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Parfois, la réalité est trop complexe. Une
bonne histoire lui donne meilleure forme.?

Jean-Luc Godard

1 Introduction

Imagine you are in your favourite capital city. Most likely, you are now
thinking about monuments, historical buildings, cozy cafés, nice restaurants,
shops, cinemas, theatres and other attractions that remind you of that city. Now
imagine you are in your favourite capital city during the peak hour. Most likely,
the lovely picture you had in mind a few seconds ago has just vanished. In its
place there is now the smell of gasoline and smog, the noise of vehicles and the
screams of infuriated drivers stuck in a traffic jam.

Sadly, the coexistence of these two different faces is a common feature of many
big cities. This phenomenon partially derives from the current patterns of urban
development, which are not putting any of our cities on a sustainable pathway
(Sorensen et al., 2004). The growing amount of these side effects, resulting from
a policy of growth purely focused on economical aspects, have drawn attention
towards the concept of sustainable development. Such a concept has been defined
by Wheeler (1998) as “the development that improves the long-term social and
ecological health of cities and towns”.

Cities are constantly involved in complex and multiple processes of change. An
essential contribution to the grow of a city comes from freight distribution, which
ensures the attractiveness and the economic power of the city. As urban stores
want to keep their inventory levels as low as possible, freight transport activities
within urban areas mainly consist in frequent small volume deliveries, often
referred as “last mile” activities. The great majority of these transport activities
are performed by diesel trucks, as they are perceived to be the most suitable
means of transport to perform deliveries within urban areas. As a consequence,
a large number of diesel vehicles travels daily on the city roads, increasing traffic
congestion and producing a substantial amount of greenhouses gas emissions.

?Sometime reality is too complex. A good story gives it form.

1
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In this context, addressing the environmental externalities caused by transport
activities, such as traffic congestion, noise pollution and car accidents, has become
one of the major challenges of urban transport systems. This constant attempt to
be innovative and competitive while limiting the negative environmental impacts,
has been defined by Ehmke (2012b) as a fundamental dilemma of urban freight
transportation.

1.1 City logistics

The very first studies on city logistics date back to the early 70’s (see Taniguchi
and Thompson (2014) and Crainic et al. (2009) for an overview of historical facts),
since then this topic has been widely studied, (see e.g. Taniguchi et al., 2001;
Crainic et al., 2009; Anand et al., 2012a; Ehmke, 2012b; Gonzalez-Feliu et al.,
2014; Taniguchi and Thompson, 2014). A frequently quoted definition of city
logistics is the following one from Taniguchi et al. (2014):

“the process for totally optimizing the logistics and transport activities
by private companies with support of advanced information systems in
urban areas considering the traffic environment, the traffic congestion,
the traffic safety and the energy savings within the framework of a
market economy”.

This definition highlights two important features of city logistics. The first one
is the inherent sustainability of city logistics systems, that is, the integration of
economical and environmental targets. The second one is the total optimization of
logistics activities of private companies rather than local optimization (Taniguchi,
2014). A total optimization requires consideration of the needs of all stakeholders
involved. According to Taniguchi (2014), the major stakeholders involved in
the city logistics domain are shippers, city logistics service providers, city
administrations and residents. These four stakeholders act autonomously without
any centralized control in order to fulfill their own interests (Anand et al., 2012b).
In particular, shippers want their products to be delivered within a set time-frame
at the lowest price. Freight carriers try to meet the requirements of the shippers
while optimizing the the usage of their own resources and minimizing the total
transportation cost. City administrations want to improve the attractiveness of
the city, by promoting economic health, green image and sustainability. Finally,
the residents want to have safer and liveable cities. The heterogeneity of the
stakeholders involved in this system and their different objectives increase the
complexity of city logistics initiatives and undermine their efficiency. This in turn
leads to the visible problems in urban freight transport, e.g., poor economic and
environmental sustainability.
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In the domain of city logistics during the last years several studies have been
conducted on defining and improving the sustainability of a city logistic systems,
see e.g., Taniguchi et al. (2013); Anand et al. (2012b); Browne et al. (2012);
Gonzalez-Feliu et al. (2014). Browne et al. (2012) investigate the relationship
between features and negative impacts of urban freight transport (see Fig 1.1).

Figure 1.1 Relationship between features and negative impacts of urban freight
transport (adapted from Browne et al., 2012).

This study shows that the feature with the largest negative impact is the total
distance travelled by vehicles. Taniguchi et al. (2014) present an overview on
modelling approaches developed in the last years for forecasting the entity of the
negative impacts of urban freight transport and for investigating the benefits of
targeted policies. The authors distinguish the following categories of modelling
approaches: (i) fleet management, (ii) routing models, (iii) network modelling,
(iv) life cycle analysis and (v) other models, including vehicle scheduling. These
categories correspond to different levels of planning activities, i.e. strategic,
tactical, operational and real-time (see Roy, 2001). In the remainder of this thesis
we will mainly focus on the first two categories: (i) fleet management and (ii)
routing and scheduling. In particular, one can think of this thesis as composed of
two main parts. The first part, i.e. Chapter 2, focuses on including sustainability
issues in the decision process of managing a fleet of vehicles at a strategic level.
The second part, i.e. Chapters 3, 4 and 5, focuses on incorporating sustainability
issues at the operational decision level. These two parts are discussed more in
detail in the following sections.
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1.2 Decision problems and research objectives

In the previous sections we sketched the environment for which the models
presented in this thesis apply. In this section we briefly present an overview of the
decision problems studied and we list the main research objectives of this thesis.
At this stage we do not position the contribution of each chapter with respect to
the literature. This is done individually in each chapter.

1.2.1 Fleet management

Planning the composition and the activities of a vehicle fleet in order to satisfy
transportation service demands is a core strategic decision for most freight carriers.
Its complexity, however, is such that fleet managers need the help of a decision
support system in order to perform it adequately (Couillard and Martel, 1990).

In 2012, Transport for London (TfL), a local government body responsible for most
aspects of the transport system in Greater London in England, published a guide
(for London , TfL) to assist with the process of implementing sustainable fleet
management. According to this guide, among other benefits, having a sustainable
fleet contributes to (i) minimize the fuel costs and optimize carbon dioxide
(CO2) based tax liabilities, (ii) minimize exposure to congestion and make more
efficient use of company transport, (iii) support corporate sustainability goals,
and (iv) provide a competitive edge in a market where environment credentials
are becoming increasingly important to clients.
Driven by those reasons fleet managers have begun to reshape their priorities.
Nowadays having a more green and sustainable fleet has become a common target.
In a recent interview (Gray, 2013), Tim Anderson from the Energy Savings Trust
reports:

“Saving money is a primary concern for all fleet managers. A greener
fleet essentially means a more efficient fleet, which saves you money
in the long run. Assembling a green fleet used to be very expensive but
that‘s no longer the case and the safety benefits of having a newer fleet
that‘s well maintained are marked.”.

This awareness towards sustainability has also affected city administrators, who
have started to implement urban regulations that prioritize the usage of “green
vehicles”. As discussed in Quak and de Koster (2006) and Quak and de Koster
(2009), a growing number of city administrators, with the aim of improving air
quality and reducing the noise level in city centres, are prioritizing the access
to central areas to low-emission vehicles by means of the implementation of Low
Emission Zones (LEZ) or Zero Emission Zones (see ENCLOSE project report,
2014). As a consequence, freight companies operating in these cities are compelled
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to account for such constraints when planning the composition of their fleet of
vehicles, as otherwise the company’s business might be seriously affected.

In Chapter 2 we investigate how such regulations, imposed by municipalities or
other institutions in order to improve the sustainability of the urban areas, affect
the fleet composition of a logistic company working in these areas. Specifically, we
study the strategic problem of managing a heterogeneous fleet of vehicles operating
in a urban areas where access restrictions are applied to certain categories of
vehicles. We consider different categories of vehicles, e.g. electric and diesel,
which differ in terms of fixed cost, e.g., leasing cost, operative costs, e.g., fuel costs,
electricity costs and capacities. We model the problem as an area partitioning
problem where a rectangular service region has to be divided into sectors, each
served by a single vehicle. We use a continuous approximation model (Daganzo,
1984a,b, 1987a,b) to calculate the distances traveled to serve each sector. The
objective is to determine the best fleet composition and to assign each vehicle to
a service sector so as to minimize the sum of ownership or leasing, transportation
and labor costs, while satisfying the vehicle capacity constraints and the access
restriction limits. To the best of our knowledge, this is the first study where
operational restrictions such as city access regulations are incorporated in a fleet
management problem. We develop an efficient dynamic programming (DP)-based
algorithm to calculate the optimal solution for the case of two types of vehicles
(e.g., electric and diesel), and we use a mixed integer linear programming (MILP)
formulation for more general settings. We also derive some interesting insight on
how the optimal fleet composition changes depending on the vehicle parameters.
Finally we discuss the impact of city access restrictions on fleet composition.

The research objectives addressed in the first part of this thesis, dedicated to the
strategical problem of optimizing the vehicle fleet composition, are the following:

Research objective 1 Develop a fleet management model to manage a (possibly
heterogenous) fleet of vehicles to serve a city in the presence of access restrictions.

Research objective 2 Investigate the impact of traffic restrictions on urban fleet
planning.

1.2.2 Routing and scheduling

Vehicle routing and scheduling problems are operational decision problems which
consist of determining the optimal routes and the optimal schedules for a fleet of
vehicles which has to visit a set of customer sites. The objective is to serve all
customers at a minimum cost, under consideration of all restrictions, e.g. vehicle
capacity and customer time window limits. These types of problem are solved on
a regular basis by most of the logistics companies in order to efficiently plan the
transport activities and minimize the operating costs.
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The vehicle routing problem was introduced for the first time in 1959 by
Dantzig and Ramser (1959). Since then it has been widely studied and several
mathematical formulations have been proposed. As reported in Toth and Vigo
(2014), there are more than 50 several types of vehicle routing problems that
differ from each other in a number of ways. Some examples are the the pick-up
and delivery problems, the multi-depot delivery problems, the delivery problems
with stochastic travel time, the heterogeneous fleet delivery problems, and many
others. For a comprehensive overview on vehicle routing problems we refer to Toth
and Vigo (2014).

In the last years researchers have started to explore a new growing line of
research, known as “green logistics”, which aims to minimize the harmful effects of
transportation activities. The characteristic of this research is the incorporation
of environmental aspects in the routing and scheduling models, in addition to
the traditional economical issues (see Toth and Vigo, 2014). According to Demir
et al. (2014a) in August 2013 a total of 58 publications were associated with the
reduction of fuel consumption in vehicle routing and scheduling. The authors show
that between 2009 and 2013 the increase in the number of publications addressing
sustainability issues in vehicle routing and scheduling problems is about 430%. In
particular, most of these studies focus on optimizing the transportation system
with respect to minimize the amount of CO2e emissions produced by the vehicles.
This is mainly due to the fact that there is a rich body of literature on analytical
expressions for calculating the amount of emissions produced by the vehicles, while
this is not the case for the other externalities, e.g. noise or accidents (Toth and
Vigo, 2014). As shown in Figure 1.2, this amount depends on several factors
correlated to the vehicles type, to the road features, etc. However, most of the
studies on green logistics focus mainly on optimizing the vehicle load and the travel
speed. In particular, the travel speed has been shown to be crucial in determining
the amount of fuel consumed by vehicles, and consequently the amount of vehicles
emissions (Demir et al., 2014a). To give the reader an idea on how these two factors
are correlated we present Figure 1.3, which depicts the amount of fuel consumed
by a vehicle as a function of the travel speed, calculated using the Comprehensive
Modal Emissions Modeling (CMEM) by Barth et al. (2005) and Scora and Barth
(2006). As is it known that the amount of emissions produced by a vehicle is
directly proportional to the amount of fuel consumed (see e.g., Barth et al., 2005;
Scora and Barth, 2006), Figure 1.3 shows the convexity of the fuel consumption
upon the travel speed. This behaviour of the fuel function implies that traveling at
very low or very high speed levels leads to higher fuel consumption, and therefore
increases the amount of emissions produced by vehicles. For this reason when
vehicles are stuck in traffic congestion they produce a larger amount of CO2e
emissions.

In this context, one novel scheduling problem has been identified, which consists
of optimizing the travel speed of a vehicle visiting a given sequence of customer
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Figure 1.2 Factors affecting the amount of emissions produced by vehicles (adapted
from Demir et al. (2014a))

locations (Toth and Vigo, 2014). This problem was first introduced by Hvattum
et al. (2010, 2013) to optimize the sailing speed of a vessel with the aim to
minimize the amount of fuel consumed. Recently, driven by the growing pressure
on achieving sustainability targets, this speed optimization problem has found
applications also in road transportation.

In the second part of this thesis, i.e., Chapters 3, 4 and 5, we focus on such
operational decision problems, where the objective is to improve the efficiency and
in particular the sustainability of the transport activities. In Chapters 3 and 4
we study the operational problem of routing a homogeneous fleet of vehicle in a
presence of traffic congestion, which at peak periods, limits the travel speed of
the vehicles and increases the amount of emissions produced. The objective is
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Figure 1.3 Fuel use rate F as a function of speed v

to determine the optimal set of routes and the optimal travel speed on each leg
of a route so as to minimize a total transportation cost made of labour cost and
emissions cost. To the best of our knowledge, this is the first study where both
vehicle emissions and peak hours traffic congestion are accounted in a routing. We
show that allowing the vehicle to wait at a customer site after the service has been
completed, can be used as an effective strategy to avoid traveling in congestion
and therefore to reduce the transportation costs. Next, we investigate the trade-off
between emissions cost and driver wage and we propose a metaheuristic algorithm
for solving the problem based on an Adaptive Large Neighborhood Search (ALNS)
algorithm. The ALNS is a general framework introduced by Pisinger and Ropke
(2007) and Ropke and Pisinger (2006a). The basic idea is to search for better
solutions by partially destroying the current solution and by reconstructing it
according some predefined criteria. To asses the quality of the algorithm we
solve some benchmark instances and we compare our results with others from
the literature. We perform some sensitivity analysis to better understand the
efficiency of the destroy and repaid methods and we present the results of extensive
computational experimentation. In Chapter 5 we study the problem of optimizing
the travel speed of a vehicle visiting a given sequence of customer locations. Also in
this case the objective is the minimization of the labour and emissions costs. First
we formulate the problem as a dynamic program and we study the properties
of the value function. Next we show how to recast the problem as a shortest
path problem, exploiting some of the theoretical findings. This way, we provide a
method to solve the problem to optimality in a quadratic time. Finally, we provide
a heuristic algorithm for solving he scheduling problem in a presence of peak hours
traffic congestion. To the best of our knowledge, this is the first study where both
vehicle emissions and peak hours traffic congestion are accounted in a scheduling
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problem.

The research objectives addressed in the second part of this thesis, dedicated to
operational problems such as vehicle routing and scheduling, are the following:

Research objective 3 Study the problem of routing and scheduling a homoge-
neous fleet of vehicles in a presence of traffic congestion which, at peak periods,
limits the vehicles travel speed and increases the amount of emissions produced.
The objective is the minimization of a total cost function including labour and
emissions cost. Formulate the problem as a mathematical model and develop
heuristic algorithm to solve to solve medium and large size instances in a reasonable
amount of time.

Research objective 4 Study how idle waiting either at the depot or at a
customer node affects the emissions and the labour costs, in a presence of traffic
congestion.

Research objective 5 Study the scheduling problem of a vehicle visiting a given
sequence of locations. The objective is to determine the optimal departure times
and the travel speed on each leg of the route so as to minimize the sum of labour
and emissions costs. Formulate the problem in mathematical terms and develop
an exact algorithm for solving the problem. Extend the study to the case where
traffic congestion limits the vehicle speed during peak periods. Develop a heuristic
algorithm to solve this latter problem.

1.3 Outline of the thesis

Table 1.1 displays an online of this thesis based on the research objective listed in
the previous section and on the research methodology used in each chapter, i.e.
mixed integer programming formulation (MIP), dynamic programming (DP) and
heuristic algorithm (HA).

Chapter 2 focuses on a fleet management problem. After a brief problem
introduction, a MIP formulation is presented, followed by a DP-based algorithm.
Chapters 3, 4 and 5 focus on vehicle routing and scheduling problems. Chapter
3 presents a novel MIIP formulation for a vehicle routing problem which account
for both vehicle emissions and peak hour traffic congestion. Chapter 4 presents a
metaheuristic algorithm for solving the problem introduced in Chapter 3. Finally,
Chapter 5 focus on vehicle scheduling problems. The first part of the chapter
presents an exact method for optimizing the travel speed and the departure times
of a vehicle visiting a given sequence of nodes. The second part presents a heuristic
algorithm for solving the same scheduling problem in a presence of peak hour traffic
traffic congestion.
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Table 1.1 Navigating the thesis by research objective and methodology

Research objective Research methodology

Chapter 1 2 3 4 5 MIP DP HA

2 4 4 4 4
3 4 4 4
4 4 4 4
5 4 4 4



Although this may seem a paradox, all exact science
is dominated by the idea of approximation.

Bertrand Russell, The Scientific Outlook

2 Strategic Fleet Planning for
City Logistics

In this chapter we study the strategic problem of a logistics service provider
managing a possibly heterogeneous fleet of vehicles to serve a city in the presence
of access restrictions. We model the problem as an area partitioning problem
where a rectangular service region has to be divided into sectors, each served by
a single vehicle. The length of the routes, which depends on the dimension of
the sectors and on customer density in the area, is calculated using a continuous
approximation. The aim is to partition the area and to determine the type of
vehicles to use in order to minimize the sum of ownership or leasing, transportation
and labor costs. We formulate the problem as a mixed integer problem and as a
dynamic program. We develop efficient algorithms to obtain an optimal solution
and present some structural properties regarding the optimal partition of the
service region and the set of vehicle types used. We also derive some interesting
insights, namely we show that in some cases, traffic restrictions may actually
increase the number of vehicles on the streets. Finally we study the benefits of
operating a heterogeneous fleet of vehicles.

11
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2.1 Introduction

Cities increasingly depend on efficient and sustainable freight transportation
systems to ensure their attractiveness, economic power, and quality of life.
The high concentration of small commercial activities which characterizes urban
areas generally results in a very high number of vehicles movements, often
uncoordinated and performed with less-than-truckload shipments. These have
a substantial economic, environmental and social impact as cities are confronted
with more traffic, congestion, noise and air pollution. The need for efficient and
environmentally acceptable urban transportation schemes has given rise to the
concept of city logistics (Ehmke, 2012a).
As discussed in the previous chapter, these growing environmental and economic
concerns led to strategies aimed at improving the efficiency of transportation
systems focused on the reduction of energy consumption and of vehicles emissions.
One example is the introduction of electric vehicles into logistics fleets (Roum-
boutsos et al., 2014). Because of their high densities and relatively short distances,
cities are particularly suited to the early adoption of alternative types of mobility
(European Commission, 2013). In order to encourage the use of electric vehicles
instead of diesel vehicles and to provide a clear incentive for investment in new low
energy consumption vehicles, several cities have passed regulations limiting urban
freight transport. Urban access regulations are often introduced to prioritize access
for certain types of vehicles. There are currently no standard guidelines for such
regulations: they may apply permanently or only at certain times of the day;
similarly, they may be based on specific vehicle characteristics such as dimension,
type of energy consumed, engine type, etc. (Muñuzuri et al., 2005). One example
is the Dutch city of ’s-Hertogenbosch, where a specific regulation was implemented
to limit access of commercial traffic to the inner city. Green and silent trucks are
allowed to enter the city center at any time, whereas other commercial freight
vehicles are admitted only between 7:00 and 12:00, and between 18:00 and 20:00.
Similar restrictions have been implemented in Utrecht, where a sustainable inner
city delivery service was introduced. This service, called Cargohopper, performs
last mile deliveries from a distribution center to the city center using a multi-trailer
road train powered by a solar and battery-electric motor. Similarly, several Italian
cities such as Rome, Milan, Bologna and Florence, now restrict the access of diesel
vehicles to the city center at certain times of the day (e.g. from 7:00 to 20:00 in
Bologna). These restrictions are known as ZTL (Limited Traffic Zone).

Faced with increasingly restrictive access regulations and with the need to reduce
costs, energy use and greenhouse gas emissions, logistics service providers are
looking for ways to better manage their vehicles fleet in order to increase their
profitability and sustainability. Stewart (2012) conducts a series of interviews
with fleet managers to gain some understanding of their purchasing policies. He
reports that around half of the organizations surveyed would be willing to pay a
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10% premium ownership costs for an electric vehicle, due to fuel savings, benefits
of CO2 reduction, as well as “green branding” (Stewart).

While there exists a rich body of literature on the fleet composition problem at
the operational level, e.g. Golden et al. (1984) and Koç et al. (2014), relatively
little has been done at the strategic level. One of the first publications of the
fleet composition problem is due to Kirby (1959) who considers a homogeneous
fleet. Loxton and Lin (2011) study a multi-period heterogeneous fleet dimensioning
problem where the cost function is the sum of fixed, variable and hiring costs. They
assume that the number of vehicles of a given type required in a certain period
is known. Loxton et al. (2012) investigate a stochastic version of the problem,
in which the future vehicle requirements follow a given probability distribution.
Both studies present a solution method based on dynamic programming and golden
section method. Finally, Jabali et al. (2012a) develop a continuous approximation
model for the heterogeneous fleet composition problem. These authors present
a mixed integer non-linear formulation along with upper and lower bounding
procedures. Their study is the first in which operational aspects, such as vehicles
routes, are incorporated within a strategic decision model.

In this chapter, we consider the strategic problem of determining an optimal fleet
composition for a logistics service provider serving an urban area in the presence
of access restrictions for certain types of vehicles. The problem is to determine the
number and the types of vehicles to use, such as electric and diesel, in order
to minimize the sum of ownership or leasing, transportation and labor costs.
Specifically, we consider a rectangular urban area, called the service region, with a
depot located on the edge of the area (this is motivated by the widespread policy
of operating an urban consolidation center at the entrance of a city (Quak and
de Koster, 2006)). We use a continuous approximation model (Daganzo, 1984a,b,
1987a,b) to calculate the distances traveled and we assume that customer demand
is uniformly distributed over the service region. We partition this service region
into contiguous rectangular blocks called service sectors, each served by a single
vehicle. This partitioning policy is described in detail in §2.2. As observed in
Huang et al. (2013) this way of distributing the workload among vehicles is useful
in practical settings since it allows the drivers to be responsible for a particular
area.

The contribution of this chapter is multifold. First, to the best of our knowledge,
this is the first study where operational restrictions such as city access regulations
are incorporated within a fleet management problem. Second, we propose an
efficient dynamic programming (DP)-based algorithm to calculate the optimal
solution for the case of two types of vehicles (e.g., electric and diesel), and we use
a mixed integer linear programming (MILP) formulation for more general settings.
We also establish structural results for the optimal partition of the service area
served by a heterogeneous fleet of vehicles. Finally, we show how the optimal
fleet composition changes depending on the vehicle parameters, and we discuss
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the impact of city access restrictions on fleet composition.

The remainder of this chapter is organized as follows. In §2.2, we describe
the problem and we provide a MILP formulation. In §2.3, we present our DP
formulation and derive analytical results: we first consider the single-strip-single-
type case, then the single-strip-multiple-types case, and finally the multiple-strip-
multiple-types case. In §2.4, we report some numerical results on the impact of city
access restrictions and on the benefits of using a heterogeneous fleet of vehicles.
We then compare the performance of our MILP and DP formulations.

2.2 Model

In this section we describe the problem setting. Subsequently we present the
routing strategy and the partitioning policy. Finally, we introduce the MILP
formulation.

2.2.1 Problem setting

We consider a rectangular service region of length L and width W , with a depot
located in the south at a distance ϕ from the midpoint of the bottom edge of the
rectangle (Figure 2.1). We refer to the closest edge of the rectangle as the ‘bottom’
edge and the furthest edge as the ‘top’ edge. We also use the term ‘width’ to refer
to the size of horizontal edges and ‘length’ to the size of vertical edges, even
if the vertical distance is smaller than the horizontal distance. We use the L1
(Manhattan) norm to calculate distances. A number e of customers are located in
this region, and are distributed according to a density function δ(x), where x is
a point within the region. As in Daganzo (2005) (2005) and Huang et al. (2013),
we assume that the density function δ(x) does not vary significantly within the
region and therefore, without any significant loss of accuracy, it is approximated by
a continuous function δ ≈ e/WL. This approximation is reasonable in megacities
and metropolitan areas where a large number of retailers are distributed evenly.

Different vehicle types can be used to perform the deliveries within the service
region, for example, electric and diesel vehicles. The vehicle types differ in their
capacity, as well as in their usage cost, which is made up of two components:
a fixed cost (if the vehicles are purchased, this cost is the depreciation on the
purchase amount; if they are leased, this cost is the rental price paid per vehicle
per shift), and a variable cost, which is proportional to the distance traveled. We
also consider a limit on the duration of the vehicle routes as in Jabali et al. (2012a)
and Langevin and Soumis (1989); Langevin et al. (1996); Langevin and Soumis
(1989). However, in our setting the time limit is allowed to differ across vehicle
types. This time limit is motivated by the city center traffic restrictions discussed
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Figure 2.1 Urban service area.

in the introduction of this chapter. We assume that the vehicle types with the
larger transportation capacity have larger variable costs and stricter time access
restrictions, since in practice, cities tend to impose further access restrictions on
larger delivery vehicles which are also more expensive to operate. We do not make
any assumption on how the fixed costs compare across vehicle types.

Our problem consist of partitioning the service region into contiguous rectangles
corresponding to the service sectors, each served by a single vehicle, so that all
customers are served by delivery vehicles which do not exceed the capacity and
route duration constraints. The objective is the minimization of the total travel
cost which is the sum of the fixed vehicle cost, the variable vehicle cost and the
driver wages. We describe how these costs are calculated in the following sections.

2.2.2 Routing strategy

We use a continuous approximation model of the type first proposed by Daganzo
(1987a), and known as the dual strip strategy or half-width routing strategy, to
calculate the total distance traveled by a vehicle in a service sector. Let w be the
width of the service sector and y be its length, so that the number of customers to
visit in this sector is δwy. Also, let µ be the distance between the depot and the
midpoint of the bottom edge of the sector. According to the half-width routing
strategy, the sector is divided into two halves along its width. The vehicle enters
from the middle point of the bottom edge then makes a single round trip within
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the sector visiting all customers without backtracking, and finally exits the sector
from the point of entry (see Figure 2.2). According to the half-width routing

Figure 2.2 Delivery tour of a vehicle in a rectangular service sector.

strategy, the total distance γ made up of the transit distance and of the distance
traveled within the sector, can be approximated by

γ = 2µ+ 2y+ yw2δ

6 . (2.1)

In this expression, 2µ is the transit distance, 2y is the approximate vertical distance
traveled by the vehicle within the sector, and yw2δ/6 is the approximate horizontal
distance within the sector (seeDaganzo (1987a) for more details).

2.2.3 Partitioning policy

We assume that the rectangular service area is partitioned into s strips having the
same width W/s. Each strip is then divided into a number of sectors. As depicted
Figure 2.3, we assume that the strips are numbered from left to right. Similarly,
the sectors in each strip are numbered from bottom to top. Let ysij denote the
length of the jth sector in strip i when the service area is partitioned into s strips.
Let ϕsi denote the distance from the depot to the middle point of the bottom edge
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Figure 2.3 Example of area partitioning.

of strip i. This value is ϕsi = ϕ+ |s+1−2i|
s

W
2 , where ϕ is the vertical distance

between the depot and the middle point of the bottom edge of the service area,
and the second set of terms is the horizontal distance from this point to the middle
point of the bottom edge of strip i. The vehicle that services the jth sector in strip
i must first drive through sectors 1 to j − 1 in order to reach the assigned sector.
Therefore, the total transit distance from the depot to the bottom edge of the jth
sector is µsij = ϕsi +

∑j−1
l=1 y

s
il, where the first term is the distance between the

depot and the bottom edge of strip i, and the second one is the distance between
the bottom edge of the strip and that of the sector.
From (2.1), the total distance γsij traveled by a vehicle to serve customers in the
jth sector in strip i when there are s strips can be approximated by

γsij = 2µsij + 2ysij +
ysijδW

2

6s2 = 2

(
ϕ+
|s+ 1− 2i|

s

W

2
+

j∑
l=1

ysil

)
+
ysijδW

2

6s2 . (2.2)

2.2.4 MILP formulation

We now show how to formulate the area partitioning problem as a MILP. Let
K be the number of possible vehicle types. For every type k ∈ {1, . . . ,K}, let
Qk denote the vehicle capacity, let fk be the vehicle fixed cost, and let ok be its
variable cost. Let Tk be the maximum route duration for a vehicle of type k. We



2.2 Model 18

label the vehicle types so that Q1 ≤ . . . ≤ QK , o1 ≤ . . . ≤ oK and T1 ≥ . . . ≥ TK .

Let v be the travel speed, which is assumed to be constant and identical for
all vehicle types (this is a realistic assumption in the context of a congested city
center), let h be the service time at the customer locations (i.e., the time to unload
the goods), and let d denote the driver wage (in £ per time unit).

Let s be the maximum number of strips in which the region can be partitioned, and
let ms

i be the maximum number of sectors in which the ith strip can be partitioned
when there are s strips in total. We show how to calculate these values in §2.3
(Lemmas 2.2) and in Appendix 2.A.

The decision variables are as follows:

• xs: binary variable equal to 1 if the area is partitioned into s strips, 0
otherwise;

• zksij : binary variable equal to 1 if the area is partitioned into s strips,
and sector j ∈ {1, . . . ,ms

i} in strip i ∈ {1, . . . , s} is served by vehicle
k ∈ {1, . . . ,K}, 0 otherwise;

• yksij : length of sector j in strip i when the area is partitioned into s strips;

• γksij : total distance traveled by vehicle k to serve sector j in strip i when the
area is partitioned into s strips;

• µksij : distance between the depot and the beginning of sector j in strip i when
the area is partitioned into s strips.

The value of the last three variables is positive if the area is partitioned into s
strips and sector j in strip i is served by vehicle k, otherwise it is 0.
The formulation is

Minimize
s∑
s=1

s∑
i=1

msi∑
j=1

K∑
k=1

fkz
ks
ij +

s∑
s=1

s∑
i=1

msi∑
j=1

K∑
k=1

okγ
ks
ij +

s∑
s=1

s∑
i=1

msi∑
j=1

K∑
k=1

d
γksij

v
+ dhδLW

(2.3)

subject to
s∑
s=1

xs = 1 (2.4)

K∑
k=1

zksij ≤ x
s s = 1, . . . , s, i = 1, . . . , s, j = 1, . . . ,msi (2.5)

δyksij
W

s
≤ Qkzksij s = 1, . . . , s, i = 1, . . . , s, j = 1, . . . ,msi , k = 1, . . . ,K (2.6)
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msi∑
j=1

K∑
k=1

yksij = Lxs s = 1, . . . , s, i = 1, . . . , s (2.7)

µksij ≥ ϕ
s
i +

j−1∑
l=1

K∑
k=1

yksil −M(1− zksij ) s = 1, . . . , s, i = 1, . . . , s, j = 1, . . . ,msi , k = 1, . . . ,K

(2.8)

γksij = 2(µksij + yksij ) + yksij δW
2/(6s2) s = 1, . . . , s, i = 1, . . . , s, j = 1, . . . ,msi , k = 1, . . . ,K

(2.9)

γksij /v + yksij δWh ≤ Tk s = 1, . . . , s, i = 1, . . . , s, j = 1, . . . ,msi , k = 1, . . . ,K
(2.10)

xs ∈ {0, 1} s = 1, . . . , s (2.11)

zksij ∈ {0, 1} s = 1, . . . , s, i = 1, . . . , s, j = 1, . . . ,msi , k = 1, . . . ,K
(2.12)

yksij ≥ 0 s = 1, . . . , s, i = 1, . . . , s, j = 1, . . . ,msi , k = 1, . . . ,K
(2.13)

γksij ≥ 0 s = 1, . . . , s, i = 1, . . . , s, j = 1, . . . ,msi , k = 1, . . . ,K
(2.14)

µksij ≥ 0 s = 1, . . . , s, i = 1, . . . , s, j = 1, . . . ,msi , k = 1, . . . ,K.
(2.15)

The objective function is the sum of four terms: the vehicle fixed cost, the vehicle
variable cost, the driver wage for the time spent traveling, and the driver wage for
the time spent serving the customer, the last term being a constant. Constraint
(2.4) guarantees that the area is partitioned into a positive number of strips.
Constraints (2.5) ensure that each sector is served by at most one vehicle type.
Constraints (2.6) mean that the capacity of the vehicle is not exceeded. Constraints
(2.7) guarantee that the sum of the lengths of the sectors in every strip is equal to
L. Constraints (2.8) compute the distance between the depot and the beginning
of sector j in strip i (to speed up the calculations, M can be replaced by ϕ+ L).
Constraints (2.9) calculate the total distance traveled by a vehicle to service sector
j in strip i. Constraints (2.10) ensure that the total time required to service sector
j in strip i does not exceed the maximum tour length. Finally the domains of the
variables are defined in the last five constraints. As shown in §2.4 this MILP may
be slow to generate a solution. In the remainder of this chapter we study some
analytical properties of the problem, which will be used as a basis for developing
a fast solution procedure.

2.3 Analytical results

The notation used in the chapter is presented in Table 2.1. Without loss of
generality in the rest of the chapter we assume d = 0.
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Table 2.1 Summary of the notation.

Symbol Definition
L length of service region
W width of service region
ϕ distance from depot to bottom edge of the service area
ϕsi distance from depot to middle point of bottom edge of strip i when there are s strips
δ customer density
d driver wage
v vehicle speed
h service time
K number of vehicle types
fk fixed cost for vehicle of type k
ok variable cost for vehicle of type k
Tk maximum tour duration for a vehicle of type k
Qk capacity of vehicle of type k
s maximum number of strips
s number of strips
m number of sectors
w width of each strip
γ total distance traveled by vehicle
tj vehicle type used in sector j when there is only 1 strip
tsij vehicle type used in sector j of strip i when there are s strips
yj length of sector j when there is only 1 strip
ysij length of sector j in strip i when there are s strips
µ2
ij transit distance from depot to sector j in strip i when there are s strips
msi maximum number of sectors in which the ith strip can be partitioned when there are s strips

2.3.1 Single strip, one vehicle type

Here we consider a special case of our problem where there is only one strip, i.e.,
s = 1 and only one vehicle (K = 1) with fixed cost f , variable cost o, capacity
Q, and maximum tour length T . Let w = W denote the width of the strip. The
problem is to determine the number and therefore the length of the sectors in the
strip: let yj be the length of the jth sector and m be the chosen number of sectors.
Let C denote the total cost. The problem can be written as

min
m,(y1,...,ym)

C(y1, . . . , ym) = mf + o

m∑
j=1

(
2
(
ϕ+

j∑
i=1

yi

)
+
yjw

2δ

6

)
= m (f + 2oϕ) + 2o (my1 + (m− 1)y2 + .... + ym)

+o
δw2

6 L (2.16)

subject to
m∑
j=1

yj = L (2.17)

δyjw ≤ Q j = 1, ...,m (2.18)
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1
v

[
2
(
ϕ+

j∑
i=1

yi

)
+
yjw

2δ

6

]
+ hδyjw ≤ T j = 1, ...,m (2.19)

yj ≥ 0 j = 1, ...,m (2.20)
m ∈ N+. (2.21)

The first term of the objective function is the total fixed cost and the second term
is the total variable cost. Constraint (2.17) guarantees that the entire strip is
covered by sectors, constraints (2.18) and (2.19) ensure than the vehicle capacity
and maximum tour length are not exceeded. Constraints (2.20) and (2.21) define
the domains of the decision variables. Note that for the problem to be feasible we
need T > 2(ϕ+ L)/v, otherwise reaching the top of the strip would take more
than T units of time, leaving no time to serve the customers.

We formulate this problem as a DP. Let g(y; l) be the cost of serving a sector
of length y with a top edge at a distance of l from the bottom of the strip (and
therefore a bottom edge at a distance of l− y from the bottom of the strip), where
l ∈ [0,L]. From (2.1), we have g(y; l) = f + oγ = f + o

(
2(ϕ+ l) + yw2δ/6

)
. Let

V (l) be the value function, which is the total cost of serving the customers located
at a vertical distance less than l+ ϕ from the depot, or equivalently, at a vertical
distance of l from the bottom of the strip. Our goal is to calculate V (L). The DP
recursion is

V (l) =

{
min0≤y≤y(l) g(y; l) + V (l− y) if 0 < l ≤ L

0 if l ≤ 0, (2.22)

where y(l) is the maximum length for a sector with a top edge at a distance of l
from the bottom of the strip:

y(l) = min
{
l, Q
δw

, 6(Tv− 2(l+ ϕ))

w2δ + 6whvδ

}
. (2.23)

In this expression, the first term comes from the fact that the length of the sector
cannot exceed the remaining uncovered portion of the strip, the second term comes
from rewriting (2.18) as an equation and solving it for yj , and the third term is
obtained by rewriting (2.19) as an equation with l =

∑j
i=1 yi and solving it for

yj . Note that for l ∈ [0,L], y(l) ≥ 0 by the feasibility condition.

Our first result states that it is always optimal to set the length of a sector equal
to its maximum value. Let lj =

∑j−1
i=1 yi denote the distance from the top of sector

j to the bottom of the strip.

Proposition 2.1 It is optimal to set the length of each sector equal to its
maximum, i.e., yi = y(li) for i = 1, ...,m.
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Proof: The proof is by contradiction. Let ŝ be the lowest index such that
yŝ 6= y(lŝ) in the optimal solution. Since y(l) is the maximum value satisfying
constraints (2.18) and (2.19), we must have yŝ < y(lŝ). Also ŝ > 1 since by (2.17),
y1 = l1 = y (l1). Consider an alternate solution with the same number of sectors
and same sector length for all sectors, except sectors ŝ and ŝ− 1, such that the
length of sector ŝ is increased by ε and the length of sector ŝ− 1 is decreased by ε,
where ε is a small positive value. The difference in total cost between the optimal
and the alternate solutions is

g(yŝ, lŝ) + g(yŝ−1, lŝ − yŝ)− g(yŝ + ε, lŝ)− g(yŝ−1 − ε, lŝ − yŝ − ε)

= o

(
2lŝ + yŝ

w2δ

6

)
+ o

(
2(lŝ − yŝ) + yŝ+1

w2δ

6

)
− o
(

2lŝ + (yŝ + ε)
w2δ

6

)
−o
(

2(lŝ − yŝ − ε) + (yŝ+1 − ε)
w2δ

6

)
= 2oε < 0,

which is a contradiction. 2

Based on Proposition 2.1, we propose Algorithm 1, which is a recursive method
to calculate the optimal partition of the strip into sectors. The intuition behind

Algorithm 1: Optimal partition of strip into sectors with one vehicle type.
Step 0: Set l = L and j = 1.
Step 1: yj = y(l).
if y(l) > l then
set l = L− y(l) and j = j + 1 then repeat Step 1

else
Stop

Step 2: m = j. Renumber the sectors: yj := ym−j+1 for j = 1, ...,m.

Proposition 2.1 and Algorithm 1 is that we need to make the sectors as long
as possible, that is, as long as permitted by the capacity of the vehicle and the
maximum route duration. The only sector for which these constraints might be
unbinding is the one closest to the depot: the vehicle assigned to that sector just
covers the leftover part of the strip. It is optimal to make the shortest sector the
one closest to the depot because vehicles need to drive through previous sectors on
their way to their service sector, and therefore it is optimal to keep the distance
to the start of each sector as low as possible. We see from Equation (2.16) that
the length y1 of the first sector has the largest multiplier. Hence, it should be
minimized.

In the special case where T ≥ 12(L+ ϕ) +Q(w+ 6h)/(6v), we can provide a
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closed-form expression for the optimal solution: m = dLδw/Qe, yj = Q/δw
for j = 2, ...,m and y1 = L− (m− 1)Q/δw; in this case, the constraint on the
maximum tour length is so loose that the length of sectors 2 to m is determined
by the maximum vehicle capacity Q.

Example 2.1 Let L = 55, w = 10, δ = 0.5, ϕ = 0 and v = 30. There is one
type of vehicle with f = 70, o = 5, Q = 50 and T = 6.

Figure 2.4 Optimal solution.

We provide a two-part graphical representation of the optimal partition of the
strip in Figure 2.4, which is helpful in understanding how it is obtained. The right
part of the figure is a graph where the X-axis represents the distance from the
bottom of the strip (which is the distance from the depot, minus ϕ) and the Y -axis
represents the three components of the y(l) function represented by the solid black
lines. The optimal solution can be obtained graphically as follows: (i) start at a
value equal to L on the X-axis and measure the height of the y(l) function at this
point; this value is the optimal length of the last sector, (ii) from this point on
the y(l) curve, draw a line parallel to the 45-degree line until reaching the X-axis
again; this value is the distance from the bottom of the strip to the top of the
second last sector, (iii) measure the height of the y(l) function at this point; this
value is the optimal length of the second last sector. Repeat these steps until
reaching the origin.

In this example, the optimal solution contains six sectors. Sector 6, which is the
furthest away from the depot is constrained by the maximum route duration and
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has length 8.4. Sectors 2 to 5 are constrained by the vehicle capacity and have
length 10. Finally the remainder of the strip length is allocated to the first sector,
which has length 6.6.

Next we derive some monotonicity properties for the optimal number of vehicles.

Lemma 2.1 The optimal number of sectors m∗ is independent of f and o, is
non-decreasing in L, ϕ, δ and w, and non-increasing in T and Q.

Proof: First we show that m∗ is non-decreasing in L. Consider two strips with
respective lengths L′ and L′′ such that L′ < L′′. For both strips, we use Algorithm
1 to obtain the optimal number of sectors. Let l′ and l′′ be the variable used in
this algorithm when the length of the strip is L′ and L′′ respectively. In the first
iteration, we have l′ = L′ < l′′ = L′′. There are three cases: (i) if y(l′′) = l′′, then
y(l′) = l′ and the number of sector is the same for both strips; (ii) if y(l′′)<l′′
and y(l′) = l′, then the method stops for l′ but not for l′′, which means that there
is at least one more sector with l′′; (iii) if y(l′′) < l′′ and y(l′) < l′, then the
algorithm continues for both strips. Also in this case, we must have y(l′) ≥ y(l′′)
because y(l) is non-increasing in l for values of l such that y(l) < l (see Figure
2.4). As a result the next iteration starts with l′′ := l′′ − y(l′′) and l′ := l′ − y(l′),
and l′ < l′′, which is a similar starting point. We can therefore repeat the same
argument. Since there is no case in which the strip with the greater length stops
the recursive method before the strip with the shorter length does, the result must
be true.

The fact that m∗ is non-decreasing in ϕ, δ and w and non-increasing in T and
Q follows directly from the fact that y(l) is non-increasing in ϕ, δ and w and
non-decreasing in T and Q, as can be seen from (2.23). Given that y(l) does not
depend on f and o, it follows that m∗ is independent of these two cost parameters.
2

The optimal solution always minimizes the total number of sectors and hence, the
total number of vehicles used. For this reason, when there is a single vehicle type,
the fixed and variable vehicle cost parameters f and o are not relevant, that is,
the solution obtained from Algorithm 1 remains optimal for any value of o and
f , including f = 0. The other relationships are as follows: the total number of
vehicles is non-decreasing in the length of the strip, the distance from the depot
and the number of customers, and non-increasing in the vehicle capacity and the
maximum route length. Note that some of these intuitive relationships no longer
hold when there are several types of vehicle, as shown in §2.3.2.
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2.3.2 Single strip, multiple vehicle types

Here, we keep the assumption that there is a single strip of width w, but we allow
the firm to choose between vehicles of K different types. As in §2.3.1, let yj denote
the length of the jth sector and lj =

∑j−1
i=1 yi denote the distance from the top

of sector j to the bottom of the strip. Let tj ∈ {1, ...,K} denote the type of the
vehicle serving the jth sector, so that ftj , otj , Qtj and Ttj respectively denote
the fixed cost, variable cost, the capacity and the maximum tour duration of the
vehicle used to serve the jth sector. This problem can be written as

min
m,(y1,...,ym),(t1,...,tm)

C(y1, . . . , ym, t1, ..., tm) =

=
m∑
j=1

ftj +
m∑
j=1

otj

(
2
(
ϕ+

j∑
k=1

yk

)
+
yjδw

2

6

)

subject to
m∑
j=1

yj = L

δwyj ≤ Qtj j = 1, ...,m

1
v

[
2
(
ϕ+

j∑
i=1

yi

)
+
yjw

2δ

6

]
+ hδyj ≤ Ttj j = 1, ...,m

yj ≥ 0 j = 1, ...,m
tj ∈ {1, 2} j = 1, ...,m
m ∈ N+.

We need maxk=1,...,K Tk > 2(ϕ+ L)/v, for the problem to be feasible. As in
the previous section, we formulate the problem as a DP. Let gk(y; l) denote
the cost of serving a sector of length y, which has a top edge at a distance of
l from the bottom of the strip, with a vehicle of type k. We have gk(y; l) =
fk + ok

(
2(ϕ+ l) + yw2δ/6

)
. The DP recursion in this case is

V (l) =

{
mink=1,...,K

{
min0≤y≤yk(l) {gk(y; l) + V (l− y)}

}
if 0 ≤ l ≤ L

0 if l ≤ 0
(2.24)

where, for every vehicle type k ∈ {1, ...,K}, the maximum length for a sector
ending at a distance of l from the bottom of the strip is yk(l) = min {l,Qk/(δw),
6(Tkv− 2(l+ ϕ))/(δw2 + 6hvδw)

}
(if yk is negative, vehicles of type k cannot be

used to feasibly serve the area). Note that yk(l) depends on the vehicle type k,
through the capacity Qk and maximum tour duration Tk. As before, our goal is
to calculate V (L). We first analyze the structure of the optimal solution.
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Proposition 2.2 An optimal solution contains at most one sector with a length
shorter than its maximum value, i.e., we have yi = yti(li), for all sectors i =
1, ...,m, except possibly for one of them. If such a sector exists, then assume it is
sector j, i.e., yj < ytj (lj). In this case, the following properties must hold: (i)
j > 1, (ii) otj > oti

(
12 + δw2)/δw2 for i = 1, . . . j − 1, (iii) yi = yti(li) =

Qti
wδ

for i = 1, ..., j − 1, and (iv)
Qtj−1
wδ ≤ yj .

