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leden: Prof. Dr. R. Köhl (Justus-Liebig-Universität Gießen)

prof.dr. S. Shpectorov (University of Birmingham)

prof.dr. N. Bansal

dr.ir. J. Draisma

prof.dr. H. Van Maldeghem (Universiteit Gent)



Introduction

The origin of Lie theory is geometric and initialized with the view that the geo-

metry of a space is determined by the group of its symmetries. Motivated by

the study of differential equations, Sophus Lie (1842–1899) started to develop

an analytic counterpart to Évariste Galois’ (1811–1832) work on algebraic

equations, and had the seminal idea to consider infinitesimal actions of local

groups on manifolds. These infinitesimal groups could be studied by lineariz-

ing them, leading to the object that is known as a Lie algebra today. Being

a linear object, the Lie algebra is more easily accessible than a group. Wil-

helm Killing (1847–1923), who introduced Lie algebras independently, came

up with a new approach for the study of these group actions: instead of classi-

fying all group actions, one could also classify all (finite-dimensional complex)

Lie algebras. Together with Friedrich Engel (1861–1941), he concluded that

determining all simple Lie algebras was fundamental.

The finite dimensional complex simple Lie algebras consist of four infinite

families An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3) and Dn (n ≥ 4), respectively, cor-

responding to the groups SL(n+1,C), SO(2n+1,C), Sp(2n,C) and SO(2n,C),

and five exceptional Lie algebras denoted by E6, E7, E8, F4 and G2. A Lie

algebra of one of these types is called a classical Lie algebra. The work by

Claude Chevalley and Leonard Dickson shows that these types also exist over

finite fields, i.e. for so-called modular Lie algebras. In the second half of the

20th century, the classification of finite-dimensional modular simple Lie alge-

bras was completed for algebraically closed fields of characteristic greater than

or equal to 5. It implies that such a simple modular Lie algebra in charac-

teristic at least 5 is either classical, of Cartan type or Melikian. Hereby, the

classification of the Lie algebras of Cartan type was the result of a long series

of work, ending in papers of A. Premet and H. Strade, and subsumed in the

books of H. Strade [Str04], [Str09],[Str13]. The Melikian Lie algebras are a

single series of Lie algebras that occur in characteristic 5. The characteristics
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II INTRODUCTION

2 and 3 seem very hard to characterize and many extraordinary examples have

been found.

The progress in group theory influenced the work on the theory of Lie algebras

and geometry. A mathematical milestone of the last century was the classifi-

cation of all finite simple groups, finished in 1982, with the result that a finite

simple group is either cyclic, alternating, a group of Lie type, or one of 26

sporadic examples.

The three different concepts of groups, Lie algebras and geometries are closely

related and influenced the development of theory among each other in sev-

eral ways. Where the connection between Lie algebras and group theory is

intuitive considering the historic roots, the relationship between groups and

geometries came into focus by the initial ideas of Fischer [Fis71] and Tits

[Tit74]. Geometric methods found several applications in the theory of fi-

nite simple groups, leading to their final classification. This interaction gives

a model for the further investigation of relations in the triad of geometries,

groups and Lie algebras.

In this thesis, we consider the relationship between Lie algebras and geome-

tries, more concretely, we take the path from the geometries to the Lie algebras,

concentrating on classical modular Lie algebras. It is known that geometries

related to buildings arise from classical Lie algebras (see e.g. [Coh12]). We

will examine the converse: given a specific geometry related to a building, we

will study to what extent a Lie algebra whose associated geometry is related

to that building is unique.

The central objects in this approach are the extremal elements of a Lie algebra.

Inside a Lie algebra g over a field F, a non-zero element x is called extremal

if [x, [x, g]] is contained in the 1-space spanned by x. Hereby, we exclude the

special case where the space spanned by x is 0-dimensional, in which case x is

called a sandwich.

The first time extremal elements occurred was in the article [Fau73] by J.

