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Abstract

Motivated by rock-fluid interactions occurring in a geothermal reservoir, we present a
two-dimensional pore scale model of a thin strip consisting of void space and grains, with
fluid flow through the void space. Ions in the fluid are allowed to precipitate onto the grains,
while minerals in the grains are allowed to dissolve into the fluid, and we take into account
the possible change in aperture that these two processes cause. We include temperature
dependence and possible effects of the temperature in both fluid properties and in the mineral
precipitation and dissolution reactions. For the pore scale model equations, we investigate the
limit as the thin strip become infinitely thin, deriving one-dimensional effective equations.

1 Introduction
Geochemistry has a substantial impact in exploiting geothermal systems. In a geothermal reservoir,
the injected water and the in-situ brine have different temperatures and chemical compositions
and flow through highly heterogeneous regions. Due to the varying chemical properties of the
rocks, the temperature and the flow regimes can change significantly. As a consequence of flow
and geochemical reactions, composition of reservoir fluids as well as reservoir rock properties will
develop dynamically with time. Minerals dissolving and precipitating onto the reservoir matrix,
can change the porosity and hence the permeability of the system substantially. Mineral solubility
can change by the cooling of the rock, or by the different ion content in the in-situ brine and in
the injected water. The interaction between altering temperature, solute transport with mineral
dissolution and precipitation, and fluid flow is highly coupled and challenging to model appropri-
ately as the relevant physical processes jointly affect each other [2]. The effect of changing porosity
through the production period of the geothermal reservoir, may have severe impact on operating
conditions, as pores may close and block flow paths, or new pores may open to create enhanced
flow conditions.

Injection of cold water into a geothermal reservoir can trigger the chemical reactions. The ion
content of the injected water is normally different from the original groundwater, affecting the
equilibrium state of the chemical system. Also, the solubility of several minerals are temperature
dependent, hence the cooling of the porous medium can itself trigger chemical reactions. As
reported from field studies or simulations, porosity and permeability changes due to precipitation
and dissolution of minerals as silica, quartz, anhydrite, gypsum and calcite can be observed [5,
6, 7, 10, 17, 18]. Modeling of the mineral precipitation and dissolution is important in order to
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understand the processes and to better estimate to which extent the chemical reactions can affect
the permeability of the porous medium.

When dealing with porosity changes, what happens at the pore scale is highly relevant. The
pore geometry affects the reaction rates for the dissolution and precipitation process as the reactive
surface area is changed, and the resulting permeability is affected by the pore geometry. To achieve
expressions for both reaction rates and permeability that depend on the pore scale effects we start
with a model at the pore scale, and derive the Darcy scale model by homogenization. We propose
in this paper a pore scale model to investigate these matters. Pore scale models incorporating
mineral precipitation and dissolution have been studied earlier in [12, 16] and the corresponding
Darcy scale models have been investigated further in [3, 11]. These papers assume that the pore
geometry is not changed by the chemical reactions, which is a valid assumption when the deposited
or dissolved mineral layer is thin enough. Investigations honoring the porosity changes may be
found in [4, 13, 14], where mineral precipitation and dissolution have been considered on either
circular grains or in a thin strip. In these papers, the position of the interface between grain
and void space is tracked, giving a problem with a free boundary. Similar models can also be
obtained for biofilm growth [15], for drug release from collagen matrices [9], and on an evolving
microstructure [8]. In the spirit of [14], we consider mineral precipitation and dissolution in a thin
strip and take into account the effect of temperature on the chemical reactions and on the fluid
flow, giving a more coupled system of equations. Temperature changes can initiate or accelerate
the rate of chemical reactions due to changes in solubility of the minerals. Also, the fluid flow
is affected by the temperature changes due to changes in the fluid density and viscosity. For
geothermal systems, the temperature dependence can be of high importance [1].

The structure of this document is as follows: In Section 2 we present the geometry of the
pore scale model, while in Section 3 the model equations together with boundary conditions are
given. In Section 4 we take the model equations to dimensionless form, before we in Section
5 introduce asymptotic expansions and obtain effective equations. The paper ends with some
concluding remarks on the resulting equations in Section 6.

2 Pore scale model
The thin strip is shown below in figure 1. The length of the strip is L, while the width is l, where l
is much smaller than L. We assume symmetry around the x-axis, hence the upper half of the strip
is a reflection of the lower half. The width of the mineral part is d(x, t) where 0 ≤ d(x, t) < l/2,
as a greater width would clog the pore channel and fluid flow would be impossible.

x

y

q

n
d(x, t)

Γg(t)

(0,−l/2) (L,−l/2)

(0, l/2) (L, l/2)

Ω(t)

G(t)

Figure 1: Model of thin strip.

The total domain Υ is the rectangle seen in the figure given by

Υ = {(x, y) ∈ R2|0 ≤ x ≤ L,−l/2 ≤ y ≤ l/2}.
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The void space Ω(t) where fluid can flow is defined by

Ω(t) = {(x, y) ∈ R2|0 ≤ x ≤ L,−(l/2− d(x, t)) ≤ y ≤ (l/2− d(x, t))},

while the grain space G(t) consisting of minerals is

G(t) = {(x, y) ∈ R2|0 ≤ x ≤ L,−l/2 ≤ y ≤ −(l/2− d(x, t)) ∨ (l/2− d(x, t)) ≤ y ≤ l/2}.

The interface Γg(t) where mineral precipitation and dissolution can occur, is given by

Γg(t) = {(x, y) ∈ R2|0 < x < L, y = ±(l/2− d(x, t))}.

The outward unit normal n of the interface is (for the lower part) given by

n = (∂xd,−1)T /
√

1 + (∂xd)2.