Proof: Property (i) holds because the length of the first sector is always equal to
its maximum since y1 = l1 = yt1(l1). Property (ii) can be proven by contradiction.
Suppose there exists a sector k < j such that otj ≤ otk (12+ δw2)/(δw2). Consider
an alternate solution with the same number of sectors m and the same vehicle
types used in each sector, but with sector lengths y′1, . . . , y′m such that y′i = yi for
i 6= k, j, y′j = yj + ε and y′k = yk − ε, with ε ∈ (0, ytj (lj)− yj). In other words
only sectors j and k are different in the two solutions. This alternate solution is
feasible since yti(li) is non-increasing in li for i > 1. The difference in total cost
between the optimal and the alternate solution is given by

j∑
i=k

gti

(
yi,L−

m∑
l=i+1

yl

)
−

j∑
i=k

gti

(
y′i,L−

m∑
l=i+1

y′l

)

= ftj + otj

[
2(lj + ϕ) +

yjw
2δ

6

]
+ ftk + otk

[
2(lk + ϕ) +

ykw
2δ

6

]
+

j−1∑
i=k+1

fti

+

j−1∑
i=k+1

oti

[
2(li + ϕ) +

yiw
2δ

6

]
− ftj − otj

[
2(lj + ϕ) +

y′jw
2δ

6

]
− ftk

−otk

[
2(lk + ϕ− ε) +

y′kw
2δ

6

]
−

j−1∑
i=k+1

fti −
j−1∑
i=k+1

oti

[
2(li + ϕ− ε)−

y′iw
2δ

6

]

= otj

[
2(lj + ϕ) +

yjw
2δ

6

]
+ otk

[
2(lk + ϕ) +

ykw
2δ

6

]
+

j−1∑
i=k+1

oti

[
2(li + ϕ) +

yiw
2δ

6

]

−otj

[
2(lj + ϕ) +

(yj + ε)w2δ

6

]
− otk

[
2 (lk + ϕ− ε) +

(yk − ε)w2δ

6

]
= −

j−1∑
i=k+1

oti

[
2 (li + ϕ− ε)−

yiw
2δ

6

]
− otj

εw2δ

6
+ otk

(
2ε+

εw2δ

6

)
+ 2ε

j−1∑
i=k+1

oti

>

(
otk

12 +w2δ

6
− otj

w2δ

6

)
ε.

The last term is positive since otj ≤ otk
(

12+δw2

δw2

)
by the contradiction assumption;

hence, we have a contradiction. The proof of property (iii) consists of two parts:
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(a) we show that it is never optimal to have a sector k < j such that ytk (lk) =
6(Ttkv−2(lk)−ϕ)
w2δ+6whvδ ; (b) we show that it is never optimal to have a sector k < j such

that ytk (lk) <
Qtk
wδ .

Part (a) The proof is by contradiction. Suppose there exists a sector k < j

such that yk ≤ ytk (lk) =
6(Ttkv−2lk+ϕ)
w2δ+6whvδ . Let α = ytk (lk)− yk ≥ 0. Also let ε =

ytk (lj)− yj , which is strictly positive by definition of sector j. By property (ii),
otk < otj , therefore, given the vehicle numbering, we also have Ttk ≥ Ttj and Qtk ≤

Qtj , which implies that ytk (lj) =
6(Ttkv−2(lj )−ϕ)
w2δ+6whvδ > ytj (lj) =

6(Ttj v−2(lj )−ϕ)
w2δ+6whvδ .

Since yj < ytj (lj), we have yj < ytk (lj). There can be two cases: (1) α ≤ ε,
(2) α > ε. In case (1), consider an alternate solution S′ with the same number
of sectors, but with lengths y′1, . . . , y′m such that y′i = yi for i = 1, . . . ,m with
i 6= k, j, y′j = yj + (ε−α) and y′k = yk − (ε−α), and vehicle types t′1, . . . , t′m such
that t′i = ti for i = 1, ...,m and i 6= k, j, t′j = tk and t′k = tj . In other words sector
j gets longer and k gets shorter and they switch their vehicle types. This solution
is feasible since y′j = ytk (lj) − α < ytk (lj) and y′k = ytk (lk) − ε = ytk (lk) −(
ytk (lj)− ytj (lj) + ytj (lj)− yj

)
= ytk (lk)−

(
ytk (lk)− ytj (lk) + ytj (lj)− yj

)
=

ytj (lk)−
(
ytj (lj)− yj

)
< ytj (lk) ≤ ytj (lj − y

′
j) = ytk (lk − ε+ α).

The cost difference between the original and the alternate solution is

gtj (yj , lj) + gtk (yk, lk) +
j−1∑
i=k+1

gti (yi, li)− gtk (yj + (ε− α), lj)

−gtj (yk − (ε− α), lk − (ε− α))−
j−1∑
i=k+1

gti (yi, li − (ε− α))

= otj

[
2(lj + ϕ) +

yjw
2δ

6

]
+ otk

[
2(lk + ϕ) +

ykw
2δ

6

]
+

j−1∑
i=k+1

oti

[
2(li + ϕ) +

yiw
2δ

6

]
−otk

[
2(lj + ϕ) +

(yj + (ε− α))w2δ

6

]
− otj

[
2 (lk + ϕ− (ε− α)) +

(yk − (ε− α))w2δ

6

]
−

j−1∑
i=k+1

oti

[
2(li + ϕ− (ε− α) +

yiw
2δ

6

]

= 2otj (ε− α) + (otj − otk )
(

2(lj − lk) +
w2δ

6
(yj − yk + ε− α)

)
+

j−1∑
i=k+1

oti (ε− α)

= 2otj (ε− α) + (otj − otk )
(

2(lj − lk) +
w2δ

6
(ytk (lj)− ytk (lk))

)
+

j−1∑
i=k+1

oti (ε− α)
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= 2otj (ε− α) + (otj − otk )
(

2(lj − lk) +
w2δ

6
12(lk − lj)
w2δ + 6whvδ

)
+

j−1∑
i=k+1

oti (ε− α)

= 2otj (ε− α) + (otj − otk )
(

2(lj − lk)
(

1−
w2δ

w2δ + 6whvδ

))
+

j−1∑
i=k+1

oti (ε− α)

which is positive because ε > α, otj > otk and lj > lk.
In case (2), consider an alternative solution S′ with the same number of sectors and
the same sector lengths, but with vehicle types t′1, ..., t′m such that t′i = ti for i =
1, ...,m and i 6= k, j, t′j = tk and t′k = tj . In other words, sectors k and j exchange
their vehicle types. This solution is feasible for α > ε since yj < ytj (lj) ≤ ytk (lj)

and yk ≤ ytk (lk) − α ≤ ytk (lk) − ε ≤ ytk (lk) −
(
ytk (lj)− ytj (lj)

)
= ytk (lk) −(

ytk (lk)− ytj (lk)
)
= ytj (lk). The cost difference between the original and the

alternate solution is

gtj (yj , lj) + gtk (yk, lk) +
j−1∑
i=k+1

gti (yi, li)− gtk (yj , lj)− gtj (yk, lk)−
j−1∑
i=k+1

gti (yi, li)

= otj

[
2(lj + ϕ) +

yjw
2δ

6

]
+ otk

[
2(lk + ϕ) +

ykw
2δ

6

]
− otk

[
2(lj + ϕ) +

yjw
2δ

6

]
−otj

[
2(lk + ϕ) +

ykw
2δ

6

]
= (otj − otk )

(
2(lj − lk) +

w2δ

6
(yj − yk)

)
= (otj − otk )

(
2(lj − lk) +

w2δ

6
(ytk (lj)− ytk (lk)) + (α− ε)

)
≥ (otj − otk )

(
2(lj − lk) +

w2δ

6
12(lk − lj)
w2δ + 6whvδ

)
= (otj − otk )

(
2(lj − lk)

(
1−

w2δ

w2δ + 6whvδ

))
,

which is positive since otj > otk and lj > lk.

2.3.2.0.1 Part (b) The proof is by contradiction. Suppose there exists a
sector k < j such that yk < Qtk/(wδ). Consider an alternate solution S′ with the
same number of sectors and vehicle types serving each sector, but with lengths
y′1, . . . , y′m such that y′i = yi for i = 1, . . . ,m with i 6= k, j, y′j = yj + ε and
y′k = yk − ε, where ε is a (positive or negative) value such that y′k ≥ 0, y′j > 0
and y′j < ytj (lj). In other words, we shift some of the lengths of sector j to
sector k or the other way around and we keep the length of all other sectors
unchanged. This alternate solution is feasible since yti(li) = min {li,Qti/(wδ)}
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for i = 2, . . . , j − 1 by Part (a). The difference in cost between solution S and
S′ is ε

(
2
∑j−1

k=k otk − (w2δ)/6(otj − otk )
)

. Depending on whether ε is positive or
negative, this value can be made positive, hence we have a contradiction. Note
that property (iii) implies that there is at most one sector with length shorter
than its maximum possible value.

The proof of property (iv) is by contradiction. Suppose that yj < Qtj−1 /wδ. By
Property (iii) we know that yj−1 = Qtj−1 /wδ and therefore this would imply
that yj < yj−1. Consider an alternate solution S′ with the same number of sectors
with lengths y′1, ..., y′m such that y′j−1 = yj , y′j = yj−1, t′j−1 = tj , t′j = tj−1,
y′k = yk and t′k = tk for k = 1, . . . , j − 2, j + 1, . . . ,m. In other words, the
lengths and types of sectors j − 1 and j are switched. This solution is feasible
since ytj (lj) is non-increasing in lj for j > 1. The cost difference between two
solutions is 2(otjyj−1 − otj−1yj), which is positive since otj > otj−1 by property
(ii) and yj−1 > yj . Hence, we have a contradiction. 2

From Proposition 2.2(ii), it follows that, when the variable cost of the vehicles
are not too different, in the sense that they satisfy oK < o1

(
12 + δw2)/δw2, it is

optimal to set the length of each sector equal to its maximum, given the type of
vehicle by which it is served. However, if this condition is not satisfied, then it is
possible that one sector has length shorter than its maximum. This sector must
be preceded only by sectors served by vehicles with a lower variable cost (property
(ii)) which operate at full truckload (property (iii)).

The following lemma provides an upper bound on the optimal number of sectors.
We use this value to calculate the ms

i values in our MILP formulation from §2.2.4.

Lemma 2.2 The optimal number m of sectors in which the strip is partitioned
is bounded by m, which is the optimal number of sectors in which the strip would
be partitioned if it was served solely by vehicles of type 1 with a maximum route
duration that depends on the distance from the bottom of the strip l and is equal
to

T (l) =


TK l ∈ (0, (TKv)/2−ϕ]
TK−1 l ∈ ((TKv)/2−ϕ, (TK−1v)/2−ϕ]
. . .
T1 l ∈ ((T2v)/2−ϕ, (T1v)/2−ϕ] .

Proof: Let ymin(l) = min
{
l,Q1/(δw), 6(T (l)v−2(l+ϕ))

w2δ+6whvδ

}
. For all l ∈ [0,L], we

have ymin(l) ≤ yk(l) for k = 1, ...,K. The proof is by contradiction. Suppose
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there exists an optimal solution S∗ where m∗ > m. This is only possible if
there is a sector j such that yj < ymin(lj). By Proposition 2.2 properties (i)
and (iv), it must be j > 1 and yj > Qtj−1 /(δw). But this would imply that
ymin(lj) > Qtj−1 /(δw) ≥ ytj−1(lj), which is a contradiction. 2

Note that m can be easily calculated by Algorithm 1 except that T (l) is used
instead of T in the expression for y(l).

In what follows, we focus on the special case of K = 2. As before we assume
o1 ≤ o2, Q1 ≤ Q2 and T1 ≥ T2 so that, for example, one can think of the vehicles
of type 1 as electric vehicles and vehicles of type 2 as diesel vehicles.
From Proposition 2.2 it follows that, when o1 ≤ o2 ≤ o1

(
12 + δw2)/δw2, property

(ii) cannot be satisfied so that each sector has a length equal to its maximum and
the value function reduces to

V (l) =

{
min {g1(y1(l); l) + V (l− y1(l)), g2(y2(l); l) + V (l− y2(l))} if 0 ≤ l ≤ L

0 if l ≤ 0, (2.25)

i.e., it is sufficient to compare only two values at each step of the DP. However,
this method may not work when o2 > o1

(
12 + δw2)/δw2 because there can be

(at most) one sector served by a vehicle of type 2 with length lower than its
maximum, as shown in Figure 2.5 (in this example the third sector is shorter than
its maximum). Nevertheless, in this case we can exploit the solution properties
given in Proposition 2.2 to simplify the DP resolution, so that at most three values
need to be compared at each step:

V (l) =


0 if l ≤ 0
min {g1(y1(l); l) + V (l− y1(l)),

g2(y2(l); l) + V (l− y2(l)),TC(l)} if 0 < l ≤ min
{

6(T2v−2ϕ)−Q1(w+6hv)
12 ,L

}
min {g1(y1(l); l) + V (l− y1(l)),
g2(y2(l); l) + V (l− y2(l))} otherwise,

(2.26)

where TC(l) is the cost of serving the sector ending at distance l from the bottom of the strip by
a vehicle of type 2 operating at less than full capacity, and all the previous sectors use vehicles
of type 1 at full capacity. A formula used to calculate this value is derived in Appendix §2.B.

We now analyze the properties of the optimal solution. To this end, we first provide an example
to illustrate the tradeoffs between the two types of vehicle.

Example 2.2 Consider two alternative solutions for the partitioning of a strip of length L, as
depicted on Figure 2.6. In solution A (Figure 2.6a), there exists a sector of length x, served by a
vehicle of type 2 at the top of the strip and a sector of length L− x, served by a vehicle of type
1 at bottom of the strip, such that x ≥ L/2. In solution B (Figure 2.6b), the order of the two
sectors is reversed: the sector of length L− x served by a vehicle of type 1 is at the top of the
strip, and the sector of length x served by a vehicle of type 2 is at the bottom of the strip.
We compare the two solutions in terms of the total distance traveled by the two vehicles. From

(2.1), we can see that the total vertical and traversal distances within the strip are equal in both
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Figure 2.5 Optimal solution for L = 46, w = 8, δ = 0.2, ϕ = 0, f1 = 223, f2 = 75,
o1 = 8, o2 = 25.5, Q1 = 6, Q2 = 32, T1 = T2 =∞, v = 30.

(a) (b)

Figure 2.6 Example of two solutions with two vehicles.

solutions. The difference lies in the total transit distance. In solution A, the vehicle of type
1 starts touring the bottom part of the strip immediately, while the vehicle of type 2 needs to
drive L− x units before reaching its service sector. In contrast, in solution B, the vehicle of
type 1 needs to drive x units before reaching its service sector, and the vehicle of type 2 starts
service immediately. Since the total fixed cost is identical in both solutions and L− x < x, the
tradeoff between total transit distance and variable costs determines which solution is optimal:
if (L− x)o2 < xo1, or equivalently (L− x)/x < o1/o2, then solution A is preferred, otherwise
solution B is.

In the absence of route duration constraints, we are able to prove some structure of the optimal
solution.

Lemma 2.3 If there are no route duration constraints, i.e., T1 = T2 =∞, then there exists an
optimal solution which has one of the following three structures: (i) All sectors are served by
the same vehicle type (see Figures 2.7a and 2.7b); (ii) The first sectors next to the depot are
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served by one vehicle type and the remaining ones are served by the other type (see Figures 2.7c
and 2.7d); (iii) The first and last sectors are served by the same vehicle type, while the sectors
in the middle are served by the other one (see Figures 2.7e and 2.7f).

(a) (b) (c) (d) (e) (f)

Figure 2.7 Six examples of optimal solutions structures when T1 = T2 =∞.

Proof: Consider a solution S with two non-consecutive sectors k and i, such that k + 1 < i,
which are served by the same type of vehicles, i.e., tk = ti, such that all the sectors in between
are served by the other vehicle type, i.e. tj = 3− tk, for j = k + 1, ..., i− 1. We show that for S
to be optimal it must be k = 1. This will prove that there cannot be other structures than (A),
(B) or (C). In particular any structure with the vehicle types switching more than twice from
the depot to the end of the region will not be possible, since it would violate this property.

The proof is by contradiction, i.e., suppose k > 1. There are two cases (i) tk = ti = 1 and
(ii) tk = ti = 2. In Case (i), consider an alternate solution S′ obtained by swapping sectors k
and k + 1, that is, setting t′k = 2, t′k+1 = 1, y′k+1 = yk and y′k = yk+1 (and leaving all other
sectors unchanged). This solution is feasible since, for T1 = T2 = ∞, yk = y1(lk)=y1(lk+1).
Also, y2(lk+1 − yk) = min{Q2/(wδ), lk+1 − yk}. We know that (i) yk+1 ≤ y2(lk+1) ≤ Q2/(wδ).
Moreover, since k > 1 it must be yk + yk+1 < lk+1 and therefore (ii) lk+1 − yk > yk+1 From
(i) and (ii) it follows yk+1 ≤ y2(lk+1 − yk). The difference in costs between solution S and
S′ is ∆S,S′ = 2 (o2yk − o1yk+1), which must be negative if S is optimal. Next, let S′′ be an
alternate solution obtained by swapping sectors i− 1 and i, that is, setting t′′i = 2, t′′i−1 = 1,
y′′i = yi−1 and y′′i−1 = yi (and leaving all other sectors unchanged). This solution is feasible
since yi−1 ≤ y2 (li−1)≤y2(li) and yi = y1(li) = y1(li − yi−1). The difference in costs between
solution S and S′′ is ∆S,S′′ = 2 (o1yi−1 − o2yi).

From Proposition 2.2, if there is a sector with length less than its maximum, then it must be
the first sector served by a vehicle of type 2 starting from the bottom of the strip, i.e., sector
k+ 1. Hence, we have yk = y1(lk), yk+1 ≤ y2(lk+1), yi−1 = y2(li−1) and yi = y1(li). Moreover
since k > 1 (and T1 = T2 = ∞), we must have y1(lk) = y1(li) = Q1/(wδ) and y2(lk+1) =
max{lk+1,Q2/(wδ)} ≤ y2(li−1) = max{li−1,Q2/(wδ)} by (2.23). This implies that yk = yi
and yk+1 ≤ yi−1. Therefore, ∆S,S′′ = 2 (o1yi−1 − o2yk) ≥ 2 (o1yk+1 − o2yk) = −∆S,S′ > 0,
which is a contradiction.

In case (ii), note that sector k cannot be preceded by a vehicle of type 1, since otherwise we
could be in case (i) as well. Therefore by Proposition 2, all sectors lengths have to be equal to
their maximum value so that it is easy to show that ∆S,S′ = −∆S,S′′ , which is a contradiction
to S being optimal. 2
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In some rare cases there could be multiple optimal solutions, some of which may not have one
of the three structures stated in this lemma (this may happen in particular if o1/o2 = Q1/Q2).
However, in these cases, we can guarantee that there is always at least one optimal solution
which does. Lemma 2.3 implies that in the absence of route duration constraints, there can be
at most two switches in the vehicle types which are used to serve the sectors when going from
the bottom to the top of the strip. Note that this may not be the case if there are route duration
restrictions. In fact, the (unique) optimal solution may be such that vehicle types used to serve
the sectors change several times from top to bottom, as shown in Figure 2.8.

Figure 2.8 Optimal solution for w = 10, L = 60, ϕ = 1, δ = 0.3, v = 30, f1 = 150,
f2 = 90, o1 = 5, o2 = 25, Q1 = 6, Q2 = 70, T1 ≥ 6, T2 = 6.

Finally, contrary to what happens in the single vehicle type case, if there are several types of
vehicle, the optimal number of sectors (and hence of vehicles) is not necessarily monotone in L
(Figure 2.9a) and in ϕ (Figure 2.9b).

The following lemma provides sufficient conditions under which the optimal solution uses only
one type of vehicle.

Lemma 2.4 (a) If f1 ≤ f2 and Q1 >
6(T2v−2ϕ)δw
δw2+6hvδw+12 , then it is optimal to use only vehicles

of type 1 (b) If both vehicle types have the same route duration limit, i.e. (T1 = T2) and
f1 ≥ f2 + (o2 − o1)

(
2(L+ ϕ) + wQ2

6

)
, then it is optimal to use only vehicles of type 2.

Proof: We first prove (a). If Q1 >
6(T2v−2ϕ)δw
δw2+6hvδw+12 then for all l ≥ 0, then we have

y2(l) =

{
l for l ≤ 6(T2v−2ϕ)

δw2+6hvδw+12
6(T2v−2(l+ϕ))
w2δ+6whvδ for 6(T2v−2ϕ)

δw2+6hvδw+12 < l ≤ T2v
2 −ϕ
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(a) W = 10, ϕ = 7, δ = 0.5, v = 30, f1 = f2 = 0, o1 = 7, o2 = 10, Q1 = 12, Q2 = 20,
T1 = 5 = T2.

(b) W = 10, L = 35, δ = 0.5, v = 30, f1 = f2 = 0, o1 = 7, o2 = 10, Q1 = 12, Q2 = 20,
T1 = 5 = T2.

Figure 2.9 Optimal number of vehicles as a function of L (2.9a) and of ϕ (2.9b).

and

y1(l) =


l for l ≤ min

{
Q1
δw

, 6(T1v−2ϕ)
δw2+6hvδw+12

}
Q1
δw

for min
{
Q1
δw

, 6(T1v−2ϕ)
δw2+6hvδw+12

}
≤ l ≤ 6(T1v−2ϕ)−Q1(w+6hv)

12
6(T1v−2ϕ)

δw2+6hvδw+12. for 6(T1v−2ϕ)−Q1(w+6hv)
12 < l ≤ T1v

2 −ϕ.

The comparison of these two equations implies that y1(l) ≥ y2(l) for all l <
T2v

2 − ϕ. Hence, for l < T2v
2 − ϕ, we can write the DP recursion as V (l) =

min{min0≤y≤y2(l)
{g1(y, l), g2(y, l)}+ V (l − y)}, miny2(l)<y≤y1(l)

{g1(y, l) + V (l −
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y)}}. When f1 ≤ f2, g1(y, l) ≤ g2(y, l) for all l > 0 and y ≤ y2(l), which means
that it is optimal to select vehicle 1. For l ∈ [T2v/2−ϕ,T1v/2−ϕ), only vehicles
of type 1 are feasible. Therefore it is optimal to use vehicles of type 1 for all values
of l such that the problem is feasible.
We next prove (b). Consider the first iteration of the DP recursion

V (L) = min
{

min
0≤y≤y1(L)

{g1(y;L) + V (L− y)} , min
0≤y≤y2(L)

{g2(y;L) + V (L− y)}
}

(2.27)

Let l̂(y) = 6(f1−f2)−(o2−o1)(w2δy+12ϕ)
12(o2−o1)

be the maximum value of l such that,
for a given y, and all l ≤ l̂(y), g2(y; l) = f2 + o2(2(l + ϕ) + w2δy/6) ≤
g1(y; l) = f1 + o1(2(l + ϕ) + w2δy/6). If l̂(Q2

δw ) ≥ L, which is equivalent to
f1 ≥ f2 + (o2 − o1)

(
2(L+ ϕ) + wQ2

6

)
, then g2(

Q2
δw ;L) ≤ g1(

Q2
δw ;L). Since o2 >

o1, l̂(y) is decreasing in y, and therefore g2(y;L) ≤ g1(y;L) for all y ∈
[
0, Q2

δw

]
.

As a result, min0≤y≤y2(L)
g2(y;L) < min0≤y≤y1(L)

g1(y;L) since for T1 = T2 it is
y1(L) ≤ y2(L) ≤

Q2
δw . It follows that the sector which is the furthest away from

the depot should be served by vehicle 2 since the second term in (2.27) achieves the
minimum. Let ym be its length. The next sector will end at a distance of L− ym
from the bottom of the strip. Since L− ym < L < l̂(Q2

δw ) and y1(l) ≤ y2(l) ≤
Q2
δw for all l we have min0≤y≤y2(L)

g2(y;L− ym) < min0≤y≤y1(L)
g1(y;L− ym).

Therefore, by a similar argument we conclude that the next sector should also be
served by vehicle 2. We can repeat the same argument up to the bottom of the
strip. 2

In Lemma 2.4(a), the route duration constraint for vehicles of type 2 is so strict
that these vehicles are not able to carry more than the vehicles of type 1, hence,
they lose their unique advantage over these and are never used. The condition in
Lemma 2.4(b) implies that the increase in fixed cost when switching from a type
2 to a type 1 vehicle more than offsets the maximum possible decrease in variable
cost which comes with this switch, and therefore type 1 vehicles are never used.

In practice, a mixed fleet may bring extra logistical and maintenance complexity,
so that some logistics service providers may prefer to have only one type of vehicle.
The following lemma establishes when it is optimal to use only vehicles of type 1
versus only vehicles of type 2.

Lemma 2.5 Assume that there is no route duration limitation, i.e. T1 = T2 =∞
and that only one type of vehicle can be used. Then it is cheaper to use only vehicles
of type 1 if and only if o1/o2 ≤ α, where

α =
o2

(
dLwδ
Q2
e
(
2(L+ ϕ)− (dLwδ

Q2
e − 1)Q2

wδ

)
+ w2δ

6 L

)
+ f2dLwδQ2

e − f1dLwδQ1
e

o2
(
dLwδ
Q1
e
(
2(L+ ϕ)− (dLwδ

Q1
e − 1)Q1

wδ

)
+ w2δ

6 L
) . (2.28)
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Proof: If the strip is served only by vehicles of type k and Tk ≥
12(L+ϕ)+Qk(w+6h)

6v we can provide a closed-form expression for the optimal
solution. Let m =

⌈
Lδw
Qk

⌉
, yj = Qk/(δw) for j = 2, ...,m and y1 = L− (m−

1)Qk(δw).

TCk = gk

(
L− (m− 1)

Qk

wδ
,L− (m− 1)

Qk

wδ

)
+

m∑
i=2

gk

(
Qk

wδ
,L− (m− i)

Qk

wδ

)
= mfk + ok

(
2(L− (m− 1)

Qk

wδ
+ ϕ) +

(
L− (m− 1)

Qk

wδ

)
w2δ

6

+

m∑
i=2

(
2(L− (m− i)

Qk

wδ
+ ϕ) +

Qk

wδ

w2δ

6

))
+

= mfk + ok

[
2m(L+ ϕ)− (m− 1)m

Qk

wδ
+
w2δ

6
L

]

= mfk +mok

[
2(L+ ϕ)− (m− 1)

Qk

wδ

]
+ ok

w2δ

6
L

=

⌈
Lδw

Qk

⌉
fk +

⌈
Lδw

Qk

⌉
ok

[
2(L+ ϕ)−

(⌈
Lδw

Qk

⌉
− 1
)
Qk

wδ

]
+ ok

w2δ

6
L.

Equation 2.28 is obtained after simplification of TC2 ≤ TC1. 2

In Figure 2.10, we plot the value of α from (2.28) as a function of the ratio Q1/Q2
(we have kept Q2 fixed and we have let Q1 vary in the interval [0,Q2] so that the
ratio varies between 0 and 1). We see that the curve is concave and located above
the 45-degree line. The shape and location of this curve imply that if the variable
cost of type 1 vehicles is half that of type 2 vehicles, then type 2 vehicles need to
have more than twice the capacity of type 1 vehicles in order to be used optimally
(when the fixed costs of the two vehicle types are equal).

2.3.3 Multiple strips, multiple vehicle types

In this section we consider the case of multiple strips, that is, the rectangular
region is partitioned into s strips of equal width, and w = W/s. Let Vw,ϕ(L)
denote the optimal cost of serving customers in a strip of width w and length
L, so that the middle of the bottom edge is located at a distance of ϕ from the
depot. This value can be calculated using recursion (2.25) or (2.26), depending
on whether o2 is lower or greater than o1

(
12 + δw2)/δw2, as explained in §2.3.2.

Let C(s) denote the optimal cost when the region is partitioned into s strips; we
have C(s) =

∑s
i=1 VW/s,ϕsi (L), where ϕsi is given by (2.2). The following lemma

establishes the symmetry of the optimal solution around the middle strip(s).



37 2. Strategic Fleet Planning for City Logistics

Figure 2.10 Value of α as function of Q1/Q2 for W = 10, L = 40, ϕ = 3, δ = 0.5,
Q2 = 50, o2 = 20, f1 = f2 = 0, W = 10.

Lemma 2.6 The optimal solution for a given number of strips is always sym-
metric around the middle strip(s), i.e., ys∗i,j = ys

∗
s∗−i+1,j and ts

∗
i,j = ts

∗
s∗−i+1,j for

i = 1, . . . , ds∗/2e, where s∗ is the optimal number of strips.

Proof: The result follows directly for the realization that for all s, ϕsi = ϕss−i+1
for i = 1, ..., ds/2e, therefore Vw,ϕsi (L) = Vw,ϕss−i+1

(L) for all w, L and s. 2

From Lemma 2.6 we can write C(s) = 2
∑bs/2c
i=1 VW/s,ϕsi (L) for s even and

C(s) = 2
∑bs/2c
i=1 VW/s,ϕsi (L) + VW/ds/2e,ϕsds/2e

(L) for s odd. The minimum cost
for the area partitioning problem is C∗ = mins=1,...,s C(s). Because C(s) is not
necessarily monotone in s, as shown in Figure 2.11, the optimal value of s can only
be obtained by comparison of C(1), . . . ,C(s), where s is an upper bound on the
number of strips, which we show how to calculate in Appendix 2.A.

2.4 Numerical analysis

The purpose of our numerical study is threefold. First, we study the impact of
city access restrictions on overall traffic congestion. Second, we study the optimal
fleet composition; in particular, we quantify the benefits of having a heterogeneous
versus a homogeneous fleet of vehicles. Third, we compare our MILP formulation
from §2.2.4 and DP formulation from §2.3.2 in terms of computational time.
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Figure 2.11 Total transportation cost as a function of the number of strips for W =
20, L = 40, ϕ = 1, δ = 0.4, v = 30, f1 = 200, f2 = 50, o1 = 4, o2 = 5, Q1 = 50,
T1 = 12, T2 = 4.

2.4.1 Impact of city access restrictions

We first investigate how the time access restrictions affect the optimal fleet
composition for a problem with two vehicle types, i.e., K = 2. We refer to type
1 as the electric vehicles and to type 2 as the diesel vehicles. In Figure 2.12, we
see that the total number of vehicles tends to decrease as the time restrictions
for vehicles of type 2 become stricter, but locally, it can actually increase, as is
the case where T2 increases from 3.4 to 3.6. In this example, when the maximum
route duration constraints for vehicles of type 2 are not binding, i.e., T2 > 4.2, it
is optimal to use only vehicles of type 2. Note that for T2 between 3.8 and 4.4, the
number of vehicles of type 2 decreases with T2 but for values between 3.2 and 3.8,
it increases. These results show that limiting access or banning the use of large
vehicles may in some cases actually accentuate traffic congestion and increase the
number of diesel vehicles on the streets.

2.4.2 Optimal fleet composition

We next investigate how the optimal fleet composition, i.e., the number of vehicles
of each type, changes depending on the area and vehicle parameters. As in §2.2.1
we assume there are two vehicle types with Q1 ≤ Q2 and o1 ≤ o2.

Figure 2.13 represents how the percentage of electric vehicles in the optimal
solution to the area partitioning problem varies with the ratios o1/o2 and Q1/Q2.

The pictures are based on the calculation of the optimal solution for 10, 000 discrete
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Figure 2.12 Optimal number of vehicles as a function of T2 given W = 20, L = 40,
ϕ = 1, δ = 0.4, v = 30,f1 = 200, f2 = 50, o1 = 4, o2 = 5, Q1 = 25, Q2 = 50,
T1 = 12.

points, when both ratios vary between 0 and 1 in increments of 0.01. A value of
100% corresponds to an all-electric vehicle fleet, while a value of 0% corresponds
to an all-diesel vehicle fleet. Any intermediate value indicates that it is optimal
to use a heterogeneous fleet of vehicles. Figure 2.13a is the base scenario where
the parameters are set as follows: W = 10, L = 30, ϕ = 3, δ = 0.5, v = 30
h = 0, f1 = f2 = 0, o2 = 20,Q2 = 50,T1 = T2 = ∞. We have generated several
problem instances and obtained very similar pictures for other sets of parameters.
Hence we are confident that this base case is a good representation of the tradeoffs
involved.

The four graphs of Figure 2.13a all exhibit the same basic pattern: if the electric
vehicle has a small capacity and a high variable cost, i.e. Q1/Q2 → 0 and
o1/o2 → 1, then it is preferable to use a homogeneous fleet of diesel vehicles
(i.e, the proportion of electric vehicles used is 0%). On the other hand, if the
electric vehicle has a large capacity and a low variable cost, i.e. Q1/Q2 → 1 and
o1/o2 → 0, then it is preferable to use a homogeneous fleet of electric vehicles (i.e.,
the proportion of electric vehicles used is 100%). The cases where a heterogeneous
fleet of vehicles is optimal all lie on the frontier between these two extreme regions.
This suggests that the benefits of having a heterogeneous fleet are the greatest
when there is not too much difference between the cost of operating an all-electric
vehicle fleet and the cost of operating an all-diesel vehicle fleet. Further, this region
appears to be delimited by a concave line located mostly above the 45-degree line,
which is reminiscent of the shape of the α function discussed in §2.3.2. In the base
case of Figure 2.13a, 60% of the instances have an all-electric optimal fleet, 37%
have an all-diesel optimal fleet and the remaining 3% have a heterogeneous fleet.
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In each of the four graphs of Figure 2.13, we also identify the instance yielding
the maximum cost savings resulting from using a heterogeneous fleet of vehicles
versus a homogeneous one. So for example, the maximum cost savings is 3.3% in
Figure 2.13a.

Figure 2.13b, 2.13c, 2.13d illustrate how the three regions change when one
parameter varies while the others are kept constant. In Figure 2.13b, the fixed cost
of the electric vehicle is increased to 130 and this leads to a decrease in the number
of electric vehicles used, moving the heterogeneous fleet region down, closer to the
45-degree line. Compared to the previous case, the proportion of instances where
it is optimal to have an all-electric fleet decreases to 50%, while the proportion of
instances where it is optimal to have an all-diesel fleet increases to 49%. Also, the
proportion of instances where it is optimal to have a heterogeneous fleet reduces
to 1%.

In Figure 2.13c, the maximum route duration of the diesel vehicles is set equal to 3,
but there is still no time restriction on the usage of the electric vehicles. This leads
to a decrease in the proportion of diesel vehicles used (to 25%) and an increase in
the proportion of electric vehicles used (to 69%). Also note that the proportion of
solutions with a heterogeneous fleet increases to 6% compared for the base case.
Note that if Q1/Q2 is sufficiently large (Q1/Q2 ≥ 0.776), it becomes optimal to
use only electric vehicles, even if o1 = o2. This is because the maximum length of
the sector that can be served by an electric vehicle is longer than the maximum
sector length that can be served by a diesel vehicle due to the time restrictions of
the latter. Therefore, in this situation, the diesel vehicle provides no advantage
compared with the electric vehicle since it has to make shorter trips and is more
expensive.

Finally Figure 2.13d depicts the results obtained when the same number of
customers are distributed over a longer area, i.e., the length of the area is increased
from L = 30 to L = 50 and the density is reduced from δ = 0.5 to δ = 0.3, so that
the total number of customers remains constant at 150. This change leads to a
decrease in the proportion of solutions for which only diesel vehicles are used (to
31.7%) and to an increase in the proportion of solutions for which a heterogeneous
fleet is optimal (7.68%). This is because that the area is longer and the travel
distances are increased so that it is optimal to use more electric vehicles which are
cheaper to operate per unit of distance.

Although we have found some examples where the cost saving yielded from using
an heterogeneous fleet is very large (more than 50%), in our numerical study, the
maximum cost saving resulting from using a heterogeneous fleet is about 10% and
the average is only about 0.1%. These cost figures suggest that the benefits are
generally small, the vast majority of cases being such that a homogeneous fleet
of vehicles is optimal. In practice, using different vehicle types generates extra
logistical complexity, which may not be outweighed by the average cost savings
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(a) Case 1: W = 10, L = 30, f1 = f2 = 0,
T1 = T2 =∞, δ = 0.5.

(b) Case 2: W = 10, L = 30, f1 =
130, f2 = 0, T1 = T2 =∞, δ = 0.5.

(c) Case 3: W = 10, L = 30, f1 = f2 = 0,
T1 =∞,T2 = 3, δ = 0.5.

(d) Case 4: W = 10, L = 50, f1 = f2 = 0,
T1 = T2 =∞, δ = 0.3.

Figure 2.13 Percentage usage of electric vehicles.

we have observed.

2.4.3 MILP versus DP

In the experiments of this section we solve 100 problem instances to compare
the computational performance of our DP algorithm and solving our MILP
formulation. Both methods were coded in a C++ environment and we used the
CPLEX V12.5.1 concert libraries to solve the MILP. The computational tests were
performed on an 2.70GHz Intel Xeon CPU E5-2680 processor, with 32 GB RAM,
operating on Windows 7. Table 2.2 reports the average computational time to solve
a set of 100 instances. The value Opt. indicates the number of instances solved to
optimality within a time limit of one hour. The instances where generated using
the same input parameters used in Figure 2.13b. The full results for individual
instances are presented in Table 2.3 in Appendix §2.C.

While the MILP could solve only 98 instances to optimality within an average time
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Table 2.2 Comparison between MILP and DP.

MILP DP
Number of Average∗ Average∗
instances Opt. time (sec.) Opt. time (sec.)

100 98 116.73 100 0.059
* Calculated on instances solved to optimality by both MILP and DP.

of 116.7 seconds, the DP algorithm could solve all instances within less than one
second. This confirms the efficiency of our method for problems with two vehicle
types.

2.5 Conclusions

We have studied the strategic problem of a logistics service provider managing a
fleet of vehicles operating in a city under access restrictions. We have represented
the city as a rectangular service region divided into sectors, each served by a
single vehicle. The length of the routes was calculated by means of a continuous
approximation formula. The objective was the minimization of the total cost of
fleet ownership or leasing, the fuel cost and labor cost. We have formulated the
problem as a mixed integer partitioning problem, and as a dynamic program. We
have provided an efficient method to compute an optimal solution by exploiting
some key structural properties of the problem; this method was shown to be much
faster than solving the MILP on a large number of problem instances. We have
also shown that the optimal solution may have a complex structure, with vehicles
of different types serving adjacent sectors, and some vehicle running at less than
capacity or returning to the depot before the route duration limit. Numerically,
we found that city access restrictions may, in some cases, be counter-productive as
they can induce more traffic congestion. We also found that on average, operating
a heterogeneous fleet only leads to a small decrease in cost, which may not be
outweighed by the increase in logistical complexity resulting from operating several
vehicle types.
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2.A Solution properties and formula for calculating the
value of s

In this section of the appendix, we prove the existence of an upper bound on the
number of strips and we provide a formulation for calculating it. We first provide
a Lemma which is useful in obtaining this result.

Lemma 2.7 The total distance traveled by all the vehicles serving a region, where
each strip is served by a single vehicle, is increasing in s for s ≥

⌈√
W 2δ/12

⌉
.

Proof: Proof Let s ≥
⌈√

W 2δ/12
⌉
, the difference in total distance traveled

between solutions with s+ 1 and s strips, denoted ∆s,s+1, is equal to

∆s,s+1 =
s+1∑
i=1

(
2(ϕs+1

i + L) +
LδW 2

6s2

)
−
s+1∑
i=1

(
2(ϕs+1

i + L) +
LδW 2

6(s+ 1)2

)

= 2
(
s+1∑
i=1

ϕs+1
i −

s∑
i=1

ϕsi

)
+ 2L− LδW 2

6s(s+ 1) .

Given the definition of ϕsi , it is easy to check that
∑s+1
i=1 ϕ

s+1
i −

∑s
i=1 ϕ

s
i is equal

to W
4

s
s+1 + ϕ if s is even and to W

4
s+1
s + ϕ if s is odd, which is positive in both

cases. Therefore ∆s,s+1 ≥ 2L− LδW 2

6s(s+1) ≥ 2L− LδW 2

6s2 , which is positive because
s+ 1 > s ≥ d

√
W 2δ/12e. 2

The next lemma provides a formulation for the upper bound computation.

Lemma 2.8 The optimal solution has a number of strips s∗ which is less or equal
to s = max

{
maxk=1,...,K sk,

⌈√
W 2δ/12

⌉}
, where for k = 1, ...K,

sk = max
{⌈

WLδ

Qk

⌉
, (2.29)


6Wk(1− δhLv) +

√
(6WkδhLv− 6Wk)2 − 4δLW 2

k (6(2L+ 2ϕ− Tkv) + 6Wk)

12(Wk + 2(L+ ϕ)− Tkv)


}

and Wk = min {W ,Tkv− 2(L+ ϕ)− ε} where ε is a small positive number.

Proof: For a given vehicle type k, Wk/2 measures the maximum horizontal
distance from the middle point of the top edge of the service area that can be
reached by a vehicle of type k. Vehicles such that Wk = W can reach the upper
left corner of the rectangle, but vehicles such that Wk < W cannot be used to
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serve the top left and right corners of the service area because they are unable to
reach these customers within their route duration limit Tk.

The variable sk measures the minimum number of strips needed so that vehicles
of type k can feasibly use one vehicle per strip to serve the rectangle of height L
and width Wk (with Wk/2 on each side of the depot). It is the smallest value
satisfying WLδ

sk
≤ Qk and 2(ϕ+ sk−1

sk

Wk
2 + L) + W 2Lδ

6s2
k

+ WLδhv
sk

≤ Tkv. Solving

the first inequality as an equation gives sk = WLδ
Qk

, which is the first term (2.29)
for the second we obtain a quadratic equation in sk:

6s2
k[Tkv− 2(L+ ϕ)−W ] + 6Wsk (1−Lhvδ)−W 2Lδ = 0.

Since Tkv − 2(L+ ϕ) −Wk = ε > 0, this equation has only one positive root,
which is the second term in (2.29). As a result, for all values of s > sk, it is
always feasible to serve all strips within a distance Wk/2 of the depot with only
one vehicle of type k.

The rest of the proof is by contradiction. Suppose there exists an optimal solution
S′ for which the area is divided into s′ strips such that s′ > s. In this solution,
there must be only one vehicle per strip since all vehicles types used in a strip can
feasibly serve it entirely, therefore it is optimal to use the vehicle that can serve the
entire strip at the lowest cost. Let n′i denote the number of strips served by vehicles
of type i in solution S′. Consider an alternative solution S′′ with s′′ = s, where
each strip is served by a single vehicle. Let n′′i denote the number of strips served
by vehicles of type i in solution S′′. We set n′′1 = min{n′1, s},n′′2 = min{n′2, s−
n′′1}, . . . ,n′′K = min{n′K , s−

∑K−1
i=1 n′′i }. Let k ∈ {1, . . . ,K} be the largest value

such that n′′k > 0. We have n′′i = n′i for i = 1, ..., k− 1, n′′k ≤ n′k and n′′i = 0 < n′i
for i = k + 1, ...,K. Let D′i and D′′i be the total distances traveled by all the
vehicles of type i = {1, . . . ,K} in solutions S′ and S′′, respectively. We know that∑K
i=1D

′
i ≥

∑K
i=1D

′′
i since, by Lemma 2.7, the total distance travelled increases

in the number of strips as s ≥
⌈√

W 2δ/12
⌉
. Also, D′′i ≥ D′i for i = 1, ..., k − 1

since the number of strips served by vehicles i in S′′ is the same as for S, but these
strips are wider.
We have:

TC(S′) =

K∑
i=1

(fin
′
i + oiD

′
i)

=

K∑
i=1

fin
′
i +

k−1∑
i=1

oiD
′
i +

K∑
i=k

oiD
′
i

≥
K∑
i=1

fin
′
i +

k−1∑
i=1

oiD
′
i + ok

(
K∑
i=1

D′i −
k−1∑
i=1

D′i

)
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>

K∑
i=1

fin
′′
i −

k−1∑
i=1

(ok − oi)D′′i + ok

K∑
i=1

D′′i

=

K∑
i=1

fin
′′
i +

k−1∑
i=1

oiD
′′
i + okD

′′
k = TC(S′′),

where the first inequality holds because ok ≤ oi for i = k+ 1, ...,K and the second
one holds because n′i ≥ n′′i for all i = 1, ...,K and

∑K
i=1D

′
i ≥

∑K
i=1D

′′
i and

D′i < D′′i for i = 1, ..., k− 1. Since TC(S′′) < TC(S′) we have a contradiction. 2

We observed that we can obtain a tighter upper bound on the value of s∗ using
a more complex algorithm. We used this alternate bound in our numerical study
since it contributes to reducing the computational time. However, as this does not
affect the main results of this chapter, we decided to present a simpler formulation
which calculates a looser upper bound.

2.B TC(l) Formulation

In this section of the appendix, we present the formulation for calculating TC(l)
from §2.3.2. Formally, we have

TC(l) = min
k=
⌈
lwδ−y2(l)

Q1

⌉
,...,
⌊
lwδ
Q1

⌋
−1

{
k∑
i=1

g1

(
Q1

wδ
, i
Q1

wδ

)
+ g2

(
l− i

Q1

wδ
, l
)}

= min
k=
⌈
lwδ−y2(l)

Q1

⌉
,...,
⌊
lwδ
Q1

⌋
−1

{
kf1 + o1

(
2
k−1∑
i=0

Q1

wδ
(k− i) + 2kϕ+

Q1w

6
k

)
+ f2

+o2

(
2(l+ ϕ) +

l− kQ1w

6

)}
,

where TC(l) is set equal to∞ if dlwδ− y2(l)/Q1e > blwδ/Q1c− 1. The minimum
and maximum values for k come from the observation that, by Proposition 2.2(iv),
the sector must have a length y such that Q1/(δw) = y1(l) < y < y2(l) ≤
Q2/(wδ), hence k must be such that Q1/(δw) < l− kQ1/(δw) < y2(l).

2.C Comparison of the MILP and DP formulations

In this section of the appendix, we provide the extended results table for §2.4.3.
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Vladimir : That passed the time.
Estragon : It would have passed in any case.

Samuel Beckett, Waiting for Godot

3 The Time-Dependent
Pollution-Routing Problem

In this chapter we study the Time-Dependent Pollution-Routing Problem (TD-
PRP), namely the problem of routing a homogeneous fleet of vehicles in order
to serve a set of customers and determining the speeds on each leg of the
routes. The cost function includes emissions and driver costs, taking into account
traffic congestion which, at peak periods, significantly restricts vehicle speeds
and increases emissions. Next to describing the TDPRP, we present an integer
linear programming formulation of the problem and provide illustrative examples
to motivate the problem and give insights about the tradeoffs it involves. We
also provide an analytical characterization of the optimal solutions for a single-
arc version of the problem, identifying conditions under which it is optimal to
wait idly at certain locations in order to avoid congestion and to reduce the
cost of emissions. Finally, using benchmark instances, we present results on the
computational performance of the proposed formulation.