Faulkner. He made use of inner ideals to identify shadows of buildings, where

a 1-dimensional inner ideal is the 1-space spanned by an extremal element

that is not a sandwich. Inner ideals were extensively studied by G. Benkart

in her PhD thesis [Ben74] and the subsequent papers [Ben76] and [Ben77]. In

[Che89], V. Chernousov used five extremal elements in a Lie algebra of type

E8 to settle the last open case of the Hasse principle conjecture. Recently,
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Extremal elements have been a topic of investigation in Eindhoven, with results

published in several papers as [CIR08], [Di’p08],[i’pPR09] and [Roo11]. Similar

presentations for other Lie algebras are given here as results of the work of

A. Cohen, H. Cuypers, J. Draisma, G. Ivanyos, J. in ’t panhuis, E. Postma

and D. Roozemond, and most recently also K. Roberts and S. Shpectorov in

[CRS14].

A definitive example of extremal elements are the long root elements of the

classical Lie algebras. But extremal elements also occur in other classes of Lie

algebras. By the result of A. Premet [Pre86b], we may assume that extremal

elements or sandwiches exist in all simple Lie algebras, if the characteristic

of the underlying field is at least 5. Moreover, A. Cohen, G. Ivanyos and

D. Roozemond showed in [CIR08] that simple Lie algebras over algebraically

closed fields are (with a single exception) generated by their extremal elements,

provided that the characteristic is at least 5 and a non-sandwich extremal ele-

ment is contained. Another result of their work is an elegant way to distinguish

the classical simple Lie algebras from the Cartan type algebras (including the

Melikian algebras), using their extremal elements: Either the space [x, [x, g]]

is 1-dimensional, in which case the Lie algebra is of classical type, or it is

0-dimensional, in which case x is a sandwich and the Lie algebra is of Cartan

type.

The path from Lie algebras to geometries was introduced by A. Cohen and G.

Ivanyos in [CI06], wherein they obtained a natural way to associate a geometry

to a Lie algebra generated by extremal elements that are no sandwiches. The

resulting geometric structure is a root filtration space, that is (under some mild

restrictions) the shadow space of a spherical building. This construction was

inspired by the geometric methods used in finite simple group theory. The

resulting geometries have been classified, which raises the natural question:

can the Lie algebra be recovered from the building in a canonical way? By the

classification of spherical buildings, one can deduce that such a Lie algebra

is in fact of a known classical type. In his PhD thesis [Rob12], K. Roberts

already obtained this result for the An-case. Under the assumption that the

Lie algebra contains no sandwiches and is spanned by its extremal elements,

he identified a Lie algebra of type An from a root shadow space of type An,{1,n}

(see [Bou68] for notation).
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This thesis addresses this reverse construction. We show under some weak

assumptions on the underlying field that a simple Lie algebra that is generated

by extremal elements that are not sandwiches and whose associated geometry

is related to a spherical building of rank at least 3 is a classical Lie algebra.

The structure of this thesis. We start in the first chapter with some

basic definitions and introduce our main object, namely, the classical linear Lie

algebras gln(F), sln(F), spF(V ), on(F) and (s)un(F), where F denotes a field.

In the second chapter, we proceed with the definition of extremal elements in

Lie algebras and introduce the extremal form g on the Lie algebra g. Since we

are mostly interested in the relations between extremal elements, we find and

name five possible types of pairs of extremal elements (x, y) ∈ E×E that can

occur. For the set of corresponding extremal points E(g) = {Fx| x extremal},
these relations have the following names: A pair of points can be hyperbolic

(type E2, this is the case if the elements span an sl2-subalgebra), special (type

E1, where the elements do not commute but the extremal form of the pair is

zero), polar (type E0, where the elements commute and do not belong to one of

the following cases), strongly commuting (type E−1, in case that the elements

commute, are not linearly dependent and Fx+ Fy ⊆ E ∪ {0} ) or equal (type

E−2, where the points are linearly dependent, so Fx = Fy). These relations

also determine the corresponding geometry Γ(g) of a Lie algebra that we will

examine in the following chapters. In particular, we consider the relation E2

where the extremal form of a pair of extremal elements is non-zero. Here, the

two elements generate a subalgebra isomorphic to sl2, so we also denote this

relation by ∼sl2 . We define a graph Γsl2(g), taking the extremal elements E(g)

of a Lie algebra g as a vertex set, and the relation ∼sl2 naturally determines

the edges. We call this graph the sl2-graph of the Lie algebra. For simple Lie

algebras, we can show our first result.