As the mineral width d(x, t) changes with time, a point located at the interface Γg(t) has a certain
velocity. A point at the interface has coordinates s(t) = (x(t),−(l/2 − d(x, t))) and velocity
s′(t) = (x′(t), ∂xd(x(t), t)x′(t) + ∂td(x(t), t)). Hence, the normal velocity of the lower boundary is

vn = n · s′(t) = −∂td/
√

1 + (∂xd)2. (1)

The Rankine-Hugoniot condition guarantees conservation of quantities across a moving boundary:

n · [j] = vn[u] (2)

where u is the preserved quantity (e.g. mass or energy) and j is the flux of this quantity. The use
of square brackets means the jump of the quantities, and is the difference between the quantities
at each side of the interface. See figure 2 for illustration.

x

y

n
vn

u−
u+

j−

j+

Figure 2: Illustration of the Rankine-Hugoniot jump condition for a moving boundary.

The Rankine-Hugoniot condition says that the normal component of the jump of the flux
is equal to the normal velocity multiplied with the jump of the quantity across the boundary.
The condition gives us a relationship between the preserved quantities and their fluxes across the
moving boundary, hence giving boundary conditions becoming useful later.

3 Model equations
We assume conservation of ions, mass, momentum and energy. We also need one equation to
describe how the chemical reactions affect the position of the interface Γg(t).
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3.1 Conservation of ions
There are two active ions in the fluid, with molar concentrations u1 and u2. They satisfy the
convection-diffusion equation in the void space:

∂tu
i = ∇ · (D∇ui − qui) for (x, y) ∈ Ω(t). (3)

In the above equation, D is the diffusion coefficient which we assume to be constant, and q is the
fluid velocity. At the mineral interface, one ion from each species can together form a mineral
molecule, or going the opposite way, one mineral can dissolve into two ions: u1 + u2 ↔ C, where
C is the mineral. Hence the ions can appear on both sides of the interface Γg(t): either as ion in
the void space, or as part of a mineral in the grain space. The Rankine-Hugoniot condition (2)
for conserving ions across the moving interface is

n · (D∇ui − qui) = vn(ρC − ui) on Γg(t) (4)

where ρC is the molar density of the formed solid. As the minerals in the grain space do not move
within the grain space G(t), they have zero flux. Hence the difference in flux only has contribution
from the ion flux. On the right-hand side, the difference (ρC−ui) appears as one mineral molecule
contains one ion of uiI. We assume that our two ions have initially the same concentration. As
the same number of ions disappear or are produced through the reaction, the two ions will always
have the same concentration. Hence, u1 = u2 = u.

3.2 How reactions affect d(x, t)

At the boundary Γg(t), minerals can precipitate and dissolve. When a mineral molecule dissolves
and releases two ions into the fluid, the boundary changes position at the same time as the mineral
molecule is no longer a part of the grain space G(t), see figure 3 below.

Figure 3: Mineral molecule dissolving into the fluid creating two ions. The black line shows the
position of the interface Γg(t).

Oppositely, when two ions come together and form a mineral molecule, they attach themselves
at the boundary between void and grain space and become a part of the grain space. Reading
figure 3 from right to left, illustrates this situation.

As the position of the interface Γg(t) changes with precipitation and dissolution, we can quan-
tify this change using the width of G(t); d(x, t), and the normal velocity of the interface vn. To
quantify the extent of dissolution and precipitation taking place, we introduce precipitation and
dissolution rates. As we defined the normal vector n pointing into the grain space (out of the void
space) as seen in figure 1, the normal velocity of the interface is positive when dissolution occurs,
and negative when precipitation occurs. Hence, the normal velocity is proportional to the local
difference between the dissolution and precipitation rates and is given by

ρCvn = −(fp − fd) on Γg(t), (5)

where fp and fd are the precipitation and dissolution rates for the reaction. If we think of the
precipitation and dissolution rates as fluxes for the mineral, the above equation can be interpreted

IIf the reaction was n1u1+n2u2 ↔ C as considered by van Noorden[14], the difference (niρC−ui) would appear
as one mineral molecule then contains ni ions.
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as a result from the Rankine-Hugoniot condition (2), where the minerals are to be preserved. The
left-hand side corresponds to the jump of the preserved quantity. As minerals only appear in the
grain space G(t), the molar density ρC appears. The right-hand side of the above equation is the
net flux of minerals through the boundary.

We assume the precipitation rate to increase with ion concentration and with temperature.
This is described through a kinetic rate depending on ion concentration with an Arrhenius factor:

fp(Tf , u) = k0e
−E/RTf (γu)2

Km(Tf )
, (6)

where k0 is a positive rate constant, E is the activation energy, R is the gas constant and Tf is
fluid temperature. Further, γ is the activity coefficient of the ions and Km(Tf ) is the equilibrium
constant for the mineral. As the two ions have equal concentration u, the expression in the
numerator is squared. The equilibrium constant is called a constant as it does not depend on ion
or mineral concentration, but it may depend on fluid temperature. We assume dissolution to take
place as long as there are minerals present; that is, as long as d(x, t) > 0. We further assume that
the dissolution happens faster at higher temperatures, hence

fd(Tf , d) = k0e
−E/RTfw(d(x, t)), (7)

where the function w(d) is where w(d) is given by

w(d) =


0 if d < 0

min( (γu)2

Km(Tf )
, 1) if d = 0

1 if d > 0.

The reason for defining the rates this way is to incorporate equilibrium states of the reaction
properly. At equilibrium, the ion concentration u does not change, meaning the precipitation
and dissolution rates are equal. When there are minerals present, meaning d(x, t) > 0, then
fp−fd = k0 exp(−E/RTf )((γu)2/Km(Tf )−1) = 0 at equilibrium, resulting in Km(Tf ) = (γueq)

2,
which is how the equilibrium constant is defined. At equilibrium, the precipitation rate and
dissolution rate have the same magnitude, hence the position of the interface is not changed. When
there are no minerals left, the dissolution rate can be either the same magnitude or smaller than
the precipitation rate, corresponding to the system either being in equilibrium or supersaturated
with ions. Away from equilibrium, the magnitude of the reaction rates is such that the equilibrium
is approached: If the fluid is supersaturated with ions, the precipitation rate is larger than the
dissolution rate, resulting in a net precipitation of ions. If the fluid is undersaturated with ions,
the precipitation rate is smaller than the dissolution rate, as long as there are more minerals left.

