave in Si and Sj with i, j ∈ I and i 6= j. As a counter

example, consider an asset consisting of two LRUs, indexed 1 and 2, with S0 = µ1 = µ2 = 0.

Joint concavity would imply that R(0,S+ e1)−R(0,S) ≥ R(0,S+ e1 + e2)−R(0,S+ e2) and

thus that

(1− P {X1 ≤ S1 + 1}P {X2 ≤ S2})− (1− P {X1 ≤ S1}P {X2 ≤ S2})

≥ (1− P {X1 ≤ S1 + 1}P {X2 ≤ S2 + 1})− (1− P {X1 ≤ S1}P {X2 ≤ S2 + 1}),

P {X1 ≤ S1}P {X2 ≤ S2} − P {X1 ≤ S1 + 1}P {X2 ≤ S2}

≥ P {X1 ≤ S1}P {X2 ≤ S2 + 1} − P {X1 ≤ S1 + 1}P {X2 ≤ S2 + 1} ,

(P {X1 ≤ S1} − P {X1 ≤ S1 + 1})P {X2 ≤ S2} ≥ (P {X1 ≤ S1} − P {X1 ≤ S1 + 1})P {X2 ≤ S2 + 1} , and

P {X2 ≤ S2} ≥ P {X2 ≤ S2 + 1} .

However, P {X2 = S2 + 1} > 0 for all S2 ≥ 0, so that P {X2 ≤ S2 + 1} > P {X2 ≤ S2}, showing

that this problem is not jointly concave.

In the two counter examples above, we have already used difference functions. Lemma 3

states two general difference functions formally. The second function, in part (ii), is used in

Proposition 4, which gives convexity results.

Lemma 3. The difference functions of the fleet readiness behave as follows.

(i) The difference function for the number of spare assets is:

∆0R(S0) = R(S0 + e0)−R(S0) = P

{
Y0 +

∑
i∈I

Bi = S0 + 1

}
.

(ii) The difference function for the number of spare LRUs i ∈ I is:

∆iR(S0) = R(S0 + ei)−R(S0) =

S0+1∑
b=1

P {Xi = Si + b}P

Y0 +
∑

k∈I\{i}

Bk = S0 + 1− b

 .
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Proof. For part (i), the derivation is as follows:

∆0R(S0) = R(S0 + e0)−R(S0)

=

(
1− P

{
Y0 +

∑
i∈I

Bi > S0 + 1

})
−

(
1− P

{
Y0 +

∑
i∈I

Bi > S0

})

= P

{
Y0 +

∑
i∈I

Bi > S0

}
− P

{
Y0 +

∑
i∈I

Bi > S0 + 1

}

= P

{
Y0 +

∑
i∈I

Bi = S0 + 1

}
.

For notational convenience, let Zi = Y0 +
∑

k∈I\{i}Bk. Then, for part (ii), the derivation is

as follows:

∆iR(S0) = R(S0 + ei)−R(S0)

=
(
1− P

{
Zi + [Xi − Si − 1]+ > S0

})
−
(
1− P

{
Zi + [Xi − Si]+ > S0

})
= P

{
Zi + [Xi − Si]+ > S0

}
− P

{
Zi + [Xi − Si − 1]+ > S0

}
=

∞∑
x=0

P
{
Zi + [Xi − Si]+ > S0 | Xi = x

}
P {Xi = x}

−
∞∑
x=0

P
{
Zi + [Xi − Si − 1]+ > S0 | Xi = x

}
P {Xi = x}

=

Si+S0+1∑
x=Si+1

P
{
Zi + [Xi − Si]+ > S0 | Xi = x

}
P {Xi = x}

−
Si+S0+1∑
x=Si+1

P
{
Zi + [Xi − Si − 1]+ > S0 | Xi = x

}
P {Xi = x}

=

S0+Si+1∑
x=Si+1

[P {Zi > S0 + Si − x} − P {Zi > S0 + Si + 1− x}]P {Xi = x}

=

S0+Si+1∑
x=Si+1

P {Zi = S0 + Si + 1− x}P {Xi = x}

=

S0+1∑
b=1

P {Xi = Si + b}P {Zi = S0 + 1− b} .