Theorem (see 2.5.6). If a Lie algebra g over a field F is simple with a non-

trivial extremal form g, then E(g) is connected with respect to the relation ∼sl2.

In particular, the group G = 〈exp(x, t) | x extremal, t ∈ F〉 is transitive on

the points in E(g).

To examine the extremal elements of classical Lie algebras in detail, we make

use of the Chevalley basis in the third chapter. Via the construction of root

systems and subsequently root elements, we obtain the Lie algebra as a span
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of long and short root elements. This allows us to classify all proper extremal

elements and describe them explicitly. (Here a proper extremal element refers

to a non-sandwich extremal element.)

Theorem (see 3.4.11 and 3.4.12). Let g be a Chevalley Lie algebra over F with

charF 6= 2. Then all proper extremal elements of g are long root elements.

The focus in the second half of the thesis is on the discrete geometric character-

izations of the classical Lie algebras. In the fourth chapter, several geometric

concepts that enable our results in the last two chapter are introduced. We

start with fundamental concepts such as graphs, Coxeter groups and build-

ings. Proceeding with root shadow spaces and later root filtration spaces, we

present the fundamental results of Cohen and Ivanyos in [CI06],[CI07]. Point-

line spaces and, in particular, polar spaces will be used to apply the results of

Cuypers in [Cuy94] for the symplectic Lie algebras. In the more general case

in Chapter 5, we also work with polarized embeddings of point-line geometries

and apply the main result of and Kasikova and Shult in [KS01]. We use the

extremal geometry Γ(g) defined by the five relations that we introduced in the

second chapter. We obtain the point-line space (E(g),F), where the extremal

points form the point set and the lines are determined by the relation E−1, so

the strongly commuting pairs. Using [KS01], we show that for two Lie algebras

that are both spanned by their extremal elements and equipped with nonde-

generate extremal forms, an isomorphic extremal geometry with an absolute

universal embedding implies equivalence of the natural embeddings. By the

classification of Cohen and Ivanyos, this holds in particular for Lie algebras

with extremal geometries isomorphic to a root shadow space of type BCn,2,

Dn,2, E6,2, E7,1, E8,8, or F4,1, where n ≥ 3. Using subalgebras isomorphic to

sl2, we prove that the Lie product for a fixed isomorphism type of the extremal

geometry is unique (up to scalar multiples). Combining the previous results,

we obtain our main conclusion.

Theorem (see 5.4.1). Let g be a Lie algebra generated by its set of extremal

elements and with trivial radical. If Γ(g) is nondegenerate and the natural

embedding of the extremal geometry Γ(g) into the projective space on g admits

an absolute universal cover, then g is uniquely determined (up to isomorphism)

by Γ(g).
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In particular, this result applies to the Lie algebras of type BCn (n ≥ 3),

Dn (n ≥ 4), E6, E7, E8, or F4. Combined with results of [Rob12], it also

characterizes Chevalley algebras of rank at least 3 and containing strongly

commuting elements.

Theorem (see 5.4.3). Suppose g is a Lie algebra and Γ(g) is isomorphic to

Γ(ch) for some Lie algebra ch of Chevalley type Xn 6= Cn where n ≥ 3. Then

g/Rad(g) ∼= ch/Rad(ch).

It remains to consider the case where the set of lines in the extremal geometry

as defined in chapter 5 is empty, in other words, there are no pairs of strongly

commuting points. In this case, moreover, there are no pairs of special points

leaving us with only hyperbolic and polar pairs. This holds in particular for

the symplectic Lie algebras over a field of characteristic different from 2. In

some other cases of this type, the problem of an empty line set in the extremal

geometry as considered in the fifth chapter can be resolved by a quadratic ex-

tension of the underlying field, with the consequence that one can find strongly

commuting pairs of extremal elements in the extended Lie algebra. We con-

centrate on the symplectic case and provide an alternative characterization for

this type, using the sl2-geometry as defined in the second chapter. For this

purpose, we consider subalgebras spanned by a symplectic triple of extremal

elements. An application of the main result of [Cuy94] shows that the partial

linear space Γ(g) defined by the sl2-relation is isomorphic to the geometry

of hyperbolic lines of a symplectic geometry HSp(V, f), where (V, f) denotes

a symplectic space, with f as symplectic form. We find a projective space

on the extremal elements with lines defined by sl2-lines and polar lines. To

complete the characterization, we introduce quadric Veroneseans and (univer-

sal) Veronesean embeddings, to apply the result of J. Schillewaert and H. Van

Maldeghem in [SVM13]. We show that the projective embedding of the Lie

algebra g into P(g) induces a universal Veronesean embedding of P(V ), so that

E(g) is a quadric Veronesean. The Lie product is again unique (up to scalar

multiples) on the Veronesean.