Collecting the equations (5), (6) and (7) and combining with the expression for vn, (1), yields

ρC∂td(x, t) = k0e
−E/RTf

( (γu)2

Km(Tf )
− w(d(x, t))

)√
1 + (∂xd(x, t))2 on Γg(t). (8)

This equation describes how the reaction rates affect the aperture through the derivatives of the
mineral width d(x, t).

3.3 Conservation of mass
The mass of the fluid is conserved when it flows through the pore. As the fluid consists mainly
of water, the fluid molar density ρf is not affected by the chemical reactions, but depends on
temperature. As the temperature can change, the fluid density cannot be assumed constant.
Hence, the mass conservation equation is

∂tρf +∇ · (ρfq) = 0 for (x, y) ∈ Ω(t). (9)
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Note that in some geothermal systems, the fluid density is also assumed to depend on pressure due
to the large pressure changes that can occur through injection and production of fluid. As we are
mainly interested in the temperature dependence, we neglect the pressure dependence and only
allow for the fluid density to change with temperature. At the boundary, ions can leave the fluid
and become part of the grain space in stead. Hence, there is a mass flux through the boundary
Γg(t). The Rankine-Hugoniot boundary condition applied to mass is

n · (−ρfq) = vn(2ρC − ρf ) on Γg(t). (10)

The preserved quantity is mass, here represented as the molar density ρf . As one molecule of
minerals, represented with ρC , contains two ions; one of u1 and one of u2, the term 2ρC appearsII.
Note that if ρf = 2ρC , the normal component of the velocity is zero at the interface, meaning
that the chemical reactions do not cause volume change. Also note that our way of modeling the
fluid density assumes that the density is not changed by the reactions; we assume that the ion
concentrations are so low compared to the molar density of water, that the density of the fluid is
not affected through the reactions. This is a valid assumption as long as the ion concentrations
do not vary significantly.

3.4 Conservation of momentum
During the fluid flow, we also assume conservation of momentum, which can be expressed as

∂t(ρfq) +∇ · (ρfqq) = b,

where b is body force. In our case, body forces come from viscous stress, implying b = ∇·σ where
σ is Cauchy’s stress tensor. We assume the fluid is Newtonian, and we further assume that the
stress tensor is a linear function of the strain rates, that the fluid is isotropic, and that the body
forces are such that the fluid is at rest at hydrostatic pressure. Then, σij = −pδij + τij where p
is pressure and τij = µ( ∂qi∂xj

+
∂qj
∂xi
− 2

3
∂qk
∂xk

δij). Hence the conservation of momentum becomes

∂t(ρfq) +∇ · (ρfqq) = −∇p+∇ ·
(
µ(∇q + (∇q)T )

)
− 2

3
∇(µ∇ · q) for (x, y) ∈ Ω(t). (11)

No-slip conditions are assumed at the boundary, meaning that q has no tangential component at
Γg(t), but is parallel to the normal vector n. Combining with the boundary condition appearing
from conservation of mass, equation (10), the new boundary condition becomes

q =
ρf − 2ρC

ρf
vnn on Γg(t). (12)

3.5 Conservation of energy
For now, we separate between two temperatures; the temperature in the fluid Tf and temperature
in the grain Tg. Fluid temperature is only defined in the void space Ω(t) and grain temperature is
defined in the grain space G(t). The reason for separating between two temperatures is to easier
emphasize how the energy is transferred differently in the two domains, but the separation has no
physical meaning.

As the fluid is flowing, energy transfer can happen through both diffusion and convection,
hence

∂t(ρfcfTf ) = ∇ · (kf∇Tf − ρfcfqTf ) in Ω(t). (13)

In the grain space flow is not possible, hence

∂t(ρCcTg) = ∇ · (kg∇Tg) in G(t). (14)

IIIf the reaction was n1u1+n2u2 ↔ C, then the right-hand side in the above equation would be vn((n1+n2)ρC−
ρf )
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In the above equations, cf and c are specific heats, and kf and kg are heat conductivities, of fluid
and mineral respectively. The Rankine-Hugoniot condition for conservation of energy across the
moving interface is

n · (kf∇Tf − ρfcfqTf − kg∇Tg) = vn(ρCcTg − ρfcfTf ) on Γg(t), (15)

and we also assume temperature continuity at the interface:

Tg = Tf on Γg(t). (16)

For the lower and upper part of G(t), we assume homogeneous Neumann boundary conditions:

∂yTg = 0 for 0 ≤ x ≤ L, y = ±l/2. (17)

4 Dimensionless form
To achieve non-dimensional quantities, we introduce tref , xref = L, uref , qref = L/tref , pref =
L3uref/t

2
ref l

III, µref = l2pref/Lqref
IV, Tref and let ε = l/L. Non-dimensional variables are

denoted with a hat and are defined as

t̂ = t/tref x̂ = x/L ŷ = y/L ûε = u/uref d̂ε = d/l

q̂ε = q/qref p̂ε = p/pref ρ̂f = ρf/cref ρ̂ = ρC/cref

k̂ = k0tref/uref l D̂ = Dtref/L
2 µ̂ = µ/µref T̂ ε = T/Tref

We emphasize dependence on the small variable ε by denoting our main variables with ε as a
superscript. Since we will only use non-dimensional variables in the following, we skip the hat.