The fifth equation holds because if Xi < Si + 1, then [Xi − Si]+ = [Xi − Si − 1]+ = 0, and if

Xi > Si + S0 + 1, then P {Zi + [Xi − Si]+ > S0} = P {Zi + [Xi − Si − 1]+ > S0} = 1.

Proposition 4. The second order difference function for the number of spare LRUs i ∈ I,

∆2
iR(S0) = ∆iR(S0 + ei)−∆iR(S0), behaves as follows:

(i) If S0 + Si < dλiTie − 2, then ∆2
iR(S0) > 0 and R(S0) is strictly convex in Si.

(ii) If Si ≥ dλiTie − 2, then ∆2
iR(S0) ≤ 0 and R(S0) is concave in Si.
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Proof. For both parts (i) and (ii), we first require:

∆2
iR(S0) = ∆iR(S0 + ei)−∆iR(S0)

=

S0+1∑
b=1

P {Xi = Si + 1 + b}P

Y0 +
∑

k∈I\{i}

Bk = S0 + 1− b


−
S0+1∑
b=1

P {Xi = Si + b}P

Y0 +
∑

k∈I\{i}

Bk = S0 + 1− b


=

S0+1∑
b=1

[P {Xi = Si + 1 + b} − P {Xi = Si + b}]P

Y0 +
∑

k∈I\{i}

Bk = S0 + 1− b

 .

The second equality follows from Lemma 3. Furthermore, by Lemma 1, Xi is a Poisson

distributed random variable with mean λiTi so that we may express its probability mass

function recursively as P {Xi = k} = λiTi
k P {Xi = k − 1}, for k > 0. Consider part (i): if

S0 +Si < dλiTie−2, then P {Xi = Si + 1 + b} > P {Xi = Si + b} for b ∈ {1, . . . , S0 +1}, so that

∆2
iR(S0) > 0. And part (ii): if Si ≥ dλiTie− 2, then P {Xi = Si + 1 + b} ≤ P {Xi = Si + b} for

b ∈ {1, . . . , S0 + 1}, so that ∆2
iR(S0) ≤ 0.

Additionally, notice that:

• A similar result as part (ii) has been shown by Rustenburg (2000, p.41).

• Equality in part (ii) of Proposition 4 occurs if and only if S0 = 0 and Si = λiTi − 2.

• The behavior of ∆2
iR(S0) is not clear beforehand in all cases that are not covered by

Proposition 4 (i.e., if Si < dλiTie − 2 and S0 + Si ≥ dλiTie − 2).

Proposition 5 gives a result that we use in our algorithm to avoid performing unncessary

calculations, as explained above. Since the proof is long and does not give insight into the

problem, it is deferred to A

Proposition 5. If Si ≥ dλiTie − 2 and Sj ≥ dλjTje − 2, with i, j ∈ I, then:

∆iR(S0 + ej)−∆iR(S0) < P {Xj = Sj + 1}P {Xi = Si + 1} .

5 Algorithm

We give the pseudo code of our algorithm in Figure 2 and we explain the complete algorithm in

Section 5.1. Next, we focus on how to compute the convolutions in Line 11 of our algorithm in

Section 5.2. This is a very time consuming step in the algorithm and we propose a novel way

to do this efficiently.