49
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3.1 Introduction

Traffic congestion occurs when the capacity of a particular transportation link
is insufficient to accommodate an incoming flow at a particular point in time.
Congestion has a number of adverse consequences, including longer travel times
and variations in trip duration which result in decreased transport reliability,
increased fuel consumption and more carbon dioxide equivalent (CO2e) emissions.
The latter measures, for a given mixture and amount of greenhouse gas, the
amount of CO2 that would have the same global warming potential (GWP)
(Wikipedia, 2013). It is known that CO2e emissions are proportional to fuel
consumption and depend on vehicle speed. Heavy congestion results in low speeds
with fluctuations, often accompanied by frequent acceleration and deceleration,
and greatly contributes to CO2e emissions (Barth and Boriboonsomsin, 2008).
According to the International Road Transport Union (IRU), around 100 billion
liters of wasted fuel, or 250 billion tonnes of CO2e, were attributed to traffic
congestion in the United States in 2004 (IRU, 2012). Noise is another externality
resulting from congestion. In particular, noise from a vehicle’s power unit
comprising the engine, air intake and exhaust becomes dominant at low speeds
of 15–20 mph and at high acceleration rates of 2 m/s2, as reported by the World
Business Council for Sustainable Development (2004). Congestion is at its highest
during rush hour, which typically lasts from 6am or 7am to 9am or 10am in the
morning, although this varies from one city to another, e.g., 6am–9am in Sydney,
Brisbane and Melbourne, and 4am–9am in New York City (Wikipedia, 2012).

Our aim is to study the effect of congestion and CO2e emissions within the context
of the Vehicle Routing Problem (VRP), defined as the problem of routing a fleet
of vehicles to serve a set of customers subject to various constraints, such as
vehicle capacities (see e.g., Cordeau et al., 2007b). Previous VRP research assumes
constant vehicle speed, which is not realistic for most practical applications.
Van Woensel et al. (2001) show that solving the VRP under this assumption
can lead to deviations of up to 20% in CO2e emissions for gasoline vehicles on
an average day and up to 40% in congested traffic. Indeed, vehicle speed varies
throughout the day (Van Woensel et al., 2008), which affects CO2e emissions.
Maden et al. (2009) present an approach for the time-dependent vehicle routing
problem which allows for the planning of more reliable routes and schedules.
It is based on a tabu search algorithm, which minimizes the total travel time
and reduces emissions by avoiding congestion. The authors have applied this
algorithm to a real-life case study and have obtained reductions of about 7% in
CO2e emissions.

Accounting for emissions in the context of the VRP is relatively new. For a general
introduction to the topic we refer the reader to Sbihi and Eglese (2007b). Figliozzi
(2010) presents the emissions minimizing VRP (EVRP), a variant of the time-
dependent VRP (TDVRP) with time windows, which takes into account congestion
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so as to minimize speed-dependent CO2e emissions, using a function described by
Hickman et al. (1999). The EVRP is modeled on a partition of the working time,
and a set of speeds on each arc (i, j) of the network is defined as a function of the
departure time from node i. A model for the EVRP described by Figliozzi (2010)
uses route and departure times as decision variables, but the model also optimizes
speeds as a consequence of the objective function. Conrad and Figliozzi (2010) and
Figliozzi (2011) present results related to a variant of the EVRP on a case study
in Portland, Oregon, where scenarios with and without congestion are considered.
These papers focus on finding approximate, rather than optimal, solutions to the
problems, and hence heuristic algorithms are used to generate solutions. Jabali
et al. (2012b) take a similar approach by using the same emissions function in
a formulation of the time-dependent VRP (without time windows), with speed
as an additional decision variable. Travel times are modeled by partitioning the
planning horizon into two parts, where one part corresponds to a peak period in
which there is congestion and the vehicle speed is fixed, whereas the other part
assumes free-flow speeds which can be optimized. Jabali et al. (2012b) describe a
tabu search heuristic for this problem.

Another contribution along these lines is due to Bektaş and Laporte (2011) who
present the Pollution-Routing Problem (PRP) as an extension of the classical
Vehicle Routing Problem with Time Windows (VRPTW). The PRP consists
of routing a number of vehicles to serve a set of customers within preset time
windows, and determining their speed on each route segment, so as to minimize
a function comprising emissions and driver costs. The emissions function used
within the PRP is based on a comprehensive emissions model for heavy-duty
vehicles described by Barth et al. (2005), and differs from previous work in that
it allows to optimize both load and speed. The PRP formulation described by
Bektaş and Laporte (2011) considers only free-flow speeds of 40 km/h or higher.
Demir et al. (2012) extend the PRP formulation to take into account lower speeds,
but without looking at congestion per se, and describe a heuristic that can solve
large-size instances.
A common assumption in the VRPTW is to allow arrival at a customer location
before the opening of the time window, but service can only start within the
time window. None of the work mentioned above has allowed for idle waiting
after service completion as a strategy to avoid congestion. In this chapter we
incorporate, for the first time, congestion into the PRP framework so as to
adequately account for the adverse effects of low speeds caused by congestion,
and we make use of the “idle waiting” strategy.

In this chapter we introduce the Time-Dependent Pollution-Routing Problem
(TDPRP), which extends the PRP by explicitly taking into account traffic
congestion, and we describe an integer linear programming formulation of the
TDPRP where the vehicles speeds are optimized among a set of discrete values.
We also provide an analytical characterization of the optimal solutions for a single-
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arc version of the problem. Finally we report computational experiments with the
integer programming formulation on benchmark instances.

The contribution of this chapter is multi-fold and can be stated as follows:
(i) we break away from the literature on congestion-aware VRP by using a
comprehensive emissions function which includes factors such as load and speed,
(ii) we demonstrate how the total travel cost can be significantly reduced by
allowing the vehicle to wait at the depot or at a customer node, after the service
has been completed, (iii) we propose an integer linear programming formulation
of the TDPRP which computationally improves upon the PRP formulation, (iv)
we generate new insights on the trade-off between emissions cost and driver wage.

It should be noted at this point that all results derived in this chapter also hold
for the special case of zero pollution costs. In other words, our results apply to the
problem of optimizing vehicle speeds and departure times in contexts characterized
by driver costs, time windows and traffic congestion only.

The remainder of the chapter is structured as follows. The next section presents
a formal description of the TDPRP and our general modeling framework. §3.3
provides illustrative examples to motivate the problem. §3.4 describes an
integer linear programming formulation of the TDPRP. A complete analytical
characterization of the optimal solutions for a single-arc version of the problem is
provided in §3.5. Computational results obtained on benchmark instances with
the proposed TDPRP formulation are presented in §3.6. Conclusions follow in
§3.7.

3.2 Problem description

The TDPRP is defined on a complete graph G = {N ,A} where N is the set of
nodes, 0 is the depot, N0 = N \ {0} is the set of customers, and A is the set of
arcs between every pair of nodes. The distance between two nodes i 6= j ∈ N
is denoted by dij . A homogeneous fleet of K vehicles, each with a capacity limit
of Q units, is available to serve all customers, where each customer i ∈ N0 has
a non-negative demand qi. To each customer i ∈ N0, corresponds a service time
hi and a hard time window [li,ui] in which service must start. In particular, if a
vehicle arrives at node i before li, it waits until time li to start service. Without
loss of generality we assume that the vehicle can depart from the depot at time
zero (we relax this assumption in §3.5), i.e the service time at the depot is 0.

The following sections present the way in which time dependency and congestion
are modeled in the TDPRP, and how CO2e emissions are calculated.



53 3. The Time-Dependent Pollution-Routing Problem

3.2.1 Time-dependency

In the PRP (Bektaş and Laporte, 2011), the travel time of a vehicle depends only
on distance and speed, and the latter can be chosen freely. In the TDPRP, the
speed also depends on the departure time of the vehicle because it is constrained
during periods of traffic congestion. Here, we make use of time-dependent travel
times and model traffic congestion using a two-level speed function as in Jabali
et al. (2012b). We assume there is an initial period of congestion, lasting a units
of time, followed by a period of free-flow. This modeling framework is suitable
for routing problems which must be executed in the first half of a given day,
e.g., starting from a peak-morning period where traffic congestion is expected,
and following which it will dissipate. In the peak-period, the vehicle travels at a
congestion speed vc whereas in the period that follows, it is only limited by the
speed limits vmin and vmax, meaning that the vehicle drives at free-flow speed
vf ∈ [vmin, vmax]. These bounds may be explicitly imposed by the driving code
or may implicitly result from traffic regulations such as a ban on overtaking for
heavy vehicles.

For practical reasons we assume that the speed vc and the time a are constants
which can be extracted from archived travel data (e.g., Hansen et al., 2005) and
that the same values hold between every pair of locations.

To model time-dependency, consider two locations spaced out by a distance of d.
Let T (w, vf ) denote the travel time of a vehicle between the two locations, that is
the time spent by the vehicle on the road depending on its departure time w from
the first location, and the chosen free-flow speed vf . It can be calculated using
the following formulation proposed by Jabali et al. (2012b):

T (w, vf ) =


d
vc

if w ≤
(
a− d

vc

)+
vf−vc
vf

(a−w) + d
vf

if
(
a− d

vc

)+
< w < a

d
vf

if w ≥ a.

(3.1)

The calculation of T (w, vf ) suggests that the planing horizon can be divided into
three consecutive time regions in terms of the departure time w, as follows:

• The first one w ∈
[
0,
(
a− d

vc

)+]
is called the all congestion region: the

vehicle leaving the first location within this region makes the entire trip
during the congestion period and arrives at the second location after d/vc
units of time.

• The second one w ∈
[(
a− d

vc

)+
, a
]
, is called the transient region: the

vehicle leaving within this region traverses a distance of length (a−w)vc at
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speed vc and the remaining distance of length d− (a−w)vc at the chosen
free-flow speed vf .

• The last one w ∈ [a,∞), is called the all free-flow region, in which the vehicle
makes the entire trip at the free-flow speed vf and completes the journey in
d/vf units of time.

Figure 3.1(left) shows the speed of a vehicle as a function of time for vf > vc.
Figure 3.1(right) shows how T varies with the departure time w given free-flow
speed vf .

Figure 3.1 Time-dependent speed and travel time profiles.

3.2.2 Modeling emissions

Our modeling of emissions follows the same approach as in Bektaş and Laporte
(2011). Here we provide a brief exposition for the sake of completeness. Since CO2e
emissions are directly proportional to the amount of fuel consumed, we use the fuel
use rate as a proxy to estimate the total amount of CO2e emissions. To calculate
fuel consumption, we use the comprehensive emissions model of Barth et al. (2005)
and Barth and Boriboonsomsin (2008), according to which the instantaneous fuel
use rate, denoted FR (liter/s), when traveling at a constant speed v (m/s) with
load f (kg) is estimated as

FR(v, f) = ξ

κψ

(
kNeV +

0.5CdρAv3 + (µ+ f)v (g sinφ+ gCr cosφ)
1000ε$

)
, (3.2)

where ξ is fuel-to-air mass ratio, κ is the heating value of a typical diesel fuel
(kJ/g), ψ is a conversion factor from grams to liters from (g/s) to (liter/s), k is
the engine friction factor (kJ/rev/liter), Ne is the engine speed (rev/s), V is the
engine displacement (liter), ρ is the air density (kg/m3), A is the frontal surface
area (m2), µ is the vehicle curb weight (kg), g is the gravitational constant (equal
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Figure 3.2 Fuel use rate F as a function of speed v

to 9.81m/s2), φ is the road angle, Cd and Cr are the coefficient of aerodynamic
drag and rolling resistance, ε is vehicle drive train efficiency and $ is an efficiency
parameter for diesel engines. Using α = g sinφ+ gCr cosφ, β = 0.5CdAρ, γ =
1/(1000ε$) and λ = ξ/κψ, (3.2) can be simplified as

FR(v, f) = λ
(
kNeV + γ

(
βv3 + α(µ+ f)v

))
. (3.3)

The total amount of fuel used, denoted F (liters), for traversing a distance d (m)
at constant speed v (m/s) with load f (kg) is equal to the fuel rate multiplied by
the travel time d/v:

F (v, f) = λ

(
kNeV

d

v
+ γβdv2 + γα(µ+ f)d

)
. (3.4)

Expression (3.4) contains three terms in the parentheses. We refer to the first
term, namely kNeV d/v, as the engine module which is linear in the travel time.
The second term, γβdv2, is called the speed module, which is quadratic in the
speed. The last term, γα(µ+ f)d, is the weight module, which is independent of
travel time and speed. Figure 3.2 shows the relationship between F and v for a
vehicle traveling a distance of 100 km. Other parameters used in generating the
figure are given in Table 3.1.

Figure 3.2 shows a U-shape curve between fuel consumption and speed, which is
consistent with the behavior of functions suggested by other authors (e.g., Demir
et al., 2011), confirming that low speeds (as in the case of traffic congestion) lead
to very high fuel use rate. The figure also shows the engine module as the main
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Table 3.1 Setting of vehicle and emissions parameters

Notation Description Value
ξ fuel-to-air mass ratio 1
κ heating value of a typical diesel fuel (kJ/g) 44
ψ conversion factor (g/liter) 737
k engine friction factor (kJ/rev/liter) 0.2
Ne engine speed (rev/s) 33
V engine displacement (liter) 5
ρ air density (kg/m3) 1.2041
A frontal surface area (m2) 3.912
µ curb-weight (kg) 6350
g gravitational constant (m/s2) 9.81
φ road angle 0
Cd coefficient of aerodynamic drag 0.7
Cr coefficient of rolling resistance 0.01
ε vehicle drive train efficiency 0.4
$ efficiency parameter for diesel engines 0.9
fc fuel price per liter (£) 1.4
dc driver wage (£/s) 0.0022

driver of this trend, which contributes considerably to the increase in the amount
of emissions at low speeds.

To model the emissions in a time-dependent setting, we rewrite the fuel consump-
tion function F as a function of the departure time w and the free-flow speed vf on
a given arc of length d. If a vehicle traverses the arc in the all congestion region,
then

F (w, vf ) = λ
[
kNeV T (w, vf ) + γβ T (w, vf )v3

c + γα(µ+ f)d
]

.

Similarly, in the all free-flow region,

F (w, vf ) = λ
[
kNeV T (w, vf ) + γβ T (w, vf )v3

f + γα(µ+ f)d
]

.

When a vehicle traverses the arc in the transient region, the speed module needs
to be split into two terms since the speed changes before and after the end of the
congestion period. In this case
F (w, vf ) = λ

[
kNeV T (w, vf ) + γβ

[
(a−w)v3

c + (w + T (w, vf )− a)v3
f

]
+ γα(µ+ f )d

]
,

where a−w is the time spent in congestion and w+ T (w, vf )− a is the time spent
driving at free-flow speed.

In general, let T c(w) = min{(a−w)+, d/vc} be the time spent by the vehicle in
congestion and T f (w, vf ) = [d− (a−w)+vc]+/vf be the time spent driving at
the free-flow speed. We have T (w, vf ) = T c(w) + T f (w, vf ) and we can write

F (w, vf ) = λkNeV T (w, vf ) + λγβ
[
T c(w)v3

c + T f (w, vf )v3
f

]
+ λγα(µ+ f)d.
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3.2.3 Aim of the TDPRP

In the TDPRP, the total travel cost function is composed of the cost of the vehicle
emissions and the driver cost for each arc in the network. Let fc denote the fuel
price per liter and let dc denote the wage rate for the drivers of the vehicles. In
this chapter we assume that the CO2e emissions cost is equal to the fuel cost. In
practice, we could modify fc to include the cost of emissions. However, there is
considerable debate on the price of CO2e and the method used to estimate it is
rather subjective (see the survey paper by Tol (2005) gathering 103 estimates of
the marginal damage costs of CO2e emissions), so we have decided not to include
it in our numerical calculations.

We consider two ways of calculating the total time for which the driver is paid,
which we call driver wage policies: (a) the driver of each vehicle is paid starting
from the beginning of the planning horizon until returning back to the depot, (b)
the driver is paid starting from the start of the service at the origin location until
the completion of service at location n. Under driver wage policy (a), the driver
reports to the origin location at the start of the planning horizon, which coincides
with the start of a typical work day, but may have to wait before starting his or
her service and driving duties (during this time he or she may be asked to perform
some administrative duties). Under driver wage policy (b), the driver arrives at
the origin location right on time to start service.

The aim of the TDPRP is to determine a set of routes, starting and ending at the
depot, the speeds on each leg of the routes and departure times from each node so
as to minimize the total travel cost. We provide an expression for the cost function
in §3.4 and one for the special case of a network with only one arc in §3.5.

In the next section we present a number of numerical examples which illustrate the
trade-offs involved in this model. In particular, we outline an important feature of
the TDPRP, i.e., that it may be optimal to wait at a node, even after the service
is completed, in order to reduce the time spent driving in congestion. Similarly,
it may also be optimal for the vehicles not to leave the depot at the start of the
planning horizon. Hence, the driver’s time at a customer can be spent (i) waiting
for the start of service in the case of an early arrival—we call this the pre-service
wait, (ii) serving the customer, or (iii) waiting after service is completed and before
departing to the next customer or back to the depot—we call this the post-service
wait.

3.3 Examples

The purpose of this section is twofold. We first investigate the impact of
considering traffic congestion on the routing and scheduling planning activities.
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We then compare the two driver wage policies, namely paying the drivers from the
beginning of the planning horizon or from their departure time from the depot.
In both cases, we analyze a four-node network where node 0 is the depot at which
a single vehicle is based, and {1, 2, 3} is the set of customers. The network is
depicted in Figure 3.3. Every arc has the same two-level speed profile consisting
of an initial congestion period which lasts a seconds, followed by a free-flow period.
In the examples below, the congestion speed vc is set to 10 km/h, the minimum
speed limit vmin to 50 km/h and the maximum speed limit vmax to 110 km/h.
The examples differ with respect to the driver wage policy and the time windows
at the customer nodes, which are given above each table. We assume that demand
and service time at each customer node are zero. The assumption on the demand
values entails no loss of generality given that the weight module does not depend
on the vehicle speed, as shown in §3.2.2. The parameters used to calculate the
total cost function, which are reported in Table 3.1, are taken from Demir et al.
(2012).

Figure 3.3 Sample four-node instance

3.3.1 Impact of traffic congestion

We consider four examples. In each one, we minimize the total travel cost using
two different approaches. In the time-independent approach, we ignore traffic
congestion when planning the vehicle route and schedule, that is, we assume that
the vehicle can always drive at the chosen free-flow speed on each arc of the
network. Let SN denote the solution of the time-independent approach. In the
time-dependent approach, we account for traffic congestion by solving the TDPRP,
the solution of which we denote by SD. However, the costs for both solutions
(denoted by TC(SN ) and TC(SD)) are evaluated under traffic congestion. Since
SD is optimal under traffic congestion, it follows that TC(SD) ≤ TC(SN ), and the
difference in cost between the two solutions represents the value of incorporating
traffic congestion information in the decision making process. In the example
below, the length of the congestion period is equal to 14400 seconds (4 hours).
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Example 3.1 (Post-service wait at depot) This example shows that ignoring
traffic congestion when planning the route and schedule of the vehicle can lead to
a substantial increase in costs. It also shows that adding waiting time at the depot
can be used as an effective strategy to mitigate the effect of congestion and reduce
the total travel cost. We assume no service time windows at customer nodes:
l1 = l2 = l3 = 0, and u1 = u2 = u3 = ∞. The driver is paid from the beginning
of the planning horizon.

The solutions to the time-independent and time-dependent approaches are dis-
played in Table 3.2. For each solution, the table reports (i) the set of traversed
arcs in chronological order from top to bottom under column Arc, (ii) the speed(s)
at which each arc is traversed (for an arc traversed during the transient region,
both the congestion speed and free-flow speed are reported), (iii) the departure
time from the origin node, (iv) the post-service waiting time at the origin node,
i.e. the additional time that the driver intentionally waits once the service is
completed before leaving a node (at the depot the waiting time is equal to the
departure time), (v) the emissions cost F , (vi) the driver cost W and (vii) the
total cost TC.

Table 3.2 Comparison of SN and SD in Example 1

SN SD
Arc Speed Departure time Waiting time F W TC Arc Speed Departure time Waiting time F W TC

km/h s s £ £ £ km/h s s £ £ £
(0, 1) 10, 75.34† 0 0 25.86 32.73 58.59 (0, 1) 75.34 14400 14400 11.47 36.94 48.40
(1, 2) 75.34 14877.8 0 6.88 3.15 10.03 (1, 2) 75.34 16789.2 0 6.88 3.15 10.03
(2, 3) 75.34 16311.3 0 11.47 5.26 16.72 (2, 3) 75.34 18222.7 0 11.47 5.26 16.72
(3, 0) 75.34 18700.5 0 6.88 3.15 10.03 (3, 0) 75.34 20611.8 0 6.88 3.15 10.03
Total 51.09 44.29 95.38 36.70 48.50 85.20
†transient region

From Table 3.2, we see that the two solutions yield the same optimal tour
(0, 1, 2, 3, 0) and the same set of optimal free-flow speed levels (75.34 km/h on
each arc). The difference between the two solutions lies in the fact that the vehicle
leaves the depot at time zero in SN but waits until the end of the congestion
period in SD. Thus, SD yields a higher driver cost but this increase is more than
compensated by an emissions cost saving, yielding a 10.67% total cost saving over
SN (85.20 instead of 95.38).

Example 3.2 (Post-service wait at a customer node) This example shows
that ignoring traffic congestion can lead to a significant cost increase when the
schedule fails to include post-service wait times which help to mitigate the negative
impacts of traffic congestion on emissions costs. It also highlights the difference
between pre-service and post-service waits. We assume the following service time
windows (in seconds) at customer nodes: l1 = 15000, l2 = 0, l3 = 11000, u1 =
u2 = ∞, u3 = 12000. The driver is paid from the beginning of the planning
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horizon. The solutions to the time-independent and time-dependent approaches
are displayed in Table 3.3.

Table 3.3 Comparison of SN and SD in Example 2

SN SD
Arc Speed Departure time Waiting time F W TC Arc Speed Departure time Waiting time F W TC

km/h s s £ £ £ km/h s s £ £ £
(0, 3) 10 0 0 17.67 24.20 41.87 (0, 3) 10 0 0 17.67 31.68 49.35
(3, 2) 10, 72† 11000 0 14.69 11.94 26.63 (3, 2) 75.34 14400 3400 11.47 5.26 16.72
(2, 1) 72 16427.8 0 6.75 3.30 10.05 (2, 1) 75.34 16789.2 0 6.88 3.15 10.03
(1, 0) 75.34 17927.8 0 11.47 5.26 16.72 (1, 0) 75.34 18222.7 0 11.47 5.26 16.72
Total 50.58 44.70 95.28 47.49 45.35 92.84
†transient region

In this example, SN and SD yield the same optimal route but different schedules.
In both solutions, the time at which the driver arrives at node 3 is 3200 seconds
before the lower limit of the time window, hence there is a positive pre-service wait
time at that node. In the SN solution, the vehicle leaves immediately after serving
customer 3, while in the SD solution it waits until the end of the traffic congestion.
Hence, the pre-service and post-service waiting times at node 3 are both positive
in SD. This change in the schedule leads to cost savings of 2.56% over the time-
independent solution. From this example, it can be seen that, while pre-service
wait times can occur in SN and SD, post-service wait times are strategic decisions
motivated by the impact of congestion and in this example only occur in SD, when
the driver is paid from the beginning of the planning horizon.

Example 3.3 (Late deliveries due to congestion) This example shows that
ignoring traffic congestion can prevent the driver from delivering within the set
time windows because he or she chose a suboptimal route and suboptimal free-
flow speeds. This can have significant negative consequences in terms of future
business profitability. We assume the following service time windows (in seconds)
at customer nodes: l1 = l2 = l3 = 0, u2 = 15500 and u1 = u3 = ∞. The
driver is paid from the beginning of the planning horizon. The solutions to the
time-independent and time-dependent approaches are displayed in Table 3.4.

Table 3.4 Comparison of SN and SD in Example 3

SN SD
Arc Speed Departure time Waiting time F W TC Arc Speed Departure time Waiting time F W TC

km/h s s £ £ £ km/h s s £ £ £
(0, 1) 10, 75.34† 0 0 25.86 32.73 58.59 (0, 2) 10, 106.02† 5070.96 5070.96 24.81 34.10 58.91
(1, 2) 75.34 14877.8 inf. inf. inf. inf. (2, 1) 75.34 15500 0 6.88 3.15 10.03
(2, 3) 75.34 16311.3 inf. inf. inf. inf. (1, 3) 75.34 16933.5 0 13.37 6.13 19.50
(3, 0) 75.34 18700.5 inf. inf. inf. inf. (3, 0) 75.34 19719.7 0 6.88 3.15 10.03
Total 51.95 46.54 98.48
†transient region

We see from Table 3.4 that the optimal tour for SN is (0, 1, 2, 3, 0) and the
optimal free-flow speed, without congestion, is 75.34 km/h for every arc. Under
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congestion, however, the vehicle is only able to reach customer 2 after 14877.8 +
(30/75.34)3600 = 16311.3 seconds, that is, with a 13.5 minute delay with respect
to the upper time window limit. Because of this delay, SN is infeasible in the
presence of traffic congestion. The optimal route (0, 2, 1, 3, 0) under SD is different
and so are the free-flow speeds (106.02 km/h on the first arc and 75.34 km/h
afterwards). By accounting for traffic congestion, the planner realizes that the
driver must go to customer 2 first. It does so after an initial waiting time of
5070.96 seconds at the depot, and then proceeds at a speed of 106 km/h to reach
customer 2, exactly at the upper limit of its time window, at 15500 seconds.

Example 3.4 (Reduction of driver and emissions costs) This example
shows that SN and SD solutions can both have strategic wait times but for reasons
which are different from those mentioned above. We assume the following service
time windows (in seconds) at customer nodes: l1 = 19000, l2 = 0, l3 = 11000,
u1 = u2 = u3 = ∞. Contrary to the previous three examples, the driver is now
paid from the departure time. The solutions to the time-independent and time-
dependent approaches are displayed in Table 3.5. Table 3.5 shows that when there

Table 3.5 Comparison of SN and SD in Example 4

SN SD
Arc Speed Departure time Waiting time F D TC Arc Speed Departure time Waiting time F D TC

km/h s s £ £ £ km/h s s £ £ £
(0, 3) 10, 75.34† 13743.8 13743.8 7.54 4.41 11.94 (0, 3) 75.34 14400 14400 6.88 3.15 10.03
(3, 2) 75.34 15746.4 0 11.47 5.26 16.73 (3, 2) 75.34 15833.5 0 11.47 5.26 16.72
(2, 1) 75.34 18135.6 0 6.88 3.15 10.04 (2, 1) 75.34 18222.7 0 6.88 3.15 10.03
(1, 0) 75.34 19569.1 0 11.47 5.26 16.73 (1, 0) 75.34 19656.2 0 11.47 5.26 16.72
Total 37.36 18.07 55.43 36.70 16.82 53.52
†transient region

are lower time window restrictions at the customers and the driver is paid from
its departure time, there can be strategic post-service waiting time at the depot in
both solutions SN and SD. In the SN solution, the reason for delaying the vehicle’s
departure is to reduce the driver cost by avoiding pre-service wait at the customer
node. In contrast, in SD solution, there is another reason for delaying the vehicle’s
departure, which is the desire to avoid traveling in congestion, thereby reducing
emissions cost.

From the four examples just presented, we conclude that ignoring traffic congestion
can have detrimental consequences on the timing of deliveries. Congestion is likely
to increase costs or even lead to an infeasible solution (which can be seen as a
solution with infinite costs) when customer nodes have delivery time windows.
This is because the planner does not incorporate strategic post-service wait times
motivated by traffic congestion in the vehicle schedules. We show that these
strategic wait times can occur either at the depot or at the customer nodes.
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3.3.2 Impact of the driver wage policy

In this section we investigate the impact of the driver wage policy on the optimal
TDPRP solution, namely whether the driver is paid from the beginning of the
planning horizon or from the departure time. In the example below, the length of
the congestion period is equal to 7200 seconds.

Example 3.5 (Impact of driver wage policy on wait time and routing)
In this example we assume the following service time windows (in seconds) at
customer nodes: l1 = l2 = 9000, l3 = 10000, u1 = 19000,u2 = 15000,u3 = 12000.
The optimal solutions for the two driver wage policies are compared in Table 3.6.

Table 3.6 Comparison of the driver wage policies in Example 5

SD The driver is paid from the beginning of the planning horizon SD The driver is paid from departure
Arc Speed Departure time Waiting time F W TC Arc Speed Departure time Waiting time F W TC

km/h s s £ £ £ km/h s s £ £ £
(0, 1) 97.5 7200 7200 13.64 19.89 33.53 (0, 3) 75.34 8566.5 8566.5 6.88 3.15 10.03
(1, 2) 97.5 9046.15 0.00 8.17 2.44 10.61 (3, 2) 75.34 10000 0 11.47 5.26 16.73
(2, 3) 97.5 10153.8 0.00 13.59 4.07 17.66 (2, 1) 75.34 12389.2 0 6.88 3.15 10.03
(3, 0) 75.34 12000.00 0.00 6.88 3.15 10.03 (1, 0) 75.34 13822.7 0 11.47 5.26 16.73
Total 42.28 29.55 71.83 36.70 16.82 53.52

Table 3.6 shows that the driver wage policy may affect the resulting route. When
the driver is paid from the beginning of the planning horizon, the optimal route is
(0, 1, 2, 3, 0) and it is optimal to wait until the end of the congestion period. When
the driver is paid from the departure time, it is optimal to postpone the departure
until after the end of the congestion period but this requires a change of route to
(0, 3, 2, 1, 0) in order to meet the delivery time windows.

In summary, we see that it is important to take the driver wage policy into account
when optimizing the route and schedule of the vehicles. When the driver is paid
from the departure time, he or she generally leaves the depot later than if he or
she was paid from the beginning of the planning horizon, but this delay has to be
compensated by either a change of route or a speed increase.

3.4 MILP formulation

This section presents a mathematical formulation for the TDPRP. The objective is
to determine a set of routes for the K vehicles, all starting and ending at the depot,
along with their speeds on each arc, and then departure times from each node so
as to minimize a total cost function encompassing driver and emissions costs. The
objective function is not linear in the speed values. To linearize it, we discretize
the free-flow speed following an approach used by Bektaş and Laporte (2011). Let



63 3. The Time-Dependent Pollution-Routing Problem

R = {1, . . . , k} be the index set of different speed levels and v1, . . . , vk denote the
corresponding free-flow speeds where vc ≤ vmin = v1 < . . . < vk = vmax. Figure
3.4 illustrates the different speed values and corresponding travel time functions.
Let b0 = 0, b1 = (a− d/vc)

+, b2 = a and b3 = ∞ and let [bm−1, bm) denote the

Figure 3.4 Time-dependent speed and travel time profiles

m-th time interval, where m ∈ {1, 2, 3}. Specifically, m = 1 is the all congestion
region, m = 2 is the transient region and m = 3 is the all free-flow region. We
also define νmr as the vehicle speed in time region m given free-flow speed vr with
r ∈ R, that is, ν1r = vc, ν2r = vc and ν3r = vr. These definitions allow us to
rewrite (3.1) for arc (i, j) as T (w, vr) = θmrw+ ηmrij , if bm−1 ≤ w < bm and r ∈ R,
where,

θmr =

{ 0 m = 1, 3
ν2r−ν3r

ν3r m = 2,

ηmrij =


dij
ν1r m = 1

dij
ν3r +

(
ν3r−ν2r

ν3r

)
a m = 2

dij
ν3r m = 3.

The model uses the following decision variables:

xij binary variable equal to 1 if a vehicle traverses arc (i, j) ∈ A, 0 otherwise,
zmrij binary variable equal to 1 if a vehicle traverses arc (i, j) ∈ A, leaving node i within time

interval m ∈ {1, 2, 3} with the free-flow speed vr with r ∈ R, 0 otherwise,
fij load carried on arc (i, j),
wmrij variable equal to the time instant at which a vehicle leaves node i ∈ N to traverse arc

(i, j) if within time interval m ∈ {1, 2, 3} with the free-flow speed vr with r ∈ R,

si total time spent on a route that has node i ∈ N0 as last visited before returning to the
depot,

ϕi time at which service at node i ∈ N0 starts.
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Given these variables, θmrij wmrij + ηmrij z
mr
ij is equal to the travel time of a vehicle

on arc (i, j) ∈ A if the vehicle leaves node i within time interval m ∈ {1, 2, 3} and
uses free-flow speed vr with r ∈ R.
We now present a mixed integer linear programming formulation for the TDPRP:

Minimize
∑

(i,j)∈A

∑
r∈R

3∑
m=1

fcλkNeV (θmrij wmrij + ηmrij zmrij ) (3.5)

+
∑

(i,j)∈A

∑
r∈R

∑
m=1,3

fcλγβ(ν
mr)3(θmrij wmrij + ηmrij zmrij ) (3.6)

+
∑

(ij)∈A

∑
r∈R

fcλγβ(ν
2r)3(az2r

ij −w
2r
ij ) (3.7)

+
∑

(i,j)∈A

∑
r∈R

fcλγβ(ν
3r)3(w2r

ij + θ2r
ij w

2r
ij + η2r

ij z
2r
ij − az

2r
ij ) (3.8)

+
∑

(i,j)∈A

fcλγαijdij(µxij + fij) (3.9)

+
∑
i∈N0

dcsi (3.10)

subject to∑
j∈N

x0j = K (3.11)

∑
i∈N

xij = 1 ∀j ∈ N0 (3.12)∑
j∈N

xij = 1 ∀i ∈ N0 (3.13)

∑
j∈N

fji −
∑
j∈N

fij = qi ∀i ∈ N0 (3.14)

qjxij ≤ fij ≤ xij(Q− qi) ∀(i, j) ∈ A (3.15)

zmrij bm−1
ij ≤ wmrij ≤ z

mr
ij bmij ∀(i, j) ∈ A,m ∈ {1, 2, 3}, r ∈ R (3.16)∑

i∈N

3∑
m=1

∑
r∈R

(
wmrij + θmrij wmrij + ηmrij zmrij

)
≤ ϕj ∀j ∈ N0 (3.17)

∑
j∈N

∑
r∈R

3∑
m=1

wmrij ≥ ϕi + hi ∀i ∈ N0 (3.18)

li ≤ ϕi ≤ ui ∀i ∈ N0 (3.19)

si ≥
∑
r∈R

3∑
m=1

(wmri0 + θmri0 wmri0 + ηmri0 zmri0 ) ∀i ∈ N0 (3.20)
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3∑
m=1

∑
r∈R

zmrij = xij ∀(i, j) ∈ A (3.21)

zmrij ∈ {0, 1} ∀(i, j) ∈ A,m ∈ {1, 2, 3}, r ∈ R (3.22)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.23)
fij ≥ 0 ∀(i, j) ∈ A. (3.24)

The first five parts of the objective function represent the cost of emissions. In
particular, (3.5) computes the cost induced by the engine module, the terms (3.6)–
(3.8) measure the cost induced by the speed module, and (3.9) is the cost induced
by the weight module. More precisely, (3.6) calculates the emissions cost generated
by the speed module in the all congestion and in the all free-flow regions, while
(3.7) and (3.8) represent the emissions cost generated by the speed module in
the transient region. Finally, the last term (3.10) measures the total driver wage
when the driver is paid from the beginning of the planning horizon. In contrast,
if the driver was paid from its departure time, the total driver wage would be∑
i∈N0

dcsi −
∑
j∈N0

∑
r∈R

∑3
m=1 dcw

mr
0j .

Constraint (3.11) indicates that exactly K vehicles depart from the depot.
Constraints (3.12) and (3.13) guarantee that each customer is visited exactly once.
Constraints (3.14) and (3.15) model the flow on each arc, and ensure that vehicle
capacities are respected. The boundary conditions on the departure time are
imposed by constraint (3.16). Constraints (3.17) and (3.18) are used to express
the temporal relationship between arrival time and service time, and between
service time and departure time, respectively. The time windows restrictions at
customer nodes are imposed by constraint (3.19). Constraint (3.20) computes the
time at which the vehicle returns to the depot. The relationship between speed
and arc-traversal variables is expressed by constraint (3.21). Finally, constraints
(3.22)–(3.24) enforce the integrality and nonnegativity restrictions on the variables.

We provide a numerical analysis of the performance of this formulation in §3.6.

3.5 Analytical results based on a single-arc network

We now consider a special case of the TDPRP on a network with two nodes spaced
by a distance d, i.e., the depot and one customer node. The aim is to gain insights
by analyzing this special case of the problem; as will be shown in Chapter 5 and
§3.6, the results obtained in this section are useful for optimizing the TDPRP on a
fixed route and for improving the computational performance of the integer linear
programming formulation.

We minimize the cost of going from the depot to the customer node (hence,
ignoring the return trip to the depot). The customer node has a time window
[l,u], service time at the customer node is equal to h. We assume, without loss of
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generality, that the demand at the customer is equal to zero and that there is a
two-level speed profile with an initial congestion period a, as described in §3.2.1.

In this special case there are only two decision variables: the departure time w
from the depot and the free-flow speed vf for the vehicle serving the customer.
We must have vf ∈ [vmin, vmax] and w ≥ ε, where ε ≥ 0 is the earliest time at
which the vehicle can leave the depot. For example ε can represent loading time
at the depot. We refer to ε as the beginning of the planning horizon; w− ε is the
(strategic) waiting time at the depot. Without loss of generality we assume that
a ≥ ε and ε ≤ l ≤ u ≤ ∞ (for example, if a < ε, then the problem can be solved
by setting a = ε).

Our objective is to minimize the total cost function TC(w, vf ) so that the arrival
time at the customer node does not exceed u. In other words, the optimization
problem is

minimize w≥ε
vmin≤vf≤vmax

TC(w, vf ) = fcF (w, vf ) + dcW (w, vf )

subject to T (w, vf ) +w ≤ u,

where F and T are as defined in §3.2 and W (w, vf ) denotes the time for which
the driver is paid. If the driver is paid from the beginning of the planning horizon
(i.e., ε), then W (w, vf ) = max

{
w− ε+ T (w, vf ), l− ε

}
+ h. If the driver is paid

from the departure time (i.e., w), then W (w, vf ) = max{T (w, vf ), l−w}+ h.

For the single-arc problem to be feasible, the vehicle must be able to reach the
customer node by time u if it does not wait at the depot, i.e. if w = ε. By
leaving immediately, the vehicle is either (i) in the all congestion region, i.e., when
ε ≤ a− d/vc, in which case u ≥ ε+ d/vc, or (ii) in the transient region, i.e., when
ε ≥ a− d/vc, in which case u ≥ a+ (d− (a− ε)vc)/vmax. We can summarize
these two conditions as follows: u ≥ min{a, ε+ d/vc}+ (d− (a− ε)vc)+/vmax.
In what follows we assume that this condition is satisfied.

Let vuw be the free-flow speed required for the driver to arrive at the customer
exactly at time u when leaving the depot at time w. Then

vuw =

{
d−(a−w)+vc
u−max{a,w} , if w ∈ [max {ε, a− d/vc} ,u] and u > a

∞, otherwise.

Similarly, let vlw be the free-flow speed required for the driver to arrive at the
customer exactly at time l when leaving the depot at w. Then

vlw =

{
d−(a−w)+vc
l−max{a,w} , if w ∈ [max {ε, a− d/vc} , l] and l > a

∞, otherwise.

The departure time w from the depot must be such that vuw ≤ vmax otherwise it
is not possible to arrive by time u. Let wumax denote the time at which the vehicle
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needs to depart from the depot to reach the customer at exactly time u, driving
at free-flow speed vmax.

wumax =


u− d

vmax , if vmax ≥ vua and u > a

a− d−(u−a)vmax
vc

, if vmax < vua and u > a

u− d
vc

if ε ≤ u ≤ a.

In other words, wumax is an upper bound on the departure time, i.e., for a value of
the departure time w to be feasible we need w ∈ [ε,wumax). Similarly let wlmax be
the maximum departure time such that the driver arrives exactly at time l driving
at free-flow speed vmax:

wlmax =


l− d

vmax , if vmax ≥ vla and l > a

a− d−(l−a)vmax
vc

, if vmax < vla and l > a

l− d
vc

if ε ≤ l ≤ a.

We first determine the optimal free-flow speed vf for a given departure time w ∈
[max{ε, a− d/vc},wumax]. As shown in Lemma 3.1, this can be done by comparing
the speed levels vlw and vuw to two key speed levels: v = ((fcλkNeV + dc)/2fcλβγ)1/3

and v = (kNeV /2βγ)1/3. The speed level v minimizes emissions and driver costs, i.e.,
TC, in the absence of any time window, whereas the speed v minimizes emissions
consumption only, i.e., F , in the absence of any time windows. Both values are
independent of the departure time w. These speed values have previously been
identified by Demir et al. (2012).

Lemma 3.1 Consider a single-arc TDPRP instance and a departure time w such
that w ∈ [max {ε, a− d/vc} ,wumax]. The optimal free-flow speed is min{vmax, v∗},
where v∗ is given as follows: (i) if vlw ≤ v then v∗ is max{vmin, v}, (ii) if v ≤
vlw ≤ v then v∗ is max{vmin, vlw}, (iii) if vuw ≤ v ≤ vlw then v∗ is max{vmin, v},
(iv) if v ≤ vuw then v∗ is max{vmin, vuw}.

Proof: Let A = fcλγα(µ+ f), B = fcλkNeV and C = fcλβγ, D = dc. Note
that A,B,C,D ≥ 0. First note that since w ≤ wumax, we have vmax ≥ vuw. For a
fixed w, we need to minimize TC with respect to vf in [max{vuw, vmin}, vmax].
When the driver is paid from the beginning of the planning horizon, the total cost
function TC for a fixed w as a function of the free-flow speed can be written as

TC(w, vf ) =



Ad+ (B +D +Cv3
c )Tc(w)

+(B +D +Cv3
f )Tf (w, vf )

+D(w− ε) if max{vuw, vmin} ≤ vf ≤ max{vlw, vmin}
Ad+ (B +Cv3

c )Tc(w)

+(B +Cv3
f )Tf (w, vf )

+D(l− ε) if vf ≥ max{vlw, vmin}.
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For a fixed w, the function TC is continuous in vf and is made of two pieces which
are both convex in vf . More precisely, the first piece is minimized at vf = v, while
the second one at vf = v. Note that v < v.

In case (i) the first part is non-increasing and the second one is minimized at v.
If v > vmax, the global minimum is achieved at vmax, otherwise it is achieved at
max{vmin, v}. In case (ii) the first part is non-increasing and the second one is
non-decreasing. If vlw > vmax, the global minimum is achieved at vmax, otherwise
it is achieved at max{vmin, vlw}. In case (iii) the first part is minimized at v, while
the second one is increasing. If v > vmax, the global minimum is achieved at
vmax, otherwise it is achieved at max{vmin, v}. Finally, in case (iv) both parts are
non-decreasing so the global minimum is achieved at max{vmin, vuw}.

When the driver is paid from the departure time, the total cost function has an
extra −D(w− ε) term, which does not depend on vf . Hence, the solution is the
same. 2

Note that the optimal speed for a given departure time does not depend on the
driver wage policy. Using Lemma 3.1, we can reduce the problem of minimizing
TC to a unidimensional optimization problem, that is, we set w as the unique
decision variable.

Observe that the minimum speed limitation only affects the optimal solution if
vmin > v.

We now provide the full characterization of the optimal solution for the special
case where vmin ≤ v (for the sake of conciseness) 1. Let S = (w∗, v∗f ) denote
a solution, where w∗ is the optimal departure time and v∗f is the optimal free-
flow speed, Proposition 3.1 provides the solution when the driver is paid from the
beginning of the planning horizon, i.e, from time ε, and Proposition 3.2 provides
the solution when the driver is paid from the departure time i.e., from time w.
Observe that whenever the vehicle traverses the entire arc during the congestion
period, the free-flow speed is never used but we may still write S = (w∗, v∗f ), with
v∗f being equal to any positive value.

Proposition 3.1 Consider a single-arc TDPRP instance. If the driver is paid
from the beginning of the planning horizon, the optimal solution depends mainly on
the relative values of the nine speed levels: vmax, v, v, v̂ = ((kNeV + βγv3

c )/3βγvc)1/2,
v̌ = ((fcλkNeV + dc + fcλβγ(vmax)3)/3fcλβγvmax)1/2 , vlε, vla, vuε and vua and is given in
Table 3.22 in §3.B.

Proof: Let A = fcλγα(µ+ f), B = fcλkNeV and C = fcλβγ, D = dc. Note
that A,B,C,D ≥ 0. In the following tables, we use circled numbers such as ¬

1For most practical purposes, it is reasonable to assume that the minimum speed limit is
lower than the speed which minimizes emissions costs.
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and , to refer to the pieces of the TC function. For each piece we use symbols
such as →, ↗, ↘ and ^, to indicate whether the TC function is respectively
constant, non-decreasing, non-increasing or convex, with respect to w. Let T (w) =
minvf∈[vmin,vmax] TC(w, vf ) such that w+T (w, vf ) ≤ u. We consider three cases:
(1) l ≤ u ≤ a, (2) l < a < u and (3) a ≤ l < u.
In case (1), we have:
footnotesize

TC(w) =

{
Ad+ (B +Cv3

c )
d
vc

+D(l− ε) if ε ≤ w < max
{
ε, l− d

vc

}
Ad+ (B +D +Cv3

c )
d
vc

+Dw if max
{
ε, l− d

vc

}
≤ w ≤ u− d

vc
.

The first piece is constant in w and the second is increasing in w. So any departure
time in

[
ε, max

{
ε, l− d

vc

}]
is optimal. We summarize this information in Table

3.7

Table 3.7 Case 1

Case ¬  Solution
1 → ↗ (w, vf ) with w ∈

[
ε, max

{
ε, l− d

vc

}]

where ¬ and  are the time regions delimited by the breakpoints: max
{
ε, l− d

vc

}
and u− d

vc
.

In case (2), we distinguish two subcases: (2.1) vmax < v, (2.2) vmax ≥ v.
In case (2.1):

TC(w) =


Ad+ (B +Cv3

c )
d
vc

+D(l− ε) if ε ≤ w < max
{
ε, l− d

vc

}
Ad+ (B +D +Cv3

c )
d
vc

+Dw if max
{
ε, l− d

vc

}
≤ w

and w < max
{
ε, a− d

vc

}
Ad+ (B +D +Cv3

c )(a−w)+

+(B +D +C(vmax)3) d−(a−w)+vc
vmax

+Dw if max
{
ε, a− d

vc

}
≤ w ≤ wumax.

Table 3.8 gives the solution depending on which piece contains the value a.

Table 3.8 Case 2.1

Case a ∈ Condition 1 Condition 2 ¬  ® ¯ Solution
2.1.1.1

[
max

{
ε, a− d

vc

}
,wumax

)
vua ≤ vmax v̂ ≥ v̌ → ↗ ↘ ↗ (a, vmax) or (ε, vmax)

2.1.1.2
[
max

{
ε, a− d

vc

}
,wumax

)
vua ≤ vmax v̂ ≤ v̌ → ↗ ↗ ↗ (ε, vmax)

2.1.2.1 [wumax,∞) vua ≥ vmax v̂ ≥ v̌ → ↗ ↘ (wumax, vmax) or (ε, vmax)
2.1.2.2 [wumax,∞) vua ≥ vmax v̂ ≤ v̌ → ↗ ↗ (ε, vmax)

In some cases, there are two possible solutions. Then, the optimal solution can
be obtained by calculating the cost associated with each one of them to find out
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which is the least (note that this needs to be done only if ε < a− d
vc

, otherwise
the solution with w > ε is the optimal one).
In case (2.2)

TC(w) =



Ad+ (B +Cv3
c )

d
vc

+D(l− ε) if ε ≤ w < max
{
ε, l− d

vc

}
Ad+ (B +D +Cv3

c )
d
vc

+Dw if max
{
ε, l− d

vc

}
≤ w < max

{
ε, a− d

vc

}
Ad+ (B +D +Cv3

c )(a−w)+

+(B +D +Cv3) d−(a−w)+vc
v

+Dw if max
{
ε, a− d

vc

}
≤ w < max {ε,wu}

Ad+ (B +D +Cv3
c )(a−w)+

+(B +D +C(vuw)
3) d−(a−w)+vc

vuw
+Dw if max {ε,wu} ≤ w ≤ wumax.

where

wu =

{
a− d−(u−a)v

vc
if vua ≥ v

u− d
v

otherwise.