This leads to our final characterization of the symplectic Lie algebras by their

geometries.

Theorem (see 6.0.6). Let g be a simple Lie algebra of finite dimension over

the field F with charF 6= 2 and generated by its set of extremal points E where
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E±1(g) = ∅ and for any (x, y), (y, z) ∈ E2(g), the subspace 〈x, y, z〉 embeds

into a subalgebra isomorphic to sp3(F) or psp3(F). Then g ∼= spn(F) for some

(even) n ≥ 4, or g ∼= (p)sl2(F).
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CHAPTER 1

Lie algebras

This chapter introduces the basic terminology and notation that are essential

for this thesis. Most of the proofs have been omitted and can be found in

fundamental literature on Lie algebras, as e.g. [Hum78] or [Car72].

1.1. General theory

A vector space g over a field F together with a binary operation

[·, ·] : g× g→ g,

is a Lie algebra over F if the operation fulfills the following conditions:

(1) Bilinearity: for all α, β ∈ F and for all x, y, z ∈ g, we have

[αx+ βy, z] =α [x, z] + β [y, z] ,

[z, αx+ βy] =α [z, x] + β [z, y] .

(2) Alternation: for all x ∈ g, the identity [x, x] = 0 holds.

(3) Jacobi identity: all x, y, z ∈ g fulfill

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

The operation [·, ·] is called the Lie bracket of the Lie algebra g.

We consider a first and fundamental example of a Lie algebra.

Let V be a (left) vector space over the (skew) field K. We denote by End(V )

the ring of all endomorphisms of V with the usual addition and composition

as multiplication.

Now we can define an operation on End(V ):

for x, y ∈ End(V ) : [x, y] := xy − yx,

the bracket or the commutator of x and y. This operation induces a Lie

algebra structure gl(V ) on End(V ) which is called the general linear Lie

algebra. (Here End(V ) is considered to be a vector space over a subfield F
of K.)

1
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Any subalgebra of gl(V ) is called a linear Lie algebra.

For V = Fn, n ∈ N and K = F a field, we have dim gl(V ) = n2. In this case

we denote gl(V ) by gln(F), and identify End(V ) with the algebra of all n×n-

matrices with entries in F. This can be very useful for explicit calculations on

linear Lie algebras.

An element of gl(V ) is called finitary, if its kernel has finite codimension. The

finitary elements in gl(V ) form a subalgebra denoted by fgl(V ), the finitary

general linear Lie algebra. Any subalgebra of fgl(V ) is called a finitary linear

Lie algebra.

For two Lie algebras g1 and g2, a linear map ϕ : g1 → g2 is called a Lie

algebra homomorphism if for all x, y ∈ g1 we have ϕ([x, y]) = [ϕ(x), ϕ(y)].

If ϕ is also bijective, we call it a Lie algebra isomorphism. Note that a Lie

algebra isomorphism is also an isomorphism in the usual sense, so a bijective

homomorphism whose inverse is also an isomorphism.

A Lie subalgebra h of a Lie algebra g is a linear subspace of g where, for all

x, y ∈ h, we have [x, y] ∈ h.

For x ∈ g we define a linear map

adx : g→ g

by left multiplication by x, so:

adx(y) = [x, y] .

The map adx is called the adjoint map of x.

The map ad : g→ gl(g), x 7→ adx is a Lie algebra homomorphism. It is called

the adjoint representation of g.

Definition and Example 1.1.1 (Special linear algebra). Let n ∈ N, n ≥ 1

and V be a vector space over the field F with dimV = n. We denote by sl(V ) or

sln(F) the set of endomorphisms on V having trace zero. We denote the trace

of an element x ∈ gl by Tr(x). Because of Tr(xy − yx) = Tr(xy) − Tr(yx) =

Tr(xy) − Tr(xy) = 0 for x, y ∈ gln, we find that sln(F) is a subalgebra of

gln(F). It is called the special linear algebra.