11



1: S0 ← min{S ∈ N0 | P {Y0 ≤ S} ≥ Robj}
2: Calculate the probability mass function of Y0
3: while c0S0 ≤ Cbest do
4: Si ← max{0, dλiTie − 2} for all i ∈ I
5: Calculate the probability mass functions of Bi for all i ∈ I, and of Y0 +

∑
i∈I Bi

6: Rcur ← R(S0); Γbest ← 0
7: ibest ← −1; P {X−1 = S−1} ← 1; Γi ← 1/ci for all i ∈ I
8: while Rcur < Robj do
9: for i ∈ I do

10: Γi ← Γi +
P{Xibest

=S
ibest}P{Xi=Si+1}
ci

11: if Γi ≥ Γbest or i = ibest then
12: Γi ← R(S0+ei)−Rcur

ci

13: Γbest ← max{Γi,Γbest}
14: end if
15: end for
16: ibest ← arg maxi∈I Γi; Sibest ← Sibest + 1; Rcur ← R(S0)
17: end while
18: if C(S0) < Cbest then
19: Cbest ← C(S0)
20: end if
21: end while

Figure 2: Greedy algorithm for Problem (P )

5.1 Overview

The algorithm functions as follows. We enumerate the asset base stock level between a lower

bound (Line 1) and an upper bound (Line 3), based on Proposition 2. For each asset base stock

level, we initialize each LRU base stock level at a lower bound based on Proposition 4 (Line

4). Notice that this lower bounds guarantees that the readiness is convex in each LRU base

stock level. It is not guaranteed that the optimal base stock level is above this lower bound.

Although in practice it typically is, it is easy to give an example where it is not.

We then compute the probability mass functions of Bi for i ∈ I, and of Y0 +
∑

i∈I Bi. We

use a smart way of ordering and storing these computation in order to reduce the number of

computations that we need to perform per iteration of the marginal analysis approach that we

use to stock additional spare parts (Lines 12 and 16). We explain this in detail below.

Using the result in Proposition 5, we are able to further reduce the number of computations

that we perform per iteration (Lines 10 and 11). In our numerical experiment (Table 3), we

find that in this way, we save over 50% of computation time for problem instances with 256

components and that the relative savings increase with an increasinng problem size.

Note that Line 7 ensures that in the first iteration of the while loop (Lines 8 to 17) the first

condition of the if-clause on Line 11 is always true. The second condition of that if-clause is

required because Proposition 5 holds only for i 6= j.

As soon as the target readiness is reached, the marginal analysis approach is stopped, and

the asset base stock level is increased if its upper bound has not been reached yet. The upper

12



bound that we use is straightforward. Still, we find in our numerical experiment (Tables 3

and 4) that typically, the number of asset base stock levels that we consider in our algorithm is

small, i.e., the difference between the lower bound and the upper bound on the asset base stock

level is small.

5.2 Convolutions

The computationally most demanding step in Algorithm 2 is in Line 11: the computation of

Γi = (R(S+ ei)−Rcur)/ci. The difficult computation here lies in the evaluation of R(S+ ei) =

P {B0(S0) = 0} = P
{
Y0 +

∑
i∈I Bi(Si) ≤ S0

}
because it requires computing the probability

mass function of U(S) := Y0 +
∑

i∈I Bi(Si) by convolution. In this sub-section, we provide an

algorithm to compute the probability mass function of U(S+ei) using results that have already

been computed for U(S).

We require some additional notation. Let Bi(Si) be a vector containing the probability mass

function ofBi(Si) = (Xi−Si)+ up to S0, i.e., Bi(Si) = (P {Bi(Si) = 0} ,P {Bi(Si) = 1} , . . . ,P {Bi(Si) = S0}).
Similarly, let Y0 = (P {Y0 = 0} , . . . ,P {Y0 = S0}) and U(S) = (P {U(S) = 0} , . . . ,P {U(S) = S0}).
Furthermore we let a ∗b denote the convolution of the vectors a and b of equal length. Specif-

ically, if c = a ∗ b then c has the same length as both a and b and the i-th element of c

is given by ci =
∑i

j=0 ai−jbj . (Note that we start numbering elements in a vector starting

from 0 since this is notationally convenient in this context.) The convolution operator satisfies

commutativity (a ∗ b = b ∗ a) and associativity ((a ∗ b) ∗ c = a ∗ (b ∗ c)). Finally, we let

Ba,b(S) = Ba(Sa) ∗Ba+1(Sa+1) ∗ · · · ∗Bb−1(Sb−1) ∗Bb(Sb) for a ≤ b. Now observe that