Using non-dimensional variables, the total domain is defined by

Υε = {(x, y) ∈ R2|0 ≤ x ≤ 1,−ε/2 ≤ y ≤ ε/2}.

The void space is now given by

Ωε(t) = {(x, y) ∈ R2|0 ≤ x ≤ 1,−ε(1/2− dε(x, t)) ≤ y ≤ ε(1/2− dε(x, t))},

while the grain space is defined as

Gε(t) = {(x, y) ∈ R2|0 ≤ x ≤ 1,−ε/2 ≤ y ≤ −ε(1/2− dε) ∨ ε(1/2− dε) ≤ y ≤ ε/2}.

The interface between the void and grain space is now

Γε(t) = {(x, y) ∈ R2|0 ≤ x ≤ 1, y = ±ε(1/2− dε(x, t))},

while the outward unit normal for the lower part of the interface is given by

nε = (ε∂xd
ε,−1)T /

√
1 + (ε∂xdε)2. (18)

Inserting the dimensionless variables into the model equations give the following set of equations
and boundary conditions. We insert the normal velocity vn, equation (1), when necessary.

The convection-diffusion equation (3) describing the ion concentration, the model equation
becomes

∂tu
ε = ∇ · (D∇uε − qεuε) in Ωε(t), (19)

IIIThis choice of pref is in order to make the left-hand side of equation (11) disappear in the asymptotic expansion
and achieve Darcy’s law.

IVThis is the same choice made by [14] in order to balance viscous forces and pressure in equation (11) to achieve
Darcy’s law.
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with the boundary condition (4) now written as

nε · (D∇uε − qεuε) = −ε∂tdε(ρ− uε)/
√

1 + (ε∂xdε)2 on Γε(t). (20)

Note that an underlying assumption is that the non-dimensional diffusion coefficient D is not
depending on ε, hence diffusion and convection occur at the same time scale.

The non-dimensional version of the equation (8) describing how the width d(x, t) is changed
by chemical reactions, is

ρ∂td
ε = (fp(T

ε
f , u

ε)− fd(T εf , dε))
√

1 + (ε∂xdε)2 on Γε(t). (21)

The reaction rates are non-dimensional and are given by

fp(T
ε
f , u

ε) = ke−α/T
ε
f

(γuε)2

Km(T εf )
and fd(T εf , d

ε) = ke−α/T
ε
fw(dε(x, t)), (22)

where α = E/RTref is non-dimensional. Also note that Km(T εf ) is non-dimensional as it has been
scaled with u2ref . The activity coefficient is by definition non-dimensional.

The mass conservation equation (9) transforms into

∂tρf +∇ · (ρfqε) = 0 in Ωε(t). (23)

The corresponding Rankine-Hugoniot boundary equation (10) has the non-dimensional form

qε · nε = −ερf − 2ρ

ρf
∂td

ε/
√

1 + (ε∂xdε)2 on Γε(t). (24)

The momentum balance equation (11) becomes

ε

(
∂t(ρfq

ε) +∇ · (ρfqεqε)
)

= −∇pε

+ ε2
(
∇ ·
(
µ(∇qε + (∇qε)T )

)
− 2

3
∇(µ∇ · qε)

)
in Ωε(t), (25)

while the boundary condition (12) is

qε = −ερf − 2ρ

ρf
∂td

εnε/
√

1 + (ε∂xdε)2 on Γε(t). (26)

The non-dimensional form of the energy conservation equations (13) and (14) is

∂t(ρfT
ε
f ) +∇ · (ρfqεT εf ) =

1

Pe
∇2T εf in Ωε(t) (27)

and
∂t(ςρT

ε
g ) =

1

Pe
κ∇2T εg in Gε(t), (28)

where Pe = L2urefcf/kf tref is the Péclet number, and ς = c/cf and κ = kg/kf . These three
constants are all assumed to not depend on ε, but are of order 1. The boundary condition (15) is
written

nε · ( 1

Pe
∇T εf − ρfqεT εf −

1

Pe
κ∇T εg ) = −ε(ςρT εg − ρfT εf )∂td

ε/
√

1 + (ε∂xdε)2 on Γε(t), (29)

and the continuity condition (16) is

T εg = T εf on Γε(t). (30)

The boundary condition (17) for Tg is now

∂yT
ε
g = 0 for 0 ≤ x ≤ 1, y = ±ε/2. (31)
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5 Asymptotic expansion
We perform a formal asymptotic expansion for the variables depending on ε, namely uε, dε, qε,
pε, T εf and T εg . For all expecting dε we assume

uε(x, y, t) = u0(x,
y

ε
, t) + εu1(x,

y

ε
, t) +O(ε2).

where u0(x, z, t) is the function describing the first order behavior of the variable uε. The following
term εu1(x, y, t) is less important when ε is small. As the velocity qε is a vector function, we assume
the above expansion for both the horizontal component q(1) and the vertical component q(2). Due
to the scaling of the second variable, ui(x, z, t) is defined in the domain

Ω̃(t) = {(x, z)|0 ≤ x ≤ 1,−(1/2− dε) ≤ z ≤ (1/2− dε)}.

The exception is Tgi which is defined in

G̃(t) = {(x, y) ∈ R2|0 ≤ x ≤ 1,−1/2 ≤ z ≤ −(1/2− dε) ∨ (1/2− dε) ≤ z ≤ 1/2}.

The width of the grain space, dε, does not depend on y and has the expansion

dε(x, t) = d0(x, t) + εd1(x, t) +O(ε2).