Table 3.9 gives the solution in all possible subcases.

Table 3.9 Case 2.2

Case a ∈ Condition 1 Condition 2 Condition 3 ¬  ® ¯ ° Solution
2.2.1.1

[
max

{
ε, a− d

vc

}
,wu

)
vua ≤ v v̂ ≥ v → ↗ ↘ ↗ ↗ (a, v) or (ε, v)

2.2.1.2
[
max

{
ε, a− d

vc

}
,wu

)
vua ≤ v v̂ ≤ v → ↗ ↗ ↗ ↗ (ε, v)

2.2.2.1.1 [wu,wumax) v ≤ vua ≤ vmax v̂ ≤ v vuε ≤ v → ↗ ↗ ↗ ↗ (ε, v)
2.2.2.1.2 [wu,wumax) v ≤ vua ≤ vmax v̂ ≤ v vuε ≥ v ↗ ↗ (ε, vuε )
2.2.2.2.1 [wu,wumax) v ≤ vua ≤ vmax v ≤ v̂ ≤ vua vuε ≤ v̂ → ↗ ↘ ^ ↗ (ŵu, v̂) or (ε, v)
2.2.2.2.2 [wu,wumax) v ≤ vua ≤ vmax v ≤ v̂ ≤ vua vuε ≥ v̂ ↗ ↗ (ε, vuε )
2.2.2.3 [wu,wumax) v ≤ vua ≤ vmax v̂ ≥ vua → ↗ ↘ ↘ ↗ (a, vau) or (ε, v)

2.2.3.1.1 [wumax,∞) vua ≥ vmax v̂ ≤ v vuε ≤ v → ↗ ↗ ↗ (ε, v)
2.2.3.1.2 [wumax,∞) vua ≥ vmax v̂ ≤ v vuε ≥ v ↗ ↗ (ε, vuε )
2.2.3.2.1 [wumax,∞) vua ≥ vmax v ≤ v̂ ≤ vmax vuε ≤ v̂ → ↗ ↘ ^ (ŵu, v̂) or (ε, v)
2.2.3.2.2 [wumax,∞) vua ≥ vmax v ≤ v̂ ≤ vmax vuε ≥ v̂ ↗ (ε, vuε )
2.2.3.3 [wumax,∞) vua ≥ vmax v̂ ≥ vmax → ↗ ↘ ↘ (wumax, vmax) or (ε, v)

where ŵu = a− (d− (u− a)v̂)/vc.

In case (3), we distinguish three subcases: (3.1) vmax < v, (3.2) v ≤ vmax < v,
(3.3) vmax ≥ v.
In case (3.1)

TC(w) =


Ad+ (B +Cv3

c )
d
vc

+D(l− ε) if ε ≤ w < max
{
ε,
(
a− d

vc

)}
Ad+ (B +Cv3

c )(a−w)+ if max
{
ε,
(
a− d

vc

)}
≤ w

+(B +C(vmax)3) d−(a−w)+vc
vmax

+D(l− ε) and w < max
{
ε,wlmax

}
Ad+ (B +D +Cv3

c )(a−w)+

+(B +D +C(vmax)3) d−(a−w)+vc
vmax

+Dw if max
{
ε,wlmax

}
≤ w ≤ wumax.

Table 3.10 gives the solution in all possible subcases.
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Table 3.10 Case 3.1

Case a ∈ Condition 1 Condition 2 ¬  ® ¯ Solution
3.1.1

[
max

{
ε,
(
a− d

vc

)}
, max

{
ε,wlmax

})
vla ≤ vmax → ↘ → ↗ (w, vmax) where w ∈ [a,wlmax]

3.1.2.1 [wlmax,wumax] vua ≤ vmax ≤ vla v̌ ≤ v̂ → ↘ ↘ ↗ (a, vmax)
3.1.2.1 [wlmax,wumax] vua ≤ vmax ≤ vla v̌ ≥ v̂ → ↘ ↗ ↗ (max

{
ε,wlmax

}
, vmax)

3.1.3.1 [wumax,∞) vua ≥ vmax v̌ ≤ v̂ → ↘ ↘ (wumax, vmax)
3.1.3.2 [wumax,∞) vua ≥ vmax v̌ ≥ v̂ → ↘ ↗ (max

{
ε,wlmax

}
, vmax)

In case (3.2)

TC(w) =



Ad+ (B +Cv3
c )

d
vc

+D(l− ε) if ε ≤ w < max
{
ε,
(
a− d

vc

)}
Ad+ (B +Cv3

c )(a−w)+ if max
{
ε,
(
a− d

vc

)}
≤ w

+(B +Cv3) d−(a−w)+vc
v

+D(l− ε) and w < max
{
ε,wl

}
Ad+ (B +Cv3

c )(a−w)+

+(B +C(vlw)
3) d−(a−w)+vc

vlw
+D(l− ε) if max

{
ε,wl

}
≤ w < max

{
ε,wlmax

}
Ad+ (B +D +Cv3

c )(a−w)+

+(B +D +C(vmax)3) d−(a−w)+vc
vmax

+Dw if max
{
ε, (wlmax)

}
≤ w ≤ wumax,

where

wl =

{
a− d−(l−a)v

vc
if vla ≥ v

l− d
v

otherwise.

Table 3.11 gives the solution in all possible subcases.

Table 3.11 Case 3.2

Case a ∈ Condition 1 Condition 2 Condition 3 ¬  ® ¯ ° Solution
3.2.1

[
max

{
ε,
(
a− d

vc

)}
,wl
)

vla ≤ v → ↘ → ↗ ↗ (w, v) where w ∈
[
a,wl

]
3.2.2.1.1

[
wl,wlmax

)
v ≤ vla ≤ vmax vla ≥ v̂ vlε ≤ v̂ → ↘ ^ ↗ ↗ (ŵl, v̂)

3.2.2.1.2
[
wl,wlmax

)
v ≤ vla ≤ vmax vla ≥ v̂ vlε ≥ v̂ ↗ ↗ ↗ (ε, vlε)

3.2.2.2
[
wl,wlmax

)
v ≤ vla ≤ vmax vla ≤ v̂ → ↘ ↘ ↗ ↗ (a, vla)

3.2.3.1.1
[
wlmax,wumax

)
vua ≤ vmax ≤ vla v̂ ≤ vmax vlε ≤ v̂ → ↘ ^ ↗ ↗ (ŵl, v̂)

3.2.3.1.2
[
wlmax,wumax

)
vua ≤ vmax ≤ vla v̂ ≤ vmax v̂ ≤ vlε ≤ vmax ↗ ↗ ↗ (ε, vlε)

3.2.3.1.3
[
wlmax,wumax

)
vua ≤ vmax ≤ vla v̂ ≤ vmax vlε ≥ vmax ↗ ↗ (ε, vmax)

3.2.3.2.1
[
wlmax,wumax

)
vua ≤ vmax ≤ vla vmax ≤ v̂ ≤ v̌ vlε ≤ vmax → ↘ ↘ ↗ ↗ (wlmax, vmax)

3.2.3.2.2
[
wlmax,wumax

)
vua ≤ vmax ≤ vla vmax ≤ v̂ ≤ v̌ vlε ≥ vmax ↗ ↗ (ε, vmax)

3.2.3.3
[
wlmax,wumax

)
vua ≤ vmax ≤ vla v̂ ≥ v̌ → ↘ ↘ ↘ ↗ (a, vmax)

3.2.4.1.1 [wumax,∞) vua ≥ vmax v̂ ≤ vmax vlε ≤ v̂ → ↘ ^ ↗ (ŵl, v̂)
3.2.4.1.2 [wumax,∞) vua ≥ vmax v̂ ≤ vmax v̂ ≤ vlε ≤ vmax ↗ ↗ (ε, vlε)
3.2.4.1.3 [wumax,∞) vua ≥ vmax v̂ ≤ vmax vlε ≥ vmax ↗ (ε, vmax)
3.2.4.2.1 [wumax,∞) vua ≥ vmax vmax ≤ v̂ ≤ v̌ vlε ≤ vmax → ↘ ↘ ↗ (wlmax, vmax)
3.2.4.2.2 [wumax,∞) vua ≥ vmax vmax ≤ v̂ ≤ v̌ vlε ≥ vmax ↗ (ε, vmax)
3.2.4.3 [wumax,∞) vua ≥ vmax v̂ ≥ v̌ → ↘ ↘ ↘ (wumax, vmax)

where ŵl = a− (d− (l− a)v̂)/vc.
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In case (3.3):

TC(w) =



Ad+ (B +Cv3
c )

d
vc

+D(l− ε) if ε ≤ w < max
{
ε,
(
a− d

vc

)}
Ad+ (B +Cv3

c )(a−w)+

+(B +Cv3) d−(a−w)+vc
v

+D(l− ε) if max
{
ε,
(
a− d

vc

)}
≤ w < max

{
ε,wl

}
Ad+ (B +Cv3

c )(a−w)+

+(B +C(vlw)
3) d−(a−w)+vc

vlw
+D(l− ε) if max

{
ε,wl

}
≤ w < max

{
ε,wl

}
Ad+ (B +D +Cv3

c )(a−w)+

+(B +D +Cv3) d−(a−w)+vc
v

+Dw if max
{
ε,wl

}
≤ w < max {ε,wu}

Ad+ (B +D +Cv3
c )(a−w)+

+(B +D +C(vuw)
3) d−(a−w)+vc

vuw
+Dw if max {ε,wu} ≤ w ≤ wumax

where

wl =

{
a− d−(l−a)v

vc
if vla ≥ v

l− d
v

otherwise.

Table 3.12 gives the solution for all subcases. 2

Table 3.12 Case 3.3

Case a ∈ Condition 1 Condition 2 Condition 3 ¬  ® ¯ ° ± Solution
3.3.1

[
max

{
ε,
(
a− d

vc

)}
, vl
)

vla ≤ v → ↘ → ↗ ↗ ↗ (w, v) where w ∈
[
a,wl

]
3.3.2.1.1

[
wl,wl

)
v ≤ vla ≤ v vla ≥ v̂ vlε ≤ v̂ → ↘ ^ ↗ ↗ ↗ (ŵl, v̂)

3.3.2.1.2
[
wl,wl

)
v ≤ vla ≤ v vla ≥ v̂ vlε ≥ v̂ ↗ ↗ ↗ ↗ (ε, vlε)

3.3.2.2
[
wl,wl

)
v ≤ vla ≤ v vla ≤ v̂ → ↘ ↘ ↗ ↗ ↗ (a, vla)

3.3.3.1.1
[
wl,wu

)
vua ≤ v ≤ vla v̂ ≤ v vlε ≤ v̂ → ↘ ^ ↗ ↗ ↗ (ŵl, v̂)

3.3.3.1.2
[
wl,wu

)
vua ≤ v ≤ vla v̂ ≤ v v̂ ≤ vlε ≤ v ↗ ↗ ↗ ↗ (ε, vlε)

3.3.3.1.3
[
wl,wu

)
vua ≤ v ≤ vla v̂ ≤ v vlε ≥ v ↗ ↗ ↗ (ε, v)

3.3.3.2
[
wl,wu

)
vua ≤ v ≤ vla v̂ ≥ v → ↘ ↘ ↘ ↗ ↗ (a, v)

3.3.4.1.1 [wu,wumax) v ≤ vua ≤ vmax v̂ ≤ v vlε ≤ v̂ → ↘ ^ ↗ ↗ ↗ (ŵl, v̂)
3.3.4.1.2 [wu,wumax) v ≤ vua ≤ vmax v̂ ≤ v v̂ ≤ vlε ≤ v ↗ ↗ ↗ ↗ (ε, vlε)
3.3.4.1.3 [wu,wumax) v ≤ vua ≤ vmax v̂ ≤ v vuε ≤ v ≤ vlε ↗ ↗ ↗ (ε, v)
3.3.4.1.4 [wu,wumax) v ≤ vua ≤ vmax v̂ ≤ v v ≤ vuε ↗ ↗ (ε, vuε )
3.3.4.2.1 [wu,wumax) v ≤ vua ≤ vmax v ≤ v̂ ≤ vua vuε ≤ v̂ → ↘ ↘ ↘ ^ ↗ (ŵu, v̂)
3.3.4.2.2 [wu,wumax) v ≤ vua ≤ vmax v ≤ v̂ ≤ vua vuε ≥ v̂ ↗ ↗ (ε, vuε )
3.3.4.3 [wu,wumax) v ≤ vua ≤ vmax v̂ ≥ vua → ↘ ↘ ↘ ↘ ↗ (a, vua )

3.3.5.1.1 [wumax,∞) vua ≥ vmax v̂ ≤ v vlε ≤ v̂ → ↘ ^ ↗ ↗ (ŵl, v̂)
3.3.5.1.2 [wumax,∞) vua ≥ vmax v̂ ≤ v v̂ ≤ vlε ≤ v ↗ ↗ ↗ (ε, vlε)
3.3.5.1.3 [wumax,∞) vua ≥ vmax v̂ ≤ v vuε ≤ v ≤ vlε ↗ ↗ (ε, v)
3.3.5.1.4 [wumax,∞) vua ≥ vmax v̂ ≤ v v ≤ vuε ↗ (ε, vuε )
3.3.5.2.1 [wumax,∞) vua ≥ vmax v ≤ v̂ ≤ vmax vuε ≤ v̂ → ↘ ↘ ↘ ^ (ŵu, v̂)
3.3.5.2.2 [wumax,∞) vua ≥ vmax v ≤ v̂ ≤ vmax vuε ≥ v̂ ↗ (ε, vuε )
3.3.5.3 [wumax,∞) vua ≥ vmax v̂ ≥ vmax → ↘ ↘ ↘ ↘ (wumax, vmax)

where ŵu = a− (d− (u− a)v̂)/vc and ŵl = a− (d− (l− a)v̂)/vc.

Proposition 3.1 suggests that, when the driver is paid from the beginning of the
planning horizon, there are four important free-flow speed values: v, v, v̂ and v̌,
which only depend on the values from Table 3.1. In particular, the first two values
are defined as in Lemma 3.1, and the latter two are comparison parameters. The
intuition is as follows. Delaying the departure of the driver has two effects: on the
one hand, it may increase the driver cost as the driver is paid for a longer period
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of time; on the other hand, it may reduce the time spent driving in congestion,
allowing the driver to reach a higher average driving speed and spend less time
on the road. The engine module component of the emissions cost is decreasing in
the departure time, whereas the driver cost and speed module are increasing in it.
As a result, the overall impact on the total cost depends on the trade-off between
these costs. More specifically, when vmax ≤ v (vmax > v), the total cost function
is initially decreasing in the transient region (where both effects are active) only
if v̂ ≥ v̌ (v̂ ≥ v). In this case, it may be beneficial to postpone the departure time
past time ε because the drop in the engine module part of the emissions cost more
than offsets the increase in driver cost and speed module.
Beside the speeds just described, the optimal solution also depends on other four
free-flow speed values: vlε, vuε , vla, and vua , which only depend on the instance
parameters, that is, l, u, d and a.

Proposition 3.2 Consider a single-arc TDPRP instance. If the driver is paid
from the departure time, the optimal solution depends mainly on the relative values
of the eight speed levels: vmax, v, v, ṽ = ((fcλkNeV + dc + fcλβγv3

c )/3fcλβγvc)1/2 , vlε,
vla, vuε and vua and is given in Table 3.23 in §3.B.

Proof: Let A = fcλγα(µ + f ), B = fcλkNeV and C = fcλβγ, D = dc. Note that
A,B,C,D ≥ 0. Further, let T (w) = minvf∈[vmin,vmax ] TC(w, vf ) such that w + T (w, vf ) ≤ u.
We consider three cases: (1) l ≤ u ≤ a, (2) l < a < u and (3) a ≤ l < u.

In case (1), we have

TC(w) =

{
Ad+ (B +Cv3

c )
d
vc

+D(l−w) if ε ≤ w < max
{
ε, l− d

vc

}
Ad+ (B +D +Cv3

c )
d
vc

if max
{
ε, l− d

vc

}
≤ w ≤ u− d

vc
.

The first piece is decreasing in w and the second is constant in w. So any departure
time in

[
max

{
ε, l− d

vc

}
,u
]

is optimal. We summarize this information in Table
3.13.

Table 3.13 Case 1

Case ¬  Solution
1 ↘ → (w, vf ) with w ∈

[
max

{
ε, l− d

vc

}
,u− d

vc

]

In case 2 we distinguish two subcases: (2.1) vmax < v, (2.2) vmax ≥ v.
In case (2.1)

TC(w) =


Ad+ (B +Cv3

c )
d
vc

+D(l−w) if ε ≤ w < max
{
ε, l− d

vc

}
Ad+ (B +D +Cv3

c )
d
vc

if max
{
ε, l− d

vc

}
≤ w < max

{
ε,
(
a− d

vc

)}
Ad+ (B +D +Cv3

c )(a−w)+

+(B +D +C(vmax)3) d−(a−w)+vc
vmax

if max
{
ε,
(
a− d

vc

)}
≤ w ≤ wumax.
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Table 3.14 gives the solution in all possible subcases.

Table 3.14 Case 2.1

Case a ∈ Condition 1 ¬  ® ¯ Solution
2.1.1

[
max

{
ε,
(
a− d

vc

)}
,wumax

)
vua ≤ vmax ↘ → ↘ → (w, vmax) where w ∈ [a,wumax]

2.1.2 [wumax,∞) vua ≥ vmax ↘ → ↘ (wumax, vmax)

In case (2.2)

TC(w) =



Ad+ (B +Cv3
c )

d
vc

+D(l−w) if ε ≤ w < max
{
ε, l− d

vc

}
Ad+ (B +D +Cv3

c )
d
vc

if max
{
ε, l− d

vc

}
≤ w < max

{
ε,
(
a− d

vc

)}
Ad+ (B +D +Cv3

c )(a−w)+

+(B +D +Cv3) d−(a−w)+vc
v

if max
{
ε,
(
a− d

vc

)}
≤ w < max {ε,wu}

Ad+ (B +D +Cv3
c )(a−w)+

+(B +D +C(vuw)
3) d−(a−w)+vc

vuw
if max {ε,wu} ≤ w ≤ wumax.

Table 3.15 gives the solution in all possible subcases.

Table 3.15 Case 2.2

Case a ∈ Condition 1 Condition 2 Condition 3 ¬  ® ¯ ° Solution
2.2.1

[
max

{
ε,
(
a− d

vc

)}
,wu
)

vua ≤ v ↘ → ↘ → ↗ (w, v) where w ∈ [a,wu)
2.2.2.1.1 [wu,wumax) v ≤ vua ≤ vmax ṽ ≤ vua vuε ≤ ṽ ↘ → ↘ ^ ↗ (w̃u, ṽ)
2.2.2.1.2 [wu,wumax) v ≤ vua ≤ vmax ṽ ≤ vua vuε ≥ ṽ ↗ ↗ (ε, vuε )
2.2.2.2 [wu,wumax) v ≤ vua ≤ vmax ṽ ≥ vua ↘ → ↘ ↘ ↗ (a, vua )

2.2.3.1.1 [wumax,∞) vua ≥ vmax ṽ ≤ vmax vuε ≤ ṽ ↘ → ↘ ^ (w̃u, ṽ)
2.2.3.1.2 [wumax,∞) vua ≥ vmax ṽ ≤ vmax vuε ≥ ṽ ↗ (ε, vuε )
2.2.3.2 [wumax,∞) vua ≥ vmax ṽ ≥ vmax ↘ → ↘ ↘ (wumax, vmax)

where w̃u = a− (d− (u− a)ṽ)/vc.

In case 3 we distinguish three subcases: (3.1) vmax < v, (3.2) v ≤ vmax < v, (3.3)
vmax ≥ v.
In case (3.1)

TC(w) =


Ad+ (B +Cv3

c )
d
vc

+D(l−w) if ε ≤ w < max
{
ε,
(
a− d

vc

)}
Ad+ (B +Cv3

c )(a−w)+ if max
{
ε,
(
a− d

vc

)}
≤ w

+(B +C(vmax)3) d−(a−w)+vc
vmax

+D(l−w) and w < max
{
ε,wlmax

}
Ad+ (B +D +Cv3

c )(a−w)+

+(B +D +C(vmax)3) d−(a−w)+vc
vmax

if max
{
ε,wlmax

}
≤ w ≤ wumax.

Table 3.16 gives the solution in all possible subcases.



75 3. The Time-Dependent Pollution-Routing Problem

Table 3.16 Case 3.1

Case a ∈ Condition 1 ¬  ® ¯ Solution
3.1.1

[
max

{
ε,
(
a− d

vc

)}
,wlmax

)
vla ≤ vmax ↘ ↘ ↘ → (w, vmax) where w ∈ [wlmax,wumax]

3.1.2
[
wlmax,wumax

)
vua ≤ vmax ≤ vla ↘ ↘ ↘ → (w, vmax) where w ∈ [a,wumax]

3.1.3
[
wlmax,wumax

)
vua ≥ vmax ↘ ↘ ↘ (wumax, vmax).

In case (3.2)

TC(w) =



Ad+ (B +Cv3
c )

d
vc

+D(l−w) if ε ≤ w < max
{
ε,
(
a− d

vc

)}
Ad+ (B +Cv3

c )(a−w)+

+(B +Cv3) d−(a−w)+vc
v

+D(l−w) if max
{
ε,
(
a− d

vc

)}
≤ w < max

{
ε,wl

}
Ad+ (B +Cv3

c )(a−w)+

+(B +C(vlw)
3) d−(a−w)+vc

vlw
+D(l−w) if max

{
ε,wl

}
≤ w < max

{
ε,wlmax

}
Ad+ (B +D +Cv3

c )(a−w)+

+(B +D +C(vmax)3) d−(a−w)+vc
vmax

if max
{
ε,wlmax

}
≤ w ≤ wumax.

Table 3.17 gives the solution in all possible subcases.

Table 3.17 Case 3.2

Case a ∈ Condition 1 ¬  ® ¯ ° Solution
3.2.1

[
max

{
ε,
(
a− d

vc

)}
,wl
)

vla ≤ v ↘ ↘ ↘ ↘ → (w, vmax) where w ∈
[
wlmax,wumax

]
3.2.2

[
wl,wlmax

)
v ≤ vla ≤ vmax ↘ ↘ ↘ ↘ → (w, vmax) where w ∈

[
wlmax,wumax

]
3.2.3

[
wlmax,wumax

)
vua ≤ vmax ≤ vla ↘ ↘ ↘ ↘ → (w, vmax) where w ∈ [a,wumax]

3.2.4 [wumax,∞) vua ≥ vmax ↘ ↘ ↘ ↘ (wumax, vmax)

In case (3.3)

TC(w) =



Ad+ (B +Cv3
c )

d
vc

+Dl if ε ≤ w < max
{
ε,
(
a− d

vc

)}
Ad+ (B +Cv3

c )(a−w)+

+(B +Cv3) d−(a−w)+vc
v

+D(l−w) if max
{
ε,
(
a− d

vc

)}
≤ w <

(
wl
)+

Ad+ (B +Cv3
c )(a−w)+

+(B +C(vlw)
3) d−(a−w)+vc

vlw
+D(l−w) if

(
wl
)+
≤ w <

(
wl
)+

Ad+ (B +D +Cv3
c )(a−w)+

+(B +D +Cv3) d−(a−w)+vc
v

if
(
wl
)+
≤ w < (wu)+

Ad+ (B +D +Cv3
c )(a−w)+

+(B +D +C(vuw)
3) d−(a−w)+vc

vuw
if (wu)+ ≤ w ≤ wumax.

Table 3.18 gives the solution in all possible subcases. 2
When the driver is paid from the departure time, delaying departure does not lead
to an increase in the driver cost. In fact it may lead to a decrease since waiting
may mean less driving in congestion and therefore spending less time on the road.
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Table 3.18 Case 3.3

Case a ∈ Condition 1 Condition 2 Condition 3 ¬  ® ¯ ° ± Solution
3.3.1

[
max

{
ε,
(
a− d

vc

)}
,wl
)

vla ≤ v ↘ ↘ ↘ ↘ → ↗ (w, v) where w ∈ [wl,wu]
3.3.2

[
wl,wl

)
v ≤ vla ≤ v ↘ ↘ ↘ ↘ → ↗ (w, v) where w ∈ [wl,wu]

3.3.3
[
wl,wu

)
vua ≤ v ≤ vla ↘ ↘ ↘ ↘ → ↗ (w, v) where w ∈ [a,wu]

3.3.4.1.1 [wu,wumax) v ≤ vua ≤ vmax ṽ ≤ vua vuε ≤ ṽ ↘ ↘ ↘ ↘ ^ ↗ (w̃u, ṽ)
3.3.4.1.2 [wu,wumax) v ≤ vua ≤ vmax ṽ ≤ vua vuε ≥ ṽ ↗ ↗ (ε, vuε )
3.3.4.1 [wu,wumax) v ≤ vua ≤ vmax ṽ ≥ vua ↘ ↘ ↘ ↘ ↘ ↗ (a, vua )

3.3.5.1.1 [wumax,∞) vua ≥ vmax ṽ ≤ vmax vuε ≤ ṽ ↘ ↘ ↘ ↘ ^ (w̃u, ṽ)
3.3.5.1.2 [wumax,∞) vua ≥ vmax ṽ ≤ vmax vuε ≥ ṽ ↗ (ε, vuε )
3.3.5.1 [wumax,∞) vua ≥ vmax ṽ ≥ vmax ↘ ↘ ↘ ↘ ↘ (wumax, vmax)

where w̃u = a− (d− (u− a)ṽ)/vc.

In this case the trade-off is between the speed module of the emissions cost, which
is increasing in the departure time, and the driver cost and engine module which
are decreasing.

We make the following remarks about the optimal solutions under both driver
wage policies.

Remark 3.1 Consider a single-arc TDPRP instance.

• If there is no time window, i.e. l = 0 and u = ∞, and the driver is paid
from the beginning of the planning horizon, then one of the following two
solutions is optimal: either leave the depot immediately (w∗ = ε), or wait
until the end of the congestion period (w∗ = a). In both cases the optimal
speed is v. Alternatively, when the driver is paid from the departure time,
leaving the depot at the end of the congestion period (w∗ = a) and driving
at free-flow speed v is optimal.

• When the driver is paid from the beginning of the planning horizon, there
always exists an optimal solution where the driver leaves at or before the
end of the congestion period, i.e., at time w∗ ≤ a. However, when the driver
is paid from the departure time, it may be optimal to leave the depot after
the end of the congestion period, i.e., at time w∗ > a.

• The optimal departure time when the driver is paid from the beginning of
the planning horizon is at most equal to the optimal departure time when
the driver is paid from the departure time. This is due to the fact that there
is an extra incentive to delay departure when the driver is paid from the
departure time, which is to reduce the driver cost.

• If there is no congestion period, the TDPRP reduces to the PRP. In this
case, our results show that, when the driver is paid from the beginning
of the planning horizon, there always exists an optimal solution where the
driver leaves the depot immediately, i.e., w∗ = ε. However, this result is not
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true when the driver is paid from the departure time. In this case, even in
the absence of congestion, it may be optimal to delay the departure of the
vehicle in order to save on the driver cost, when leaving at time ε would lead
to a pre-service waiting time at the customer node.

• The results of this section also apply to the case where emissions costs are
ignored (i.e., if fc is set to 0) so that the objective function reduces to
minimizing only the driver cost, that is, Propositions 3.1 and 3.2 can be
used to obtain an optimal solution (note that v = v̌ = ṽ = ∞ in this
case). When the driver is paid from the beginning of the planning horizon,
it is always optimal for him to leave immediately and drive at speed vmax.
However, when the driver is paid from the departure time, it may be optimal
to wait at the depot.

The following proposition establishes the relationship between the optimal depar-
ture time and the time window [l,u].

Proposition 3.3 The (earliest) optimal departure time from the depot w∗ is non-
decreasing in l and u. The optimal free-flow speed v∗ (whenever it is used) is
non-increasing in l and u.

Proof: The result follows from a careful comparison of the cases listed in Table
3.22 in Proposition 3.1 and in Table 3.23 in Proposition 3.2. 2

The following example illustrates how the optimal solution to the TDPRP varies
with l and u.

Example 3.6 The parameters in Table 3.1 imply that v = 55.19 km/h and v =
75.34 km/h. Let ε = 0, d = 100 km , vc = 19 km/h, vmin = 50km/h, vmax = 110
km/h and a = 10000 seconds. This implies that v̂ = 77.58 km/h and ṽ = 122.99
km/h. Table 3.19 shows the optimal solution as a function of the lower (l) and
upper (u) time windows, given in seconds.

Table 3.19 Optimal solution S = (w∗, v∗f ) as a function of lower and upper time
window

Driver paid from the beginning of the planning horizon Driver paid from departure time
l u w∗ v∗f Arrival Time w∗ v∗f Arrival Time

7500 11545 0 110 (vm) 11545 (u) 0 110 (vm) 11545 (u)
7500 12000 0 85 (vuε ) 12000 (u) 2631.58 (< a) 110 (vm) 12000 (u)
7500 13000 3301.98 (< a) 77.58 (v̂) 13000 (u) 8421.05 (< a) 110 (vmax) 13000 (u)
7500 14700 10000 (a) 76.60 (vua ) 14700 (u) 10000 (a) 76.60 (vau) 14700 (u)
7500 70000 10000 (a) 75.34 (v) 14778.20 (∈ (l,u)) 10000 (a) 75.34 (v) 14778.20 (∈ (l,u))
15000 70000 10000 (a) 72 (vla) 15000 (l) 10221.79 (> a) 75.34 (v) 15000 (l)
25000 70000 10000 (a) 55.19 (v) 16523 (< l) 20221.79 (> a) 75.34 (v) 25000 (l)
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We see that for low values of l and u, it is optimal for the driver to leave the depot
immediately and arrive at the customer node exactly at time u. As u increases,
it becomes optimal to wait at the depot and eventually arrive between l and u.
Then as l is increased, the optimal arrival time becomes exactly l and then possibly
(when the driver is paid from the beginning of the planning horizon) a value less
than l, meaning that there is a pre-service waiting time.

Based on the properties of single-arc TDPRP instance we derive the following
results which also apply to the general case.

Lemma 3.2 Given a TDPRP instance,
(i) it is never optimal for drivers to drive at a free-flow speed lower than v;
(ii) if drivers are paid from their departure time, it is never optimal for them to
drive on the first arc of a route at a free-flow speed lower than min{v, vmax}.

Proof: Proof of part (i)
The proof is by contradiction.
Suppose that there exists an optimal solution (denoted by S∗) where the speed on
one arc is lower than v. Without loss of generality, suppose that this arc belongs
to the route (0, . . . ,n+ 1), where n+ 1 is a copy of the depot. Let w∗i denote the
optimal departure time from node i and let v∗i denote the optimal speed on arc
(i, i+ 1). So there exists k ∈ {0, . . . ,n} such that v∗k < v.

The total cost associated with this route is
n∑
i=0

fcFi(w
∗
i , v∗i ) + dcW (w∗0, . . . ,w∗n, v∗0 , . . . , v∗n),

where Fi denotes the emissions cost on arc (i, i+ 1) and W is the total time the
driver is paid for.

We construct an alternative solution (denoted by S′) as follows: let w′i = w∗i for
i = 0, . . . ,n, v′i = v∗i for i = 0, . . . , k− 1, k+ 1, . . . ,n and v′k = v. In other words,
we increase the speed on arc (k, k+ 1) to v and we keep the same departure time
from node k+ 1 (unless k = n) by adding some extra waiting time. The resulting
solution is feasible since the arrival time at each node is at most equal to that
in the optimal solution. Compared to S∗, in S′ the total time the driver is paid
for (W ) can only decrease (it decreases if k = n, otherwise it remains the same).
Whereas the emissions cost (Fi) is the same on every arc except on arc (k, k+ 1),
where it decreases since v is the speed that minimizes the emissions cost for a given
departure time in a one-arc problem as shown in §3.5. Therefore, the alternative
solution S′ yields a total cost lower that the optimal solution S∗ and this leads to
a contradiction.
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Proof of part (ii) The proof is by contradiction.
Suppose that there exists an optimal solution (denoted by S∗) where the speed
on the first arc of a route is lower than min{v, vmax}. Without loss of generality,
suppose that this arc belongs to the route (0, . . . ,n+ 1), where n+ 1 is a copy
of the depot. Let w∗i denote the optimal departure time from node i and let v∗i
denote the optimal speed on arc (i, i+ 1). So we have v∗0 ≤ min{v, vmax}.

The total cost associated with this route is
n∑
i=0

fcFi(w
∗
i , v∗i ) + dcW (w∗0, . . . ,w∗n, v∗0 , . . . , v∗n),

where Fidenotes the emissions cost on arc (i, i+ 1) and W is the total time the driver
is paid for. This cost function can be rewritten as∑n

i=1 fcFi(w
∗
i , v∗i ) + dcW1,...,n(w∗1, . . . ,w∗n, v∗1 , . . . , v∗n) + fcF0(w∗0, v∗0) +

+dcW0(w∗0, v∗0) (3.25)

where W1,...,n is the time spent from the arrival at node 1 until the return to the
depot and W0 is the time spent from the departure from the depot to the arrival
at node 1. Note that the last two terms in (3.25) correspond to the total cost
function of a one-arc TDPRP when the driver is paid from his departure time.
We construct an alternative solution (denoted by S′) as follows: let w′i = w∗i for
i = 1, . . . ,n, v′i = v∗i for i = 1, . . . ,n, v′0 = min{v, vmax} and w′0 > w∗0 such
that the arrival time at node 1 is the same in S′ as in S∗. The departure times
and free-flow speeds on arcs (i, i+ 1) where i = 1, . . . ,n remain unchanged and
therefore the resulting solution is feasible. For the same reasons, in both solutions
S∗ and S′ the first two terms of the 3.25 remain the same. Whereas, as results
from the proof of Theorem 3.2, the last two terms 3.25 are lower in S′ compared
to S∗. Hence, we have a contradiction. 2

These results will be useful to improve the efficiency of the MIP formulation, as
discussed in the following section.

3.6 Computational results

This section presents the results of computational experiments using the integer
linear programming formulation of the TDPRP presented in Secion 3.4. All tests
were carried out using three sets of instances from the PRPLIB (http://www.
apollo.management.soton.ac.uk/prplib.htm), with respectively 10, 15 and 20
nodes as described by Demir et al. (2012)). All experiments were conducted by
using CPLEX 12.1 on a server with 2.93 GHz and 1.1 Gb RAM. The nodes in these

http://www.apollo.management.soton.ac.uk/prplib.htm
http://www.apollo.management.soton.ac.uk/prplib.htm
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instances represent randomly selected cities from the United Kingdom, with real
distances. The time windows and service times, however, are randomly generated.

We set CPLEX to run sequentially in deterministic mode in a single thread. A
common time-limit of three hours was imposed on all instances. To improve the
efficiency of the formulation, we have used preprocessing to reduce the input data
space by using the results of Lemma 3.2. More specifically, we downsize the set
of free-flow speed levels R by setting v1 = max{vmin, v}. We also include the
values of the three speed levels v, v̂ and ṽ in the set of free-flow speed levels R,
whenever these do not exceed the upper speed limit vmax. Finally, we supplement
the formulation with two-node subtour breaking constraints xij + xji ≤ 1,∀i, j ∈
N0, i 6= j, as was also done by Bektaş and Laporte (2011).

3.6.1 Performance on PRP instances

This section compares the performance of the proposed formulation for the
TDPRP with that of Bektaş and Laporte (2011) reported in §3.A, for cases where
there is no congestion. Table 3.24 in §3.C presents the results of this experiment
using 10-node instances. The first two columns of the table are self-explanatory,
whereas the columns PRP and TDPRP present the total cost produced by
the respective formulations and t(PRP) and t(TDPRP) present the associated
computational times (in seconds) required to solve each instance to optimality.
Compared with the mathematical formulation proposed by Bektaş and Laporte
(2011), the TDPRP formulation is superior in terms of the computational time
required to reach optimality. The average solution time with the new formulation
is indeed significantly reduced from 508.47 to 5.52 seconds. The proposed model
also can solve some larger PRP instances to optimality, in particular the 15- and
20-node instances, as shown in §3.6.2. The Bektaş and Laporte (2011) formulation
could not handle such sizes because of the computational time requirements. One
possible explanation for our formulation to be faster, despite being more general,
is that it does not include any big-M parameters. Bektaş and Laporte (2011) use
such a parameter both in the time window constraints and in the calculation of
the total travel time.

3.6.2 Importance of modeling traffic congestion and impact of driver
wage policy

In this section, we compare the results of cases with and without congestion, as
we did in §3.3, using 10-, 15- and 20-node PRP instances. More specifically, by
using the integer linear programming formulation described in §3.4, we compute
a time-dependent optimal solution SD. Using the same formulation and fixing
the congestion period to zero, we compute a time-independent optimal solution
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SN . We note that solving the problem by means of a time-independent approach
may generate multiple optimal solutions which yield different total costs under a
congestion scenario, in which case we select the solution with the minimum waiting
time at the depot. For every instance, we assume the same two-level speed profile
as defined in §3.2.1, and we consider both driver wage policies. The congestion
speed vc is set to 10 km/h and we consider two values for the length of the
congestion period: 3600 and 7200 seconds. A summary of the results is provided
in Tables 3.20 and 3.21 (the full results over 60 instances are reported in Tables
3.25–3.30 in §3.C). These tables report, for each set of instances the percentage
of infeasible solutions SD and SN , the average computational time (denoted by
t(SN ) and t(SD)) and the average saving of using a time-dependent formulation.
The latter is calculated as Saving % = 100(TC(SN ) − TC(SD))/TC(SN ),
representing the percentage decrease in costs which results from incorporating
traffic congestion into planning vehicles routes and schedules.

Table 3.20 Summarized results for three sets of instances with an initial congestion
period of 3600 seconds

Drivers paid from the beginning of the planning horizon Drivers paid from departure
Instances Infeasible Infeasible t(SN ) t(SD) Saving Infeasible Infeasible t(SN ) t(SD) Saving

SN % SD % s s % SN % SD % s s %
UK 10 30 0 3.663 4.981 3.206 30 0 3.136 4.561 6.330
UK 15 55 5 976.610 467.797 3.478 45 5 1148.129 668.824 5.705
UK 20† 19 0 1527.273 1119.881 2.937 24 0 2179.146 1003.909 5.736
†Results calculated only on the instances solved to optimality.

Table 3.21 Summarized results for three sets of instances with an initial congestion
period of 7200 seconds

Drivers paid from the beginning of the planning horizon Drivers paid from departure
Instances Infeasible Infeasible t(SN ) t(SD) Saving Infeasible Infeasible t(SN ) t(SD) Saving

SN % SD % s s % SN % SD % s s %
UK 10 50 0 3.663 10.870 4.942 50 0 3.136 8.514 15.276
UK 15 80 10 976.610 463.724 5.055 85 10 1148.129 714.044 14.986
UK 20† 80 0 1527.273 3388.063 5.310 88 0 2179.146 3628.597 14.910
†Results calculated only on the instances solved to optimality.

Tables 3.20 and 3.21 show that in the presence of traffic congestion, using a time-
dependent formulation significantly decreases the percentage of infeasible solutions.
Furthermore the results also suggest that if both solutions are feasible, the time-
dependent one can yield considerable cost savings over the time-independent
one. The potential cost reduction increases proportionally to the length of the
congestion period and can more than double when the driver is paid from the
departure time. These implications support the assertions made in §3.3 by means
of simple examples.
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3.7 Conclusions

We have introduced and analyzed the time-dependent vehicle routing problem with
time windows, which considers vehicles traveling under two subsequent periods of
congestion and free-flow, respectively, and explicitly accounts for vehicle emissions
which increases sharply when vehicles travel at slow speed. The modeling approach
adopted in this chapter yields solution with reduced greenhouse gas emissions. We
emphasize that our results also hold for the time-dependent VRP even if emissions
are not considered in the objective function.

We have provided an integer linear programming formulation, which is also valid
for the special case of the problem where there is no congestion (e.g., as in
the PRP introduced by Bektaş and Laporte (2011). We have presented several
examples that motivate idle waiting time, either pre- or post-service, at customer
nodes or at the depot, in order to minimize a total cost function incorporating
emissions and driver wages. We have derived a complete characterization
of the optimal solution for a single-arc version of the TDPRP, identifying
conditions under which it is optimal to wait before departure, and the associated
amount of time. The characterization prescribes optimal speed levels under
various conditions associated with time windows, the length of the congestion
period and the speed limits. The analytical results derived in this chapter
were used to strengthen the computational performance of the mathematical
formulation. Computational results have confirmed that the proposed formulation
computationally outperforms the formulation recently proposed for the PRP.
Moreover, the analytical expressions for optimal speeds can easily be used as a
“rule-of-thumb” for the design of vehicle routes under congestion.
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3.A PRP formulation

In this section we present the PRP formulation by Bektaş and Laporte (2011).
The model uses the following decision variables:

xij binary variable equal to 1 if a vehicle traverses arc (i, j) ∈ A, 0 otherwise,
zrij binary variable equal to 1 if a vehicle traverses arc (i, j) ∈ A with the free-flow speed vr

with r ∈ R, 0 otherwise,
fij load carried on arc (i, j),
si total time spent on a route that has node i ∈ N0 as last visited before returning to the

depot,
ϕi time at which service at node i ∈ N0 starts.

Minimize
∑

(i,j)∈A

∑
r∈R

3∑
m=1

fcλkNeV dijz
r
ij/v

r (3.26)

+
∑

(i,j)∈A

∑
r∈R

∑
m=1,3

fcλγβdij(v
r)2zrij (3.27)

+
∑

(i,j)∈A

fcλγαijdij(µxij + fij) (3.28)

+
∑
i∈N0

dcsi (3.29)

subject to∑
j∈N

x0j = K (3.30)

∑
i∈N

xij = 1 ∀j ∈ N0 (3.31)

∑
j∈N

xij = 1 ∀i ∈ N0 (3.32)

∑
j∈N

fji −
∑
j∈N

fij = qi ∀i ∈ N0 (3.33)

qjxij ≤ fij ≤ xij(Q− qi) ∀(i, j) ∈ A (3.34)

ϕi −ϕj + hi +
∑
r∈R

(dij/vr)zrij ≤Mij(1− xij) ∀j ∈ N , j ∈ N0, i 6= j (3.35)

li ≤ ϕi ≤ ui ∀i ∈ N0 (3.36)

ϕj + hj − sj +
∑
r∈R

(dj0/vr)zrij ≤ L(1− xij) ∀j ∈ N0 (3.37)
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3∑
m=1

∑
r∈R

zmrij = xij ∀(i, j) ∈ A (3.38)

zrij ∈ {0, 1} ∀(i, j) ∈ A, r ∈ R (3.39)
xij ∈ {0, 1} ∀(i, j) ∈ A (3.40)
fij ≥ 0 ∀(i, j) ∈ A. (3.41)

The first three parts of the objective function represent the cost of emissions:
(3.26) computes the cost induced by the engine module, the term (3.27) computes
the cost induced by the speed module, and (3.28) computes the cost induced by the
weight module. Finally, the last term (3.29) measures the total driver wage when
the driver is paid from the beginning of the planning horizon. Constraint (3.30)
indicates that exactly K vehicles depart from the depot. Constraints (3.31) and
(3.32) guarantee that each customer is visited exactly once. Constraints (3.33) and
(3.34) model the flow on each arc and ensure that vehicle capacities are respected.
The time windows restrictions at customer nodes are imposed by constraints
(3.35) and (3.36). In particular, as in Cordeau et al. (2007a), constraints
(3.35) are obtained through a linearization of a set of non-linear inequalities and
Mij = max{0,ui + si + dij/vmin − lj}. Constraint (3.37) computes the time at
which the vehicle returns to the depot. The relationship between speed and arc-
traversal variables is expressed by constraint (3.21). Finally, constraints (3.39)–
(3.41) enforce the integrality and nonnegativity restrictions on the variables.
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3.B Optimal solution tables

Table 3.22 Optimal solution when driver is paid from the beginning of the planning
horizon.