If V is infinite dimensional, then we can define the trace function on finitary

elements of gl(V ). In particular, we can define fsl(V ) to be the subalgebra of

fgl(V ) consisting of finitary elements with trace 0.
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Definition and Example 1.1.2 (Heisenberg algebra). Consider the three-

dimensional Lie subalgebra of gl3(F) generated by the matrices

x =

0 1 0

0 0 0

0 0 0

 , y =

0 0 0

0 0 1

0 0 0

 , z =

0 0 1

0 0 0

0 0 0

 .

It satisfies the relations

[x, y] = z, [x, z] = 0, [y, z] = 0,

and is called Heisenberg algebra. The spanned vector space is the space of

strictly upper-triangular 3× 3 matrices over the underlying field F.

The following theorem states that every finite dimensional Lie algebra is iso-

morphic to a linear Lie algebra. This result is due to I.D. Ado (1935) in the

case where charF = 0. The restriction on the characteristic was removed later

by Iwasawa and Harish-Chandra. Proofs for charF = 0 and p can be found

e.g. in [Jac79], Chapter VI.

Theorem 1.1.3. Every finite dimensional Lie algebra g is isomorphic to a

subalgebra of gl(V ) for some vector space V over the field F.

Definition and Proposition 1.1.4. An ideal I of a Lie algebra g is a

subspace where [x, y] ∈ I for all x ∈ g and y ∈ I.

Suppose g′ is a second Lie algebra. Then the kernel of a Lie algebra homo-

morphism ϕ : g→ g′ is an ideal of g, and the image is a subalgebra of g′.

Conversely, for any ideal I ⊂ g it holds that g/I is a Lie algebra, called the

quotient algebra of I in g and I is the kernel of the quotient map g→ g/I.

Proof. If x ∈ ker ϕ and a ∈ g, then ϕ[a, x] = [ϕ(a), ϕ(x)] = [ϕ(a), 0] = 0.

So [a, x] ∈ ker ϕ.

Conversely, if I ⊂ g is an ideal, a ∈ g, x ∈ I, then

[a+ I, x+ I] ⊆ [a, x] + [a, I] + [I, x] + [I, I] ⊂ [a, x] + I.

So the bracket is well defined in g/I and [ϕ(a), ϕ(x)] = ϕ[a, x]. Moreover, as

a+ I = I if a ∈ I, we find I = ker ϕ. �

The center of a Lie algebra g is Z(g) = {x ∈ g|[x, g] = 0}. The center is an

ideal of g. It is the kernel of the adjoint representation.
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We say that elements x, y ∈ g commute if [x, y] = 0. So, the center of g

consists of those elements from g that commute with all elements in g.

A Lie algebra is called commutative if any two elements commute.

Example 1.1.5. The trace is a homomorphism from gln(F) to F (where we

consider F as the abelian Lie algebra over F), since Tr[x, y]gln(F) = Tr(xy) −
Tr(yx) = 0 = [Tr(x),Tr(y)]F. The subalgebra sln(F) of gln(F) is the kernel of

Tr, so it is an ideal in gln(F).

Example 1.1.6. In a Heisenberg algebra g over F, there exists a 1-dimensional

center, namely Z(g) = Fz (using the notation of Example 1.1.2), which is an

ideal in g.

Definition and Proposition 1.1.7. Let g be a Lie algebra. Then [g, g] is

the subspace of g spanned by all elements [x, y] where x, y ∈ g.

The subspace [g, g] is clearly an ideal of g. It is called the commutator

subalgebra.

In general, if i is an ideal, then [g, i], the subspace spanned by all elements of

the form [x, y] with x ∈ g and y ∈ i, is also an ideal of g.

A simple Lie algebra g is a Lie algebra with [g, g] 6= 0 and having no nontrivial

ideals. In particular, in a simple Lie algebra one has [g, g] = g. A Lie algebra

that is a direct sum of simple Lie algebras is called semisimple.

For a Lie algebra g we can define a sequence of ideals

g0 := g, g1 := [g, g] , g2 :=
[
g, g1

]
= [g, [g, g]] , g3 :=

[
g, g2

]
, . . .