U(S) = Y0 ∗B1,|I|(S) = Y0 ∗B1(S1) ∗B2(S2) ∗ · · · ∗B|I|−1(S|I|−1) ∗B|I|(S|I|),

which can be computed in a plethora of orders because of the associative and commutative

properties of convolution. However, for our application, we already know that after computing

U(S), we will also compute U(S+ei) for some i ∈ I in Line 11 of our greedy algorithm in order

to evaluate R(S + ei). The complexity in computing U(S) lies in the computation of B1,|I|(S)

because its complexity increases with the size of the instance as measured by |I|.
The straightforward way to compute B1,|I|(S) is to first compute Bi(Si) for all i ∈ I,

and then successively compute as follows: B1,2(S) = B1(S1) ∗ B2(S2), B1,3(S) = B1,2(S) ∗
B3(S3), . . . ,B1,|I|−1(S) = B1,|I|−2(S) ∗ B|I|−1(S|I|−1), B1,|I|(S) = B1,|I|−1(S) ∗ B|I|(S|I|). This

requires performing |I| − 1 convolutions and this is what De Smidt-Destombes et al. (2011) do

in their algorithm.

Alternatively, this can be done by building up a tree starting from its leaves. An exam-

ple for |I| = 8 is shown in Figure 3. Formally the procedure works as follows: First, com-

pute Bi(Si) for all i ∈ I. Next, compute B1,2(S) = B1(S1) ∗ B2(S2), B3,4(S) = B3(S3) ∗
B4(S4), . . . ,B|I|−1,|I|(S) = B|I|−1(S|I|−1) ∗ B|I|(S|I|). Then, compute B1,4(S) = B1,2(S) ∗
B3,4(S), . . . ,B|I−3|,|I|(S) = B|I|−3,|I|−2(S) ∗ B|I|−1,|I|(S). Continue in this manner until ar-

riving at the root node of the tree: B1,|I|(S). This procedure also requires |I| − 1 convolutions.

However, computing B1,|I|(S+ei), for some i ∈ I, can now be done efficiently by reusing most
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Figure 3: Computation of B1,|I|(S) for |I| = 8 via a tree structure. Each non-leaf node in this
tree is obtained by convolution of its two children nodes.

Figure 4: Computation of B1,|I|(S + e3) for |I| = 8 via a tree structure. This tree is identical
to the tree for the computation of B1,|I|(S) except in the filled nodes.

results in the tree. Indeed, Ba,b(S + ei) = Ba,b(S) whenever i < a or b < i, so that all nodes

in the tree for which this condition is verified do not need to be recomputed. This is easily

seen when we reconsider the example where |I| = 8. Suppose we wish to compute B1,8(S+ e3).

Figure 4 shows this tree. Note that the trees for the computation of B1,8(S + e3) (Figure 4)

and B1,8(S) (Figure 3) are identical for all nodes, except the nodes that are filled in Figure 4.

Therefore, if we already evaluated B1,8(S), the computation of B1,8(S + e3) only requires the

evaluation of 4 nodes. Of those 4 nodes, one concerns the determination of B3(S3 + 1) and

3 = log2(8) require taking a convolution. The same reasoning can be applied for general |I| and

yields the following result.

Proposition 6. After an initial evaluation of B1,|I|(S) which requires O(|I|) convolutions, all

subsequent evaluations of B1,|I|(S+ei) with i ∈ I require performing only O(log |I|) convolutions.

The only thing that we have not explained yet is when to perform the convolution with Y0.

14



Set 1 Set 2

# Components |I| 2; 4; 8 16; 64; 256; 1,024
Maximum assembly time µmax 0.001; 0.01 identical
Maximum resupply lead time Tmax 0.01; 0.1 identical
Average costs per component caverage 100; 1,000 identical
Relative costs of an asset crelative 0.5; 1; 2 identical
Target readiness Robj 0.9; 0.95; 0.975 identical

Table 1: Settings of the parameters that are varied in the numerical experiment

It would be straightforward to do this at the end (i.e., at the root of the tree), but that would

mean that we would require an additional convolution each time that we increase an LRU stock

level. Therefore, we have chosen to perform this convolution in the beginning: We first calculate

B1,1(S) = Y0 ∗B1(S1), and use that to calculate B1,2(S) = B1,1(S) ∗B2(S2).