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Solution
l ≤ u ≤ a (w, vf ) where w ∈

[
ε, max

{
ε,
(
l− d

vc

)}]

l < a < u

vmax ≤ v
vua ≤ v

max v̂ ≥ v̌ (a, vmax) or (ε, vmax)
v̂ ≤ v̌ (ε, vmax)

vua ≥ v
max v̂ ≥ v̌ (wumax, vmax) or (ε, vmax)

v̂ ≤ v̌ (ε, vmax)

vmax ≥ v

vua ≤ v
v̂ ≥ v (a, v) or (ε, v)
v̂ ≤ v (ε, v)

v ≤ vua ≤ v
max

v̂ ≤ v vuε ≤ v (ε, v)
vuε ≥ v (ε, vuε )

v ≤ v̂ ≤ vua
vuε ≤ v̂ (ŵu, v̂) or (ε, v)
vuε ≥ v̂ (ε, vuε )

v̂ ≥ vua (a, vau) or (ε, v)

vua ≥ v
max

v̂ ≤ v vuε ≤ v (ε, v)
vuε ≥ v (ε, vuε )

v ≤ v̂ ≤ vmax vuε ≤ v̂ (ŵu, v̂) or (ε, v)
vuε ≥ v̂ (ε, vuε )

v̂ ≥ vmax (wumax, vmax) or (ε, v)

a < l < u

vmax ≤ v

vla ≤ v
max (w, vmax) where w ∈ [a,wlmax]

vua ≤ v
max ≤ vla

v̂ ≥ v̌ (a, vmax)
v̂ ≤ v̌ (wlmax, vmax)

vua ≥ v
max v̂ ≥ v̌ (wumax, vmax)

v̂ ≤ v̌ (wlmax, vmax)

v ≤ vmax ≤ v

vla ≤ v (w, v) where w ∈
[
a,wl

]
v ≤ vla ≤ v

max vla ≥ v̂
vlε ≤ v̂ (ŵl, v̂)
vlε ≥ v̂ (ε, vlε)

vla ≤ v̂ (a, vla)

vua ≤ v
max ≤ vla

v̂ ≤ vmax
vlε ≤ v̂ (ŵl, v̂)

v̂ ≤ vlε ≤ v
max (ε, vlε)

vlε ≥ v
max (ε, vmax)

vmax ≤ v̂ ≤ v̌ vlε ≤ v
max (wlmax, vmax)

vlε ≥ v
max (ε, vmax)

v̂ ≥ v̌ (a, vmax)

vua ≥ v
max

v̂ ≤ vmax
vlε ≤ v̂ (ŵl, v̂)

v̂ ≤ vlε ≤ v
max (ε, vlε)

vlε ≥ v
max (ε, vmax)

vmax ≤ v̂ ≤ v̌ vlε ≤ v
max (wlmax, vmax)

vlε ≥ v
max (ε, vmax)

v̂ ≥ v̌ (wumax, vmax)

vmax ≥ v

vla ≤ v (w, v) where w ∈
[
a,wl

]
v ≤ vla ≤ v

vla ≥ v̂
vlε ≤ v̂ (ŵl, v̂)
vlε ≥ v̂ (ε, vlε)

vla ≤ v̂ (a, vla)

vua ≤ v ≤ v
l
a

v̂ ≤ v
vlε ≤ v̂ (ŵl, v̂)

v̂ ≤ vlε ≤ v (ε, vlε)
vlε ≥ v (ε, v)

v̂ ≥ v (a, v)

v ≤ vua ≤ v
max

v̂ ≤ v

vlε ≤ v̂ (ŵl, v̂)
v̂ ≤ vlε ≤ v (ε, vlε)
vuε ≤ v ≤ v

l
ε (ε, v)

v ≤ vuε (ε, vuε )
v ≤ v̂ ≤ vua

vuε ≤ v̂ (ŵu, v̂)
vuε ≥ v̂ (ε, vuε )

v̂ ≥ vua (a, vua )

vua ≥ v
max

v̂ ≤ v

vlε ≤ v̂ (ŵl, v̂)
v̂ ≤ vlε ≤ v (ε, vlε)
vuε ≤ v ≤ v

l
ε (ε, v)

v ≤ vuε (ε, vuε )
v ≤ v̂ ≤ vmax vuε ≤ v̂ (ŵu, v̂)

vuε ≥ v̂ (ε, vuε )
v̂ ≥ vmax (wumax, vmax)

where ŵl = a− (d− (l− a)v̂)/vc, ŵu = a− (d− (u− a)v̂)/vc and wl = l− d/v.
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Table 3.23 Optimal solution when driver is paid from departure time

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Solution
l ≤ u ≤ a (w, vf ) where w ∈

[
max

{
ε,
(
l− d

vc

)}
,u− d

vc

]

l < a < u

vmax ≤ v vua ≤ v
max (w, vmax) where w ∈ [a,wumax]

vua ≥ v
max (wumax, vmax)

vmax ≥ v

vua ≤ v (w, v) where w ∈ [a,wu]

v ≤ vua ≤ v
max ṽ ≤ vua

vuε ≤ ṽ (w̃u, ṽ)
vuε ≥ ṽ (ε, vuε )

ṽ ≥ vua (a, vua )

vua ≥ v
max ṽ ≤ vmax vuε ≤ ṽ (w̃u, ṽ)

vuε ≥ ṽ (ε, vuε )
ṽ ≥ vmax (wumax, vmax)

a < l < u

vmax ≤ v
vla ≤ v

max (w, vmax) where w ∈ [wlmax,wumax]
vua ≤ v

max ≤ vla (w, vmax) where w ∈ [a,wumax]
vua ≥ v

max (wumax, vmax)

v ≤ vmax ≤ v

vla ≤ v (w, vmax) where w ∈
[
wlmax,wumax

]
v ≤ vla ≤ v

max (w, vmax) where w ∈
[
wlmax,wumax

]
vua ≤ v

max ≤ vla (w, vmax) where w ∈ [a,wumax]
vua ≥ v

max (wumax, vmax)

vmax ≥ v

vla ≤ v (w, v) where w ∈ [wl,wu]
v ≤ vla ≤ v (w, v) where w ∈ [wl,wu]
vua ≤ v ≤ v

l
a (w, v) where w ∈ [a,wu]

v ≤ vua ≤ v
max ṽ ≤ vua

vuε ≤ ṽ (w̃u, ṽ)
vuε ≥ ṽ (ε, vuε )

ṽ ≥ vua (a, vua )

vua ≥ v
max ṽ ≤ vmax vuε ≤ ṽ (w̃u, ṽ)

vuε ≥ ṽ (ε, vuε )
ṽ ≥ vmax (wumax, vmax)

where w̃u = a− (d− (u− a)ṽ)/vc and wu = u− d/v.

3.C Computational results

3.C.1 Results on PRP instances

The PRP results in columns 2 and 3 are taken from Demir et al. (2012). The
reason behind the slight discrepancy between the values in columns 2 and 4 is due
to numerical approximation.

3.C.2 Results on TDPRP instances

Each table reports the two cases: (i) driver paid from the beginning of the planning
horizon, (ii) driver paid from the departure time. In both cases the tables display,
for each instance, the cost values of the SD and SN solutions (denoted by TC(SN )
and TC(SD)) and the CPU times (in seconds) required to construct these solutions
(denoted by t(SN ) and t(SD)). Under the last column are reposted the cost
savings of incorporating traffic congestion when planning the vehicles’ routes and
schedules.
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Table 3.24 Comparison of PRP versus TDPRP formulations with respect to
computational time

Instance PRP t(PRP) TDPRP t(TDPRP)
£ s £ s

UK10 01 170.66 163.40 170.66 10.71
UK10 02 204.87 113.90 204.88 3.73
UK10 03 200.33 926.00 200.34 3.36
UK10 04 189.94 396.50 189.95 5.00
UK10 05 175.61 1253.70 175.62 4.93
UK10 06 214.56 347.50 214.53 3.43
UK10 07 190.14 191.00 190.15 5.06
UK10 08 222.16 139.80 222.17 2.23
UK10 09 174.53 54.00 174.54 4.64
UK10 10 189.83 76.00 189.84 2.83
UK10 11 262.07 50.50 262.08 4.40
UK10 12 183.18 1978.70 183.19 14.71
UK10 13 195.97 1235.10 195.97 2.94
UK10 14 163.17 84.10 163.18 2.77
UK10 15 127.15 433.30 127.16 6.25
UK10 16 186.63 680.80 186.63 7.03
UK10 17 159.07 27.00 159.08 3.22
UK10 18 162.09 522.10 162.09 4.19
UK10 19 169.46 130.50 169.46 1.52
UK10 20 168.8 1365.50 168.81 17.44
Average 508.47 5.52

Table 3.25 Computational results for 10-node instances with initial congestion period
of 3600 seconds

Drivers paid from the beginning of the planning horizon Drivers paid from departure
Instance # of TC(SN ) t(SN ) TC(SD) t(SD) Saving TC(SN ) t(SN ) TC(SD) t(SD) Saving

vehicles £ s £ s % £ s £ s %
UK10 01 2 inf. 4.62 183.98 6.01 - 177.97 3.99 168.14 6.05 5.52
UK10 02 2 225.10 3.09 218.90 3.63 2.75 220.26 1.81 203.06 6.79 7.81
UK10 03 2 219.33 12.88 213.34 8.76 2.73 210.54 8.33 197.50 2.94 6.19
UK10 04 2 209.97 2.83 202.17 2.20 3.71 187.18 1.36 185.88 2.65 0.69
UK10 05 2 195.80 3.99 188.07 3.95 3.95 185.77 1.24 172.23 3.27 7.29
UK10 06 2 inf. 2.55 229.13 3.55 - inf. 2.21 213.29 5.86 -
UK10 07 2 210.37 1.54 205.18 3.31 2.47 203.98 1.81 189.34 3.35 7.18
UK10 08 2 242.26 1.83 237.17 2.46 2.1 242.26 1.09 221.33 2.11 8.64
UK10 09 2 194.82 2.59 189.73 2.97 2.61 194.82 2.86 173.89 3.23 10.74
UK10 10 2 210.03 1.91 204.89 2.56 2.44 209.59 2.26 189.05 2.75 9.8
UK10 11 2 inf. 2.71 277.12 2.57 - inf. 1.92 261.28 2.71 -
UK10 12 2 198.41 5.32 193.65 4.20 2.4 181.64 2.52 177.81 3.88 2.11
UK10 13 2 216.19 1.79 208.37 2.08 3.61 205.72 1.18 192.53 2.04 6.41
UK10 14 2 inf. 1.54 179.84 17.40 - inf. 1.20 164.72 6.40 -
UK10 15 2 141.13 3.06 135.46 4.01 4.02 123.22 2.73 119.62 4.39 2.92
UK10 16 2 206.25 4.97 198.86 4.20 3.58 194.80 5.03 183.02 5.60 6.05
UK10 17 2 inf. 2.17 171.60 2.51 - inf. 1.34 155.76 2.81 -
UK10 18 2 182.37 3.78 173.96 6.04 4.61 inf. 2.90 158.00 4.42 -
UK10 19 2 inf. 1.74 181.28 5.38 - inf. 2.29 165.44 5.61 -
UK10 20 2 189.06 8.37 181.68 11.84 3.9 178.83 14.64 165.84 14.38 7.27
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Table 3.26 Computational results for 10-node instances with initial congestion period
of 7200 seconds

Drivers paid from the beginning of the planning horizon Drivers paid from departure
Instance # of TC(SN ) t(SN ) TC(SD) t(SD) Saving TC(SN ) t(SN ) TC(SD) t(SD) Saving

vehicles £ s £ s % £ s £ s %
UK10 01 2 inf. 4.62 201.76 22.61 - inf. 3.99 170.08 20.35 -
UK10 02 2 inf. 3.09 241.31 12.88 - inf. 1.81 210.63 23.02 -
UK10 03 2 240.03 12.88 229.69 30.30 4.31 231.47 8.33 198.01 20.99 14.46
UK10 04 2 230.84 2.83 217.56 4.89 5.75 206.4 1.36 185.88 3.54 9.94
UK10 05 2 216.68 3.99 203.91 4.32 5.89 206.71 1.24 172.23 4.36 16.68
UK10 06 2 inf. 2.55 249.98 6.61 - inf. 2.21 218.30 12.38 -
UK10 07 2 231.31 1.54 221.31 5.90 4.32 inf. 1.81 189.63 3.74 -
UK10 08 2 263.19 1.83 253.01 2.43 3.87 263.19 1.09 221.33 1.96 15.91
UK10 09 2 215.75 2.59 205.57 4.71 4.72 215.75 2.86 173.89 5.06 19.4
UK10 10 2 230.94 1.91 220.74 3.60 4.42 230.53 2.26 189.05 3.82 17.99
UK10 11 2 inf. 2.71 296.27 3.92 - inf. 1.92 264.59 2.92 -
UK10 12 2 219.28 5.32 208.75 21.78 4.80 202.64 2.52 177.81 4.44 12.25
UK10 13 2 inf. 1.79 224.21 2.94 - 226.65 1.18 192.54 2.63 15.05
UK10 14 2 inf. 1.54 199.36 5.32 - inf. 1.20 167.68 5.44 -
UK10 15 2 inf. 3.06 152.87 9.70 - inf. 2.73 121.19 8.28 -
UK10 16 2 226.95 4.97 214.70 6.53 5.40 215.73 5.03 183.02 6.01 15.16
UK10 17 2 inf. 2.17 207.46 32.35 - inf. 1.34 175.83 16.01 -
UK10 18 2 inf. 3.78 189.68 11.33 - inf. 2.90 158.00 7.03 -
UK10 19 2 inf. 1.74 199.15 6.48 - inf. 2.29 167.47 5.82 -
UK10 20 2 209.99 8.37 197.52 18.80 5.94 197.25 14.64 165.84 12.47 15.92

Table 3.27 Computational results for 15-node instances with initial congestion period
of 3600 seconds

Drivers paid from the beginning of the planning horizon Drivers paid from departure
Instance # of TC(SN ) t(SN ) TC(SD) t(SD) Saving TC(SN ) t(SN ) TC(SD) t(SD) Saving

vehicles £ s £ s % £ s £ s %
UK15 01 2 inf. 234.88 299.06 556.78 - inf. 667.67 283.22 618.29 -
UK15 02 2 226 25.92 219.36 30.37 2.94 213.31 28.08 203.52 35.62 4.59
UK15 03 2 inf. 4746.72 316.59 3186.76 - inf. 7422.00 300.75 6316.59 -
UK15 04 3 inf. 71.64 318.50 53.86 - inf. 24.98 294.74 33.26 -
UK15 05 2 inf. 14.17 299.90 40.14 - inf. 41.47 284.06 27.85 -
UK15 06 2 inf. 8862.00 244.05 1050.61 - 240.6 2221.46 228.21 1932.42 5.15
UK15 07 3 281.15 26.71 269.44 6.44 4.16 261.56 8.19 245.68 9.84 6.07
UK15 08 2 185.47 162.84 178.97 33.59 3.51 171.94 75.11 163.13 52.41 5.12
UK15 09 3 293.51 1138.32 281.89 70.98 3.96 278.86 126.32 258.11 105.38 7.44
UK15 10 2 234.14 40.70 227.71 42.99 2.74 225.05 30.76 211.87 53.35 5.85
UK15 11 2 inf. 20.69 275.26 232.20 - inf. 26.45 259.42 123.38 -
UK15 12 3 340.57 24.63 330.51 19.71 2.95 331.72 38.74 306.75 36.77 7.53
UK15 13 2 inf. 909.86 265.09 1028.96 - inf. 1939.60 249.25 1379.09 -
UK15 14 3 inf. 3083.37 359.58 2871.24 - inf. 10130.00 335.82 2408.28 -
UK15 15 2 239.81 48.45 232.81 96.55 2.92 219 134.98 216.97 155.69 0.93
UK15 16 2 224.67 27.34 214.37 7.88 4.58 208.32 7.30 198.53 44.56 4.7
UK15 17 3 inf. 9.82 302.04 5.00 - 300.07 5.18 278.28 6.25 7.26
UK15 18 3 inf. 58.39 332.40 10.29 - inf. 27.24 308.65 21.24 -
UK15 19 2 184.85 9.46 178.31 4.50 3.54 176.81 4.24 162.47 6.81 8.11
UK15 20 3 inf. 16.28 220.57 7.10 - inf. 2.84 196.81 9.42 -
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Table 3.28 Computational results for 15-node instances with initial congestion period
of 7200 seconds

Drivers paid from the beginning of the planning horizon Drivers paid from departure
Instance # of TC(SN ) t(SN ) TC(SD) t(SD) Saving TC(SN ) t(SN ) TC(SD) t(SD) Saving

vehicles £ s £ s % £ s £ s %
UK15 01 2 inf. 234.68 337.71 2489.17 - inf. 667.67 306.42 2972.56 -
UK15 02 2 inf. 25.86 235.40 63.91 - 231.96 28.08 203.72 42.19 12.17
UK15 03 2 inf. 4858.37 inf. 476.42 - inf. 7422.00 inf. 748.03 -
UK15 04 3 inf. 71.58 343.16 67.64 - inf. 24.98 295.64 194.17 -
UK15 05 2 inf. 14.14 349.49 272.13 - inf. 41.47 331.04 520.05 -
UK15 06 2 inf. 8856.99 263.74 1853.29 - inf. 2221.46 232.06 2105.63 -
UK15 07 3 inf. 26.68 304.60 168.01 - inf. 8.19 257.08 114.88 -
UK15 08 2 206.04 162.79 194.81 70.76 5.45 192.87 75.11 163.13 60.50 15.42
UK15 09 3 inf. 1137.68 306.18 234.59 - inf. 126.32 258.66 290.29 -
UK15 10 2 inf. 40.65 245.23 74.02 - inf. 30.76 213.55 44.76 -
UK15 11 2 inf. 20.68 337.12 824.14 - inf. 26.45 308.15 790.05 -
UK15 12 3 inf. 24.61 354.41 31.77 - inf. 38.74 69.55 72.18 -
UK15 13 2 inf. 913.76 282.77 2093.01 - inf. 1939.60 262.93 5685.92 -
UK15 14 2 inf. 3079.17 inf. 6.48 - inf. 10130.00 inf. 6.63 -
UK15 15 2 260.51 48.30 248.65 94.52 4.55 inf. 134.98 216.97 106.01 -
UK15 16 2 245.24 27.30 230.21 11.01 6.13 inf. 7.30 198.53 12.89 13.40
UK15 17 3 inf. 9.80 325.80 14.14 - inf. 5.18 278.28 14.34 16.10
UK15 18 3 inf. 58.32 363.74 173.09 - inf. 27.24 316.22 417.77 -
UK15 19 2 202.42 9.47 194.15 13.23 4.09 197.74 4.24 162.47 10.80 17.84
UK15 20 3 inf. 16.23 244.55 243.15 - inf. 2.84 200.68 71.21 -

Table 3.29 Computational results for 20-node instances with initial congestion period
of 3600 seconds

Drivers paid from the beginning of the planning horizon Drivers paid from departure
Instance # of TC(SN ) t(SN ) TC(SD) t(SD) Saving TC(SN ) t(SN ) TC(SD) t(SD) Saving

vehicles £ s £ s % £ s £ s %
UK20 01 3 347.16 416.29 337.9 265.72 2.68 328.90 212.49 314.10 169.66 4.50
UK20 02 3 365.84 295.04 352.9 225.98 3.54 inf. 321.04 329.12 161.04 -
UK20 03 3 233.27 76.69 224.0 44.97 3.97 216.53 66.35 200.01 42.36 7.63
UK20 04 3 354.83 3360.44 347.1 1546.29 2.17 354.34 2929.29 323.36 1919.35 8.74
UK20 05 3 325.59 258.29 317.4 360.26 2.53 312.87 370.71 292.12 219.98 6.63
UK20 06 3 349.35* 2124.82 365.02* 5637.66 - 339.50* 6701.12 347.27* 1520.50
UK20 07 3 255.39 1456.06 246.93* 2394.83 - 223.1* 10800.40 223.4* 1091.46 -
UK20 08 3 307.47 575.73 298.3 54.03 3.00 288.17 232.23 274.10 83.39 4.88
UK20 09 3 inf. 54.36 345.0 169.47 - inf. 32.64 321.26 119.14 -
UK20 10 3 291.58* 3977.5 310.9 1816.07 - 307.98 9120.02 287.15 2288.59 6.76
UK20 11 3 391 140.35 381.6 38.50 2.41 374.23 173.63 357.82 234.21 4.38
UK20 12 3 346.02 2253.71 334.6 463.88 3.29 322.48 1853.51 310.87 463.90 3.60
UK20 13 3 339.15 83.24 329.9 176.90 2.74 327.46 128.74 306.10 74.62 6.52
UK20 14 4 inf.* 10799.6 437.49* 1701.06 - inf.* 2521.06 404.66* 1651.95 -
UK20 15 3 349.63 642.49 338.4 607.60 3.22 327.47 3105.17 313.94 800.90 4.13
UK20 16 3 358.16 741.31 346.4 170.18 3.30 331.72 895.87 322.60 149.28 2.75
UK20 17 3 inf. 905.97 379.72* 2170.39 - inf. 2498.11 355.61 5864.80 -
UK20 18 3 inf. 445.71 367.5 1132.39 - inf. 1357.34 343.71 685.20 -
UK20 19 3 351.16 1926.32 343.4 3405.90 2.22 349.63 253.10 319.60 2524.09 8.59
UK20 20 3 354.13 11.56 343.1 15.56 3.11 337.82 10.09 319.37 13.75 5.46
* Not solved to optimality.
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Table 3.30 Computational results for 20-node instances with initial congestion period
of 7200 seconds

Drivers paid from the beginning of the planning horizon Drivers paid from departure
Instance # of TC(SN ) t(SN ) TC(SD) t(SD) Saving TC(SN ) t(SN ) TC(SD) t(SD) Saving

vehicles £ s £ s % £ s £ s %
UK20 01 3 inf. 416.29 362.44 286.10 - inf. 212.49 314.90 673.14 -
UK20 02 3 inf. 295.04 378.75 207.29 - inf. 321.04 331.20 541.94 -
UK20 03 3 264.38 76.69 247.53 158.97 6.37 245.9 66.35 200.00 100.15 18.66
UK20 04 3 inf. 3360.44 371.80 4318.09 - inf. 2929.29 324.30 4647.32 -
UK20 05 3 356.9 258.29 340.60 894.88 4.57 inf. 370.71 293.10 940.19 -
UK20 06 3 349.35* 2124.82 412.04* 10799.80 - 339.50* 6701.12 inf. - -
UK20 07 3 285.35 1456.06 270.63* 7058.32 - 223.17* 10800.40 inf.* 4299.49 -
UK20 08 3 338.8 575.73 321.91 128.01 4.99 inf. 232.23 274.40 119.65 -
UK20 09 3 inf. 54.36 379.15 676.14 - inf. 32.64 331.80 1761.27 -
UK20 10 3 291.58* 3977.50 335.73* 4271.10 - inf. 9120.02 288.80 7355.26 -
UK20 11 3 inf. 140.35 414.64 2554.09 - inf. 173.63 368.20 2471.30 -
UK20 12 3 inf. 2253.71 361.30 3523.84 - inf. 1853.51 316.20 3076.75 -
UK20 13 3 inf. 83.24 360.09 2171.69 - inf. 128.74 312.60 1884.26 -
UK20 14 3 inf.* 10799.60 inf.* 1954.92 - inf.* 2521.06 inf.* 1779.78 -
UK20 15 3 inf. 642.49 366.01 3407.18 - inf. 3105.17 318.50 5048.37 -
UK20 16 3 inf. 741.31 370.12 748.19 - 363.12 895.87 322.60 1811.35 11.16
UK20 17 3 inf. 905.97 410.747* 10800.80 - inf. 2498.11 369.13* 10797.90 -
UK20 18 3 inf. 445.71 395.57 4054.01 - inf. 1357.34 351.65* 10799.50 -
UK20 19 3 inf. 1926.32 371.63 9726.61 - inf. 253.10 324.111* 10799.50 -
UK20 20 3 inf. 11.56 367.51 21.24 - inf. 10.09 320.00 36.21 -
* Not solved to optimality



It is a mistake to think you can solve any
major problems just with potatoes.

Douglas Adams, The Hitchhiker’s Guide to
the Galaxy

4 A Metaheuristic Algorithm for
the Time-Dependent Pollution-Routing
Problem

In the previous chapter we introduced the Time-Dependent Pollution Routing
Problem (TDPR), which consists of routing a number of vehicles to serve a set of
customers and determining their speed on each route segment with the objective
of minimizing driver wage and carbon dioxide-equivalent emissions. The vehicles
face traffic congestion which, at peak periods, significantly restricts vehicle speeds
and leads to more emissions. We presented a linear mixed integer mathematical
model for the TDPRP which can be used to solve small scale problem instances,
up to 25 customer nodes. In order to solve larger instances, in this chapter we
propose a metaheuristic algorithm for the TDPRP. Our algorithm is based on an
adaptive large neighborhood search heuristic and uses new insertion and removal
operators which are tailored to this problem. Results from extensive computational
experimentation demonstrate the good performance of our algorithm.
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4.1 Introduction

In the past, the planning of freight transportation activities was mostly focused
on cutting costs and increasing profitability by considering internal transportation
costs only, that is, mainly fuel cost and drivers’ wages (see, e.g., Forkenbrock,
1999, 2001). Nowadays, freight companies also need to consider their impact
on the environment and particularly the amount of greenhouse gases (GHGs)
generated by their vehicle fleet, as many cities have enacted new environmental
legislation which restrict heavy freight vehicle traffic in certain urban areas (see,
e.g., Demir et al., 2014b, 2015). Congestion, which is a major problem in many
cities, increases greenhouse gases emissions and therefore should be taken into
account when planning vehicle routing.

In this chapter we propose a metaheuristic algorithm to solve the TDPRP which
uses the Time-Dependent Departure Time and Speed Optimization Procedure
(TDDSOP) presented in Chapter 5 as a sub-routine. Other recent studies have
developed metaheuristic algorithms for solving the PRP and its variants: Demir
et al. (2012) a propose a metaheuristic which iterates between the solution of the
Vehicle Routing Problem with Time Windows (VRPTW) and a speed optimization
problem. The VRPTW is solved by an Adaptive Large Neighborhood Search
(ALNS). The speed optimization problem is solved by means of a procedure that
runs in polynomial time. In a related study, Demir et al. (2013) investigate the
trade-offs between fuel consumption and driving time. The authors show that in
order to achieve a considerable reduction in fuel consumption and CO2e emissions,
trucking companies need not compromise significantly in terms of driving time.
Kramer et al. (2014) propose a method that combines a local search-based meta-
heuristic with an integer programming approach over a set covering formulation
and a recursive speed optimization algorithm. Koç et al. (2014) introduce the
fleet size and mix PRP, which considers a heterogenous vehicle fleet and develop
a hybrid evolutionary algorithm. Dabia et al. (2014) obtain an exact solution
based on a branch-and-price algorithm by formulating the master problem as
a set-partitioning problem, and the pricing problem as a speed- and start time
elementary shortest path problem with resource constraints. They solve the master
problem by means of column generation, and the pricing problem by a tailored
labeling algorithm.

The main contributions of our chapter are as follows. First we consider an
extension of the PRP to a time-dependent setting with traffic congestion, namely
the TDPRP, for which, to our knowledge, no metaheuristic has been proposed.
Second, our algorithm is based on an adaptive large neighborhood search (ALNS)
heuristic for which we develop new insertion and removal operators, which are
tailored to this problem and shown to perform well. Third, we show numerically
that our algorithm is fast and performs well compared to existing solution methods
for the TDPRP and even gives good results for the special case of the PRP.
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The remainder of the chapter is organized as follows. §4.2 recap the main feature
of the TDPRP. §4.3 describes our metaheuristic algorithm. In §4.4, we present
our numerical study. Conclusions are stated in §4.5.

4.2 Model

In this section we present the main features of the TDPRP (see Chapter 3 for a
more in-depth description) and discuss the feasibility conditions of the problem.

4.2.1 Problem description

The TDPRP consists of routing a number of vehicles to make deliveries from a
depot to a set of customers. It is defined on a complete graph G = {N ,A},
where N is the set of nodes, and A is the set of arcs between every pair of nodes.
Let 0 denote the depot, and N0 = N \ {0} denote the set of customer nodes.
The distance between two nodes (i 6= j ∈ N) is denoted by di,j . We consider a
homogeneous fleet of vehicles, each with a capacity of Q units, which are initially
located at the depot. Let hi denote the service time at customer node i ∈ N0,
which corresponds to the time required to make the delivery. We set the service
time at the depot equal to 0, i.e. h0 = 0. Also let [li,ui] denote the hard time
window at customer node i ∈ N0 during which service must start: if a vehicle
arrives at node i before the lower time window limit li, the driver must wait until
time li to start serving the customer and the service must start before upper time
limit ui. After the service has been completed, the vehicle is allowed to wait idly
at the customer node before leaving for the next customer node. This waiting
time is referred to as the post-service waiting time. As shown in Chapter 3, in
some cases waiting idly at the customer is an effective strategy to avoid traveling
in congestion and may lead to a reduction in fuel consumption. Finally, let qi
denote the delivery quantity at customer node i ∈ N0.

In line with the previous chapter we consider two methods to calculate the driver
labour costs, referred to as driver wage policies: (a) the driver is paid from the
beginning of the planning horizon, (b) the driver is paid from the instant he or
she leaves the depot. The objective of the TDPRP is to determine: (i) the set
of vehicle routes, each starting and ending at the depot, (ii) the vehicle speed on
each arc, and (iii) the departure times from each node, so as to minimize emissions
and labor costs.

Traffic congestion is modeled using a two-level speed function where there is an
initial period of congestion, lasting a units of time, followed by a period of free-
flow, during which the vehicle is allowed to drive at any speed up to a maximum
value of vmax > vc as in Figure 3.1.
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To calculate the amount of vehicle CO2e emissions we use the comprehensive
modal emissions model (CMEM) by Scora and Barth (2006) and Barth and
Boriboonsomsin (2009). According to this model, the quantity of GHG emissions
generated when traversing a distance d at a constant speed of v carrying a load of f
is directly proportional to the amount of fuel consumed on this arc. For a complete
description of the formulas used to model the TDPRP we refer to Chapter 3. The
values of all vehicle and emission parameters are reported in Table 4.2 in Chapter
3.

4.2.2 Feasibility conditions

The TDPRP is feasible if it is possible to serve each customer with a separate
vehicle without violating their upper time window, that is, if

min
{
a, d0,i/vc

}
+ ((d0,i − avc)+)/vmax ≤ ui ∀i ∈ N0.

In what follows we assume that these conditions are satisfied (and this is also true
of all the problem instances we consider in our numerical experiment).

Next we discuss the feasibility conditions for a given vehicle route. Let
(0, 1, . . . ,n, 0) denote a fixed route where 0 is the depot and i ∈ {1, . . . ,n} are
customer nodes. Let wi denote the earliest possible service completion time at
node i, which is obtained by assuming the vehicle drives at the maximum speed
vmax on every arc of the route and never waits at any node following the completion
of service. The values of wi can be computed recursively as:

w0 = 0

wi =


max

{
wi−1 +

di−1,i
vc

, li
}

+ hi if wi−1 ≤
(
a− di−1,i

vc

)+

max
{
a+

di−1,i−(a−w
i−1)vc

vmax
, li
}

if
(
a− di−1,i

v c

)+

≤ wi−1

+hi and wi−1 ≤ a

max
{
wi−1 +

di−1,i
vmax

, li
}

+ hi if wi−1 ≥ a.

for i = 1, . . . ,n

The route is feasible if (i) the sum of delivery quantities does not exceed the
vehicle capacity, i.e.,

∑n
i=1 qi ≤ Q, and (ii) the vehicle arrives at each customer

node before its upper time window limits when driving at the maximum speed
without any post-service waiting time, i.e. wi − hi ≤ ui for i = 1, . . . ,n+ 1.
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4.3 An Adaptive Large Neighborhood Search heuristic for
the TDPRP

This section presents an Adaptive Large Neighborhood Search (ALNS) heuristic
for the TDPRP. Pioneered by Pisinger and Ropke (2007) and Ropke and Pisinger
(2006a), the ALNS heuristic is an extension of the Large Neighborhood Search
(LNS) heuristic first introduced by Shaw (1998). Both methods are advanced
techniques which aim at finding near-optimal solutions by repeatedly looking for a
better solution in a large neighborhood around the current solution. Specifically,
the neighborhood of the current solution is explored using a removal operator
and a insertion operator in order to create an incumbent solution. The removal
operator partially deconstructs the current solution and the insertion operator
rebuilds it in a different way. Whether the incumbent solution is accepted as
the new current solution is determined using a simulated annealing acceptance
rule: the incumbent solution is always accepted if it has a lower cost than the
current solution and is accepted with a certain positive probability otherwise. This
probability is calculated using a temperature variable which decreases at the end of
each iteration such that the probability of accepting the incumbent solution goes
down over time. The ALNS heuristic extends the LNS heuristic by allowing the use
of multiple removal and insertion operators. At each iteration, the ALNS heuristic
selects one removal and one insertion operator using a roulette wheel mechanism,
where the probability of choosing a certain operator is adjusted dynamically and
depends on its past and current performance.

The ALNS heuristic has proved to be very efficient in solving a wide variety of
transportation problems, (see, e.g., Ropke and Pisinger, 2006a; Hemmelmayr et al.,
2012; Aksen et al., 2014). A pseudocode for the general formwork of our ALNS
heuristic is shown in Algorithm 2. We use the following notation: Sinit is the initial
solution, Sbest is the best solution encountered so far, Sc is the current solution
and Sn is the incumbent solution.

All user-controlled parameters are denoted by Greek letters. A detailed description
of each part of Algorithm 2 is provided in the following subsections.

4.3.1 Construction of the initial solution

An initial feasible solution is generated using a modified version of the sequential
insertion heuristic (SIH) introduced by Solomon (1987). The SIH starts creating
a first route from a “seed” customer which is the one closest to the depot. In each
subsequent iteration, the SIH either adds one of the currently unassigned nodes
to one of the existing (partial) routes or creates a new route with only that node
(leaving from the depot and returning to it immediately afterwards).
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Algorithm 2: Our implementation of the ALNS heuristic
Input: Set of removal operators Ω−, set of insertion operators Ω+, cooling
rate ς and constants α,α, η, γ, γ,β, δ, k,λ,σ1,σ2,σ3 and ∆.
Output: A feasible solution Sbest

Sinit ← Generate an initial solution using α and α
For each removal operator i ∈ Ω−, initialize probability φ−i ←

1
|Ω−|

For each insertion operator j ∈ Ω+, initialize probability φ+j ←
1
|Ω+|

T ← η · TC(Sinit)
Sbest ← Sinit
Sc ← Sinit
repeat
Select a removal operator i ∈ Ω− with probability φ−i
Select a insertion operator j ∈ Ω+ with probability φ+j
Sn ← Obtain incumbent solution by applying operators i and j to Sc
(possibly using γ, γ,β, δ and κ)
if TC(Sn) < TC(Sc) then

Sc ← Sn
else

r ← Generate a random number in [0, 1]
if r < e−(TC(Sn)−TC(Sc))/T then

Sc ← Sn

if TC(Sc) < TC(Sbest) then
Sbest ← Sc

T ← ς · T
Update: φ−i ,φ+i using constants λ,σ1,σ2 and σ3.

until The maximum number of iterations ∆ is reached;

Let (j0, . . . , jn+1) be a current partial route, where j0 and jn+1 are two copies
of the depot, i.e., j0 = jn+1 = 0. The insertion cost of unassigned customer i
between adjacent nodes jk and jk + 1 for k ∈ {0, 1, . . . ,n} is Cijk,jk+1, which is
calculated as:

Cijk,jk+1 =

djk,i + di,jk+1 − αdjk,jk+1
+max{0,ui − ujk+1} if route (j0, ..., jk, i, jk+1, ..., jn+1) is feasible,
∞ otherwise.

(4.1)

In equation (4.1), α is a diversification parameter used to obtain different initial
solutions in separate runs of the ALNS heuristic. Specifically, every time we
compute the insertion cost, a new α value is randomly drawn from the interval
[α,α] assuming a uniform distribution. Note that the insertion cost is infinite if
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inserting customer i between nodes jk and jk+1 would violate the route feasibility
conditions of §4.2.2. In each iteration, the SIH considers each unassigned node i
and calculates the cost of inserting it in each possible position in the current set of
(partial) routes, as well as the cost of creating a new route to serve this customer,
i.e., Ci0,0. The unassigned node with the least insertion cost is then selected and
inserted in the position where it minimizes the insertion cost. After all customers
have been inserted into a feasible position, the TDDSOP is run to optimize the
travel speeds and departure times on each route.

4.3.2 Adaptive weight adjustment procedure

The selection of the removal and insertion operators is regulated by a roulette-
wheel mechanism in which a weight is assigned to each operator and the probability
of selection is proportional to these weights. Let Ω− and Ω+ denote the set
of removal and insertion operators, respectively and let ρ−j and ρ+j denote the
weights of the jth removal and insertion operator, respectively. At every iteration
of the ALNS algorithm the probability φ−j of choosing operator j is calculated

as φ−j = ρ−j /
∑|Ω−|
i=1 ρ−i and φ+j = ρ+j /

∑|Ω+|
i=1 ρ+i respectively for the removal and

insertion operators. At the end of each iteration, the weights of the removal and
insertion operators which were used in this iteration are updated; suppose removal
operator j and insertion operator k were used, then their weights are recalculated
as follows:

ρ−j ←λρ
−
j /n−j + (1− λ)Ψ or ρ+k←λρ

+
k /n+k + (1− λ)Ψ, (4.2)

where λ is the roulette wheel parameter, n−j or n+k is the number of times removal
operator j and insertion operator k have been used since the start of the algorithm
and Ψ is the score of the operators for this iteration of the ALNS algorithm, which
is based on their joint performance, as follows:

Ψ =


σ1 if a new best solution was found, i.e., if TC(Sn) ≤ TC(Sbest);
σ2 if the incumbent solution was better than the current solution,

i.e., if TC(Sn) ≤ TC(Sc);
σ3 if the incumbent solution was worse than the current solution,

i.e., if TC(Sn) > TC(Sc).

(4.3)

Note that, when the incumbent solution is worse than the current solution, the
score of the operators is the same whether or not the incumbent solution is accepted
as the new current solution.
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4.3.3 Acceptance and stopping criteria

We use a simulated annealing heuristic as the acceptance rule for the incumbent
solution. Given a current solution Sc with a total cost TC(Sc), the incumbent
solution Sn is always accepted if it has a lower cost than the current solution,
i.e., if TC(Sn) ≤ TC(Sc). Otherwise, the incumbent solution Sn is accepted
with probability e−(TC(Sn)−TC(Sc))/T where T is the current temperature. The
temperature starts at a positive value then decreases over time as it gets multiplied
by the cooling rate ς ∈ [0, 1] in each iteration. This has the effect of making it less
likely over time to accept an incumbent solution for a given difference with respect
to the current solution. In line with Ropke and Pisinger (2006a) we set the initial
temperature equal to η · TC(Sinit), where Sinit denotes the initial solution. The
ALNS heuristic stops when a number ∆ of iterations has been reached.

4.3.4 Removal and insertion operators

Our proposed ALNS heuristic uses eight removal operators and four insertion
operators. In the removal phase, a number of customer nodes are removed from
the current solution and added to a removal list L. Subsequently, in the insertion
phase all nodes in L are reinserted in the partially destroyed solution, according to
some insertion criteria to obtain the incumbent solution. A heuristic algorithm is
then run to optimize the travel speeds and the departure times of the vehicles on
each route. Such algorithm, called Time-Dependednt Departure Time and Speed
Optimization procedure (TDDSOP) is described in Chapter 5.

4.3.4 Removal operators

We first provide a description of our eight removal operators. The first five, namely
the RR, WNR, PSR, CR and NGR operators, are adapted from existing work
(see Shaw (1998), Ropke and Pisinger (2006a), Demir et al. (2012), Ribeiro and
Laporte (2012), Demir et al. (2013)). The last three, namely the MSR, HSR and
LSR operators, are new operators which we propose. Note that of these three new
operators, the MSR can be used for solving several types of VRPs, while the other
two (HSR and LSR) were specifically designed for the TDPRP.

Most of the removal operators listed below operate by sorting the customer nodes
according to a given metric. Then a fixed number of nodes are removed from the
current solution, such that nodes with a smaller index in the sorted list are more
likely to be chosen. In practice, this choice is implemented using a randomization
process as follows. Consider a ranking of n customer nodes according to a given
metric. For each node which is removed from the list, a random number, y, is
drawn from a uniform distribution on [0, 1]. The node which is chosen for removal
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is the byδnc-th one on the list, where δ is a positive fixed input parameter. Note
that high (low) delta values leads to a higher (lower) probability of choosing nodes
with smaller indices. Such a randomization process is done in order to diversify
the search as in Ribeiro and Laporte (2012).

We now provide a detailed description of the removal operators used in the ALNS
algorithm. In what follows, γ, which is the number of nodes removed from the
current solution is a value randomly generated from a uniform distribution on
[γ, γ].

Random removal operator (RR)
The RR operator randomly selects γ customer nodes and removes them from
the current solution Sc.

Worst node removal operator (WNR)
The WNR operator sorts the customer nodes according to their removal cost
calculated as TC(Sc)− TC(Sc \ i), where TC(Sc \ i) is the cost of solution
Sc after the removing node i, which is calculated after running the DSOP in
order to re-optimize the speeds and the departure times in the route which
included i. Given the ranking of customer nodes based on their removal cost
(from highest to lowest), γ nodes are chosen using the randomization process
described above.

Proximity-based Shaw removal operator (PSR)
The PSR operator randomly selects a node in N0 and adds it to the removal
list L. Then the customer nodes which are not in L are sorted based on
their distance to this node j (from the closest to the furthest) and a node is
chosen from this ranking using the randomization process described above.
Next, a node in L is selected at random and the customer nodes which are in
N0\L are then sorted based on their distance to this node (from the closest
to the furthest). The next node added to L is then chosen from this ranking
using the randomization process described above. The process repeats until
γ nodes have been removed from the current solution Sc.

Cluster removal operator (CR)
The CR operator starts by randomly choosing a route r from the current
solution, then divides its nodes into two subsets using a modified version of
the Kruskal’s algorithm for the Minimum Spanning Tree Problem (Kruskal,
1956) which stops as soon as two connected components are found. After
the two clusters have been created, the CR operator randomly selects one of
the two, removes all its nodes from the current solution and adds them to
the removal list L. If the total number of removed nodes is less than γ, the
CR operator selects a random node j ∈ L and looks for a node i which is
the closest one to j but belongs to a different route, say route r′. The route
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r′ is then partitioned into two clusters and the process is repeated until at
least γ nodes have been removed from the current solution.

Neighbor graph removal operator (NGR)
The NGR operator chooses γ nodes to remove using some historical
information saved in a neighbor graph. To each arc (i, j) in the original
graph is associated a weight in the neighbor graph which corresponds to the
total cost of the best solution found so far wherein node i is visited just
before node j by the same vehicle. At the beginning of the ALNS heuristic
all arcs have an infinite weight, then these values are updated at the end of
each iteration. Given a current solution Sc the NGR operator calculates the
cost of customer node i by summing the arcs weights in the neighbor graph of
the arc going into node i and the arc leaving node i. The customer nodes are
then sorted based on that cost metric (from the highest to the lowest) and
γ nodes are chosen for removal using the randomization process described
above.

Most scattered route removal operator (MSR)
For each route r in the current solution Sc, the MSR operator calculates a
scatter index SIr equal to the ratio of the length of the route to the number
of nodes in the route, i.e., SIr = lr/nr where lr is the sum of arc distances
in route r, and nr is the number of nodes in r, (including the depot). The
routes with the greatest scatter index values are considered for removal. In
order to avoid a myopic behavior and to diversify the search, we randomize
the selection of the route by multiplying the current greatest index by 1+ y,
where y is a random variable between −0.5 and 0.

Highest speed removal operator (HSR)
Given the current solution Sc, the HSR operator assigns a value to every
node i ∈ N0 as follows: every customer node such that the travel speed
on its incoming arc is larger than on its outgoing arc gets a value equal to
the travel speed on its incoming arc. Other customer nodes gets a value
of zero. The customer nodes are then sorted based on this value (from
the highest to the lowest) and γ nodes are chosen from removal using the
randomization process described above. The reasoning behind this newly
developed operator is that changing the position of the nodes which mark
a slow down in the vehicle speed might help even out the travel speed, and
therefore reduce the emissions cost.

Lowest speed removal operator (LSR)
The LSR is very similar to the HSR operator except that, the value assigned
to each node i ∈ N0 is equal to the difference between the travel speed on the
outgoing arc and the travel speed on the incoming, if this value is positive,
otherwise it is equal to zero. The customer nodes are then sorted based
on this value (from the highest to the lowest) and γ nodes are chosen from
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removal using the randomization process described above. The reasoning
behind this newly developed operator is that re-positioning the nodes with
such large speed difference might be beneficial as it might contribute to even
out the travel speeds and reduce the average pre-service waiting time.

4.3.4 Insertion operators

Let Sp denote the partial solution obtained after removing a number of customer
nodes from the current solution Sc using one of the removal operators listed above
and let L be the removal list, wherein the nodes are listed in the order in which
they were removed. We now describe the insertion operators which can be used to
construct the incumbent solution Sn. Note that all the operators we present can
be used for solving several types of VRPs, not just the TDPRP. The first three
operators, namely the BGI, MGI and k−RIH operators, are adapted from Shaw
(1998); Ropke and Pisinger (2006b); Demir et al. (2012); Ribeiro and Laporte
(2012); Demir et al. (2013), the last one, namely the HIH operator is a new one
we propose.

Best greedy insertion operator (BGI)

The BGI operator selects the nodes in L one at time (in the order they are
listed). For each node, it calculates the cost of inserting it between every
pair of adjacent nodes in the partial destroyed solution Sp, as well as in a
new route from a depot and returning to it immediately afterwards. This
insertion cost is equal to the increase in total cost after inserting the node
(calculated after running the DSOP) if the resulting solution satisfies the
route feasibility conditions from §4.2.2 and is infinite otherwise. The node
is then inserted in the position with the least insertion cost. The process is
repeated until all nodes in L have been inserted back.

Modified greedy insertion operator (MGI)

The MGI operator works in a similar way as the BGI operator except that
the insertion cost of node i ∈ L between adjacent nodes j and k in Sp is
calculated as dji + dik − djk if the insertion satisfies the route feasibility
conditions from §4.2.2 and is infinite otherwise. Compared to BGI operator,
this operator is much faster since calculating the insertion cost does not
require solving the DSOP. In this case the DSOP is run only once, after all
nodes in L have been inserted.

κ-regret insertion operator (κ-RIH)
For each node in L, the κ-RIH operator first calculates the cost of inserting
it between every pair of adjacent nodes in the partial destroyed solution
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Sp, as well as in a new route from a depot and returning to it immediately
afterwards, in the same way as the BGI operator. Then, for each node i ∈ L
the k-RIH operator calculates the Regret Value RVi = Ci,κ − Ci,1, where
Ci,κ is the cost of inserting node i into the position with the κth lower cost,
where κ is a fixed parameter.
The node with the maximum regret value is then removed from L and
inserted where it generates the lowest insertion cost. The process is repeated
until all nodes in L have been inserted in Sp.
Note that the DSOP is run whenever an insertion cost is calculated and
whenever an unassigned node is inserted in the partial solution. The main
advantage of this operator is that it improves the myopic behavior of the
operators introduced previously (see Ropke and Pisinger, 2006b; Potvin and
Rousseau, 1993).

Hybrid insertion operator (HIH)
If the length of the removal list L is shorter than a fixed parameter β, the
HIH operator tries to insert the whole list of nodes between every pair of
adjacent nodes and also considers creating a new route with these nodes
only. The order of the nodes is the original order from the removal list with
probability 1/2 or the reverse order with probability 1/2 (this is implemented
using a uniform random variable on [0, 1]). The insertion cost of the sequence
of nodes is equal to the increase in total cost if the resulting route satisfies
the route feasibility conditions from §4.2.2 and is infinite otherwise. If the
minimum insertion cost is finite, the sequence of nodes is inserted in the
position of lowest insertion cost. If not, or if the removal list L is longer
then β, the HIH operator randomly selects nodes one at time from L, and
inserts them each in their position with the lowest insertion cost. Note that
the DSOP is run whenever an insertion cost is calculated and after an
unassigned node is inserted in the partial solution.

An overview of all removal and insertion operator is reported in Table 4.1.

4.4 Computational experiments

This section presents the results of computational experiments to assess the
performance of our metaheuristic on the TDPRP.

All our numerical experiments are based on instances from the PRP Library
(PRPLIB), available at http://www.apollo.management.soton.ac.uk/prplib.
htm. The PRPLIB contains 180 problem instances, grouped into nine sets of 20
instances, such that the instances in each set have the same number of customer
nodes, which varies between 10 and 200 nodes. Each instance comes with the

http://www.apollo.management.soton.ac.uk/prplib.htm
http://www.apollo.management.soton.ac.uk/prplib.htm
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Table 4.1 A summary of the removal and insertion operators

Operator Newly proposed ? Call DSOP as sub-routine
Removal

RR 8 8
WNR 8 4
PSR 8 8
CR 8 8
NGR 8 8
MSR 4 8
HSR 4 8
LSR 4 8

Insertion
BGI 8 4
MGI 8 8
k-RIH 8 4
HIH 4 4

following information: (i) the distances between each pair of nodes (these are based
on actual geographical distances between randomly selected cities from the United
Kingdom), (ii) the demand at each node, (iii) the service time window at each
node, (iv) the service time at each node and (v) the maximum vehicle traveling
speed. In our numerical experiments, we consider all 180 problem instances from
the PRPLIB and use the same cost function parameters as in Chapter 3. These
are reported in Table 4.2. For each instance we ran the ALNS heuristic five times.