If there is a n ∈ N with gn = 0, we call g nilpotent.

For a Lie algebra g, we can also define the sequence of ideals

g(0) := g, g(1) := [g, g] , g(2) :=
[
g(1)g(1)

]
= [[g, g] , [g, g]] ,

g3 :=
[
g(2), g(2)

]
, . . .

If there is a n ∈ N with g(n) = 0, we call g solvable.

Proposition 1.1.8. Every nilpotent Lie algebra is solvable, but the converse

is not true.
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Proof. We show that for any nilpotent Lie algebra g, also gk+1 ⊆ g(k)

holds for all k ∈ N. We use induction on k. We have g(0) = g0. Assume

g(k) ⊆ gk. Then

g(k+1) ⊆
[
g(k), g(k)

]
⊆
[
g, gk

]
= gk+1,

since g(k) ⊆ g by definition.

As a counterexample for the converse, consider the two-dimensional (non-

abelian) Lie algebra defined by [a, b] = a. It is solvable since g(3) = 0, but not

nilpotent since gk = 〈a〉 for all k ∈ N, k ≥ 2. �

Proposition 1.1.9. Let g be a Lie algebra with solvable ideals I and J . Then

also I + J is a solvable ideal of g.

Proof. See [dG00, Prop. 2.3.1] or [Hum78, Section I.3] �

Definition 1.1.10. A radical of a finite dimensional Lie algebra g, denoted

by Rad(g), is a solvable ideal of g of maximal possible dimension.

Proposition 1.1.11. Rad(g) contains any solvable ideal of g and is unique.

Proof. If I is a solvable ideal of g, then I + Rad (g) is again a solvable

ideal by 1.1.9. Since Rad (g) is of maximal dimension, it follows I+Rad (g) =

Rad (g) and I ⊂ Rad (g). For uniqueness, if there are two distinct maximal

solvable ideals of g, then like above, the sum is equal to both ideals, which is

a contradiction. �

1.2. Linear Lie algebras

Let V be a vector space. In the previous section, we have already seen some

examples of linear Lie algebras, namely the general linear Lie algebra gl(V )

and the special linear Lie algebra sl(V ) or, in case V has infinite dimension,

fsl(V ), all with the commutator as Lie bracket.

The special linear algebra is the first example of the classical Lie algebras that

will be of importance in this work. There are four families of classical Lie

algebras that we introduce in this section.

If V has finite dimension n, then the special linear Lie algebra sl(V ), considered

as a subspace of the Lie algebra of n×n-matrices, is spanned by the matrices

Ei,j with i 6= j, i, j ∈ {1, . . . , n}, and

Ei,i − Ei+1,i+1 with i ∈ 1, . . . , n− 1,
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where the Ei,j denote the n × n matrix with a one in position (i, j) and 0

elsewhere. The dimension of sln(F) is n2 − 1.

Before introducing the other families of Lie algebras first a lemma:

Lemma 1.2.1. Let V be a vector space over the field F, and suppose

h : V ×V → F is a map additive in both coordinates with h(v, 0) = 0 = h(0, v).

If S, T ∈ gl(V ) satisfy h(S(u), v) = −h(u, S(v)) and h(T (u), v) = −h(u, T (v))

for all u, v ∈ V , then h([S, T ](u), v) = −h(u, [S, T ](v)).

Proof. Let u, v ∈ V . First, note that

0 = h(v, 0) =h(v, w − w) = h(v, w) + h(v,−w)

⇒ h(v,−w) =− h(v, w).

A similar argument leads to

h(−v, w) = −h(v, w).

Furthermore we have

h([S, T ]u, v) = h(STu− TSu, v)

= h(S(Tu), v)− h(T (Su), v)

= −h(Tu, Sv) + h(Su, Tv)

= h(u, TSv)− h(u, STv)

= h(u, TSv)− h(u, STv)

= h(u, TSv − STv)

= h(u, [T, S]v)

= h(u,−[S, T ]v)

= −h(u, [S, T ]v),

and the lemma is proven. �

The lemma shows that the property h(Ru, v) = −h(u,Rv) of the bi-additive

form h on V with R ∈ End (V ) is preserved by the commutator on End(V ).

In particular, the set of all R satisfying h(Ru, v) = −h(u,Rv) form a Lie

subalgebra of gl(V ).