The component functions di(x, t) are defined for 0 ≤ x ≤ 1.
We further assume that fluid density ρf and viscosity µ to depend linearly on fluid temperature

T εf :
ρf (T εf ) = ρ0 − βρfT εf = ρ0 − βρf (Tf0 + εTf1 +O(ε2)); (32)

µ(T εf ) = µ0 + βµT
ε
f = µ0 + βµ(Tf0 + εTf1 +O(ε2)), (33)

where ρ0 and µ0 are reference values of the density and viscosity, and βρf and βµ are positive
constants. Other forms for the density and viscosity can be considered straightforwardly.

Below we follow the ideas in [14]. The goal is to derive an upscaled effective model describing
the thin strip with vanishing width, obtaining a one-dimensional model still honoring the changes
in aperture.

5.1 Conservation of ions
We substitute the expansion for uε into the convection-diffusion equation (19). Note that due to
the scaling of the second variable, the factor 1/ε appears in the derivatives of z.

∂t(u0 + εu1) = (∂xi +
1

ε
∂zj) ·

(
D(∂xi +

1

ε
∂zj)(u0 + εu1)− (q0 + εq1)(u0 + εu1)

)
+O(1);

∂tu0 =
1

ε2
D∂zzu0 +

1

ε
(D∂zzu1 − ∂z(q(2)0 u0)) +O(1) in Ω̃(t).

The boundary equation (20) is written

(ε∂xd0i− 1j) ·
(
D(∂xi +

1

ε
∂zj)(u0 + εu1)− (q0 + εqε)(u0 + εu1)

)
+O(ε)

= −ε∂t(d0 + εd1)(ρ− (u0 + εu1));

−1

ε
D∂zu0 + (−D∂zu1 + q

(2)
0 u0) = O(ε) on Γ̃(t).

We collect the terms of lowest orders in ε as these dominate the equations when ε approaches zero.
For the two above equations, the lowest order terms are

∂zzu0 = 0 in Ω̃(t);

∂zu0 = 0 on Γ̃(t),

9



implying that u0 cannot depend on z, hence u0 = u0(x, t).
We integrate the original convection-diffusion equation (19) over y, with integration limits

−ε(1/2− dε) ≤ y ≤ ε(1/2− dε):∫ ε(1/2−dε)

−ε(1/2−dε)
∂tu

εdy =

∫ ε(1/2−dε)

−ε(1/2−dε)

(
∂x(D∂xu

ε − qε(1)uε) + ∂y(D∂yu
ε − qε(2)uε)

)
dy.

We interchange the order of integration and differentiation, taking into account that our integration
limits depend on x and t through dε. For the second term in the integral on the right-hand side, we
can evaluate the integral as differentiation and integration of the variable y are opposite operations.
Hence,

∂t

(1

ε

∫ ε(1/2−dε)

−ε(1/2−dε)
uεdy

)
+ 2∂td

εuε|y=−ε(1/2−dε) = ∂x

(1

ε

∫ ε(1/2−dε)

−ε(1/2−dε)
(D∂xu

ε − qε(1)uε)dy
)

+2∂xd
ε(D∂xu

ε − qε(1)uε)|y=−ε(1/2−dε) −
2

ε
(D∂yu

ε − qε(2)uε)|y=−ε(1/2−dε).

We apply the unit normal vector nε = (ε∂xd
ε,−1)T /

√
1 + (ε∂xdε)2, hence the last two terms in

the above equation can be written as

2

ε
nε · (D∇uε − qεuε)

√
1 + (ε∂xdε)2|y=−ε(1/2−dε).

Using the boundary condition (20), this expression can be written

−2∂td
ε(ρ− uε)|y=−ε(1/2−dε).

We insert the asymptotic expansion for uε and qε. At the same time, we make a substitution in
the remaining integrals, letting z = y/ε. The lowest order terms are

∂t

(∫ (1/2−d0)

−(1/2−d0)
u0dz

)
+ 2∂td0u0|z=−(1/2−d0)

= ∂x

(∫ 1/2−d0

−(1/2−d0)
(D∂xu0 − q(1)0 u0)dz

)
− 2∂td0(ρ− u0)|z=−(1/2−d0).

Since u0 does not depend on z, the integrals can easily be evaluated. We define the transmissivity
q̄(x, t) =

∫ 1/2−d0
−(1/2−d0) q

(1)
0 (x, z, t)dz. Hence, the above equation can be written

∂t((1− 2d0)u0 + 2ρd0) = ∂x(D(1− 2d0)∂xu0 − q̄u0) for 0 ≤ x ≤ 1.

5.2 Conservation of energy part I
As for the concentration, the lowest order expansions of the temperatures Tf and Tg do not depend
on z. Inserting the asymptotic expansions for T εf , T

ε
g and qε into (27) and (28) provides

∂t

(
(ρ0 − βρf (Tf0 + εTf1))(Tf0 + εTf1)

)
+(∂xi +

1

ε
∂zj) ·

(
(ρ0 − βρf (Tf0 + εTf1))(q0 + εq1)(Tf0 + εTf1)

)
=

1

Pe
(∂xi +

1

ε
∂zj) · (∂xi +

1

ε
∂zj)(Tf0 + εTf1) +O(1) in Ω̃(t),

and

∂t

(
ςρ(Tg0 + εTg1)

)
=

1

Pe
κ(∂xi +

1

ε
∂zj) · (∂xi +

1

ε
∂zj)(Tg0 + εTg1) +O(1) in G̃(t).
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The lowest order term of these two equations both arise from the diffusive terms;

∂zzTf0 = 0 in Ω̃(t)

and
∂zzTg0 = 0 in G̃(t).

The boundary condition (29) combined with the asymptotic expansions and the density equation
(32) provides

(ε∂x(d0 + εd1)i− 1j) ·
( 1

Pe
(∂xi +

1

ε
∂zj)(Tf0 + εTf1)

−(ρ0 − βρf (Tf0 + εTf1))(q0 + εq1)(Tf0 + εTf1)− 1

Pe
κ(∂xi +

1

ε
∂zj)(Tg0 + εTg1)

)
= −ε∂t(d0 + εd1)

(
ςρ(Tg0 + εTg1)− (ρ0 − βρf (Tf0 + εTf1))(Tf0 + εTf1)

)
+O(ε2).