Table 4.2 Used parameters in the objective function (Demir et al., 2012)

Notation Description Unit Value
A Weight module constant £m/(kJ s2) 0.000382
B Engine module constant £/s2 0.00142
C Speed module constant £kg/(kJ m) 1.98e−7

D Driver wage £/s 0.00222
µ Curb-weight kg 6,350

Our ALNS heuristic was coded in Java and run on a server with 2.4 GHz of CPU
and 8 GB of RAM.

4.4.1 Parameter tuning

Our implementation of the ALNS heuristic contains fourteen user controlled
parameters which are provided in the Table 4.3, along with the value we used
in our numerical experiments. Similarly to Demir et al. (2012), we divide the
parameters into four groups. Group (i) includes the parameters that control the
generation of the initial solution. Group (ii) includes the parameters that control
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the roulette-wheel mechanism. Group (iii) includes the parameters that control
the simulated annealing search framework and the ones that calibrate the initial
temperature and cooling rate. Finally, group (iv) includes all parameters that
control the removal and insertion operators.

Table 4.3 Parameters used in the ALNS heuristic

Group Notation Description Value
(i) α Minimum α value 0.7

α Maximum α value 2
(ii) λ Roulette wheel parameter 0.2

σ1 Operators score when best solution found 3
σ2 Operators score when incumbent better than current solution 1
σ3 Operators score when incumbent worse than current solution 2

(iii) ∆ Total number of iterations 25, 000
η Initial temperature parameter 0.9985
ς Cooling rate 0.001

(iv) γ Minimum number of nodes to remove blog10(N)c
γ Maximum number of nodes to remove blog1,35(N)c
δ Randomization parameter 4
κ Insertion control parameter for κ-RIH operator 4
β Insertion control parameter for HIH operator 3

To arrive at the value of these parameters, we conducted some parameter tuning
numerical experiments. In particular, we considered multiple sets of values for
the (σ1,σ2,σ3) and η parameters. The results from these tuning experiments are
shown in the following subsections. The values of all other parameters are set as
in Demir et al. (2012). To ensure comparison fairness we used the same initial
solution and seeds for the random numbers across runs with different parameter
values.

4.4.1 Tuning of σ values

In order to tune the control parameters used in the roulette-wheel mechanism,
i.e., σ1, σ2 and σ3 defined in (4.3), we ran some numerical tests on five 100-
node instances from the PRPLIB. We considered the following sets of values : (i)
σ1 = 3,σ2 = 1,σ3 = 2, (ii) σ1 = 1,σ2 = 2,σ3 = 3, (iii) σ1 = 3,σ2 = 2,σ3 = 1,
and (iv) σ1 = 1,σ2 = 1,σ3 = 1. In Table 4.4 we report the total cost of the best
solution obtained across the 5 runs as well as the average total cost.

The results reported in Table 4.4 show that (3, 1, 2) and (3, 2, 1) overall perform
the best and (1, 2, 3) performs the worst. This suggests that it is a good idea to
reward the operators with a high score when a new best solution was found. Also
it may beneficial to encourage diversification by assigning a medium score when
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Table 4.4 Tuning of the roulette wheel mechanism parameters (σ1,σ2 and σ3)

Instance (3, 1, 2) (1, 2, 3) (3, 2, 1) (1, 1, 1)
Best Average Best Average Best Average Best Average

UK100 01 1314.47 1321.85 1316.12 1320.37 1314.91 1321.25 1319.29 1321.78
UK100 02 1236.75 1243.99 1237.12 1245.76 1235.21 1240.74 1237.27 1242.52
UK100 03 1180.24 1182.39 1182.61 1186.76 1183.92 1186.23 1184.30 1186.63
UK100 04 1173.17 1183.47 1182.01 1185.99 1177.00 1184.32 1170.30 1179.73
UK100 05 1134.69 1147.71 1142.07 1149.34 1130.29 1151.12 1140.54 1147.63
Highest values for each instance are shown in bold.

the incumbent solution is worse than the current solution. Based on this analysis,
we decided to use σ1 = 3,σ2 = 1,σ3 = 2 for the rest of our numerical experiments.

4.4.1 Tuning of η value

In order to tune the parameter η, which controls the initial temperature, we ran
some tests on the same five instances as in the previous subsection using three
different parameter values: (i) 0.001, (ii) 0.01, and (iii) 0.1. A higher value of
η means that the initial temperature is higher, leading to a higher probability of
accepting the incumbent solution in each iteration, given a fixed cost difference
value with the current solution. The results of the computational experiments are
reported in Table 4.5.

Table 4.5 Tuning of the initial temperature parameter (η) for the simulated annealing
acceptance rule

Instance η = 0.001 η = 0.01 η = 0.1
Best Average Best Average Best Average

UK100 01 1314.47 1321.85 1324.94 1330.44 1338.48 1350.80
UK100 02 1236.75 1243.99 1238.85 1253.40 1251.21 1265.13
UK100 03 1180.24 1182.39 1178.21 1189.29 1191.70 1210.00
UK100 04 1173.17 1183.47 1174.79 1188.06 1186.22 1213.44
UK100 05 1134.69 1147.71 1140.61 1158.68 1184.42 1188.72
Highest values for each instance are shown in bold.

In Table 4.5 we report the total cost of the best solution obtained across the 5
runs as well as the average total cost. Our results suggest that it is preferable to
use a small values of η, since 0.001 generally leads to lower total cost values.

Figure 4.1 shows how the total cost of the best solution, i.e., TC(Sbest, varies over
time for the three different parameter values for a particular run of the ALNS
heuristic on one instance, (namely UK100 03). We see that, not only does our
heuristic find a over better solution with η = 0.0001 parameter, it also reaches
better solutions sooner in the process.
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Figure 4.1 Total cost of the best solution for different initial temperature values (η)

Given this analysis, in our computational experiments, we decided to set the value
of η equal to 0.001.

4.4.2 Computational time analysis

In this section we analyze the speed of our ALNS heuristic. In Table 4.6 we
report average computational (CPU) time on a number problem instances with
varying sizes (the number of customer nodes varies between 10 and 200). Each row
reports the average results (over 5 runs) from a single instance. The first column
entitled Instance reports the name of the instance (the first number in the name
corresponds to the number of nodes in the instance), the column entitled CPU
time reports the average CPU time (in minutes), the column entitled RO time
reports the average CPU time (in minutes) collectively spent by all the removal
operators, the column entitled IO time reports the average CPU time (in minutes)
collectively spent by all the repair operators, finally the column entitled DSOP time
reports the average CPU time (in minutes) spent in solving the DSOP. Next to
the average values, we report the standard deviation values in brackets. Finally,
we also report the percentage of the total CPU time spent in solving the DSOP
in the last column.

The values in Table 4.6 show that, our ALNS heuristic can solve up to 100-node
instances in less than 15 minutes with remarkably low volatility in the CPU time.
Further, we observe that, on average, the insertion operators require more time
than the removal operators. This is because three out of four insertion operators
(namely BGI, k-RIH and HIH) run the DSOP as a sub-routine versus only one
out of the eight removal operators (namely WNR). Running the DSOP is a time-
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Table 4.6 Average computational time spent in each stage of the algorithm

Instance CPU time RO time IO time DSOP time
(min) (min) (min) (min)

UK10 03 0.23 (0.02) 0.03 (0.01) 0.17 (0.07) 0.14 (0.01)
59.0%

UK15 03 0.46 (0.19) 0.04 (0.02) 0.37 (0.15) 0.30 (0.13)
67.0%

UK20 03 0.76 (0.05) 0.05 (0.01) 0.64 (0.04) 0.53 (0.04)
69.7%

UK25 03 1.05 (0.15) 0.06 (0.01) 0.89 (0.14) 0.72 (0.12)
68.6%

UK50 03 2.97 (0.40) 0.13 (0.02) 2.56 (0.38) 2.16 (0.32)
72.6%

UK75 03 6.67 (0.27) 0.29 (0.01) 5.78 (0.26) 4.92 (0.24)
73.8%

UK100 03 12.62 (0.47) 0.65 (0.03) 10.29 (0.62) 8.67 (0.48)
68.7%

UK150 03 23.37 (1.06) 1.24 (0.08) 19.77 (0.94) 16.68 (0.80)
71.4%

UK200 03 44.31 (1.63) 2.33 (0.14) 34.19 (1.28) 28.73 (1.08)
Average 10.27 (0.47) 0.54 (0.04) 8.30 (0.43) 6.98 (0.36)

68.4%

consuming process as evidenced by the fact that it requires more than 50% of the
total CPU time.

We further analyze the time required by each operator in the next section.

4.4.3 Relative performance of the operators

In this section, we study the relative performance of the removal and insertion
operators. Table 4.7 reports the average CPU time (in seconds) required by each
operator per iteration in which they are used.

Table 4.7 Average CPU time (in seconds) for each operator per iteration

Instance Removal Operators Insertion Operators
RR WNR∗ PSR CR NGR MSR HSR LSR BGI∗ MGI k-RIH∗ HIH∗

UK10 03 0.0000 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0003 0.0000 0.0007 0.0005
UK15 03 0.0000 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0006 0.0000 0.0019 0.0010
UK20 03 0.0000 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0009 0.0000 0.0035 0.0017
UK25 03 0.0000 0.0006 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0011 0.0000 0.0050 0.0027
UK50 03 0.0001 0.0020 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0031 0.0001 0.0147 0.0067
UK75 03 0.0001 0.0047 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0071 0.0001 0.0338 0.0143
UK100 03 0.0001 0.0109 0.0002 0.0003 0.0004 0.0002 0.0002 0.0002 0.0146 0.0003 0.0627 0.0209
UK150 03 0.0001 0.0220 0.0003 0.0002 0.0005 0.0002 0.0002 0.0002 0.0251 0.0005 0.1152 0.0484
UK200 03 0.0002 0.0414 0.0005 0.0004 0.0009 0.0003 0.0004 0.0004 0.0442 0.0008 0.2037 0.0784
Average 0.0001 0.0092 0.0002 0.0002 0.0003 0.0001 0.0001 0.0001 0.0108 0.0002 0.0490 0.0194
∗ uses the DSOP as a sub-routine.

The numbers in Table 4.7 confirm what discussed in §4.4.2, that is, that the
operators which use the DSOP as a sub-routine require a longer CPU time per
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iteration. These results also show that, on average, all operators require less than
one second per iteration.

With Figure 4.2 we investigate the relationship between CPU time and perfor-
mance of each operator. Specifically, the X-axis reports the average CPU time
required by each operator per iteration and the Y-axis reports the number of
iterations in which the total cost of the incumbent solution, which was found
using this operator, is less that the total cost of the current solution. Figures 5.5
and 5.6b display the average values (out of five runs) obtained solving instance
UK200 3.

From Figure 5.5 we see that, the NGR, RR, PSR and CR operators are fast and
perform well, in the sense that they very often lead to an improved current solution.
The WNR operator has the best improvement performance but it is much slower
than the other operators due to the fact that it runs the DSOP as a sub-routine.
Regarding the insertion operators, we see a clear tradeoff between performance
and speed: the MGI operator is fast but does not improve the solution as much
as the other three insertion operators which use the DSOP as a sub-routine.

To emphasize the value of the operators we proposed versus the ones we borrowed
from existing work, we ran different versions of our ALNS heuristic algorithm
on a set of 100-node instances. In Version #1, we included all eight removal
and all four insertion operators listed in §4.3.4. In Version #2, we included all
four insertion operators but only the five removal operators borrowed from the
literature (namely RR, WNR, PSR, CR and NGR). In Version #3, we included
all eight removal operators but only the three insertion operators borrowed from
the literature (namely BGI, MGI and k-RIH). Comparing the performance of
Version #1 and Version #2 provides information on the value of the removal
operators we developed, while comparing between Version #1 and Version #3
provides information on the value of the insertion operators we proposed.

The results are reported in Table 4.8. The columns entitled V ersion#1,V ersion#2
and V ersion#3 report the total cost of the best solution value (out of five runs) for
Version #1, Version #2, Version #3, respectively. The column Savings RO reports
the percentage improvement obtained from using the new removal operators,
which is calculated as [TC(V ersion#2) − TC(V ersion#1)]/TC(V ersion#1).
Finally, the column Savings IO reports the percentage improvement obtained
from using the new insertion operators which is calculated as [TC(V ersion#3)−
TC(V ersion#1)]/TC(V ersion#1).

The results displayed in Table 4.8 show that, in most cases, adding the new
operators we developed to the list of possible operators improves the solution
quality. The same conclusion holds for both the removal and the insertion
operators. While the operators inspired from the literature are mainly aimed
at minimizing the total distance travelled by the vehicles, the new ones attempt
to reduce the negative effects of fluctuating speeds in transport networks. As
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(a) Removal operators

(b) Insertion operators

Figure 4.2 Number of “improved” iteration vs average CPU time per iteration
(UK200 03)

discussed in Chapter 3, these negative effects becomes more relevant in the
presence of traffic congestion and therefore they cannot be ignored.

4.4.4 Performance on TDPRP instances

In this section we study the performance of our ALSN heuristic on TDPRP
instances. First we use a set of small-sized (i.e., 10-, 20-, and 25-node) instances
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Table 4.8 Comparison of three different variants of the algorithm

Instance Version #1 Version #2 Version #3 Savings RO Savings IO
TC (£) TC (£) TC (£) (%) (%)

UK100 01 1314.5 1318.83 1315.24 0.33 0.06
UK100 02 1236.8 1235.59 1238.04 -0.09 0.10
UK100 03 1180.2 1181.92 1182.24 0.14 0.17
UK100 04 1173.2 1180.62 1177.52 0.63 0.37
UK100 05 1134.7 1149.16 1148.03 1.28 1.18
Average 1207.9 1213.2 1212.2 0.46 0.38

from the PRPLIB to compare our algorithm to the solutions presented in Chapter
3, which were ran using CPLEX. 1 The values of the parameters are set as follows:
a = 2 hours, vc = 10 km/h and vmax = 90 km/h. Table 4.9 presents the
comparison for the case where the driver is paid from the beginning of the planning
horizon and Table 4.10 presents the results for the case where the driver is paid
from the departure time. The columns entitled ALNS report total cost, i.e. TC,
of the best solution found by our metaheuristic. The columns entitled CPLEX
report the total cost reported in Chapter 3. Finally, the columns entitled Dev.
report the percentage difference between the total cost we obtain and the total
cost from Chapter 3.

The results in Tables 4.9 and 4.10 show that most of the instances have very small
deviations (in absolute value), which suggests that our ALNS heuristic performs
very well. The maximum positive deviation is 1.59%, which is the worst case
performance of our solution method. In a few cases the deviation is negative,
implying that the solution obtained with our ALNS heuristic is actually better
than the solution obtained inChapter 3. This is due to the fact that the MIP
formulation from Chapter 3 uses a discrete set of values for the free-flow travel
speeds while our ALNS heuristic allows for continuous values.

Next we use a set of large-size (100 and 200-node) instances from the PRPLIB
to further analyze the performance of our ALNS heuristic, in terms of speed and
performance volatility across separate runs. As before, for every instance, we ran
the ALNS heuristic five times. The values of the parameters are set as follows:
a = 1 hour, vc =10 km/h and vmax = 90km/h. The driver is paid from the
departure time.2

The results for the 100- and 200-node instances are displayed in Tables 4.11 and
Table 4.12, respectively. The first column lists the instance name, the second,
third and fourth ones report the cost of the best, worst and average solution

1Since the MIP formulation requires that the the number of vehicles is fixed at a value K,
we first run our ALNS heuristic, then use the number of vehicles obtained in the best solution
as the value of K when solving the MIP.

2Similar insights were obtained when the driver is paid from the beginning of the time horizon.
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Table 4.9 Total cost comparison between ALNS and CPLEX (driver paid from the
beginning of the planning horizon)

Instance UK 10 UK 15 UK 20

ALNS CPLEX ALNS CPLEX ALNS CPLEX
TC(£) TC(£) Dev. (%) TC(£) TC(£) Dev. TC(£) TC(£) Dev. (%)

1 183.975 183.980 -0.00 298.998 299.060 -0.02 337.859 337.860 -0.00
2 218.904 218.900 -0.00 219.359 219.360 -0.00 352.878 352.880 -0.00
3 213.341 213.340 -0.00 302.422 316.590 -4.68 224.008 224.010 -0.00
4 202.168 202.170 -0.00 318.416 318.500 -0.03 347.119 347.120 -0.00
5 188.072 188.070 -0.00 299.820 299.900 -0.03 317.360 317.360 -0.00
6 229.088 229.130 -0.02 244.047 244.050 -0.00 363.540 365.02* -0.41
7 205.179 205.180 -0.00 269.440 269.440 -0.00 246.935 246.935* -0.00
8 237.169 237.170 -0.00 178.965 178.970 -0.00 298.251 298.250 -0.00
9 189.729 189.730 -0.00 281.873 281.890 -0.01 344.918 345.020 -0.03
10 204.894 204.890 -0.00 227.714 227.710 -0.00 309.789 310.910 -0.36
11 277.118 277.120 -0.00 275.167 275.260 -0.03 381.579 381.580 -0.00
12 195.611 193.650 1.00 330.514 330.510 -0.00 334.628 334.630 -0.00
13 208.374 208.370 -0.00 264.996 265.090 -0.04 329.856 329.860 -0.00
14 179.835 179.840 -0.00 359.584 359.584. -0.00 435.414 437.490* -0.48
15 135.458 135.460 -0.00 232.812 232.810 -0.00 338.369 338.370 -0.00
16 198.858 198.860 -0.00 214.373 214.370 -0.00 346.357 346.360 -0.00
17 171.559 171.600 -0.02 302.040 302.040 -0.00 379.367 379.72* -0.09
18 173.958 173.960 -0.00 332.357 332.400 -0.01 366.293 367.470 -0.32
19 181.197 181.280 -0.05 178.305 178.310 -0.00 343.361 343.360 -0.00
20 181.675 181.680 -0.00 218.783 220.570 -0.82 343.129 343.130 -0.00

Average 198.808 198.719 0.05 267.499 263.517 -0.28 337.050 332.386 -0.001

calculated with our ALNS,respectively. The fifth column reports the percentage
range, calculated as (worst-best)/worst. Finally the last column reports the average
computational time (in minutes).

We see from Tables 4.11 and Table 4.12 that the performance of the ALNS heuristic
does not vary significantly from one run to the next. The maximum percentage
range is 3.52% for 100-node instances and 1.23% for 200-node instances. This
suggest that our solution method is quite robust so it is not necessary to run our
algorithm a very large number of times. We also note that the average CPU time
does not vary greatly from one instance to the next, with an average of 11.49
minutes for 100-node instances and 38.3 minutes for 200-node instances. The
numbers from Table 4.12 suggest that our method is even more robust on larger
problem instances.

4.4.5 Performance on PRP instances

In this section we compare the performance of our ALNS heuristic to other solution
methods for the PRP, which, as discussed earlier, is a special case of the TDPRP
where the congestion period is zero. We compare our results on 100-node instances
to the results from Demir et al. (2012), Koç et al. (2014) and Kramer et al. (2014)
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Table 4.10 Total cost comparison between ALNS and CPLEX (driver paid from
departure time)

Instance UK 10 UK 15 UK 20

ALNS CPLEX ALNS CPLEX ALNS CPLEX
TC(£) TC(£) Dev. (%) TC(£) TC(£) Dev. (%) TC(£) TC(£) Dev. (%)

1 168.135 168.140 -0.00 283.158 283.220 -0.00 314.099 314.100 -0.00
2 203.064 203.060 -0.00 203.519 203.520 -0.00 329.118 329.120 -0.00
3 197.501 197.500 -0.00 278.662 300.750 -0.08 200.011 200.010 -0.00
4 186.328 185.880 -0.00 294.656 294.740 -0.00 323.359 323.360 -0.00
5 172.232 172.230 -0.00 283.980 284.060 -0.00 292.115 292.120 -0.00
6 213.248 213.290 -0.00 225.049 228.210 -0.01 340.332 347.270* -2.04
7 189.339 189.340 -0.00 245.724 245.680 -0.00 223.175 223.400* -0.10
8 221.329 221.330 -0.00 163.125 163.130 -0.00 274.096 274.100 -0.00
9 173.889 173.890 -0.00 260.491 258.110 0.01 321.158 321.260 -0.03
10 189.054 189.050 -0.00 211.874 211.870 -0.00 288.093 287.150 0.33
11 261.278 261.280 -0.00 259.327 259.420 -0.00 357.819 357.820 -0.00
12 179.771 177.810 0.01 306.754 306.750 -0.00 310.868 310.870 -0.00
13 192.534 192.530 -0.00 238.519 249.250 -0.04 306.096 306.100 -0.00
14 164.716 164.720 -0.00 335.824 335.824 -0.00 405.811 404.660 0.28
15 119.618 119.620 -0.00 215.993 216.970 -0.00 319.015 313.940 1.59
16 183.018 183.020 -0.00 198.533 198.530 -0.00 322.597 322.600 -0.00
17 155.719 155.760 -0.00 278.280 278.280 -0.00 355.607 355.610 -0.00
18 158.118 158.000 -0.00 308.597 308.650 -0.00 348.868 343.710 1.48
19 165.357 165.440 -0.00 162.465 162.470 -0.00 319.601 319.600 -0.00
20 165.835 165.840 -0.00 198.025 196.810 0.01 319.369 319.370 -0.00

Average 183.004 182.887 -0.00 247.628 249.312 -0.01 313.560 316.417 -0.00

Table 4.11 Performance of ALNS heuristic on 100-node instances

Instance Best Worst Average Range CPU Time
TC(£) TC(£) TC(£) (%) (min)

UK100 01 1313.10 1328.13 1320.33 1.13 11.13
UK100 02 1232.15 1277.09 1252.25 3.52 10.99
UK100 03 1181.02 1192.63 1186.09 0.97 10.60
UK100 04 1162.41 1203.46 1181.10 3.41 11.57
UK100 05 1140.17 1157.85 1149.64 1.53 9.84
UK100 06 1291.91 1314.72 1303.10 1.74 9.57
UK100 07 1134.63 1157.84 1146.45 2.00 12.21
UK100 08 1172.65 1213.32 1190.14 3.35 12.45
UK100 09 1070.62 1089.97 1080.49 1.78 13.60
UK100 10 1144.91 1185.75 1161.82 3.44 12.25
UK100 11 1297.52 1329.01 1312.21 2.37 11.38
UK100 12 1118.23 1151.84 1134.50 2.92 9.84
UK100 13 1220.87 1241.66 1228.84 1.67 11.77
UK100 14 1347.21 1359.43 1353.79 0.90 11.24
UK100 15 1404.48 1439.02 1422.95 2.40 10.94
UK100 16 1051.71 1073.60 1068.12 2.04 13.22
UK100 17 1368.04 1393.64 1382.14 1.84 10.74
UK100 18 1166.95 1191.58 1179.48 2.07 12.23
UK100 19 1101.73 1122.40 1110.73 1.84 11.07
UK100 20 1335.91 1355.84 1344.15 1.47 13.18
Average 1212.81 1238.94 1225.42 2.12 11.49

in Table 4.13. The first column lists the instance name, the second one reports the
best solution calculated with our ALNS heuristic (out of five runs). The columns
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Table 4.12 Performance of ALNS heuristic on 200-node instances

Instance Best Worst Average Range CPU Time
TC(£) TC(£) TC(£) (%) (min)

UK200 01 2255.05 2308.76 2278.63 0.01 35.01
UK200 02 2106.51 2128.93 2119.72 0.01 38.99
UK200 03 2183.89 2211.73 2193.10 0.00 34.66
UK200 04 2072.93 2099.32 2085.95 0.01 34.89
UK200 05 2321.12 2349.16 2339.81 0.01 34.16
UK200 06 2019.73 2052.19 2040.33 0.01 38.44
UK200 07 2161.31 2183.44 2169.98 0.00 37.29
UK200 08 2240.30 2270.53 2255.93 0.01 37.04
UK200 09 1984.03 2018.40 2000.04 0.01 37.53
UK200 10 2363.40 2407.45 2378.37 0.01 39.18
UK200 11 2069.41 2096.99 2083.01 0.01 36.21
UK200 12 2276.70 2327.79 2299.02 0.01 34.16
UK200 13 2282.64 2310.01 2296.27 0.01 34.26
UK200 14 2154.00 2204.75 2175.42 0.01 41.20
UK200 15 2245.66 2273.94 2261.96 0.01 37.90
UK200 16 2220.16 2248.00 2228.62 0.00 41.09
UK200 17 2333.95 2362.21 2347.32 0.01 38.91
UK200 18 2163.56 2188.39 2175.29 0.01 48.56
UK200 19 1950.87 1991.36 1975.16 0.01 46.69
UK200 20 2294.61 2338.14 2313.65 0.01 39.15
Average 2184.99 2218.58 2200.88 0.01 38.27

DBL12, KBJL14 and KSV14 provide the results reported in Demir et al. (2012),
Koç et al. (2014) and Kramer et al. (2014), respectively. Finally, the columns
entitled Dev. report the percentage deviation between our best results and the
ones from the literature, namely (ALNS-DBL12)/ALNS, (ALNS-KBJL14)/ALNS
and (ALNS-KBJL14)/ALNS .

Table 4.13 shows that our ALNS heuristic is able to compete with the best
heuristics for the PRP, even though it was designed for a more general version
of the problem, namely the TDPRP. It even provides the best solution out of all
methods for four of the instances (namely UK100 02, UK100 06, UK100 16, and
UK100 20).

4.5 Conclusions

We have described a metaheuristic algorithm to solve the TDPRP, which extends
the PRP to settings with traffic congestion. This problem is very relevant since
congestion is an important problem for many cities and the amount of greenhouse
gasses emissions significantly increase at lower vehicle speeds.
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Table 4.13 Computational results on 100-node PRP instances

Instance ALNS DBL12 KBJL14 KBJL14
TC(£) TC(£) Dev. (%) TC ($) Dev. (%) TC ($) Dev. (%)

UK100 01 1216.79 1240.79 -1.97 1212.72 0.33 1209.11 0.63
UK100 02 1146.06 1168.17 -1.93 1149.16 -0.27 1146.79 -0.06
UK100 03 1086.84 1092.73 -0.54 1080.87 0.55 1078.75 0.74
UK100 04 1095.07 1106.48 -1.04 1085.66 0.86 1075.29 1.81
UK100 05 1042.34 1043.41 -0.10 1033.19 0.88 1028.86 1.29
UK100 06 1193.05 1213.61 -1.72 1192.67 0.03 1193.38 -0.03
UK100 07 1054.24 1060.08 -0.55 1044.58 0.92 1045.02 0.87
UK100 08 1091.70 1106.78 -1.38 1092.67 -0.09 1089.84 0.17
UK100 09 991.45 1015.46 -2.42 992.36 -0.09 988.41 0.31
UK100 10 1069.66 1076.56 -0.65 1063.05 0.62 1059.95 0.91
UK100 11 1201.55 1210.25 -0.72 1200.53 0.08 1196.50 0.42
UK100 12 1043.34 1053.02 -0.93 1030.17 1.26 1027.38 1.53
UK100 13 1133.61 1154.83 -1.87 1132.02 0.14 1132.03 0.14
UK100 14 1247.86 1264.50 -1.33 1241.31 0.52 1242.68 0.41
UK100 15 1312.98 1315.50 -0.19 1311.36 0.12 1300.13 0.98
UK100 16 981.03 1005.03 -2.45 986.57 -0.57 981.86 -0.08
UK100 17 1272.21 1284.81 -0.99 1257.44 1.16 1258.16 1.10
UK100 18 1086.44 1106.00 -1.80 1088.89 -0.23 1073.38 1.20
UK100 19 1016.82 1044.71 -2.74 1024.17 -0.72 1015.95 0.09
UK100 20 1237.93 1263.06 -2.03 1249.84 -0.96 1240.00 -0.17
Average 1126.05 1141.29 -1.37 1123.46 0.23 1119.17 0.61

Our algorithm is based on an application of the classical ALNS heuristic and uses
the departure- and speed-optimization procedure (TDDSOP) as a sub-routine.
Our implementation of the ALNS combines newly developed with pre-existing
removal and insertion operators and we show that the new operators we propose
significantly improve the solution quality.

We conduct extensive numerical experiments to test the performance of our
metaheuristic algorithm and compare it to existing solution methods for the
TDPRP and one of its special cases, namely the PRP. Our results show that
our algorithm performs extremely well, is robust and relatively fast on instances
with up to 200 nodes.
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be gained in this way. Finally —who knows how?

—a proof is obtained.
Joseph Buffington Roberts, The Real Number

System in an Algebraic Setting

5 Algorithms for the Departure
Times and Speed Optimization Problems

As shown in the previous chapters, travel speed is a key determinant of the amount
of CO2e produced by vehicles. In the recent years growing environmental concerns
have shifted the focus of researchers towards the problem of optimizing the travel
speed in order to reduce the amount of vehicles emissions and to improve the
sustainability of transport activities. In this chapter we study the Departure
Time and Speed Optimization Problem (DSOP), that is the problem of optimizing
departure times and travel speeds of a vehicle visiting a finite number of customer
locations according to a fixed sequence. The objective is to minimize the sum of
labor and CO2e emissions costs, while satisfying hard time windows at customer
locations. In the first part of the chapter we present the DSOP problem and we
propose an exact algorithm for solving the DSOP, which runs in quadratic time.
In the second part of the chapter we study an extension of the DSOP, where there
is a presence of traffic congestion limiting the vehicle speed during peak hours.
This problem is referred to as the Time-Dependent Departure Time and Speed
Optimization Problem (TDDSOP). Building upon some of the theoretical results
of Chapter 3 we propose a heuristic algorithm for solving the TDDSOP which runs
in polynomial time.

115



5.1 Introduction 116

5.1 Introduction

These last years have witnessed a growing interest towards incorporating the
environmental aspects (such as carbon dioxide equivalent (CO2e) emissions) in
the transportation decision for vehicle routing and scheduling. Whether they
are motivated primarily by a desire to appear environmentally responsible or by
economic concerns, companies are increasingly advertising the sustainability and
green focus of their transportation strategies. As CO2e emissions are directly
proportional to fuel consumption and vehicle travel speed is a major determinant
of fuel use, it is important for companies and logistics service providers to carefully
plan out vehicle movements so as to minimize their financial and environmental
impact.

The problem of optimizing the travel speed of a vehicle which is to provide
service at a finite number of locations according to a fixed sequence given hard
time windows was first introduced by Hvattum et al. (2010) and Hvattum et al.
(2013) for ship scheduling and referred to as the Speed Optimization Problem
(SOP). Demir et al. (2012) later adapted this problem to vehicle scheduling with
the objective of minimizing the sum of labour cost and emission costs, as in
the Pollution Routing Problem of Bektaş and Laporte (2011). They propose a
polynomial time heuristic algorithm which builds upon the exact algorithm by
Hvattum et al. (2010) and Hvattum et al. (2013). More recently Kramer et al.
(2015) proposed a heuristic algorithm for a similar scheduling problem, namely
the objective function is the same as in the Pollution Routing Problem and the
driver is paid from the time he or she departs from the origin location.

In the first part of the chapter, we study the DSOP, that is, we optimize the
departure times and travel speeds of a vehicle who visits a finite number of
customers locations according to a fixed sequence in order to minimize the sum of
labour and CO2e emissions costs, while satisfying hard time windows. We assume
there is no traffic congestion so the vehicle is able to drive at a constant speed
between each pair of locations. We consider two practically motivated cases: either
the driver is paid from the beginning of the planning horizon or from the start
of service at the origin location. In the first case, the driver reports to the origin
location at a fixed time and may be asked to do some administrative tasks before
he or she starts using the vehicle. In the second, the driver is asked to report in
time for his or her service and driving duties. We first establish that it is never
optimal for the vehicle to wait at a customer location, following the completion of
service. However it may be optimal to wait at the origin location when the driver
is paid from the start of service at that location. We show that the DSOP can
be formulated as a dynamic program from which we derive some key properties
for the optimal travel speeds. We also show that the solution to the DSOP can
be obtained by solving a shortest path problem on a network with 2n+ 2 nodes,
where n is the number of customers locations. Hence, we provide an efficient
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Figure 5.1 Example of a route with n+ 1 nodes and n arcs.

algorithm for solving the DSOP to optimality in quadratic time. To the best of
our knowledge, our algorithm is the first exact algorithm for solving the DSOP
problem. In the second part of the chapter, we extend the DSOP to the case
where there is a presence of traffic congestion limiting the vehicle speed during
peak hours. This problem is referred to as the Time-Dependent Departure Time
and Speed Optimization Problem (TDDSOP). In line with Chapters 3 and 4 we
assume that there is an initial period of traffic congestion lasting a units of time in
which the vehicle is forced to drive at a given speed vc, followed by a period of free-
flow where the vehicle can drive at any speed level within the limits imposed by
traffic regulation. We propose a heuristic algorithm to solve the TDDSOP which
runs polynomial time and builds upon some of the theoretical results presented in
Chapter 3 derived from the single-arc version of the problem. To the best of our
knowledge, this is the first algorithm for solving the TDDSOP. The rest of the
chapter is organized as follows. In §5.2 we present our model for the DSOP. In §5.3
we formulate the DSOP as a dynamic program and obtain some key properties of
the value function. In §5.4 we show how to recast the problem as shortest path
problem and in §5.5 we derive some managerial insights. In §5.6 we introduce the
TDDSOP and we present a heuristic algorithm for solving the problem. Finally,
we conclude in §5.7.

5.2 The Departure Time and Speed Optimization Prob-
lem (DSOP)

A single vehicle departs from an origin location to visit a number of customer
locations according to a fixed route. For example, a delivery vehicle leaves from
a central warehouse to visit retail locations and deliver merchandise, or a plumber
leaves his office to visit customer homes in order to conduct plumbing repairs. Let
0 denote the origin location and let locations 1 to n denote the customer locations,
so that the fixed route is 0, 1, . . . ,n. In practice location n may be a copy of the
origin location if the trip includes a return to the origin location. In Figure 5.1 we
represent the route using a network of n+ 1 nodes, and n arcs. Let arc i be the
arc between locations i and i+ 1, for i = 0, . . . ,n. Let di denote the distance on
arc i for i = 0, . . . ,n− 1.

Let vi denote the speed used on arc i = 0, . . . ,n− 1 and let vmin and vmax be
the minimum and the maximum speed on every arc. We assume there is no traffic
congestion so the vehicle is able to drive at a constant speed between each pair of
locations. Let hi denote the service time at location i = 0, . . . ,n. In the delivery
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vehicle example, the service time at the origin location would be the loading time
and the service time at customer locations would be the delivery time, which may
be proportional to the quantity of merchandise delivered. Each customer location
i = 1, . . . ,n has a hard time window [li,ui], where li is the lower time window
limit, i.e. the earliest time service at location i can start and ui is the upper time
window limit, i.e., the latest time service at location i can start. The vehicle may
arrive earlier than the lower time window limit but service may not start until that
time. We refer to the time between the arrival time at a customer location and
the start of service as the pre-service waiting time. This waiting time at customer
location i can be divided between the mandatory pre-service waiting time and the
voluntary pre-service waiting time, denoted by yi for i = 1, . . . ,n. If the vehicle
arrives at location i before the lower time window limit, then the mandatory pre-
service waiting time is the difference between the lower time window limit and
the arrival time at customer location i and the voluntary pre-service waiting time
is equal to the difference between the start of service at location i and the lower
time window limit at location i. If the vehicle arrives at location i after the lower
time window limit, then the mandatory pre-service waiting time is zero and the
voluntary pre-service waiting time is equal to the difference between the start of
service at location i and the arrival time at location i. For the origin location,
let y0 denote the time between the start of service at the origin location and the
beginning of the planning horizon.

Upon completion of service at a location, the vehicle may decide to wait before
leaving; let zi denote the post-service waiting time at location i = 0, . . . ,n− 1.
Let y = (y0, . . . , yn), z = (z0, . . . , zn−1) and v = (v0, . . . , vn−1) be the voluntary
pre-service waiting time vector, the post-service waiting time vector and speed
vector, respectively. The trip ends with the completion of service at location n.
Figure 5.2 shows an example for the sequence of events at a customer location.
Note that on this picture, the vehicle arrives before the lower time window limit,
so that there is a positive mandatory pre-service waiting time. Because the vehicle
does not start service immediately at the lower time window limit, there is also
a positive voluntary pre-service waiting time. Finally the vehicle does not leave
the location immediately after the completion of service, so there is also a positive
post-service waiting time.

Time
vehicle
arrives

vehicle
departs

lower
tw

upper
tw

service
starts

service
ends

Driving time

Mandatory
pre-service
waiting time

Voluntary
pre-service
waiting time

Service time Post-service waiting time Driving time

Figure 5.2 Sequence of events at a customer location.
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5.2.1 Objective function

The firm which operates the vehicle aims at minimizing the cost of serving the
customers, which is composed of (i) the cost of carbon dioxide equivalent (CO2e)
emissions, which is directly proportional to the amount of fuel used during the
trip and, (ii) the labor cost, i.e. the cost of paying the driver. As such, our
objective function is similar to that of Chapters 3 and 4, which is based on the
formulation of emissions costs by Barth et al. (2005) and Scora and Barth (2006).
In line with Chapters 3 and 4 we consider two ways of calculating the total time
for which the driver is paid, referred as driver wage policies: (a) the driver is paid
starting from the beginning of the planning horizon until the completion of service
at location n, (b) the driver is paid starting from the start of the service at the
origin location until the completion of service at location n. Under driver wage
policy (a), the driver reports to the origin location at the start of the planning
horizon. Differently, under driver wage policy (b), the driver arrives at the origin
location right on time to start service.

Barth et al. (2005) and Scora and Barth (2006) assume that the amount of CO2e
emissions produced by a vehicle is directly proportional to the amount of fuel
consumed. According to their model, the emissions cost, denoted by Ei, from
traversing arc i, driving at a constant speed vi is given by:

Ei(vi) = Adi +B
di
vi

+Cdiv
2
i ,

where A,B and C are non-negative constants, see Chapter 3 for how they are
calculated. Note that this function is convex and minimized at speed v = 3√B/2C.

We assume that the labor cost on arc i is measured from the end of service time
at location i until the end of service time at location i+ 1. Formally, the labor
cost, denoted by Li, from traversing arc i at a constant speed vi, given a service
completion time of wi at location i, a post-service waiting time zi at location i
and a voluntary pre-service waiting time at location i+ 1 of yi+1 is given by:

Li(vi, zi,wi, yi+1) =

= D


li+1 −wi+yi+1 + hi+1 if wi + zi +

d
vi
≤ li+1

zi +
di
vi

+ yi+1 + hi+1 if li+1 ≤ wi + zi +
di
vi

and wi + zi +
di
vi

+ yi+1 ≤ ui+1
∞ if wi + zi +

di
vi
+yi+1 ≥ ui+1,

where D is the driver wage. In this expression we write that the cost is infinite
when the solution is infeasible, i.e., does not satisfy the upper time window limit.
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The total cost for traversing arc i is denoted by gi and is given by:
gi(vi, zi,wi, yi+1) =

= Ei(vi) + Li(vi, zi,wi, yi+1)

=


Adi +B di

vi
+Cdiv

2
i

+D (li+1 −wi+yi+1 + hi+1) if wi + zi +
di
vi
≤ li+1

Adi +B di
vi

+Cdiv
2
i

+D(zi +
di
vi
+yi+1 + hi+1) if li+1 ≤ wi + zi +

di
vi
≤ ui+1 − yi+1

∞ if wi + zi +
di
vi

+ yi+1>ui+1

=


Adi +B di

vi
+Cdiv

2
i

+D
(
max

{
di
vi

+ zi, li+1 −wi
}
+ yi+1+hi+1

)
if wi + zi +

di
vi

+ yi+1 ≤ ui+1

∞ if wi + zi +
di
vi

+ yi+1 > ui+1.
(5.1)

Note that the speed value which minimizes the first piece in (5.1) is v since the
labor cost is a constant in that case. In contrast, the speed value which minimizes
the second piece in (5.1) is v = 3

√
(B +D)/2C. Since D ≥ 0, we always have

v ≤ v. These two speed values will appear in many of our future derivations.
Throughout this chapter we assume that v ≥ vmin and v ≤ vmax.

The firm’s problem is to find v, z and y to minimize the total cost incurred over
the entire vehicle trip. When the driver is paid from the beginning of the planning
horizon (driver wage policy (a)) the total cost, denoted by C(a) is equal to:

(P ) min
v,z,y

{
C(a)(v, z, y) = D(y0 + h0) +

n−1∑
i=0

gi(vi, zi,wi, yi+1)
}

such that:
w0 = y0 + h0 + z0,

wi = max
{
wi−1 + zi−1 +

di−1
vi−1

, li
}
+ yi + hi for i = 1 . . . ,n,

wi−1 + zi−1 +
di−1
vi−1

+yi ≤ ui for i = 1 . . . ,n,

vmin ≤ vi ≤ vmax for i = 0, . . . ,n− 1,

where wi denotes the end of service time at location i.

Similarly, let C(b) denote the total cost when the driver is paid from the start of
service at the origin location (driver wage policy (b)). We have

C(b)(v, z, y) = Dh0 +
n−1∑
i=0

gi(vi, zi,wi, yi+1) =C
(a)(v, z, y)−Dy0. (5.2)
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5.2.2 Feasibility conditions

Let w̌i denote the earliest possible service completion time at location i, which is
obtained by driving at the maximum speed up to that point and never waiting
post-service at any location, i.e., setting vj = vmax and zj = 0 for j = 0, . . . , i− 1
and yj = 0 for j = 0, . . . , i. We can calculate w̌i for i = 0, . . . ,n recursively
starting from location 0 as follows:

w̌0 = h0

w̌i = max
{
w̌i−1 +

di−1
vmax

, li
}
+ hi for i = 1, . . . ,n.

The problem is feasible if: w̌i−1 + di−1/vmax ≤ ui for i = 1, . . . ,n. In what follows
we assume that these conditions are satisfied.

For i = 1, . . . ,n, let Ui denote the latest possible arrival time into location i so it is
possible to meet the upper time window at locations i, . . . ,n. We can calculate Ui
recursively starting from location n assuming maximum speed and no post-service
waiting time, as follows:

Un = un

Ui = min
{
ui,Ui+1 −

di
vmax

− hi
}

for i = n, . . . , 1.

By definition, we have Ui ≤ ui for i = 1, . . . ,n. Note that the feasibility of the
problem implies that li ≤ Ui for i = 1, . . . ,n. We call Ui the effective upper time
window limit at location i: if the vehicle was to arrive at location i between Ui and
ui then it would not violate the upper time window limit of location i but it would
certainly violate the upper time window limit of at least one of the subsequent
locations. Therefore, we use these effective upper time window limit Ui, rather
than ui, throughout our analysis. Similarly we refer to [li,Ui] as the effective time
window at location i.

Let ŵi denote the latest possible service completion time at location i, so that
it is still possible to meet all the effective upper time window limits at locations
i+ 1, . . . ,n. We have ŵi = Ui+1 − di/vmax, for i = 0, . . . ,n− 1.

Hence, we have defined a lower and an upper bound on the service completion
time at location i, namely w̌i and ŵi, for i = 0, . . . ,n− 1.

5.3 Results

Our first result establishes that it is always optimal for the vehicle to leave a
customer location immediately upon completion of service, i.e., the post-service
waiting time is zero at every customer location.
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Proposition 5.1 There exists an optimal solution such that zi = 0 for i =
0, . . . ,n− 1 and yi = 0 for i = 1, . . . ,n.

Proof: First we show that, for every solution with positive voluntary pre-
service waiting times at customer locations, there exists another solution with
zero voluntary pre-service waiting times at customer locations which achieves the
same total cost. Consider a solution S with yi > 0 for i ∈ {1, ...,n}. There are two
cases (i) either the vehicle arrives at location i before its lower time window limit,
i.e., wi−1 + zi−1 + di−1/vi−1 ≤ li (ii) or it arrives after its lower time window
limit wi−1 + zi−1 + di−1/vi−1>li. In Case (i) consider an alternate solution S′

with v′ = v, y′ = y and z′ = z expect that z′i−1 = li + yi −wi−1 − di−1/vi−1 and
y′i = 0, which implies that the vehicle arrives at location i exactly at li and starts
service immediately at that time. In both solutions S and S′ the departure time
from location i is wi = li+ yi+ hi = wi−1 + z′i−1 + di−1/vi−1 + hi so the costs on
arcs other than i− 1 are the same. From (5.1), we can see that the cost on arc i
is the same, that is, gi−1(vi−1, zi−1,wi−1, yi) = gi−1(v′i−1, z′i−1,wi−1, y′i). In Case
(ii) consider an alternate solution S′ with v′ = v, y′ = by and z′ = z expect that
z′i−1 = yi and y′i = 0. In both solutions S and S′ the departure time from location
i is wi = wi−1 + zi−1 + di−1/vi−1 + yi+ hi = wi−1 + z′i−1 + di−1/v′i−1 + hi so the
costs on arcs other than i− 1 are the same. From (5.1), we can see that the cost
on arc i is the same, that is, gi−1(vi−1, zi−1,wi−1, yi) = gi−1(v′i−1, z′i−1,wi−1, y′i).
Hence in both cases, solution S′ has the same total cost at solution S, showing
that there must exist an optimal solution with zero voluntary pre-service waiting
time at all customers nodes.