6 Numerical experiment

We generate two sets of problem instances. Set 1 consists of smaller problem instances and is

used to compare the solution of our algorithm with the optimal solution, found by enumeration.

Set 2 consists of larger problem instances and is used to compare the computation times of our

algorithm with that of De Smidt-Destombes et al. (2011) and to see how changes in parameters,

e.g., the number of components, influence the computation times. We explain how we generate

both sets, and the differences between the sets, in Section 6.1. The results and our analysis of

the results are shown in Section 6.2. Notice that the solution found by our algorithm is identical

to that found by the algorithm of De Smidt-Destombes et al. (2011).2

6.1 Set up

Table 1 shows the settings for the parameters that are varied in our numerical experiment for

the two sets of problem instances. (We also vary λi when we vary the number of components;

we explain this below.) We use a full factorial design per set and we generate ten problem

instances per combination of parameters. As a result, Set 1 and Set 2 consist of 2,160 and

2,880 problem instances, respectively. The way in which we generate problem instances leads

to instances that are realistic in practice, and to a wide range of combinations of parameter

values in the sets.

We generate |I| components and we draw a value µ from a uniform distribution on the range

[0, µmax]. Then, for each component i ∈ I (see the explanation below):

• µi ← µ,

• Ti is drawn from a uniform distribution on the range [0, Tmax],

• λi ← 128
|I| in Set 1 and λi ← 1,024

|I| in Set 2, and

2The experiment is implemented in Python 3.4 and performed on an Intel Xeon E5530 @ 2.4 GHz with 8 GB
RAM, running Windows Server 2008 R2 Enterprise Service Pack 1.
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# Components 2 4 8

# Spare assets in optimal solution 2.8 1.8 1.6
# Spare LRUs in optimal solution 5.2 7.6 12.3
– Divided by # components 2.6 1.9 1.5

% Problem instances with optimal solution 73% 55% 26%
Average additional costs in remaining instances 3.2% 3.9% 3.8%
Maximum additional costs in remaining instances 63% 40% 93%

Table 2: Set 1: Optimal solutions, and quality of the solutions found by our algorithm

• ci is drawn from an exponential distribution with mean 1
caverage . We add 10, which effec-

tively means that there are no components with costs of less than 10, and the mean costs

are caverage + 10.

We can use the same value µ for all i ∈ I, since it influences only the number of assets in

active maintenance, Y0.

λi is relevant only for calculating the number of components in resupply, Xi for i ∈ I, and

the number of assets in active maintenance, Y0. Since the average number of components in

resupply is varied by varying Ti and since the average number of assets in the maintenance shop

is varied by varying µ, we can keep λi constant in each problem instance. However, we do vary

λi when we vary the number of components. Our aim is to get solutions in which the optimal

number of spare assets and spare parts is realistic and higher than zero. We therefore show

the average number of spare assets and spare parts in the solutions in the next section. The

largest problem instances of Set 2 are the most realistic ones, with over 1,000 components and

a demand rate per component of 1.

The costs of holding a spare asset, c0, are equal to the summation of the costs of holding

one spare of each of the spare parts, times crelative. Finally, we vary the target readiness, Robj.

6.2 Results

Table 2 gives the results on Set 1. If we look at the number of spare assets and LRUs in the

optimal solution, we see that our choice for the demand rates has ensured that, even with these

small unrealistic problem instances, we find optimal solutions that allow a meaningful analysis

of the quality of the solutions that our algorithm finds.

Many problem instances, 51%, are solved to optimality by our marginal analysis approach,

and the average difference with the optimal solution on the other instances is small: 3.7% on

average. The maximum difference is large, 93%, but large differences for these small instances

can be caused by stocking one additional spare part by our algorithm compared with the optimal

solution. All in all, we believe that our algorithm typically finds good solutions.