Here, the dominating terms as ε decreases are

∂zTf0 − κ∂zTg0 = 0 on Γ̃(t).

The lowest order of the boundary conditions (30) and (31) are

Tf0 = Tg0 on Γ̃(t), ∂zTg0 = 0 at z = ±1/2.

The only possible solution of the two above equations with these boundary conditions is that Tf0
and Tg0 do not depend on z, hence

Tf0 = Tf0(x, t) and Tg0 = Tg0(x, t). (34)

Since the continuity condition assures that Tg0 and Tf0 are equal for all x, we introduce T0 =
Tg0 = Tf0.

5.3 The dε equation
In order to derive an effective equation for how the width dε is affected by the reactions, we need
to regularize the dissolution rate to ensure a Lipschitz continuous function. We define wδ(dε) such
that

wδ(d
ε) =


0 if dε < 0

dε/δ if 0 ≤ dε ≤ δ
1 if dε > δ.

We insert the asymptotic expansions for dε, uε and T εf into equation (21), obtaining

ρ∂t(d0 + εd1) = (fp(Tf0 + εTf1, u0 + εu1)−fd(Tf0 + εTf1, d0 + εd1))
√

1 + (ε∂x(d0 + εd1))2 +O(ε2),

where w(dε) in fd in equation (22) is to be replaced with the regularized function defined here.
Since fp and fd are both Lipschitz, the lowest order expansion is

ρ∂td0 = fp(Tf0, u0)− fd(Tf0, d0) for 0 ≤ x ≤ 1.

If we now let δ approach zero, we obtain our original expression for w(d0).

11



5.4 Conservation of mass
We integrate the mass conservation equation (23) across a thin section in the void space with
width δx; the integration area is given by Y = {(x, y) ∈ R2|x1 ≤ x ≤ x1 + δx,−ε(1/2− dε) ≤ y ≤
ε(1/2− dε)}:

0 =

∫
Y

∂tρfdV +

∫
Y

∇ · (ρfqε)dV.

We apply Gauss’ theorem to the second integral and divide the whole equation by δx at the same
time:

0 =
1

δx

∫
Y

∂tρfdV +
1

δx

∫
∂Y

ρfq
ε · nds.

The figure 4 indicates how Y and its boundary ∂Y together with outward unit normals n look
like.

n

n

∂Y

Y

x = x1 x = x1 + δx

y = −(1/2− dε)

y = 1/2− dε

Figure 4: Thin section of the void space.

We insert the limits in our two integrals accordingly. The boundary ∂Y consists of four parts;
the right, left, upper and lower. Due to the symmetry around the x-axis the upper and lower

12



integrals are equal, hence

0 =
1

δx

∫ x1+δx

x1

∫ ε(1/2−dε)

−ε(1/2−dε)
∂tρfdydx+

1

δx

∫ ε(1/2−dε)

−ε(1/2−dε)
ρfq

ε(1)dy|x=x1+δx

− 1

δx

∫ ε(1/2−dε)

−ε(1/2−dε)
ρfq

ε(1)dy|x=x1 +
2

δx

∫ x1+δx

x1

ρfq
ε · nε

√
1 + (ε∂xdε)2dx|y=−ε(1/2−dε).

In the last term, we can rewrite the integrand using the boundary condition (24). We also insert
the expression for the density (32) together with asymptotic expansions for qε and T εf . We make
a change in variables, letting z = y/ε:

O(ε2) =
ε

δx

∫ x1+δx

x1

∫ 1/2−(d0+εd1)

−(1/2−(d0+εd1))
∂t(ρ0 − βρf (Tf0 + εTf1))dzdx

+
ε

δx

∫ 1/2−(d0+εd1)

−(1/2−(d0+εd1))
(ρ0 − βρf (Tf0 + εTf1))(q

(1)
0 + εq

(1)
1 )dz|x=x1+δx

− ε

δx

∫ 1/2−(d0+εd1)

−(1/2−(d0+εd1))
(ρ0 − βρf (Tf0 + εTf1))(q

(1)
0 + εq

(1)
1 )dz|x=x1

− 2ε

δx

∫ x1+δx

x1

(
(ρ0 − βρf (Tf0 + εTf1))− 2ρ

)
∂t(d0 + εd1)dx|z=−(1/2−(d0+εd1)).

We collect the lowest order terms, hence

0 =
1

δx

∫ x1+δx

x1

∫ 1/2−d0

−(1/2−d0)
∂tρf0dzdx

+
1

δx

∫ 1/2−d0

−(1/2−d0)
ρf0q

(1)
0 dz|x=x1+δx −

1

δx

∫ 1/2−d0

−(1/2−d0)
ρf0q

(1)
0 dz|x=x1

− 2

δx

∫ x1+δx

x1

(ρf0 − 2ρ)∂td0dx.

In the above equation, ρf0 = ρ0 − βTfTf0. To evaluate the integrals in z, we can take advantage
of ρf0 not depending on z as Tf0 is independent of z. Hence,

0 =
1

δx

∫ x1+δx

x1

(1− 2d0)∂tρf0dx

+
1

δx
(ρf0q̄|x=x1+δx − ρf0q̄|x=x1

)

− 2

δx

∫ x1+δx

x1

(ρf0 − 2ρ)∂td0dx.

Next step is to let δx approach zero. Using the fundamental theorem in calculus on the two
integrals, and the definition of the derivative in the middle expression, we obtain

0 = (1− 2d0)∂tρf0 + ∂x(ρf0q̄)− 2(ρf0 − 2ρ)∂td0,

which can be rewritten as

∂t

(
(1− 2d0)ρf0 + 2d02ρ

)
+ ∂x(ρf0q̄) = 0 for 0 ≤ x ≤ 1.