Next we assume that every optimal solution has with positive post-service waiting
times and show (contradiction) that it is always possible to find another solution
with zero post-service waiting times which achieves the same or lower total cost.
So suppose we have an optimal solution S with yi = 0 for i ∈ {1, ...,n} but zi > 0
for some i ∈ {0, . . . ,n}. Again, there are two cases (i) either the vehicle arrives at
location i+ 1 before its lower time window limit, i.e., wi + zi + di/vi ≤ li+1 (ii)
or the it arrives after the lower time window limit, i.e., wi + zi + di/vi ≥ li+1. In
Case (i), the vehicle has to wait at location i+ 1 until time li+1 before starting
service. So the sum of post-service waiting time at location i and pre-service
waiting time at location i+ 1 is zi + (li+1 −wi − zi − di/vi) = li+1 −wi − di/vi.
Now consider an alternate solution S′ such that v′ = v, y′ = y and z′ = z expect
that z′i = 0. In this case, the departure time from location i is w′i = wi and the
arrival time at location i+ 1 at time is w′i + di/vi = wi + di/vi ≤ li+1, so that
the vehicle has to wait li+1−wi− di/vi at location i+ 1. Hence, in this alternate
solution the sum of post-service waiting time at location i and pre-service waiting
time at location i+ 1 is 0+ li+1 −wi − di/vi, which is the same as in the optimal
solution. Since the driver is paid equally for any type of waiting time and the
speed driven on all the arcs has not changed, both solutions have the same total
cost. In Case (ii), the vehicle arrives at location i+ 1 at time wi + zi + di/vi,
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which is greater than li+1, so it does not wait at location i+ 1 before starting
service. Consider an alternative solution S′ such that v′ = v, y′ = y and z′ = z
expect that with z′i = 0 and z′i+1 is set as explained below. In this case, the
departure time from location i is w′i = wi and the arrival time at location i+ 1
is w′i + di/vi = wi + di/vi. If i = n− 1, then the vehicle arrives at location n
in solution S′ at time max {ln,wn−1 + dn−1/vn−1}, which cannot be later than
the arrival time of max {ln,wn−1 + zn−1 + dn−1/vn−1} in the solution S. Since
all waiting times and speed values are the same, it must have a lower cost, which
is a contradiction. If i < n − 1, there are 2 subcases: (a) wi + di/vi ≤ li+1
and (b) wi + di/vi > li+1. In sub-case (a), the vehicle in solution S′ waits for a
duration of li+1 −wi − di/vi at location i+ 1 before starting service; then we set
z′i+1 = wi+ zi+ di/vi+ zi+1− li+1. In sub-case (b), the vehicle arrives at location
i+ 1 before li+1 so it does not wait before starting service. In this case we set a
post-service waiting time of z′i+1 = zi+1 + zi at location i+ 1. In either sub-case,
solution S′ has no post-service waiting time at location i and it has the same total
cost as the original solution since the total waiting time and the speed values are
the same. The same argument can be used for the following locations:either we
eliminate the post-service waiting time (as in Case (i)) or we transfer it to the
next location (as in Case (ii)), etc., until we reach the last arc. 2

Note that this result contrast with that of Chapter 3 where we show that, in the
presence of traffic congestion, it may be optimal for the vehicle to wait at the
customer locations, following the completion of service.

Given this result we can simplify our problem formulation as follows:

(P2) min
v,y0

{
C(a)(v, y0) = D(y0 + h0) +

n−1∑
i=0

gi(vi,wi)
}

such that
w0 = y0 + h0,

wi = max
{
wi−1 +

di−1
vi−1

, li
}
+ hi for i = 1, . . . ,n,

wi−1 +
di−1
vi−1

≤ ui for i = 1, . . . ,n+ 1,

vmin ≤ vi ≤ vmax for i = 1, . . . ,n.

when the driver is paid from the start of the planning horizon. If the driver is
paid from the start of service at the origin location, the constraints are identical
and

C(b)(v, y0) = Dh0 +
n−1∑
i=0

gi(vi,wi) =C(a)(v, y0)−Dy0.
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Note that we have dropped the reference to the zi variables in the one-arc cost
function gi(vi,wi). Also, from now on instead of referring to wi as the service
completion time at location i, we call it the departure time from location i, as the
two can be assumed to be equal given Proposition 5.1.

When the driver is paid from the start of the planning horizon we can prove a
stronger result: we can show that there is an optimal solution without voluntary
pre-service wait time at the origin location also. In other words, it is never optimal
to voluntarily delay the start of service at any location.

Proposition 5.2 When the driver is paid from the start of the planning horizon,
there exists an optimal solution which satisfies the conditions of Proposition 5.1
and also has y0 = 0.

Proof: The proof is by contradiction. Suppose all optimal solutions have
a positive voluntary pre-service waiting time at the origin location. Let S be
one such solution with voluntary pre-service waiting time at the origin location
y0 > 0. By Proposition 5.1, we can assume that y1 = . . . = yn = 0 and
z0 = . . . = zn−1 = 0. Therefore, the departure time from the origin location is
w0 = y0 + h0 and the departure time from location i can be computed recursively
as wi = max {wi−1 + di−1/vi−1, li}+ hi for i = 1, . . . ,n. Consider an alternate
solution S′ with v′ = v, y′ = y and z′ = z expect that y′0 = 0. In this solution,
we have w′0 = h0 and w′i = max

{
w′i−1 + di−1/vi−1, li

}
+ hi for i = 1, . . . ,n. It is

easy to see that w′i ≤ wi for i = 0, . . . ,n. Since the total time the driver is paid
for is wn in S and w′n in S′, and the arc speeds are the same in both solutions, the
total cost in S′ must be lower or equal to that in S. Hence we have a contradiction.
2

When the driver is paid from the start of the planning horizon, any waiting time
at the origin location is paid for, therefore there is no benefit of postponing the
start of service at the origin location. In contrast, when the driver is paid from
the start of the service at the origin location, it may be optimal to delay his or her
arrival to the origin location if this delay translates into a decrease in mandatory
pre-service waiting time at some customer locations. We provide a more in-depth
discussion of the difference between the two driver wage policies in §5.4.

5.3.1 The one-arc problem

In this section we solve the one-arc (two-locations) problem, i.e., n = 1. Let
vl0,1(w0) = d0/(l1 −w0) and vu0,1(w0) = d0/(U1 −w0) denote the speed on the
arc such that the vehicle arrives at location 1 exactly at time l1 and U1 = u1
respectively, when leaving location 0 at time w0. Since l1 ≤ U1, we have vl0,1(w0) ≥
vu0,1(w0). Remember the definition of v and v from §5.2.1. We now present a full
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characterization of the optimal solution for the one-arc problem under both driver
wage policies.

Lemma 5.1 If the driver is paid from the beginning of the planning horizon then
the optimal speed on arc 0 is a function of h0 as depicted on Figure 5.3.

v∗0 = v v∗0 = vl0,1(h0) v∗0 = v v∗0 = vu0,1(h0)

infeasible

l1 − d0

v l1 − d0

v U1 − d0

v U1 − d0

vmax

h0

y∗0 = 0 y∗0 = 0 y∗0 = 0y∗0 = 0 solution

Figure 5.3 Optimal solution for the one-arc problem when the driver is paid from
the beginning of the planning horizon.

Also the minimum total cost C(a)∗ is given by:

C(a)∗(h0) = Dh0 +



g0(v,h0) if h0 ≤ l1 − d0/v
g0(vl0,1(h0),h0) if l1 − d0/v ≤ h0 ≤ l1 − d0/v
g0(v,h0) if l1 − d0/v ≤ h0 ≤ U1 − d0/v
g0(vu0,1(h0),h0) if U1 − d0/v ≤ h0 ≤ U1 − d0/vmax

∞ if h0 > U1 − d0/vmax.

Proof: If h0 > u1− d0/vmax the feasibility condition is not satisfied so the cost
is infinite. Otherwise, we can rewrite (5.1) as:

g0(v0,h0) =


∞ if v0 ≤ vu0,1(h0)

Ad0 +Bd0/v0 +Cd0v2
0

+D(d0/v0 + h1) if vu0,1(h0) ≤ v0 ≤ vl0,1(h0)
Ad0 +Bd0/v0 +Cd0v2

0
+D (l1 − h0 + h1) if v0 ≥ vl0,1(h0).

It follows that g0 is continuous and convex in v0. The second piece in this
expression is minimized at v and the third piece is minimized at v. So there
are four sub-cases depending on how v, v, vu0,1(h0) and vl0,1(h0) compare. Note
that we always have vu0,1(h0) < vl0,1(h0).

• If vu0,1(h0) ≤ v, which is equivalent to 0 ≤ h0 ≤ l1 − d0/v, the second piece
of g0 is decreasing and the third piece reaches a minimum at v0 = v where
total cost is equal to g0(v,h0);
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• If v ≤ vl0,1(h0) ≤ v which is equivalent to l1 − d0/v ≤ h0 ≤ l1 − d0/v,
then second piece of g0 is decreasing and the third piece is increasing so
that the minimum is achieved at v0 = vl0,1(h0) where total cost is equal to
g0
(
vl0,1(h0),h0

)
;

• If vu0,1(h0) ≤ v ≤ vl0,1(h0) which is equivalent to l1− d0/v ≤ h0 ≤ u1− d0/v,
then second piece of g0 reaches a minimum at v0 = v where total cost is equal
to g0(v,h0) and the third piece is increasing;

• If v ≤ vu0,1(h0)≤ vmax which is equivalent to u1 − d0/v ≤ h0 ≤ u1 −
d0/vmax, then the second and third pieces of g0 are increasing so that
the minimum is achieved at v0 = vu0,1(h0), where total cost is equal to
g0
(
vu0,1(h0),h0

)
.

2

Lemma 5.1 shows that, in order to minimize cost in a one-arc problem when the
driver is paid from the beginning of the planning horizon, it is either optimal to
(i) drive at the speed which minimizes emissions (v) and arrive at the customer
location before the lower time window limit, (ii) arrive exactly at the lower time
window limit, (iii) drive at speed v and arrive within the time window or (iv)
arrive exactly at the effective upper time window limit.

Lemma 5.2 If the driver is paid from the start of service time at the origin
location, then the optimal waiting time at location 0 and optimal speed on arc
0 are a function of h0 as depicted on Figure 5.4.

v∗0 = v v∗0 = vl0,1(h0)v∗0 = v v∗0 = vu0,1(h0) infeasible

U1 − d0

v U1 − d0

vmax

h0

y∗0 = U1 − d0

v − h0 y∗0 = 0
solution

Figure 5.4 Optimal solution for the one-arc problem when the driver is paid from
the start of service time at the origin location.

Also the minimum total cost C(b)∗ is given by:

C(b)∗(h0) = Dh0


g0(v,U1 − d0/v) if h0 ≤ U1 − d0/v
g0(vu0,1(h0),h0) if U1 − d0/v ≤ h0 ≤ U1 − d0/vmax

∞ if h0 > U1 − d0/vmax.
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Proof: We have

C∗(b)(h0) = min
y0≥0

min
v
Ca(v,h0 + y0)−Dy0 = min

y0≥0
C(∗)a(h0 + y0)−Dy0.

From Lemma 5.1, we have:

C(∗)a(h0 + y0)−Dy0 =

= Dh0 +


g0(v,h0 + y0) if h0 + y0 ≤ l1 − d0/v
g0(vl0,1(h0 + y0),h0 + y0) if l1 − d0/v ≤ h0 + y0 ≤ l1 − d0/v
g0(v,h0 + y0) if l1 − d0

v
≤ h0 + y0 ≤ U1 − d0/v

g0(vu0,1(h0 + y0),h0 + y0) if U1 − d0/v ≤ h0 + y0 ≤ U1 − d0/vmax

∞ if h0 > U1 − d0/vmax.

−Dy0

=



Bd0/v +Cd0v2 +D(l1 − h0 − y0 + h1) if y0 ≤ l1 − d0/v− h0

B(l1 − h0 − y0) +Cd0
(
vl1(h0 + y0)

)2

+D(l1 − y0 − h0 + h1) if l1 − d0/v− h0 ≤ y0 ≤ l1 − d0/v− h0
B (d0/v) +Cd0v2 +D (d0/v + h1) if l1 − d0/v− h0 ≤ y0 ≤ U1 − d0/v− h0

B(U1 − y0 − h0) +Cd0
(
vu1 (w0)

)2

+D(U1 − y0 − h0 + h1) if U1 − d0/v− h0 ≤ y0.

The first piece is linearly decreasing, the second piece is convex decreasing and
minimized at l1 − d0/v − h0, the third piece is flat and the fourth one is convex
increasing and minimized at U1 − d0/v− h0.

It follows that the minimum of C(∗)a(h0 + y0) −Dy0 is obtained at any value
of y0 ∈ [(l1 − d0/v − h0)+, (U1 − d0/v − h0)+]. In particular it is optimal to
set y∗0 = (U1 − d0/v − h0)+. This means that, if h0 > U1 − d0/v, we have
y∗0 = 0 and C∗(b)(h0) = C∗(a)(h0) = g0

(
vu0,1(h0),h0

)
. Otherwise, we have

y∗0 = U1 − d0/v − h0 and C∗(b)(h0) = C∗(a)(U1 − d0/v)−D (U1 − d0/v− h0) =
Dh0 + g0 (v,U1 − d0/v). 2

Lemma 5.2 shows that, in order to minimize cost in a one-arc problem when the
driver is paid from the start of service at the origin location, it is either optimal
to (i) postpone the vehicle departure from location 0 until it is possible to drive
at speed v and arrive at the customer location exactly at the upper time window
limit or (ii) arrive exactly at the effective upper time window limit. In particular,
the optimal speed in the optimal solution cannot be less than v, which is the speed
which minimizes the sum of the labor and emissions costs.

5.3.2 Dynamic programming formulation

In this section we show that the general problem with n arcs can be written as a
dynamic program. First we extend the notation defined in the previous section.
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For i = 0, . . . ,n− 1 and k = i+ 1, . . . ,n, we define:

vui,k(wi) =


∑k−1

j=i
dj

Uk−
∑k−1

j=i+1 hj−wi
if Uk >

∑k−1
j=i+1 hj +wi

∞ otherwise

and

vli,k(wi) =


∑k−1

j=i
dj

lk−
∑k−1

j=i+1 hj−wi
if lk >

∑k−1
j=i+1 hj +wi

∞ otherwise.

Here, vli,k(wi) and vui,k(wi) correspond to the speeds required to leave location i
at time wi and arrive at location k at time lk and Uk respectively, in the absence
of time windows at the intermediate locations i+ 1, . . . , k − 1, that is if lj = 0
and uj =∞ for j = i+ 1, . . . , k− 1. An infinite value means that doing so is not
possible.

Let Vi(wi) be the i-th location value function which is equal to the minimum cost
on arcs i to n− 1 given that the vehicle departs location i at time wi. We have
Vn(w) = 0 for all w ≥ 0 and for i = 0, ...,n− 1, we have:

Vi(wi) =

= min
vmin≤vi≤vmax
wi+di/vi≤Ui+1

{
gi(vi;wi) + Vi+1

(
max

{
wi +

di
vi

, li+1

}
+ hi+1

)}
= min

vi∈
[
max{vui,i+1(wi),vmin},vmax

] {gi(vi;wi) + Vi+1 (max {wi + di/vi, li+1} +

+ hi+1)} .

Given Lemma 5.2, when the driver is paid from the start of the planning horizon,
we have C(a)∗ = Dh0 + V0(h0) so solving problem (P2) amounts to calculating
V0(h0). When the driver is paid from the start of service at the origin location,
we have C(b)∗ = Dh0 + miny0∈[0,ŵ0−h0] V0(y0 + h0).

We first show that the value function has a piecewise structure with at most 4
pieces. Let Gi,k(v;wi) =

∑k−1
j=i gj(v,wj) where wj = max

{
wj−1 + dj−1/v, lj

}
+

hj for j = i+ 1, . . . , k−1 which corresponds to the the cost of driving from location
i to location k at speed v, leaving location i at time wi assuming no voluntary
pre-service and no post-service waiting time, i.e., yj = 0 for j = i + 1, . . . , k
and zj = 0 for j = i, . . . , k − 1. If Vi has exactly 4 pieces, there exist values
pi, ki ∈ {i+ 1, . . . ,n} such that, it can be written as follows for wi ∈ [0, ŵi] :
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Vi(wi) =


Gi,pi(v;wi) + Vpi(lpi + hpi) if 0 ≤wi ≤ b1

Gi,pi(v
l
i,pi(wi);wi) + Vpi(lpi + hpi) if b1 ≤ wi ≤ b2

Gi,n(v;wi) if b2 ≤ wi ≤ b3

Gi,ki(v
u
i,ki(wi);wi) + Vki(Uki + hki) if b3 ≤ wi≤ ŵi,

(5.3)

where breakpoint b1 is such that v = vli,pi(b
1), b2 is such that vli,pi(b

2) = v and b3

is such that v = vui,ki(b
3).

Some of the pieces in (5.3) may be missing; for example, if the third piece is
missing, we can write Vi(wi) as:

Vi(wi) =


Gi,pi(v;wi) + Vpi(lpi + hpi) if 0 ≤ wi ≤ b1

Gi,pi(v
l
i,pi(wi);wi) + Vpi(lpi + hpi) if b1 ≤ wi ≤ b2

Gi,ki(v
u
i,ki(wi);wi) + Vki(Uki + hki) if b2 ≤ wi ≤ ŵi,

where breakpoint b1 is such that v = vli,pi(b
1) and b2 is such that vli,pi(b

2) =

vui,ki(b
2).

Proposition 5.3 For i = 0, . . . ,n− 1, Vi(wi) is continuous in wi and has the
piecewise structure described above.

Proof: For use in this proof, we define the following threshold values:

wui,k = Uk −
k−1∑
j=i

dj/v−
k−1∑
j=i+1

hj ,

wli,k = lk −
k−1∑
j=i

dj/v−
k−1∑
j=i+1

hj ,

wli,k = lk −
k−1∑
j=i

dj/v−
k−1∑
j=i+1

hj .

and the following speed values:

vuk(wi) =
dj

Uk −
∑k−1
j=i+1 dj/v−

∑k−1
j=i+1 hj −wi

vlk(wi) =
dj

lk −
∑k−1
j=i+1 dj/v−

∑k−1
j=i+1 hj −wi
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vlk(wi) =
dn

lk −
∑k−1
i=n+1 dj/v−

∑k−1
i=n+1 hj −wn

.

To simplify the exposition of the proof we assume, without loss of generality,
that A = 0. The proof is by induction. First we show the structure is true for
Vn−1(wn−1). For wn−1 ∈ [0, ŵn−1], we have:

Vn−1(wn−1) = min
vn−1∈

[
max{vun−1,n(wn−1),vmin},vmax

] gn−1(vn−1;wn−1)

=


gn−1(v;wn−1) if 0 ≤wn−1 ≤ wln−1,n
gn−1(vln−1,n(wn−1);wn−1) if wln−1,n ≤ wn−1 ≤ wln−1,n
gn−1(v;wn−1) if wln−1,n ≤ wn−1 ≤ wun−1,n
gn−1(vun−1,n(wn−1);wn−1) if wun−1,n ≤ wn−1 ≤ ŵn−1

Since vln−1,n(w
l
n−1,n) = v, vln−1,n(w

l
n−1,n) = v and vun−1,n(w

u
n−1,n) = v, we can

write it as:

=


Gn−1,n(v;wn−1) + Vn(ln + hn) if 0 ≤wn−1 ≤ b1

Gn−1,n(vln−1,n(wn−1);wn−1) + Vn(ln + hn) if b1 ≤ wn−1 ≤ b2

Gn−1,n(v;wn−1) if b2 ≤ wn−1 ≤ b3

Gn−1,n(vun−1,n(wn−1);wn−1) + Vn(Un + hn) if b3 ≤ wn−1 ≤ ŵn−1

This corresponds to (5.3) with pn−1 = kn−1 = n, b1 = wln−1,n, b2 = wln−1,n and
b3 = wun−1,n. Hence, the structure holds for Vn−1(wn−1). Now let us assume the
structure holds for Vi(wi) and prove that it holds also for Vi−1(wi−1). We have:

Li−1(vi−1;wi−1)

= gi−1(vi−1;wi−1) + Vi(wi)

=



B (di−1/vi−1) +Cdi−1v2
i−1

+D (di−1/vi−1 + hi)

+Vi (wi−1 + di−1/vi−1 + hi) if vi−1 ≤ vli−1,i(wi−1)

B (di−1/vi−1) +Cdi−1v2
i−1

+D(li −wi−1 + hi) + Vi(li + hi) if vli−1,i(wi−1) ≤ vi−1

(5.4)

Using the induction hypothesis, and assuming that Vi has all 4 pieces from (5.3),
we can write:
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Vi (wi−1 + di−1/vi−1 + hi) =

=



Gi,pi (v,wi−1 +
di−1
vi−1

+ hi)

+Vpi (lpi + hpi ) if wi−1 +
di−1
vi−1

+ hi ≤ b1

Gi,pi (v
l
i,pi (wi−1 +

di−1
vi−1

+ hi),wi−1 +
di−1
vi−1

+ hi)

+Vpi (lpi + hpi ) if b1 ≤ wi−1 +
di−1
vi−1

+ hi ≤ b2

Gi,n(v,wi−1 +
di−1
vi−1

+ hi) if b2 ≤ wi−1 +
di−1
vi−1

+ hi ≤ b3

Gi,ki (v
u
i,ki

(wi−1 +
di−1
vi−1

+ hi),wi−1 +
di−1
vi−1

+ hi)

+Vki (Uki + hki ) if b3 ≤ wi−1 +
di−1
vi−1

+ hi

=



B(Uki −wi−1 −
di−1
vi−1

−
∑ki−1

j=i
hj)

+C
∑ki−1

j=i
dj

(
vui,ki

(
wi−1 +

di−1
vi−1

+ hi

))2

+D(Uki −wi−1 −
di−1
vi−1

− hi + hki )

+Vki (Uki + hki ) if vi−1 ≤ vui−1,ki (wi−1)

B

(∑n−1
j=i

dj
v

)
+C

(∑n−1
j=i

dj

)
v2 if vui−1,ki (wi−1) ≤ vi−1

+D

(∑n−1
j=i

dj
v

+
∑n

j=i+1 hj

)
and vi−1 ≤ vli−1,pi (wi−1)

B(lpi −wi−1 −
di−1
vi−1

−
∑pi−1

i=i
hj)

+C
∑pi−1

j=i
dj

(
vli,pi

(
wi−1 +

di−1
vi−1

+ hi

))2

+D(lpi −wi−1 −
di−1
vi−1

− hi + hpi ) if vli−1,pi (wi−1) ≤ vi−1

+Vpi (lpi + hpi ) and vi−1 ≤ vli−1,pi (wi−1)

B
∑pi−1

j=i

dj
v

+C
∑pi−1

j=i
djv

2

+D(lpi −wi−1 −
di−1
vi−1

− hi + hpi )

+Vpi (lpi + hpi ) if vli−1,pi (wi−1) ≤ vi−1

(5.5)

The resulting expression for Li−1(vi−1;wi−1) depends on how the values of the
breakpoints in (5.5) compare to the breakpoint in (5.4). For the sake of brevity,
we consider only one case in this proof, such that vli−1,pi(wi−1) ≤ vli−1,i(wi−1) and
vui−1,i(wi−1) ≤ vui−1,ki(wi−1). This case is the one which results in the greatest
number of breakpoints in the expression for Li−1(vi−1;wi−1). All other cases can
be proven in a similar way. In this case, we have:
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Li−1(vi−1;wi−1) =

=



B

(
Uki −wi−1 −

∑ki−1
j=i

hj

)
+Cdi−1v2

i−1

+C

[∑ki−1
j=i

dj

(
vui,ki

(
wi−1 +

di−1
vi−1

+ hi

))2
]

+D
(
Uki −wi−1 + hki

)
+ Vki (Uki + hki ) if vi−1 ≤ vui−1,ki (wi−1)

B

(∑n

j=i

dj
v

+
di−1
vi−1

)
+Cdi−1v2

i−1

+C

[(∑n

j=i
dj

)
v2
]

if vui−1,ki (wi−1) ≤ vi−1

+D

(∑n−1
j=i

dj
v

+
di−1
vi−1

+
∑n

j=i
hj

)
and vi−1 ≤ vli−1,pi (wi−1)

B
(
lpi −wi−1 −

∑pi−1
i=i

hi
)
+Cdi−1v2

i−1

+C

[∑pi−1
j=i

dj

(
vli,pi

(
wi−1 +

di−1
vi−1

+ hi

))2
]

if vli−1,pi (wi−1) ≤ vi−1

+D
(
lpi −wi−1 + hpj

)
+ Vpi (lpi + hpi ) and vi−1 ≤ vli−1,pi (wi−1)

B

(∑pi−1
j=i

dj
v

+
di−1
vi−1

)
+Cdi−1v2

i−1

+C

[∑pi−1
j=i

djv
2
]

if vli−1,pi (wi−1) ≤ vi−1

+D(lpi −wi−1 + hpi ) + Vpi (lpi + hpi ) and vi−1 ≤ vli−1,i(wi−1)

B
di−1
vi−1

+Cdi−1v2
i−1 +D(li −wi−1 + hi)

+Vi(li + hi) if vi−1 ≥ vli−1,i(wi−1)

(5.6)

All the pieces in this expression are convex in vi−1. Moreover, the first piece
reaches a minimum at vui−1,ki(wi−1). The second piece reaches a minimum at v.
The third piece reaches a minimum at vli−1,pi(wi−1). And the last 2 pieces reach a
minimum at v. The shape of the Li−1(vi−1;wi−1) function (and therefore where
its minimum point is located) depends on how the values of v and v compare to
the breakpoints in (5.3.2). We list the possible cases next and show that, in each
of them, the Li−1(vi−1;wi−1) function accepts a unique minimum.

• If v ≥ vli−1,i(wi−1), which is equivalent to wi−1 ≤ wli−1,i, Li−1(vi−1;wi−1)
is decreasing in the first 4 pieces and achieves a minimum at v in the last
piece.

• If vli−1,pi(wi−1) ≤ v ≤ vli−1,i(wi−1), which is equivalent to wli−1,i ≤
wi−1 ≤ wli−1,pi , Li−1(vi−1;wi−1) is decreasing in the first 3 pieces, reaches
a minimum at v in the fourth piece and is increasing in the last piece.

• If v ≤ vli−1,pi(wi−1) and v ≥ vli−1,pi(wi−1), which is equivalent to wli−1,pi ≤
wi−1 ≤ wli−1,pi , Li−1(vi−1;wi−1) is decreasing in the first 2 pieces, reaches
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a minimum at vli−1,pi(wi−1) in the third piece and is increasing in the last 2
pieces.

• If vui−1,ki(wi−1) ≤ v ≤ vli−1,pi(wi−1), which is equivalent to wli−1,pi ≤ wi−1 ≤
wui−1,ki , Li−1(vi−1;wi−1) is decreasing in the first piece, reaches a minimum
at v in the second piece and is increasing in the last 3 pieces.

• If v ≤ vui−1,ki(wi−1), which is equivalent to wi−1 ≥ wui−1,ki , Li−1(vi−1;wi−1)
reaches a minimum in the first piece and is increasing in the last 4 pieces.
The minimum in the first piece is achieved at vui−1,ki(wi−1) if vui−1,ki(wi−1) ≥
vui−1,i(wi−1) (i.e., if it is feasible given the lower bound on vi−1 given in
(5.3)) and at vui−1,i(wi−1) otherwise. In what follows, we assume that the
maximum is reached at vui−1,ki(wi−1), the other case can be handled in a
similar way.

After some simplifications, we obtain:

Vi−1(wi−1) =

=



B
di−1
v

+Cdi−1v2 +D(li −wi−1 + hi)

+Vi(li + hi) if wi−1 ≤ wli−1,i

B
∑pi−1

j=i−1
dj
v

+C

(∑pi−1
j=i−1 dj

)
v2

+D(lpi −wi−1 + hpi ) + Vpi (lpi + hpi ) if wli−1,i ≤ wi−1 ≤ wli−1,pi
B
(
lpi −wi−1 −

∑pi−1
i=i

hi
)

+C
∑pi−1

j=i−1 dj
(
vli−1,pi (wi−1)

)2

+D (lpi −wi−1 + hpi ) + Vpi (lpi + hpi ) if wli−1,pi ≤ wi−1 ≤ wli−1,pi

B

(∑n

j=i−1
dj
v

)
+C

(∑n

j=i−1 dj

)
v2

+D

(∑n−1
j=i−1

dj
v

+
∑n

j=i
hj

)
if wli−1,pi ≤ wi−1 ≤ wui−1,ki

B

(
Uki −wi−1 −

∑ki−1
j=i

hj

)
+C
∑ki−1

j=i−1 dj
(
vui−1,ki

(wi−1)
)2

+D
(
Uki −wi−1 + hki

)
+ Vki (Uki + hki ) if wi−1 ≥ wui−1,ki

Using the induction hypothesis to expand Vi(li + hi) in the first piece (based on
the fact that li + hi ≤ lpi −

∑pi−1
j=i

dj
v −

∑pi−1
j=i+1 hj = wli,pi) , we get:
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Vi−1(wi−1) =

=



B
∑pi−1

j=i−1
dj
v

+C

(∑pi−1
j=i−1 dj

)
v2

+D(lpi −wi−1 + hpi ) + Vpi (lpi + hpi ) if 0 ≤ wi−1 ≤ wli−1,pi
B
(
lpi −wi−1 −

∑pi−1
i=i

hi
)

+C

(∑pi−1
j=i−1 dj

)(
vli−1,pi (wi−1)

)2

+D ((lpi −wi−1 + hpi ) + Vpi (lpi + hpi ) if wli−1,i ≤ wi−1 ≤ wli−1,pi

B

(∑n

j=i−1
dj
v

)
+C

(∑n

j=i−1 dj

)
v2

+D

(∑n

j=i−1
dj
v

+
∑n+1

j=i
hj

)
if wli−1,pi ≤ wi−1 ≤ wui−1,ki

B

(
Uki −wi−1 −

∑ki−1
j=i

hj

)
+C

(∑ki−1
j=i−1 dj

)(
vui−1,ki

(wi−1)
)2

+D
(
Uki −wi−1 + hki

)
+ Vki (Uki + hki ) if wi−1 ≥ wui−1,ki .

=


Gi−1,pi (v,wi−1) + Vpi (lpi + hpi ) if 0 ≤ wi−1 ≤ b1

Gi−1,pi (v
l
i−1,pi (wi−1),wi−1) + Vpi (lpi + hpi ) if b1 ≤ wi−1 ≤ b2

Gi−1,pi (v,wi−1) if b2 ≤ wi−1 ≤ b3

Gi−1,pi (v
u
i−1,ki

(wi−1),wi−1) + Vki (Uki + hpi ) if wi−1 ≥ b3.

This corresponds to the structure from (5.3) where ki−1 = ki, pi−1 = pi,
b1 = wli−1,pi , b

2 = wli−1,pi and b3 = wui−1,ki . 2

Our next result establishes that the value function achieves a minimum either at
a single point or over an interval where it is constant.

Proposition 5.4 For i = 0, . . . ,n− 1, the set of minimizers of Vi(wi) on [0, ŵi]
is a convex set.

Proof:

From Proposition 5.3 there are four cases: (i) only pi exists, (ii) only ki exists,
(iii) both pi and ki exist, (iv) none of them exists. In case (i) the Vi(wi) function
has at most three pieces and can be written as:

Vi(wi) =


Gi,pi(v,wi) + Vpi(lpi + hpi) if wi ≤ b1

Gi,pi(v
l
i,pi(wi),hi) + Vpi(lpi + hpi) if b1 ≤ wi ≤ b2

Gi,n(v,wi) if b2 ≤ wi≤ ŵi
(5.7)

where b1 = wli,pi and b2 = wli,pi . The first piece is decreasing linearly in wi, the
second one is convex decreasing (since it is minimized at b2 =wli,pi) and the third
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one is constant. Therefore, the set of minimizers of Vi is [wli,pi , ŵi].
In case (ii) the Vi(wi) function has at most two pieces:

Vi(wi) =

{
Gi,n(v,wi) if wi ≤ b1

Gi,ki(v
u
i,ki(wi),wi) + Vki(Uki + hki) if b1 ≤ wi≤ ŵi

(5.8)

where b1 = wui,ki . The first piece is constant and the second one is convex increasing
(since it is minimized at b1 = wui,ki). Therefore, the set of minimizers of Vi is
[0,wui,ki ].
In case (iii) we distinguish two cases: (a) wli,pi ≤ w

u
i,ki , (b) wli,pi > wui,ki .

In case (iii.a) the Vi(wi) function has at most four pieces:

Vi(wi) =


Gi,pi(v,wi) + Vpi(lpi + hpi) if wi ≤ b1

Gi,pi(v
l
i,pi(wi),wi) + Vpi(lpi + hpi) if b1 ≤ wi ≤ b2

Gi,n(v,wi) if b2 ≤ wi ≤ b3

Gi,ki(v
u
i,ki(wi),wi) + Vki(Uki + hki) if b3 ≤ wi≤ ŵi

(5.9)

where b1 = wli,pi , b2 = wli,pi , and b3 = wui,ki . The first piece is decreasing linearly
in wi, the second one is convex decreasing (since it is minimized at b2 = wli,pi), the
third one is constant and the last one is convex increasing (since its is minimized
at b3 = wui,ki). Therefore, the set of minimizers of Vi is [wli,pi ,w

u
i,ki ].

In case (iii.b), Vi(wi) function has at most three pieces:

Vi(wi) =


Gi,pi(v,wi) + Vpi(lpi + hpi) if wi ≤ b1

Gi,pi(v
l
i,pi(wi),wi) + Vpi(lpi + hpi) if b1 ≤ wi ≤ b2

Gi,ki(v
u
i,ki(wi),wi) + Vki(Uki + hki) if b2 ≤ wi≤ ŵi

(5.10)

where b1 = wli,pi and b2 = w̃li,pi,ki = lpi −
∑pi−1

j=i
dj

vu
pi,ki

(lpi+hpi
)
−
∑pi−1
j=i+1 hj if ki > pi,

otherwise b2 = w̃ui,ki,pi = Uki −
∑ki−1

j=i
dj

vl
ki,pi

(Uki+hki
)
−
∑ki−1
j=i+1 hj . The first piece is

decreasing linearly in wi, the second one is convex and minimized at wli,pi , and
the last piece is convex and minimized at wui,ki . We distinguish two sub-cases:
(iii.b.1) ki > pi, and (iii.b.2) ki < pi. In case (iii.b.1), given wli,pi > wui,ki it follows
wui,ki < wli,pi < w̃li,pi,ki . Hence, the first piece is decreasing, the second one is
minimized at wlpi and the third one is increasing. Therefore, in this case, Vi has a
unique minimum located at wlp1 .
In case (iii.b.2), given wli,pi > wui,ki it follows that w̃ui,ki,pi < wui,ki < wli,pi . Hence,
the first piece is decreasing, the second one is decreasing (since its minimum is to
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the right), and the last one is minimized at wui,ki . Therefore, in this case, Vi has a
unique minimum located at wui,ki .

In case (iv), which can only occur if lj = 0 and uj =∞ for j = i+ 1, . . . ,n, Vi(wi)
function has only one piece and is equal to Gi,n(v,wi) for wi ∈ [0, ŵi), which is
constant in wi. Therefore, the set of minimizers of Vi is [0, ŵi). 2

Let w̃0 denote a value which minimizes V0(w0) on [0, ŵ0]. When the driver is paid
from the start of the service at the origin location, it is optimal to delay the arrival
of the driver to the origin location if the length of service at the origin, i.e., h0,
is less or equal than w̃0. Otherwise, it is optimal for the driver to start service
at the origin location at the start of the planning horizon. In other words, we set
y∗0 = (w̃0−h0)+. Proposition 5.6 in §5.A provides a more detailed characterization
of the optimal solution when the driver is paid from the start of service at the origin
location.

Direct observation of the piecewise structure of the value function gives us the
following important corollary:

Corollary 5.1 Given a departure time from location i equal to wi, the optimal
speed on arc i can only take one of the following values: (i) v, (ii) vli,pi(wi) for
some pi ∈ {i+ 1, . . . ,n}, (iii) v, or (iv) vui,ki(wi) for some ki ∈ {i+ 1, . . . ,n}.

• In case (i), there exists a location qi ∈ {i+ 1, . . . ,n} such that the vehicle
keeps the same speed on arcs i to qi − 1, arrives at locations i+ 1, . . . , qi − 1
before their effective upper time window limit then reaches location qi before
or exactly at time lqi ;

• In case (ii), the vehicle keeps the same speed on arcs i to pi − 1, arrives
at locations i+ 1, . . . , pi − 1 within their effective time window then reaches
location pi exactly at time lpi .

• In case (iii) the vehicle keeps the same speed on all remaining arcs, i.e., i
to n− 1, and arrives at each remaining location within their effective time
window;

• In case (iv), the vehicle keeps the same speed on arcs i to ki − 1, arrives
at locations i+ 1, . . . , ki − 1 within their effective time window, then reaches
location ki exactly at time Uki .

Proof: (5.3) can be rewritten as:



137 5. Departure Times and Speed Optimization Problems

Vi(wi) =

=



B

(∑pi−1
j=i

dj
v

)
+C

∑pi−1
j=i

djv
2

+D(lpi −wi + hpi ) + Vpi (lpi + hpi ) if wi ≤ b1

B

(
lpi −wi −

∑pi−1
j=i+1 hi

)
+C

∑pi−1
j=i

dj
(
vli,pi (wi)

)2

+D(lpi −wi + hpi ) + Vpi (lpi + hpi ) if b1 ≤ wi ≤ b2

B

(∑n

j=i

dj
v

)
+C

∑n

j=i
djv

2

+D

(∑n

j=i

dj
v

+
∑n+1

j=i+1 hj

)
if b2 ≤ wi ≤ b3

B

(
Uki −wi −

∑ki−1
j=i+1 hj

)
+C

∑ki−1
j=i

dj
(
vui,ki

(wi)
)2

+D
(
Uki −wi + hki

)
+ Vki (Uki + hki ) if b3 ≤ wi ≤ ŵi.

(5.11)

The proof follows directly from a careful analysis of the terms in (5.11). From
the definition of the gi function, we know that the multiplier of the B constant
corresponds to the driving time and that the multiplier of the D constant is the
sum of the the driving time, service time and pre-service waiting time. Hence the
difference between the multipliers of the D and B constant corresponds to the sum
of the service time and pre-service waiting time.

Let us first look at the first piece of (5.11). The first three terms correspond to
the cost of driving on arcs i to pi − 1 at speed v, possibly with some pre-service
waiting time at these locations. The last term, i.e. Vpi(lpi + hpi) is, by definition,
the optimal cost of serving locations pi, . . . ,n when leaving location pi at time
lpi + hpi , which means that the vehicle arrived at location pi before or exactly at
time lpi . Hence this is equivalent to this statement with pi = qi.

Next let us look at the second piece of (5.11). The difference between the multiplier
of D and B is equal to

∑pi
j=i+1 hi, which means that there is no pre-service waiting

time at locations i+ 1 to pi. Hence, the first three terms correspond to the cost
of driving on arcs i to pi − 1 at speed vli,pi(wi) without any pre-service waiting
time. The last term, i.e. Vpi(lpi + hpi) is, by definition, the optimal cost of serving
locations pi, . . . ,n when leaving location pi at time lpi + hpi , which means that
the vehicle arrived at location pi exactly at time lpi .

Next let us look at the third piece of (5.11). The difference between the multiplier
of D and B is

∑n
j=i+1 hi, which means that that there is no pre-service waiting

time at locations i+ 1 to n and the vehicle drives on arcs i to n− 1 at speed v.

Finally, let us look at the fourth piece of (5.3). The difference between the
multiplier of D and B is equal to

∑ki
j=i+1 hi, which means that there is no pre-

service waiting time at locations i+ 1 to ki. Hence, the first three terms correspond
to the cost of driving on arcs i to ki− 1 at speed vui,ki(wi) without any pre-service
waiting time. The last term, i.e. Vki(Uki + hpi) is, by definition, the optimal cost
of serving locations ki, . . . ,n when leaving location ki at time Upi + hpi , which
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means that the vehicle arrived at location ki exactly at time Upi .

No other speed value is possible since there are only (a maximum) of 4 pieces in
(5.3). 2

This result implies that the optimal driving schedule can be broken down into
segments, made out of adjacent arcs, on which the vehicle travels at the same
speed. Further, at the customer locations which are common to two adjacent
segments, the driver always starts service either exactly at the lower time window
limit or exactly at the effective upper time window limit (note that arrival at these
locations could be before the lower time window, in which case there is positive
pre-service waiting time). In contrast, at the final customer location, the driver
can start service at anytime within the time window. Because of this property, the
problem of finding the optimal solution can be solved by solving a shortest path
problem, as we show in the next section.

5.4 Shortest path formulation

In this section we show how to re-cast the problem into a shortest path (SP)
problem by building a new network of arcs and nodes. From the original network
with n+ 1 locations (see Figure 5.1), we construct an SP network with 2n+ 2
nodes. In this SP network, there is one node for the origin location, denoted 0,
two nodes for each intermediate location, denoted il and iu for i = 1, . . . ,n− 1 and
three nodes for the final location, denoted nl, nu and n. So let V denote the set
of nodes in the SP network, i.e., V = {0, 1l, 1u, 2l, . . . ,nl,nu,n}. For i = 1, . . . ,n,
node il corresponds to the event “the vehicle arrives at location i before or at the
lower time window limit li and, for i < n, leaves exactly at time li + hi” and node
iu corresponds to the event “the vehicle arrives at location i exactly at the effective
upper time window limit Ui and, for i < n, leaves exactly at time Ui+ hi”. Finally,
node n corresponds to the event “the vehicle arrives at the final location within
its effective time window”. In the SP network, there are arcs between every pair of
nodes such that the number is strictly increasing (e.g., arcs between 1u and 2l and
arcs between 0 and 1l but no arc between 2u and 2l and no arc between 2u and
1u), plus two extra arcs: (nl,n) and (nu,n). Hence the SP network is an acyclic
graph. Figure 5.5 shows the SP network with n = 3.

An arc in the SP network means that the vehicle travels at a constant speed
between the corresponding locations, arriving at each intermediate location within
its effective time window and the length of the arc is set equal to the minimum
cost of doing so (or infinity if it is not possible). So, for example, an arc between
nodes il and ju means that the vehicle leaves location i at time li + hi, travels
at the same speed on arcs i to j − 1, arriving at locations k within [lk,Uk] for
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Figure 5.5 Shortest path network

k = i+ 1, . . . , j − 1 then reaches location j exactly at time Uj . Let Ti,k(v,w)
denote the arrival time into location k when leaving location i at time w, driving
on arcs i to k − 1 at speed v assuming no voluntary pre-service or post-service
waiting time, i.e., with yj = 0 for j = i+ 1, . . . , k, zj = 0 for j = i, . . . , k − 1.
These values can be computed recursively as Ti,i+1 = w + di/v and Ti,j(v,w) =
max{Ti,j−1(v,w), lj−1}+ hj−1 + dj/v for j = i+ 2, . . . , k. The arcs lengths in
the SP network are calculated as follows.

• The length of arcs (nl,n) and (nu,n) is zero.

• For 0 < i < j ≤ n, an arc from a node il to a node jl has a length equal to
C(il, jl) = min{C1(il, jl),C2(il, jl)} where:

C1(il, jl) =

{
Gi,j

(
vli,j(li + hi); li + hi

)
if Ti,k

(
vli,j(li + hi); li + hi

)
∈ [lk,Uk ]

for k = i+ 1, . . . , j
∞ otherwise,

and

C2(il, jl) =

{
Gi,j (v; li + hi) if Ti,k (v; li + hi) ≤ Uk

for k = i+ 1, . . . , j and Ti,j (v; li + hi) ≤ lj
∞ otherwise.

• For 0<i < j ≤ n, an arc from a node il to a node ju has a length equal to

C(il, ju) =

{
Gi,j

(
vui,j(li + hi); li + hi

)
if Ti,k

(
vui,j(li + hi); li + hi

)
∈ [lk,Uk ]

for k = i+ 1, . . . , j
∞ otherwise.

• For 0<i < j ≤ n, an arc from a node iu to a node jl has a length equal to
C(iu, jl) = min{C1(iu, jl),C2(iu, jl)} where:
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C1(iu, jl) =

{
Gi,j

(
vli,j(Ui + hi); li + hi

)
if Ti,k

(
vli,j(Ui + hi); li + hi

)
∈ [lk,Uk ]

for k = i+ 1, . . . , j
∞ otherwise,

and

C2(iu, jl) =

{
Gi,j (v;Ui + hi) if Ti,k (v;Ui + hi) ≤ Uk

for k = i+ 1, . . . , j and Ti,j (v;Ui + hi) ≤ lj
∞ otherwise.

• For 0<i < j ≤ n, an arc from a node iu to a node ju has a length equal to

C(iu, ju) =

{
Gi,j

(
vui,j(Ui + hi);Ui + hi

)
if Ti,k

(
vui,j(Ui + hi);Ui + hi

)
∈ [lk,Uk ]

for k = i+ 1, . . . , j
∞ otherwise.

• For i > 0, an arc from node il to node n has a length equal to

C(il,n) =

{
Gi,j (v; li + hi) if Ti,k (v; li + hi) ∈ [lk,Uk ] for k = i+ 1, . . . ,n

∞ otherwise.

• For i > 0, an arc from node iu to node n has a length equal to

C(iu,n) =

{
Gi,j (v;Ui + hi) if Ti,k (v;Ui + hi) ∈ [lk,Uk ] for k = i+ 1, . . . , j

∞ otherwise.

• For j > 0 an arc from node 0 to node jl has a length equal to C(0, jl) =
min{C1(0, jl),C2(0, jl)} where:

C1(0, jl) =

{
Gi,j

(
vli,j(h0);h0

)
if T0,k

(
vli,j(h0);h0

)
∈ [lk,Uk ] for k = 1, . . . , j

∞ otherwise,

and

C2(0, jl) =

{
Gi,j (v;h0) if T0,k (v;h0) ≤ Uk for k = 1, . . . , j and T0,j (v;h0) ≤ lj
∞ otherwise,

if the driver is paid from the beginning of the planning horizon and

C(0, jl) =

{
G0,j

(
vl0,j(w0);w0

)
if T0,k

(
vl0,j(w0);w0

)
∈ [lk,Uk ] for k = 1, . . . , j

∞ otherwise,

where w0 = max
{
h0, lj −

∑j−1
k=0 dk/v−

∑j−1
k=1 hk

}
, if the driver is paid from

the start of service at the origin location.



141 5. Departure Times and Speed Optimization Problems

• For j > 0, an arc from node 0 to node ju has a length equal to

C(0, ju) =

{
G0,j

(
vu0,j(h0);h0

)
if T0,k

(
vu0,j(h0);h0

)
∈ [lk,Uk ] for k = 1, . . . , j,

∞ otherwise,

if the driver is paid from the beginning of the planning horizon and

C(0, ju) =

{
G0,j

(
vu0,j(w0);w0

)
if T0,k

(
vu0,j(w0);w0

)
∈ [lk,Uk ] for k = 1, . . . , j

∞ otherwise,

where w0 = max
{
h0,Uj −

∑j−1
k=0 dk/v−

∑j−1
k=1 hk

}
, if the driver is paid

from the start of service at the origin location.

• The arc from node 0 to node n has a length equal to

C(0,n) =

{
G0,n (v;h0) if T0,k (v;h0) ∈ [lk,Uk ] for k = 1, . . . ,n

∞ otherwise,

if the driver is paid from the beginning of the planning horizon and

C(0,n) =

{
G0,j (v;w0) if T0,k (v;w0) ∈ [lk,Uk ] for k = i+ 1, . . . ,n

∞ otherwise,

where w0 = max
{
h0, ln −

∑n−1
k=0 dk/v−

∑n−1
k=1 hk

}
, if the driver is paid from

the start of service at the origin location.

Proposition 5.5 The problem (P2) reduces to a shortest path from node 0 to
node n. The minimum cost in (P2) is equal to the length of the shortest path, plus
Dh0.