Since the algorithm of De Smidt-Destombes et al. (2011) requires more computation time

than our algorithm, we have only run the problem instances of up to 256 components using their

algorithm. Table 3 shows the comparison of the computation times for an increasing number

of components. Given the number of convolutions that both algorithms perform for each LRU
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# Components 16 64 256

(1) Computation time (seconds) of our algorithm using bound 0.4 3.6 22.6
(2) Computation time (seconds) of our algorithm without using bound 0.5 5.5 48.9
(3) Computation time (seconds) of algorithm of De Smidt-Destombes et al. 1.4 41.8 1,146.8

Relative computation time (2)/(1) 1.2 1.5 2.2
Relative computation time (3)/(1) 3.3 11.6 50.7
Relative computation time (3)/(2) 2.7 7.6 23.5

# Spare asset levels enumerated 4.0 2.9 2.1
– maximum 12 8 5

# Spare assets in solution 5.6 5.2 5.1
# Spare LRUs in solution 67 151 396
– divided by # components 4.2 2.4 1.5

Table 3: Set 2: Computation times and solutions of our algorithm and that of De Smidt-
Destombes et al. (2011), with ‘bound’ referring to the use (or not) of the results in Proposition 5

# Spare asset # Spares
Computation levels difference in solution

Parameter Setting time enumerated with LB assets LRUs

# Components

16 0.4 4.0 0.59 5.6 67
64 3.6 2.9 0.20 5.2 151
256 22.6 2.1 0.09 5.1 396

1,024 229.9 1.8 0.04 5.0 1,251

Relative costs of an asset
0.5 95.4 4.2 0.55 5.6 445
1 61.5 2.4 0.12 5.1 470
2 35.5 1.5 0.02 5.0 483

Maximum resupply lead time
0.01 5.2 1.6 0.11 5.1 300
0.1 123.1 3.8 0.35 5.3 632

Table 4: Set 2: Key results of our algorithm for relevant parameters

in each iteration of the marginal analysis approach, we would expect that for 16, 64, and 256

components, their algorithm would require 4, 10.67 and 32 times as much computation time,

being |I|
log2 |I|

. If we do not use the bound based on Proposition 5, we find that the relative

performance of our algorithm is about 70% of what we expected. This is probably due to our

algorithm requiring more storage and overhead. We further see that using the bound that is

based on Proposition 5 saves a considerable amount of computation time, with the savings

increasing with an increasing problem size. Finally, we see that the (average and maximum)

number of spare asset levels that is enumerated, decreases when the number of components

increases. For 1,024 components, the average and maximum number decrease even further, to

1.8 and 4, respectively. This is very positive for the computation times.

Table 4 shows the key results for our algorithm on Set 2 for three parameters that have

a big influence on the computation times. The computation times increase if the number of

components increases or if the maximum resupply lead time increases, which intuitively makes

sense. Next, if the relative costs of an asset increase, then the computation times decrease. The

key reason for this is that less spare asset levels need to be enumerated. Finally, the number of
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spare assets in the solution decreases a little when the asset price increases, while the number

of spare LRUs sligtly increases. Also these results make sense intuitively.

It is further interesting to see that the number of spare assets in the solution that our

algorithm finds is close to the lower bound (LB) that we use in our algorithm and that the gap

becomes smaller when the problem size increases (to 0.04 on average for problem instances with

1,024 components). In fact, for more than 16 components, we never find a gap of more than 1

on this set. This suggests that the lower bound that we use is useful in practice to get an idea

of the fleet size to acquire, while it is easy to calculate.

7 Conclusions and recommendations

We have considered the problem of jointly optimizing the number of spare LRUs and spare

assets, i.e., the spare parts inventories and fleet size. This is a problem that needs to be solved

by companies that use a fleet of assets, e.g., railway operaters, shipping companies or defence

organizations. We have found that the optimization problem is challenging since it is not item-

separable, nor jointly concave. However, we have shown some less strong results and we have

used those to construct an algorithm. In a numerical experiment we have shown that this

algorithm typically finds solutions that are close to optimal and that the algorithm is relatively

fast due to the order in which we perform convolutions and a bound that we use to avoid

performing unnecessary computations.