We can show that the vertical component of q0, is zero by inserting the asymptotic expansions
directly into the mass conservation equation (23):

∂t(ρ0 − βρf (Tf0 + εTf1)) + (∂xi +
1

ε
∂zj) · ((ρ0 − βρf (Tf0 + εTf1))(q0 + εq1)) = O(ε).
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The lowest order term is
∂z(ρf0q

(2)
0 ) = 0.

As ρf0 does not depend on z, this means that ∂zq
(2)
0 = 0. The lowest order term of the boundary

condition (24) gives q(2)0 = 0 at z = ±(1/2− d0), which means that

q
(2)
0 ≡ 0 in Ω̃(t).

5.5 Conservation of momentum
We insert the asymptotic expansion into the equation for conservation of momentum (25):

ε

(
∂t

(
(ρ0 − βρf (Tf0 + εTf1))(q0 + εq1)

)
+ (∂xi +

1

ε
∂zj) ·

(
(ρ0 − βρf (Tf0 + εTf1))(q0 + εq1)(q0 + εq1)

))

=− (∂xi +
1

ε
∂zj)(p0 + εp1)

+ ε2

(
(∂xi +

1

ε
∂zj) ·

(
(µ0 + βµ(Tf0 + εTf1))

(
(∂xi +

1

ε
∂zj)(q0 + εq1)

+ ((∂xi +
1

ε
∂zj)(q0 + εq1))T

))
− 2

3
(∂xi +

1

ε
∂zj)

(
(µ0 + βµ(Tf0 + εTf1))(∂xi +

1

ε
∂zj) · (q0 + εq1)

))
+O(ε).

The lowest order term arise from the pressure gradient;

∂zp0 = 0,

implying that p0 does not depend on z, hence p0 = p0(x, t). The second-lowest order terms are

∂z(ρf0q0q0) · j = −∂xp0i− ∂zp1j + ∂z

(
j · (µf0∂z(jq0))

)
+ ∂z

(
j · (µf0∂z(jq0))T

)
− 2

3
∂z(µf0∂z(j · q0))j.

The horizontal component of the above equation is

−∂xp0 + ∂z(µf0∂zq
(1)
0 ) = 0.

As µf0 = µ0 + βµTf0 only depends on Tf0, which is independent of z, this equation reads as

µf0∂zzq
(1)
0 = ∂xp0. (35)

The lowest order approximation of the no-slip boundary condition (26) results in

q
(1)
0 = 0 at z = ±(1/2− d0).

Integrating the above equation (35) twice with respect to z and applying this boundary condition,
gives

q
(1)
0 =

1

2µf0
∂xp0(z2 − (1/2− d0)2).

We then integrate this equation from z = −(1/2− d0) to z = 1/2− d0 to obtain q̄:

q̄ = − (1− 2d0)3

12µf0
∂xp0.

Note that this expression is similar to Darcy’s law. In a fracture, the permeability is known to be
proportional to the aperture width, and we obtain a cubic relationship as we integrate the velocity
across the height of our strip.
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5.6 Conservation of energy part II
Previously we showed that the lowest order temperature approximations Tf0 and Tg0 do not depend
on z and are equal for all x. We seek one upscaled equation containing information from (27) and
(28). We integrate both equations over their respective domains in y and sum the integrals.∫ −ε(1/2−dε)

−ε/2
∂t(ςρT

ε
g )dy +

∫ ε(1/2−dε)

−ε(1/2−dε)
∂t(ρfT

ε
f )dy

+

∫ ε/2

ε(1/2−dε)
∂t(ςρT

ε
g )dy +

∫ ε(1/2−dε)

ε(1/2−dε)
∇ · (ρfqεT ε)dy

=

∫ −ε(1/2−dε)
−ε/2

1

Pe
κ∇2T εgdy +

∫ ε(1/2−dε)

−ε(1/2−dε)

1

Pe
∇2T εfdy +

∫ ε/2

ε(1/2−dε)

1

Pe
κ∇2T εgdy.

We change the order of differentiation and integration, taking into account that dε depends on
both t and x. For the integrals of derivatives with respect to y, we can calculate the integrals. We
make use of the symmetry in y, hence,

∂t

(1

ε

∫ −ε(1/2−dε)
−ε/2

ςρT εgdy
)
− ∂tdεςρT εg |y=−ε(1/2−dε)

+∂t

(1

ε

∫ ε(1/2−dε)

−ε(1/2−dε)
ρfT

ε
fdy
)

+ 2∂td
ερfT

ε
f |y=−ε(1/2−dε)

+∂t

(1

ε

∫ ε/2

ε(1/2−dε)
ςρT εgdy

)
− ∂tdεςρT εg |y=ε(1/2−dε)

+∂x

(1

ε

∫ ε(1/2−dε)

−ε(1/2−dε)
ρfq

ε(1)T εfdy
)

+ 2∂xd
ερfq

ε(1)T εf |y=−ε(1/2−dε) −
2

ε
ρfq

ε(2)T εf |y=−ε(1/2−dε)

= ∂x

(1

ε

∫ −ε(1/2−dε)
−ε/2

1

Pe
κ∂xT

ε
gdy
)
− ∂xdε

1

Pe
κ∂xT

ε
g |y=−ε(1/2−dε) +

1

ε

1

Pe
κ∂yT

ε
g |
y=−ε(1/2−dε)
y=−ε/2

+∂x

(1

ε

∫ ε(1/2−dε)

−ε(1/2−dε)

1

Pe
∂xT

ε
fdy
)

+
2

Pe
∂xd

ε∂xT
ε
f |y=−ε(1/2−dε) −

2

ε

1

Pe
∂yT

ε
f |y=−ε(1/2−dε)

+∂x

(1

ε

∫ ε/2

ε(1/2−dε)

1

Pe
κ∂xT

ε
gdy
)
− ∂xdε

1

Pe
κ∂xT

ε
g |y=ε(1/2−dε) +

1

ε

1

Pe
κ∂yT

ε
g |
y=−ε/2
y=ε(1/2−dε).