Proof: Corollary 5.1 implies that the optimal driving schedule can be broken
down into segments, made of adjacent arcs, on which the vehicle travels at the
same speed. Let us refer to the customers locations between two such segments as
transition locations. Corollary 5.1 also implies that, at these transition locations,
the driver should always start service either exactly at its lower time window
limit or exactly at its effective upper time window limit (note that arrival at the
location could be before the lower time window, in which case there is positive
pre-service waiting time). In contrast, the driver can start service at the final
customer location anytime within the time window.

By Proposition 5.1, there is no post-service waiting time at any location hence,
it is optimal for the vehicle to leave transition locations directly upon completion
of service, that is, at time lj + hj if service started at time lj and at time Uj +
hj if service started at time Uj . These two possibilities are consistent with the
definitions of nodes jl and ju in the SP network.
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Consider a segment from node i to node j < n, such that the vehicle leaves node i
at time li+hi (or Ui+hi). If the vehicle starts service at node j exactly at time lj ,
by Corollary 5.1, there are two possibilities: either the vehicle drove at speed v or
at speed vli,j(li+ hi) (or vli,j(Ui+ hi)) for some i ∈ {0, . . . , j − 1} on this segment.
The calculation of the lengths for arcs (il, jl) (and (iu, jl)) for 0 < i < j < n reflect
these two possibilities. If the vehicle starts service at node j exactly at time Uj
then it must have arrived there driving at speed vui,j(li + hi) (or vui,j(Ui + hi)) for
some i ∈ {0, . . . , j − 1} on this segment. The calculation of the lengths for arcs
(il, ju) (and (iu, ju)) for 0 < i < j < n reflects these possibilities.

Now consider a segment from node i to node n, such that the vehicle leaves node i
at time li+ hi (or Ui+ hi). Here there are four possibilities: (i) the vehicle travels
at speed v and arrives at the final node within its time window, (ii) the vehicle
travels at speed vli,n(li + hi) (or vli,n(Ui + hi)) and arrives at the final node at
time ln, (iii) the vehicle travels at speed v and arrives at the final destination at
or before time ln. (iv) the vehicle travels at speed vui,n(li + hi) (or vui,n(Ui + hi))
and arrives at the final node at time Un. The calculation of the lengths for arcs
(il,n) (and (iu,n)), (il,nl) (and (iu,nl)) and (il,nu) (and (iu,nu)) account for
these four possibilities.

Now consider segments from node 0 to node j ≤ n. From Proposition 5.1 we get
that if the driver is paid from the beginning of the planning horizon the optimal
departure time from the origin location is h0. In this case, the calculation of the
length for arcs (0, jl), (0, ju), and (0,n) is similar to the previous cases.

In contrast, if the driver is paid from the start of the service at the origin location,
we distinguish three cases: (i) the vehicle leaves the origin location and arrives at
location j exactly at time lj , (ii) the vehicle leaves the origin location and arrives
at location j exactly at time Uj or (iii) the vehicle leaves the origin location and
arrives at location n within the [ln,Un] time window. From a careful analysis of
the proof of Proposition 5.6 we derive the following results. In Case (i) the optimal
departure time from the origin location is max{wl0,j ,h0} and the optimal speed
value on arcs 0 to j − 1 is vl0,j(max{wl0,j ,h0}). The calculation of the length of
arcs (0, jl) reflects this fact. Similarly, in Case (ii) the optimal departure time
from the origin location is max{wu0,j ,h0} and the optimal speed value on arcs 0 to
j − 1 is vu0,j(max{wu0,j ,h0}). The calculation of the length of arcs (0, ju) reflects
this fact. In Case (iii) the optimal departure time from the origin location is
max{wl0,n,h0} and optimal speed is v. The calculation of the length of arcs (0,n)
reflects this fact.

Hence, the length of each arc in the SP network correspond to the minimum cost of
a segment between two transition locations. It follows that solving the SP amounts
to calculating V0(h0). Therefore, the minimum cost from problem (P2) is equal
to the length of the shortest path plus Dh0. 2



143 5. Departure Times and Speed Optimization Problems

For most problems, the following result can be used to simplify the SP network
since it can be used to set a greater number of arc lengths equal to infinity.

Lemma 5.3 Given a departure time from location i ∈ {0, . . . ,n− 1} equal to wi,
it is optimal to travel at speed v on all remaining arcs, i.e., i to n− 1, if and
only if, by doing so the vehicle arrives at each remaining location within their time
window, which is equivalent to maxj=i+1,...,n vui,j(wi) ≤ v ≤ minj=i+1,...,n vli,j(wi).

Proof: Consider the relaxed problem of minimizing the total cost of travelling
from location i to location n assuming there are no time windows at locations
i+ 1 to n, i.e., li+1 = . . . = ln = 0 and ui+1 = . . . = un = +∞ (which implies
that Ui+1 = . . . = Un = ∞). The total cost of driving at speeds vj on arcs
j = i, . . . ,n− 1 is given by:

Dh0 +
n−1∑
j=i

[
Adj +B

dj
v

+Cdjv
2
j +D

(
dj
vj

+ hj+1

)]
which is minimized at vi = . . . = vn−1 = v. Hence, if this solution is feasible for
the original problem with time windows, it must also be optimal.

Next we show that the vehicle, leaving location i at time wi and driving at speed
v on arcs i to n− 1, arrives at locations i+ 1 to n within their time windows if
and only if maxj=i+1,...,n vui,j(wi) ≤ v ≤ minj=i+1,...,n vli,j(wi), which is equivalent
to vui,j(wi) ≤ v and vli,j(wi) ≥ v for j = i+ 1, . . . ,n. Let aj denote the arrival
time of the vehicle into location j. We show by induction that aj ∈ [lj ,Uj ] for
j = i+ 1, . . . ,n. First, for j = i+ 1, we have:

vui,i+1(wi) ≤ v ≤ vli,i+1(wi) ⇔ di+1
Ui+1 −wi

≤ v ≤ di+1
li+1 −wi

⇔ li+1 ≤ ai+1 = wi +
di
v
≤ Ui+1.

Therefore the arrival time in location i + 1 is within its time window. Now
assume that this is true for locations i + 1 to j − 1. This means that aj =

wi +
∑j−1
k=i dk/v+

∑j−1
k=i+1 hk. Then we have:

vui,j(wi) ≤ v ≤ vli,j(wi) ⇔
∑j−1
k=i dk

Uj −
∑j−1
k=i+1 hk −wi

≤ v ≤
∑j−1
k=i dk

lj −
∑j−1
k=i+1 hk −wi

⇔ lj ≤ aj = wi +

∑j−1
k=i dk
v

+

j−1∑
k=i+1

hk ≤ Uj .

Therefore the arrival into location j is also within its time window. 2
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Using Lemma 5.3, we can modify the arc lengths in the shortest path network as
follows: if the arc from node 0, il or iu for some i = 1, . . . ,n− 1 to node n has
finite length for some i = 1, . . . ,n− 1, then all other arcs from this node should
have a length set equal to infinity.

We now provide an numerical example to illustrate the workings of the shortest
path.

Example 5.1 Suppose n = 3. Let the distances (in meters) between locations
be d0 = 77, 200, d1 = 113, 620 and d2 = 64, 720. The time windows (in seconds)
are [1313; 32, 400] at node 1, [11,640; 32,400] at node 2 and [0; 32400] at node 3.
The service time is equal to zero at all nodes, i.e., hi = 0 for i = 0, . . . , 3. Let
vmin = 30 km/h and vmax = 90 km/h. Without loss of generality we set A = 0.
Finally we use B = 0.00142, C = 1.98e−7 and D = 0.00222 (as in Chapter 3
which implies that v = 55.19 km/h and v = 75.48 km/h.

Figure 5.6a shows the SP network when the driver is paid from the beginning of
the planning horizon and Figure 5.6b shows the SP network when the driver is
paid from the start of service at the origin node (the arcs whose length differs are
marked in red). To simplify the exposition, all arcs with infinite costs have been
removed from these pictures.

When the driver is paid from the beginning of the planning horizon, the shortest
path from node 0 to node n goes from node 0 to node 2l then to node 3 and
the corresponding total cost is 52 + 16 = 68. This means that it is optimal for
the vehicle to travel at speed v0,2(0) = 59.02 km/h on arcs 0 and 1 to arrive at
location 2 exactly at the lower time window limit l2 = 11640. Then the vehicle
travels from location 2 to location 3 at speed v = 75.48 km/h. Note that, since the
length of arc (2l, 3) is finite, arc (2l, 3u) could be removed from the SP network,
i.e., set its cost infinite thanks to Lemma 5.3.

When the driver is paid from the start of the service at the origin location,
there are two shortest paths from node 0 to 3. The first one goes through
arcs (0, 2l) and (2l, 3) and the second one goes through arcs (0, 3u) and
(3u, 3). In both cases the associated cost is 66. The first shortest path
corresponds to a solution in which service at the origin location is postponed until
max

{
0, l2 − d0+d1

v − h0 − h1
}

= 2538.94 seconds into the planning horizon and
the second shortest path corresponds to a solution wherein the service at the origin
location is postponed until max

{
0,U3 − d0+d1+d2

v − h0 − h1 − h2
}

= 20212.16
seconds into the planning horizon. In both cases, it is optimal for the vehicle
to travel at speed v on arcs 0, 1 and 2. In practice, any solution wherein the
voluntary pre-service waiting time at the origin location is between 2538.94 and
20212.16 and the speed on all arcs is v is optimal in this example.

Our next result establishes that our SP solution method is quadratic in the number
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(a) The driver is paid from the beginning of the planning horizon

(b) The driver is paid from the start of service at the origin location

Figure 5.6 Shortest path networks in Example 5.1

of customer locations in the original network.

Corollary 5.2 The optimal solution to Problem (P) can be found in O(n2).

Proof: The complexity of a shortest path problem in an acyclic network is
bounded by the number of arcs (see K et al., 1988). Our SP network has 2n+ 2
nodes and at most 2n2 + 2n+ 1 arcs with finite costs. Hence the complexity of
our shortest path is quadratic in n. 2
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5.5 Insights

5.5.1 Impact of the driver wage policy

In Example 5.1, we see that the total cost decreases from 68 to 66, i.e. by 3%,
when the driver is paid from the start of service at the origin location (driver wage
policy (b)) as opposed to from the beginning of the planning horizon (driver wage
policy (a)). In general we always have C∗(b) ≤ C∗(a) since it is always possible
to make the start of service at the origin location coincide with the beginning of
the planning horizon; therefore any delay must lead to a decrease in total costs.
To further investigate the benefits of paying the driver from the start of service,
we conducting some numerical tests on 1000 problem instances. The parameters
were generated by randomly drawing parameters values from the following sets:
n = 3, di ∈ {30000, 50000, 80000, 100000, 130000, 150000} for i = 0, 1, 2, hi = 0
for i = 0, . . . , 3, li ∈ {0, 2000, 5000, 10000, 15000} and ui ∈ {10000, 15000, 35000}.
We found that the percentage cost difference between the two driver wage policies,
measured as (C∗(a) −C∗(b))/C∗(b), ranged from 0 to 88.34% with an average of
9.25%. This suggests that paying drivers from the start of service at the origin
location can lead to a very significant decrease in cost. In practice, this requires
advanced planning on the part of the logistics provider and greater flexility on
the part of its drivers whose schedule may change from day to day, based on the
parameters of the delivery route.

5.5.2 Impact of time windows

In this section we explore the cost implications of having time windows at the
customer locations. Specifically we compare the minimum cost obtained under
each driver wage policy to the lower bound C which would be obtained in the
absence of time windows. Using the same set of problem instances described in the
previous section, we calculate the percentage cost difference between the solution
with time windows and without time windows, that is we compute (C∗(a)−C)/C
and (C∗(b) −C)/C for the two driver wages policies. We find that the percentage
increase in costs due to the presence of time windows varies between 0% and
80.33% with an average of 12.28% when the driver is paid from the beginning
of the planning horizon and varies between 0% and 17.88% with an average of
1.43% when the driver is paid from the start of service at the origin location.
This suggests that the existence of time windows can have a negative impact on
costs but that much of this negative effect can be offset by postponing the start
of service at the origin location and paying the driver from that point on only.
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5.6 The Time-Dependent Departure Times and Speed
Optimization Problem

In this section we consider an extension of the DSOP, called Time-Dependent
Departure Times and Speed Optimization problem (TDDSOP), which explicitly
account for the presence of traffic congestion, which at peak periods constrains
the speed of the vehicle increasing the amount of fuel consumed. Similar to the
DSOP, the objective is to determine the optimal departure time from each location
and the travel speed on each arc so as to minimize the total cost which encompasses
emissions and labour costs. In line with Chapters 3 and 4, we assume that there
is an initial period of traffic congestion which lasts a unit of time, followed by
a period of free-flow in which the vehicle is allowed to travel at any speed level
within the limits imposed by traffic regulation, i.e. vmin and vmax. As such, the
TDDSOP problem boils down to a special case of the TDPRP where there is only
one vehicle and a fixed sequence in which the customer locations are to be visited.
For more information about how traffic congestion is modeled and how the vehicle
emissions are calculated we refer to Chapter 3.

5.6.1 A heuristic algorithm for the TDDSOP

In this section we present a heuristic algorithm to solve the TDDSO. The proposed
algorithm builds upon the solution to the Speed Optimization Problem (SOP)
proposed by (e.g., Hvattum et al., 2010, 2013) for ship scheduling, which was then
adapted to the PRP byDemir et al. (2012). These authors propose an algorithm to
compute the optimal solution by recursively adjusting the travel speed for segments
of the route until a feasible solution is found. Their method optimizes the travel
speed only and is exact provided the total cost function is convex (Hvattum et al.,
2010, 2013). In contrast, our algorithm is more general because it optimizes two
sets of decision variables, namely the departure times and free flow speeds and the
total cost function is no longer convex. As a consequence, the solution methods
proposed for the SOP cannot be used to solve the TDDSOP. Specifically our
algorithm maintains the recursive nature of the algorithm proposed for the SOP
and uses some of the analytical properties presented in Chapter 3 for a single
arc version of the problem. The TDDSOP algorithm operates as follows. It first
solves a relaxed problem without any time windows at intermediary locations, that
is, with only the time window at the end location maintained. This solution is
calculated by reducing the problem to a single-arc TDPRP which is solved using
Theorem 3.1 in Chapter 3. Once the solution to the relaxed problem has been
calculated, the algorithm checks whether there are any time window violations
at intermediate nodes, i.e., whether the arrival time at locate i is lower than
li or higher than ui. In case of multiple violations, the algorithm selects the
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location p with the largest violation. The solution is calculated by calling the
algorithm recursively on each side of location p, that is, by calling the function for
(s, . . . , p) and for (p, . . . , e) separately. A pseudocode of the algorithm is provided
in Algorithm 3.

The function SOLVE RELAXED(s, e, εs) calculates the optimal departure times,
i.e., ws, . . . ,we−1, and free flow speeds, i.e., vs, . . . , ve−1, between nodes s and
e assuming that the earliest departure time from location s is εs and that time
window limits at nodes s, . . . , e− 1 are relaxed, i.e., that ls = . . . = le−1 = 0 and
us = . . . = ue−1 =∞. Only the time window limits at location e are maintained.
Let

TCs,e(wr, vr; εs) = (5.12)

= A

e−1∑
i=s

di +B

(
r−1∑
i=s

di

vc
+ (a−wr)+

)
+

+ B

(
(dr − (a−wr)+vc)+

vr
+

e−1∑
i=r+1

di

vr

)
+

+ C

[
v3
c

(
r−1∑
i=s

di

vc
+ min

{
dr

vc
, (a−wr)+

})
+ v2

r

(
(dr − (a−wr)+vc)+ +

e−1∑
i=r+1

di

)]
+

+ D

(
max

{
a+

(dr − (a−wr)+vc)+

vr
+

e−1∑
i=r+1

(
hi +

di

vr

)
, le

}
+ he − εs

)
.

The function SINGLE ARC TDPRP calculates the optimal departure time,
i.e. w, and free flow speed, i.e. v, for a single-arc TDPRP with parameters
(a, vc, vmax, d, ε, l,u) using Theorem 3.1 in Chapter 3 .

A pseudocode of the SOLVE RELAXED function is provided in Algorithm 4.

5.6.2 Performance of the TDDSOP algorithm

We have performed several computational experiments in order to evaluate the
performance of our TDDSOP algorithm. We compare the solutions obtained by
our TDDSOP algorithm (denoted SA) with the value obtained with the MIP
formulation from Chapter 3 (denoted SIP ). The tests were run on three sets of
instances from the PRPLIB. For each set of instances, the time window limits were
relaxed by a factor δ, i.e. l′i = li − δ(ui − li) and u′i = ui + δ(ui − li). In order
to solve the MIP formulation, three sets (5, 10, and 15) of free-flow speed levels
were considered. The results are reported in Table 5.1. The first column, entitled
Instances, reports the name of the instance set (each set is made of 20 instances).
The second column, entitled a, reports the duration of the congestion period.
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Algorithm 3: TDDSOP
function [w∗s , ...,w∗e−1, v∗s , ..., v∗e−1]← TDDSOP (s, e, εs, a)

[r,ws, . . . ,we−1, vs, . . . , ve−1]← SOLVE RELAXED (s, e, εs, a);
violation← 0, p← 0;

for i← r+ 1 to e− 1 do
gi ← max{0, li −wi−1 − Ti−1(wi−1, vi−1),wi−1 + Ti−1(wi−1, vi−1)− ui};
if gi ≥ violation then

violation← gi, p← i;

if violation > 0 and wp−1 + Tp−1(wp−1, vp−1) < lp then
up ← lp;
[w∗s , . . . ,w∗p−1, v∗s , . . . , v∗p−1]← TDDSOP(s, p, εs, a);
εp ← max{w∗p−1 + Tp−1(w∗p−1, v∗p−1), lp}+ hp;
ãp ← max{εp, a};
[w∗p, . . . ,w∗e−1, v∗p, . . . , v∗e−1]← TDDSOP(p, e, εp, ãp);

if violation > 0 and wp−1 + Tp−1(wp−1, vp−1) > up then
lp ← up;
[w∗s , . . . ,w∗p−1, v∗s , . . . , v∗p−1]← TDDSOP(s, p, εs, a);
εp ← max{w∗p−1 + Tp−1(w∗p−1, v∗p−1), lp}+ hp;
ãp ← max{ε, a};
[w∗p, . . . ,w∗e−1, v∗p, . . . , v∗e−1]← TDDSOP(p, e, εp, ãp);

end function

The third column, entitled vc, reports the congestion speed. The fourth column,
entitled Average Dev (%), reports the average percentage deviation in total costs
between SA and SIP , which is calculated as 100(TC(SA)− TC(SIP ))/TC(SA),
where TC(S) denotes the total cost of a solution S. Table 5.1 shows that in
all cases, the deviations are negative, implying that the solution computed with
our TDDSOP algorithm is better than the solution obtained with CPLEX, i.e.,
TC(SIP ) > TC(SA). This is because the MIP model optimizes the free-flow
speed over a finite set of 15 speed levels, whereas our algorithm considers speed as
a continuous variable. These findings are consistent with our TDDSOP algorithm
reaching the optimal solution in all the problem instances we considered.

5.7 Conclusion

In the first part of the chapter, we study the problem of optimizing the departure
time and the travel speeds of a vehicle visiting and serving a fixed sequence of
customer locations. The objective is the minimization of a total cost function
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Algorithm 4: SOLVE RELAXED
function [r,w∗s , ...,w∗e−1, v∗s , ..., v∗e−1]← SOLVE RELAXED( s, e, εs, a)

Let k̂ denote the last location that can be reached before the end congestion period,
if no post-service waiting is performed;
for i← s to e− 1 do

ti ← a− εs −
∑i

j=s+1 hj −
∑i

j=s
dj/vc, ti ← a− εs −

∑i

j=s+1 hj −
∑i−1

i=s
dj/vc;

k̂ ← s;
while k̂ < e− 1 and tk̂+1 > 0 do

k̂ ++;
for i← s; i ≤ k̂; i++ do
Calculate ãi, d̃i, l̃i, ũi;
d̃i ←

∑e−1
j=i

dj , ãi ← max{εi, a}, h̃i ←
∑e−1

j=i+1 hj , ũi ← ue − h̃i, l̃i ← le − h̃i;
(w̃i, ṽi)← SINGLE ARC TDPRP (ãi, vc, vmax, d̃i, εi, l̃i, ũi);

if ãi − di/vc ≤ w̃i ≤ ãi then
ci ← TCs,e(w̃i, ṽi; εs); . use Equation (5.12)
K ← K ∪ {i};

εi+1 ← εi + di/vc + hi+1;

r ← arg mini∈K ci;
if te−1 > 0 and cr > TCs,e(εe−1, vc; εs) then

r ← e, v∗r ← vc;
else if tk̂ ≤ 0 and cr > TCs,e(εk̂, ṽk̂; εs) then

r ← k̂,w∗r ← εk̂, v∗r ← ṽk̂;
else if tk̂ > 0 then

εk̂+1 ← εk̂ + dk̂/vc + hk̂+1, d̃k̂+1 ←
∑e−1

j=k̂+1 dj , ãk+1 ← max{εk̂+1, a};

h̃k̂+1 ←
∑e−1

j=k̂+1 hj , ũk̂+1 ← ue − h̃k̂+1, l̃ ˆk+1 ← le − h̃k̂+1;
(w̃k̂+1, ṽk̂+1)← SINGLE ARC TDPRP (ãk̂+1, vc, vmax, d̃k̂+1, εk̂+1, l̃k̂+1, ũk̂+1);

if cr > TCs,e(εk̂+1, ṽk̂+1; εs) then
r ← k̂ + 1,w∗r ← εk̂+1, v∗r ← ṽk̂+1;

for i← s to r− 1 do
w∗i ← εi v

∗
i ← vc;

for i← r + 1 to e− 1 do
Calculate Ti−1(w∗i−1, v∗i−1); . use Equation (3.1)
w∗i ← w∗i−1 + Ti−1(w∗i−1, v∗i−1) + hi, v∗i ← v∗r ;
w∗i ← a+ (dr − (a−wr)vc)/vr +

∑i−1
j=r+1 dj/vr +

∑i

j=r+1 hj , v
∗
i ← v∗r ;

end function

encompassing driver wage and CO2e emissions cost. We considered two driver
wage policies: (a) the driver is paid from the beginning of the planing horizon and
(b) the driver is paid from the beginning of the service at the initial location.

First we show that it is never optimal for the vehicle to wait idly at a customer
location upon completion of service. Using this result we formulate the problem as
a dynamic programming problem and we show that the optimal driving schedule
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Table 5.1 Average Dev (%) for three sets of instances

Instances δ a vc Average
(s) (km/h) Dev (%)

UK10 0.2 0 - -0.005
UK10 0.3 3000 15 -0.005
UK10 0.5 3600 10 -0.002
UK15 0.7 3000 15 -0.004
UK20 1.0 3000 15 -0.008

can be broken down in segments on which the vehicle travels at a constant speed.
By exploiting some structural properties of the optimal solution we show how to
recast the problem into a shortest path problem. To the best of our knowledge, our
study is the first one to obtain an exact solution to the DSOP. Our solution method,
which has a complexity which is quadratic in the number of customer locations,
has a very appealing structure and a nice visual representation. Moreover, we
present some insights on how the driver wage policy ant the presence of time
window at customer locations affect the optimal solution. In the second part of
the chapter we propose a heuristic algorithm to solve the TDDSOP, an extension of
the DSOP where there is the presence of traffic congestion, which at peaks periods,
limits the travel speed increasing the amount of CO2e produced by the vehicle.
The procedure proposed in this section builds upon the analytical results for the
single-arc version of the problem presented in Chapter 3. The proposed algorithm
was empirically shown to run very quickly and consistently provide highly accurate
solutions on realistic instances. Our procedure can be embedded within algorithms
for the TDPRP, or can be used as a stand-alone routine when vehicle routes have
already been fixed.
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5.A Extra results

For use in the following proposition we introduce the following notation: threshold
values:

wui,k = Uk −
k−1∑
j=i

dj/v−
k−1∑
j=i+1

hj ,

wli,k = lk −
k−1∑
j=i

dj/v−
k−1∑
j=i+1

hj ,

w̃li,p,k = lp −
∑p−1
j=i dj

vup,k(lp + hp)
−

p−1∑
j=i+1

hj .

Proposition 5.6 Suppose the driver is paid from the start of service at the origin
location. Given the piecewise expression for V0(w0), the optimal solution is as
follows.

• If there exist some values of b and b′ such that V0(w0) = G0,n(v,w0) for
w0 ∈ [b, b′], then it is optimal to set y∗0 = (b− h0)+.

– if h0 ≤ b′, the vehicle travels at speed v on arcs 0 to n, reaching each
location within their effective time windows.

– If h0 > b′, there exists a location k0 ∈ {1, . . . ,n} such that the vehicle
travels at speed vu0,k0

(h0) on arcs 0 to k0−1, reaching location k0 exactly
at time Uk0 .

• If there does not exist some values of w0 ∈ [0, ŵ0] such that V0(w0) =
G0,n(v,w0), then there exists p0, k0 ∈ {1, . . . ,n} such that p0 6= k0 and

– If k0 > p0, then it is optimal to set y∗0 = (wl0,p0 − h0)+.

∗ If h0 ≥ w̃li,p0,k0
, the vehicle travels at speed vu0,k0

(h0) on arcs 0 to
k0 − 1, reaching location k0 exactly at time Uk0 .

∗ If h0 < w̃li,p0,k0
, the vehicle travels at speed vl0,p0

(
max

{
h0,wl0,p0

})
on arcs 0 to p0 − 1, reaching location p0 exactly at time lp0 .

– If k0 < p0, then it is optimal to set y∗0 = (wu0,k0
− h0)+ and the vehicle

travels at speed vu0,k0

(
max

{
h0,wu0,k0

})
on arcs 0 to k0 − 1, reaching

location k0 exactly at time Uk0 .

Proof: When the driver is paid from the start of service time at the origin
location, the optimal solution is found by solving miny0∈[0,ŵ0 −h0]V0(y0 + h0), or
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equivalently minw0∈[h0,ŵ0] V0(w0). In this proof we refer to the cases described
in the proof of Proposition 5.4. In Cases (i), (ii), (iii.a) and (iv) there exists a
piece of V0 where the function is equal to G0,n(v,w0) and, in each case, this is
where the minimum value of the function is reached. In particular, in Case (i)
the minimum for w0 ≥ h0 is achieved at wl0,p0 if h0 ≤ wl0,p0 and at h0 otherwise,
therefore we should set y∗0 = (wl0,p0 − h0)+ and the optimal speed is v. In Cases
(ii) and (iii.a) the minimum for w0 ≥ h0 is achieved at wu0,k0

if h0 ≤ wu0,k0
and at

h0 otherwise, therefore we should set y∗0 = (wu0,k0
− h0)+. Moreover in these two

cases, the optimal speed if v if h0 ≤ wu0,k0
and vuki(h0) otherwise. Finally, in Case

(iv) the function is constant for w0 ≥ h0 and the optimal speed on arcs 0 to n is
v.

Case (iii.b) is the only one where there does not exist a piece of V0 where the
function is equal to G0,n(v,w0). In sub-case (iii.b.1) the minimum for w0 > h0 is
achieved at wl0,p0 if h0 < wl0,p0 and at h0, otherwise. If wl0,p0 > h0 the optimal

speed id v, if wl0,p0 < h0 < lpi −
∑pi−1

j=i
dj

vu
pi,ki

(lpi+hpi
)
−
∑pi−1
j=i+1 hj the optimal speed is

vl0,p0(h0), otherwise it is vu0,k0
(h0). In sub-case (iii.b.2) the minimum for w0 > h0

is achieved at wu0,k0
if h0 < wu0,k0

and at h0, otherwise. Specifically, if h0 > wu0,k0
the optimal speed is vu0,k0

(h0), otherwise it is v. 2





One’s destination is never a place, but
rather a new way of looking at things.

Henry Miller, Big Sur and the Oranges of
Hieronymus Bosch

6 Conclusion

This thesis focuses on sustainable planning for city logistics, with particular
attention to fleet management, routing and scheduling problems. In Chapter
2 we study the strategic problem of managing a heterogeneous fleet of vehicles
operating in a urban area where access restrictions are applied to certain categories
of vehicles. In Chapters 3 and 4 we study the problem of determining the optimal
set of routes, the travel speed on each arc of a route and the departure time from
each node for a homogeneous fleet of vehicles serving a set of customer nodes with
hard time window limits. The travel speed of the vehicles is limited at peak hours
due to the presence of traffic congestion. The objective is to minimize a total cost
function encompassing driver wage and emissions cost. Finally, in Chapter 5 we
study the scheduling problem of optimizing the travel speed and the departure
times of a vehicle visiting a given sequence of customer locations. The objective
is the minimization of a cost function including emissions cost and labour cost.

6.1 Research objectives revisited

In the introduction of this thesis we state five research objectives. In the follow
we briefly explain how we addressed each research objective, and we summarize
the main findings.

6.1.1 Sustainability in fleet management

Research objective 1 Develop a fleet management model to manage a (possibly
heterogenous) fleet of vehicles to serve a city in the presence of access restrictions.

155
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In Chapter 2 we develop a MIP model for the problem of managing a heterogeneous
fleet of vehicles operating in a urban area where access restrictions are applied to
certain types of vehicle. We represent the city as a rectangular service area and we
recast the fleet management problem into an area partitioning problem. This latter
problem consists of partitioning the urban area into rectangular service sectors,
each served by a single vehicle. The length of the tour to serve each sector is
calculated using a continuous approximation formula. The dimension of a sector
depends on the position of the sector in the urban area, on the capacity of the
vehicle serving the sector and on the vehicles access restrictions. The objective is
to minimize the cost of fleet ownership or leasing, the fuel cost and the labor cost.
Additionally, we formulate the problem as a dynamic programming problem and
we study the properties of the value function. By exploiting some key structural
properties we develop an efficient method to compute an optimal solution for a
problem with two vehicle types, e.g. electric and diesel. We perform an extensive
numerical analysis which shows that on average, operating a heterogenous fleet
only leads to a small decrease in cost, which may not be outweighed by the increase
in logistical complexity resulting from operating several vehicle types.

Research objective 2 Investigate the impact of traffic restrictions on urban fleet
planning.

In a numerical study in Chapter 2 we investigate how time access restrictions affect
the optimal fleet composition for a problem with two vehicle types, e.g. electric
and diesel. We found that limiting the access or banning the use of large vehicles
may in some cases be counterproductive, as it might actually increase the number
of diesel vehicles on the streets, further it might also contribute to increase the
traffic congestion.

6.1.2 Sustainability in vehicle routing and scheduling

Research objective 3 Study the problem of routing and scheduling a homoge-
neous fleet of vehicles in a presence of traffic congestion which, at peak periods,
limits the vehicles travel speed and increases the amount of emissions produced.
The objective is the minimization of a total cost function including labour and
emissions cost. Formulate the problem as a mathematical model and develop
heuristic algorithm to solve to solve medium and large size instances in a reasonable
amount of time.

In Chapter 3 we provide an integer linear programming formulation (MILP) for a
vehicle routing problem where CO2e emissions and traffic congestion are accounted
for. The problem consists on determining the optimal set of routes, the travel speed
on each leg of a route and the departure time from each node for a homogeneous



157 6. Conclusion

fleet of vehicles, serving a given set of customers with hard time window limits,
in a presence of traffic congestion. The objective is the minimization of the total
travel cost encompassing emissions costs and labour cost. We refer to this problem
as the Time-Dependent Pollution Routing Problem (TDPRP) as it extends the
Pollution Routing Problem (PRP) from Bektaş and Laporte (2011) by including
traffic congestion. We consider two ways of calculating the total time for which the
driver is paid, which we call driver wage policies: (i) the driver of each vehicle is
paid from the beginning of the time horizon until returning back to the depot, or
(ii) the driver is paid only for the time spent away from the depot, i.e., either
en-route or at a customer. Computational results confirm that the proposed
formulation computationally outperforms the formulation proposed for the PRP.

In Chapter 4 we propose an adaptive large neighbourhood search heuristic (ALNS)
for the TDPRP. In addition to some removal and insertion operators adapted
from the literature, the algorithm uses some new operators inspired by the
analytical insights derived in Chapter 3. Computational results have shown that
our algorithm is able to compete with the best heuristics for the PRP, even though
it was not specifically designed for this specific problem type.

Research objective 4 Study how idle waiting either at the depot or at a
customer node affects the emissions and the labour costs, in a presence of traffic
congestion.

In Chapter 3 we derive a complete characterization of the optimal solution for a
single-arc version of the TDPRP, identifying conditions under which it is optimal
to wait idle at the depot and the associated amount of time. These analytical
results show that in some cases adding idle waiting time at the depot can be used
as an efficient strategy to avoid traveling in congestion, and therefore reduce the
total travel cost. We also present several examples that motivate idle waiting time,
either pre- or post-service, both at the depot and at customer nodes.

Research objective 5 Study the scheduling problem of a vehicle visiting a given
sequence of locations. The objective is to determine the optimal departure times
and the travel speed on each leg of the route so as to minimize the sum of labour
and emissions costs. Formulate the problem in mathematical terms and develop
an exact algorithm for solving the problem. Extend the study to the case where
traffic congestion limits the vehicle speed during peak periods. Develop a heuristic
algorithm to solve this latter problem.

In the first part of Chapter 5 we propose an exact method for optimizing the travel
speed and the departure times of a vehicle visiting a given sequence of customer
nodes as to minimize the sum of emissions cost and labour cost. We refer to this
problem as the Departure Time and Speed Optimization Problem (DSOP). We
formulate the problem as a dynamic programming problem, and we study the
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structure of the value function. By exploiting some key properties of the value
function we obtain an efficient solution method that simplify to a shortest path
method.

In the second part of Chapter 5, we describe a heuristic algorithm to solve the
DSOP in a presence of peak hours traffic congestion. Such problem is referred
as the Time-Dependent Speed Optimization Problem (TDDSOP). The proposed
algorithm is inspired by the Speed Optimization Problem (SOP) algorithm first
proposed by (e.g., Hvattum et al., 2010, 2013) for ship scheduling, then adapted
to the PRP by Demir et al. (2012) and builds on the analytical properties for the
single-arc TDPRP presented in Chapter 3.

6.2 Future research directions

In this section we briefly discuss some future research directions regarding the
underlying concepts presented in this thesis.

6.2.1 Sustainability in fleet management

In the context of sustainability in fleet management a challenging extension at
the conceptual level could be to allow a non uniform distribution of customers
within the service area. Such an extension would be particularly relevant for
those companies operating in rural areas or in large areas where customers are
not evenly distributed throughout. However, since the continuous approximation
formulas that we used to model the problem in Chapter 2 are based on the
assumption of uniform distribution extending the problem in such a direction is
not straightforward as it might require redefining the model and redesigning a new
solution methodology.

6.2.2 Sustainability in vehicle routing and scheduling

In the context of sustainability in vehicle routing and scheduling, considering
more real-life congestion patterns with multiple congestion periods alternating
to free-flow periods during the planning horizon is a natural extension to the work
presented in Chapters 3, 4 and 5. In the contest of the TDPRP, an interesting
extension could be considering a heterogeneous fleet of vehicles and accounting
for the presence of vehicles access restrictions. This way we would strengthen the
connection between the strategic decision level, i.e managing the composition of
the vehicles fleet, and the operational decision level, i.e. planning the routing and
the scheduling of the vehicles. A more challenging extension could be extending
the problems studied in Chapters 3, 4 and 5 so as to account for unforeseen traffic
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congestion. Such an extension implies redefining the problem in order to allow
dynamic routing and scheduling decisions.
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D. Aksen, O. Kaya, F. S. Salman, and Ö. Tüncel. An adaptive large neighborhood search
algorithm for a selective and periodic inventory routing problem. European Journal
of Operational Research, 239(2):413–426, 2014.

N. Anand, H.J. Quak, R. Van Duin, and L. Tavasszy. City logistics modeling efforts:
Trends and gaps-a review. Procedia-Social and Behavioral Sciences, 39:101–115,
2012a.

N. Anand, M. Yang, R. Van Duin, and L. Tavasszy. Genclon: An ontology for city
logistics. Expert Systems with Applications, 39(15):11944–11960, 2012b.

M. Barth and K. Boriboonsomsin. Real-world CO2 impacts of traffic congestion.
Transportation Research Record: Journal of the Transportation Research Board,
2058(1):163–171, 2008.

M. Barth and K. Boriboonsomsin. Energy and emissions impacts of a freeway-based
dynamic eco-driving system. Transportation Research Part D, 14(6):400–410, 2009.

M. Barth, T. Younglove, and G. Scora. Development of a Heavy-Duty Diesel Modal
Emissions and Fuel Consumption Model. Technical report, UC Berkeley: California
Partners for Advanced Transit and Highways (PATH), 2005.

T. Bektaş and G. Laporte. The pollution-routing problem. Transportation Research Part
B: Methodological, 45(8):1232–1250, 2011.

M. Browne, J. Allen, T. Nemoto, D. Patier, and J.s Visser. Reducing social and
environmental impacts of urban freight transport: A review of some major cities.
Procedia-Social and Behavioral Sciences, 39:19–33, 2012.

R.G. Conrad and M.A. Figliozzi. Algorithms to quantify impact of congestion on time-
dependent real-world urban freight distribution networks. Transportation Research
Record: Journal of the Transportation Research Board, 2168:104–113, 2010.

J.-F. Cordeau, G. Laporte, and M.W.P. Potvin, J.-Y.and Savelsbergh. Transportation on
demand. Handbooks in operations research and management science, 14:429–466,

161



2007a.

J.-F. Cordeau, G. Laporte, M.W.P. Savelsbergh, and D. Vigo. Vehicle Routing. In
C. Barnhart and G. Laporte, editors, Transportation, volume 14 of Handbooks in
Operations Research and Management Science, chapter 6, pages 367–428. Elsevier,
Amsterdam, The Netherlands, 2007b.

J. Couillard and A. Martel. Vehicle fleet planning the road transportation industry.
Engineering Management, IEEE Transactions on, 37(1):31–36, 1990.

T.G. Crainic, N. Ricciardi, and G. Storchi. Models for evaluating and planning city
logistics systems. Transportation science, 43(4):432–454, 2009.

S. Dabia, E. Demir, and T. Van Woensel. An exact approach for the pollution-routing
problem. Technical report, Beta Research School for Operations Management and
Logistics, 2014.

C.F. Daganzo. The distance traveled to visit N points with a maximum of C stops
per vehicle: An analytic model and an application. Transportation Science, 18(4):
331–350, 1984a.

C.F. Daganzo. The length of tours in zones of different shapes. Transportation Research
Part B: Methodological, 18(2):135–145, 1984b.

C.F. Daganzo. Modeling distribution problems with time windows: Part I. Transportation
Science, 21(3):171–179, 1987a.

C.F. Daganzo. Modeling distribution problems with time windows: Part II: Two customer
types. Transportation Science, 21(3):180–187, 1987b.

C.F. Daganzo. Logistics Systems Analysis. Springer, Berlin, 2005.

G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management Science,
6(1):80–91, 1959.
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Università degli Studi di Modena e Reggio Emilia, Italy, 2015.

J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

A. Langevin and F. Soumis. Design of multiple-vehicle delivery tours satisfying time
constraints. Transportation Research Part B: Methodological, 23(2):123–138, 1989.

A. Langevin, P. Mbaraga, and J.F. Campbell. Continuous approximation models in
freight distribution: An overview. Transportation Research Part B: Methodological,

164

http://www.transport-research.info/Upload/Documents/200310/meet.pdf
http://www.transport-research.info/Upload/Documents/200310/meet.pdf
http://www.iru.org/en_policy_co2_response_wasted
http://www.iru.org/en_policy_co2_response_wasted
http://http://www.wbcsd.org/web/publications/mobility/mobility-full.pdf
http://http://www.wbcsd.org/web/publications/mobility/mobility-full.pdf
http://arxiv.org/abs/1404.4895


30(3):163–188, 1996.

R. Loxton and Q. Lin. Optimal fleet composition via dynamic programming and golden
section search. Journal of Industrial and Management Optimization, 7(4):875 –
890, 2011.

R. Loxton, Q. Lin, and K.L. Teo. A stochastic fleet composition problem. Computers &
Operations Research, 39(12):3177–3184, 2012.

W. Maden, R. W. Eglese, and D. P. Black. Vehicle Routing and Scheduling with Time
Varying Data: A Case Study. 2009.
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Summary

Sustainable city logistics. Fleet planning, routing and
scheduling

The issue of sustainability has emerged over the last few decades as an important
problem in the transportation field. A major challenge for city logistics is to
minimize the harmful effects of transportation activities, while guaranteeing a
high service quality.

City Logistics has been defined as the process of optimizing the logistics and
transport activities by private companies with the support of advanced information
systems in urban areas considering the traffic environment, its congestion, safety
and energy savings within the framework of a market economy.

There is a growing consensus on the view that significant benefits can be achieved
by an appropriate mix of different measures such as optimized delivery plans,
electric and low emissions vehicles and public incentive policies. The primary
target of such measures is to improve the safety and the livability of the urban areas
by reducing the amount of emissions produced by freight vehicles and the traffic
congestion on the roads. For this purpose, a growing number of municipalities
have started implementing restrictions policies which prioritize the usage of green
vehicles in the city center. As a consequence, the carrier companies operating in
such areas are forced to redefine their strategies and update their decision models
in order to improve their sustainability and meet the requirements imposed by the
new regulations.

The research in this thesis introduces a number of decision models where
environmental issues and real world operational constraints are included on top
of economical aspects. Specifically, Chapter 2 addresses sustainability issues in
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urban logistics at the strategic decision level, while Chapters 3-5, focus on city
logistics problems at a operational decision level.

Chapter 2 studies the problem of managing a heterogeneous fleet of vehicles to
serve a urban area where access restrictions are applied to certain types of vehicles.
The aim is to determine the optimal fleet composition in order to minimize the
sum of ownership or leasing, transportation and labor costs. In this chapter we
present a mixed integer program formulation and a dynamic program formulation.
In both formulations the problem is modeled as an area partitioning problem where
a rectangular service region has to be divided into sectors, each served by a single
vehicle. The length of the tour to serve a sector depends on the dimension of
the sector and on the customer density, and it is calculated using a continuous
approximation formula. The objective is to partition the area into service sectors
and to assign the vehicle types to the sectors, in order to minimize the total cost
function. Furthermore, we present some structural properties of the optimal
partition of the service region and we develop efficient algorithms to obtain an
optimal solution. Finally, we derive some valuable insights on the effects of traffic
restrictions and on the benefits of operating a heterogeneous fleet of vehicles.

Chapter 3 addresses sustainability in urban logistics at an operational decision
level by introducing the Time-Dependent Pollution-Routing Problem (TDPRP), a
vehicle routing problem where CO2e emissions and traffic congestion are accounted
for. The presence of traffic congestion during the first period of the day limits the
vehicles speed and increases the amount of vehicle emissions per kilometre. The
objective of the problem is to determine the assignment and the scheduling of
customers to vehicles, the travel speed on each arc of the route and the departure
time from each node, so as to minimize a total cost function encompassing labour
cost and emissions cost. In this chapter we present an integer linear programming
formulation of the TDPRP and we provide an analytical characterization of the
optimal solution for a single-arc version of the problem. The theoretical results
show that in some cases it is optimal to wait idly at certain locations in order to
avoid congestion and to reduce the cost of emissions.

In Chapter 4 we propose a metaheuristic algorithm for the TDPRP based on
Adaptive Large Neighborhood Search procedure. In this chapter, a number of
destruction and construction operators specifically design for the TDPRP are
presented. Extensive computational experiments are conducted for tuning the
algorithm parameters and for assessing the quality of the new operators. The
resulting solutions are then compared to (i) those reported in Chapter 3 and (ii)
to those reported in the literature for the TDPRP where there is no congestion
period, this problem is known in the literature as Pollution Routing Problem
(PRP). Finally, extensive computational experiments on large TDPRP instances
are presented.

Chapter 5 introduces the Departure Time and Speed Optimization Problem
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(DSOP), namely a vehicle scheduling problem where CO2e emissions are accounted
for. The objective is to determine the departure times and the travel speed of a
vehicle traveling on a fixed route, so as to minimize a total cost function composed
of labour cost and emissions cost. In this chapter, we formulate the problem as a
dynamic programming problem, and we study the structure and the properties of
the value function. Based on the theoretical results, we derive an efficient solution
method which simplifies into a shortest path problem. Finally, we propose a
heuristic algorithm to solve the DSOP in a presence of traffic congestion which
limits the vehicle speed during a period of the day, increasing the amount of
emissions per kilometre.
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UK. Moreover she collaborated with Emrah Demir and Mark Stobbe from the
Eindhoven University of Technology. Part of her PhD research was conducted at
CIRRELT (Interuniversity Research Center on Enterprise Network, Logistics and
Transportation), Canada, in collaboration with Gilbert Laporte. On September
22, 2015 Anna defends her PhD thesis at Eindhoven University of Technology.




	Introduction
	City logistics
	Decision problems and research objectives
	Fleet management
	Routing and scheduling

	Outline of the thesis

	Strategic Fleet Planning for City Logistics
	Introduction
	Model
	Problem setting
	Routing strategy
	Partitioning policy
	MILP formulation 

	Analytical results 
	Single strip, one vehicle type
	Single strip, multiple vehicle types 
	Multiple strips, multiple vehicle types

	Numerical analysis 
	Impact of city access restrictions
	Optimal fleet composition
	MILP versus DP

	Conclusions
	Appendix 
	Appendix
	Appendix

	The Time-Dependent Pollution-Routing Problem
	Introduction
	Problem description 
	Time-dependency
	Modeling emissions
	Aim of the TDPRP

	Examples 
	Impact of traffic congestion
	Impact of the driver wage policy

	MILP formulation 
	Analytical results
	Computational results
	Performance on PRP instances
	Importance of modeling traffic congestion and impact of driver wage policy

	Conclusions
	Appendix
	Appendix
	Appendix
	Results on PRP instances
	Results on TDPRP instances


	A Metaheuristic Algorithm for the TDPRP
	Introduction
	Model
	Problem description 
	Feasibility conditions

	ALNS for the TDPRP
	Construction of the initial solution
	Adaptive weight adjustment procedure
	Acceptance and stopping criteria
	Removal and insertion operators 

	Computational experiments
	Parameter tuning
	Computational time analysis
	Relative performance of the operators
	Performance on TDPRP instances
	Performance on PRP instances

	Conclusions

	 Departure Times and Speed Optimization Problems 
	Introduction
	DSOP
	Objective function 
	Feasibility conditions

	Results
	The one-arc problem 
	Dynamic programming formulation

	Shortest path formulation
	Insights
	Impact of the driver wage policy
	Impact of time windows

	TDDSOP
	A heuristic algorithm for the TDDSOP
	Performance of the TDDSOP algorithm

	Conclusion
	Appendix

	Conclusion
	Research objectives revisited
	Sustainability in fleet management
	Sustainability in vehicle routing and scheduling
	Future research directions
	Sustainability in fleet management
	Sustainability in vehicle routing and scheduling


	Bibliography
	Lege pagina