In the following, we consider various different types of bi-additive forms and

the Lie subalgebras that they induce on gl(V ). In particular, we will consider

so-called sesquilinear forms defined on vector spaces over skew fields.

Definition 1.2.2. Let V be a left vector space over the skew field K and σ

an anti-automorphism of K and 0 6= ε ∈ K.
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A map h : V × V → K is called a (reflexive) (σ, ε)-sesquilinear form on V

if for all λ, µ ∈ K

(1) h(v + w, u) = h(v, u) + h(w, u) ;

(2) h(λv, µw) = λh(v, w)µσ;

(3) h(v, w) = εh(w, v)σ.

Notice that if h is nontrivial there are v, w ∈ V with h(v, w) = 1. But then

1 = h(v, w) = εh(w, v)σ = ε(εh(v, w)σ)σ = εεσ.

So, εσ = ε−1. Note that h(w, v) = ε since h(w, v) = εh(v, w)σ = ε1σ = ε.

Using this, we have for all λ, µ ∈ K:

λµσ =λh(v, w)µσ

=h(λv, µw)

=εh(µw, λv)σ

=ε(µh(w, v)λσ)σ

=ελσ
2
h(w, v)σµσ

=ελσ
2
εσµσ.

This implies that λσ
2

= ε−1λε.

If σ is the identity, then K has to be a field and ε = ±1. In this case h is

a symmetric (ε = 1) or anti-symmetric (ε = −1) bilinear form. If the

form satisfies h(v, v) = 0 for all v, then we call it alternating or symplectic.

Notice that an anti-symmetric bilinear form is symplectic if the characteristic

of K is not 2.

Now we consider the case where σ is not the identity.

If α 6= 0 and h is a (σ, ε)-sesquilinear form then αh is (τ, η)-sesquilinear, where

τ(λ) = (α−1λα)σ for all λ ∈ K and η = αεα−σ.

Indeed, we have

(αh)(u, v) = αh(u, v)

= αεh(v, u)σ

= αεh(v, u)σασα−σ

= αε(αh(v, u))σα−σ

= αεα−σασ(αh(v, u))σα−σ



8 1. LIE ALGEBRAS

= η(α−1(αh(v, u))α)σ

= η(αh(v, u))τ .

Let h 6= 0 be a (σ, ε)-sesquilinear form with nontrivial σ.

Let β ∈ K such that α = βσ − εσβ 6= 0. (Clearly such an element β exists.

For otherwise, βσ = εσβ for all β ∈ K. In particular 1 = 1σ = εσ · 1.

So, ε = 1 and σ is the identity which contradicts our assumptions.) Then

ασ = βσ
2 − βσε = εσβε− βσε = −αε.

So, αh is a (τ, η)-sesquilinear form, where η = αεα−σ = αε(−αε)−1 = −1.

But then, as follows from the above, τ has order 2.

A sesquilinear form h on V , with

h(u, v) = (h(v, u))σ for u, v ∈ V

where σ is an anti-automorphism of order 2, is called a Hermitian form on

V . If we have instead that

h(u, v) = −(h(v, u))σ for u, v ∈ V,

the form is called skew-Hermitian.

The elements 0 6= v ∈ V with h(v, v) = 0 are called singular or isotropic. If

h(v, v) 6= 0, then v is called nonsingular or anisotropic.

A pair of vectors v, w spanning a 2-dimensional subspace of V is called a

hyperbolic pair of vectors if h(v, v) = 0 = h(w,w) and h(v, w) = 1. The

2-space 〈v, w〉, where v, w is a hyperbolic pair, is called a hyperbolic 2-space.

The sesquilinear form h is called nondegenerate if h(v, w) = 0 for all v ∈ V ,

implies w = 0 and h(v, w) = 0 for all w ∈ V , implies v = 0.

Finally, the pair (V, h), where V is a vector space and h a sesquilinear (sym-

plectic or (skew-)Hermitian) form on V is called a sesquilinear (symplectic

or (skew-) Hermitian) space.

Notice that sesquilinear forms satisfy the conditions of Lemma 1.2.1, so we

can use them to obtain subalgebras of gl(V ). We consider various types of

forms.