The boundary condition (31) implies that two of the boundary-evaluation terms disappear. The
rest of the boundary-evaluation terms are at y = −ε(1/2 − dε) due to the symmetry across the
x-axis. For these terms, we make use of the normal vector nε = (ε∂xd

ε,−1)/
√

1 + (ε∂xdε)2, which
we see fit nicely with the structure found in the boundary evaluation terms arising from the spatial
derivatives. Hence,

∂t

(2

ε

∫ −ε(1/2−dε)
−ε/2

ςρT εgdy +
1

ε

∫ ε(1/2−dε)

−ε(1/2−dε)
ρfT

ε
fdy
)

+ 2∂td
ε(ρfT

ε
f − ςρT εg )|y=−ε(1/2−dε)

+∂x

(1

ε

∫ ε(1/2−dε)

−ε(1/2−dε)
ρfq

ε(1)T εfdy
)

+
2

ε
nε · (ρfqεT εf )

√
1 + (ε∂xdε)2|y=−ε(1/2−dε)

= ∂x

(2

ε

∫ −ε(1/2−dε)
−ε/2

1

Pe
κ∂xT

ε
gdy +

1

ε

∫ ε(1/2−dε)

−ε(1/2−dε)

1

Pe
∂xT

ε
fdy
)

−2

ε
nε · ( 1

Pe
κ∇T εg )

√
1 + (ε∂xdε)2|y=−ε(1/2−dε) +

2

ε
nε · ( 1

Pe
∇T εf )

√
1 + (ε∂xdε)2|y=−ε(1/2−dε).
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The Rankine-Hugoniot boundary condition (29), together with the equation for dε, equation (21),
imply that the boundary terms cancel each other out, and we are left with

∂t

(2

ε

∫ −ε(1/2−dε)
−ε/2

ςρT εgdy +
1

ε

∫ ε(1/2−dε)

−ε(1/2−dε)
ρfT

ε
fdy
)

+ ∂x

(1

ε

∫ ε(1/2−dε)

−ε(1/2−dε)
ρfq

ε(1)T εfdy
)

= ∂x

(2

ε

∫ −ε(1/2−dε)
−ε/2

1

Pe
κ∂xT

ε
gdy +

1

ε

∫ ε(1/2−dε)

−ε(1/2−dε)

1

Pe
∂xT

ε
fdy
)
.

We insert asymptotic expansions and substitute z = y/ε. The lowest order expansion is

∂t

(
2

∫ −(1/2−d0)
−1/2

ςρT0dy +

∫ 1/2−d0

−(1/2−d0)
ρf0T0dy

)
+ ∂x

(∫ 1/2−d0

−(1/2−d0)
ρf0q

(1)
0 T0dy

)
= ∂x

(
2

∫ −(1/2−d0)
−1/2

1

Pe
κ∂xT0dy +

∫ 1/2−d0

−(1/2−d0)

1

Pe
∂xT0dy

)
,

where we have used Tf0 = Tg0 = T0. As T0 does not depend on z, integrating up is easy. Hence,

∂t

(
(1− 2d0)ρf0T0 + 2d0ςρT0

)
+ ∂x(ρf0q̄T0) =

1

Pe
∂x

(
(1− 2d0)∂xT0 + 2d0κ∂xT0

)
for 0 ≤ x ≤ 1.

6 Resulting model equations
To summarize, we have derived an upscaled model for mineral precipitation and dissolution in a
thin strip honoring changes in aperture, with fluid flow and heat transport. The model includes
five unknowns: u0(x, t), d0(x, t), q̄(x, t), p0(x, t) and T0(x, t). We can note that all our main
variables only depend on x and t, hence the thin strip problem has reduced to a one-dimensional
problem which is as expected. We have five equations to describe our main variables:

∂t

(
(1− 2d0)u0 + 2d0ρ

)
= ∂x

(
(1− 2d0)D∂xu0 − q̄u0

)
ρ∂td0 = fp(T0, u0)− fd(T0, d0)

∂t

(
(1− 2d0)ρf0 + 2d02ρ

)
+ ∂x(ρf0q̄) = 0

q̄ = − (1− 2d0)3

12µf0
∂xp0

∂t

(
(1− 2d0)ρf0T0 + 2d0ςρT0

)
+ ∂x(ρf0q̄T0) =

1

Pe
∂x

(
(1− 2d0)∂xT0 + 2d0κ∂xT0

)
All equations are valid for 0 ≤ x ≤ 1. Recall that the fluid density ρf0 and viscosity µf0 are not
constant, but depend linearly on the temperature T0.

The equations follow a certain pattern; terms associated with the void space appear in combi-
nation with the factor (1− 2d0), which is the width of the void space. Terms associated with the
grains have the factor 2d0, which is the width of the grain space. This means we obtain upscaled
equations taking into account the changing aperture through the derivatives of d0. Our findings
are consistent with the findings of van Noorden [14], where our results include the effect from
temperature dependence through fluid properties ρf0 and µf0 and the reaction rates.

The thin strip problem is relevant for a geothermal setting as our thin strip may represent
a fracture. In geothermal reservoirs where the rock is highly fractured and has otherwise low
permeability; such as in e.g. granite reservoirs, the fluid flow is mainly through the fractures.
The model presented here can describe how the efficient equations for flow, heat transport and
solute transport are affected as minerals precipitate and dissolve inside the fractures through the
production period of the geothermal reservoir.
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