It would be interesting to extend our work by modelling the maintenance processes more

realistically. We have now assumed that the repair shop that repairs failed component has

ample servers and that repaired components are put back into a failed asset one by one, i.e.,

sequentially. The ample server assumption may be realistic in many settings, since it can

represent lead time agreements with the repair shop, but in other settings it may not be. The

assumption of sequential repairs of the asset can be relaxed to allow for parallel repairs as are

often found in practice.

Another interesting extension would be to consider the optimization of the LRU level itself:

In case of a failure in a certain component, it may be possible to exchange and repair that

component, or a module in which the component is contained. This influences the exchange

times, the required resources for the exchange, and the types and amounts of spare parts to

stock. Some first results on that problem, without considering spare LRUs and spare assets,

can be found in Parada Puig and Basten (2014).
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A Proof of Proposition 5

For notational convenience, let Zij = Y0 +
∑

k∈I\{i,j}Bk. Then:

∆iR(S0 + ej)−∆iR(S0)

=

S0+1∑
b=1

P {Xi = Si + b}

[
P
{
Zij + [Xj − Sj − 1]+ = S0 + 1− b

}
− P

{
Zij + [Xj − Sj ]+ = S0 + 1− b

}]
=

S0+1∑
b=1

P {Xi = Si + b}
S0+1−b∑
z=0

P {Zij = z}

[
P
{

[Xj − Sj − 1]+ = S0 + 1− b− z
}
− P

{
[Xj − Sj ]+ = S0 + 1− b− z

}]
=

S0+1∑
b=1

P {Xi = Si + b}
S0−b∑
z=0

P {Zij = z}

[
P
{

[Xj − Sj − 1]+ = S0 + 1− b− z
}
− P

{
[Xj − Sj ]+ = S0 + 1− b− z

}]
+

S0+1∑
b=1

P {Xi = Si + b}P {Zij = S0 + 1− b}

[
P
{

[Xj − Sj − 1]+ = 0
}
− P

{
[Xj − Sj ]+ = 0

}]
=

S0+1∑
b=1

P {Xi = Si + b}
S0−b∑
z=0

P {Zij = z}

[P {Xj = S0 + Sj + 2− b− z} − P {Xj = S0 + Sj + 1− b− z}]

+ P {Xj = Sj + 1}
S0+1∑
b=1

P {Xi = Si + b}P {Zij = S0 + 1− b} . (1)

After the third equation, the case that z = S0 + 1 − b is considered separately. Furthermore,∑−1
x=0 x = 0 by definition.

We now require two results, which we prove below, that we combine to prove Proposition 5.

The first result is that the first of the two terms in Equation 1 is negative, while the second

result is that the second term in that equation is smaller than P {Xj = Sj + 1}P {Xi = Si + 1}.
The summation of the two terms is then also smaller than P {Xj = Sj + 1}P {Xi = Si + 1}.

1. Xj in P {Xj = S0 + Sj + 2− b− z} and P {Xj = S0 + Sj + 1− b− z} ranges from Sj + 1

and Sj , to Sj + S0 + 1 and Sj + S0, respectively. Since Sj ≥ dλjTje − 2, the first term in

Equation 1 must be negative (due to the properties of the Poisson distribution discussed

in the proof of Proposition 4).
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2. Since Si ≥ dλiTie − 2, it holds that:

S0+1∑
b=1

P {Xi = Si + b}P

Y0 +
∑

k∈I\{i,j}

Bk = S0 + 1− b


< P {Xi = Si + 1}

S0+1∑
b=1

P

Y0 +
∑

k∈I\{i,j}

Bk = S0 + 1− b


< P {Xi = Si + 1} .

As a result, the second term in Equation 1 is smaller than P {Xj = Sj + 1}P {Xi = Si + 1}.
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