First we consider a symplectic space (V, f). Clearly, if (V, f) is a nondegenerate

symplectic space, then for any vector 0 6= v ∈ V we can find a vector w ∈ W
with v, w forming a hyperbolic pair. For such v, w we find that the form f

restricted to the space 〈v, w〉⊥ := {u ∈ V | f(λv + µw, u) = 0 for all λ, µ ∈ F}
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is again nondegenerate. This implies that for finite dimensional V we can find

a hyperbolic basis, i.e., a basis such that the symplectic form f on V is defined

by the matrix

F =

(
0 Im

−Im 0

)
,

and f(v, w) := vtFw. In particular, the dimension of V is even.

Definition 1.2.3. Let (V, f) be a symplectic space over the field F. Then the

symplectic Lie algebra sp(V, f) is the Lie subalgebra of gl(V ) that consists

of all endomorphisms A in End(V ) that satisfy

f
(
A(v), w

)
= −f

(
v,A(w)

)
for v, w ∈ V.

If V is of finite dimension n = 2m and f is the standard symplectic form with

f(v, w) = vtFw, as above, then the corresponding symplectic Lie algebra is

denoted by spn(F). The elements of spn(F) can be represented by the matrices

A satisfying AtF = −FA. A basis of spn(F) is given by the following matrices:

Ei,m+i, 1 ≤ i ≤ m,
Em+i,i, 1 ≤ i ≤ m,
Ei,j − Em+j,m+i, 1 ≤ i, j ≤ m,
Ei,m+j + Ej,m+i, 1 ≤ i < j ≤ m,
Em+i,j + Em+j,i, 1 ≤ i < j ≤ m.

In particular, the dimension of spn(F) equals 2m2 +m.

The finitary symplectic Lie algebra fsp(V ) is the intersection of sp(V ) with

fgl(V ).

Definition 1.2.4. By psln(F) (or pspn(F)), we denote the Lie algebras ob-

tained as a quotient of sln(F) (or spn(F), respectively) by its center. Notice

that in most characteristics, the center is trivial and therefore in these cases

we have psln(F) = sln(F) (and pspn(F) = spn(F), respectively).

Next, consider the (skew)-Hermitian space (V, h), where V is a left vector

space over a skew field K and h a (skew)-Hermitian form on V (relative to

some σ).

The space (V, h) as well as the form h are called anisotropic if V does not

contain singular vectors.

If (V, h) is a nondegenerate (skew)-Hermitian space containing a singular vec-

tor v, then we can find a second singular w such that v, w is a hyperbolic
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pair. The subspace 〈v, w〉⊥ := {u ∈ V | h(λv + µw, u) = 0 for all λ, µ ∈ K} is

again nondegenerate. So we can decompose V into V1 ⊥ V2 where V1 admits a

hyperbolic basis and V2 is anisotropic. This implies that, if V is finite dimen-

sional, we can find a basis such that the form h is represented by the matrix

H, i.e., h(v, w) = vtHwσ, where

H =

 0 Ik 0

±Ik 0 0

0 0 ∆m

 .

Here ∆m is a diagonal m × m-matrix with on the diagonal entries λ ∈ K
satisfying λσ = λ in case h is Hermitian and λσ = −λ in case h is skew-

Hermitian.

Definition 1.2.5. Let (V, h) be a nontrivial (skew-) Hermitian space (relative

to some σ) over a skew field K. Then the unitary Lie algebra u(V, h) consists

of the endomorphisms T of V with

h(T (v), w) = −h(v, T (w)) for all v, w ∈ V.

As a (skew-) Hermitian form satisfies the conditions of Lemma 1.2.1, this is a

Lie algebra over any field F inside K which is fixed element-wise by σ. (Not

over K, since h is linear in the first, but not in the second variable.)

In case (V, h) is a finite dimensional nondegenerate (skew-) Hermitian space

and h is represented by the matrix

H =

 0 Ik 0

±Ik 0 0

0 0 λIm


as above, with λσ = ±λ, we can identify u(V, h) with the matrix algebra

consisting of all matrices M satisfying M tH = −HMσ.

So, if M =

A B C

D E F

G K L

, then

M tH =

A
t Dt Gt

Bt Et Kt

Ct F t Lt


 0 Ik 0

±Ik 0 0

0 0 λIm

 =

±D
t At Gtλ

±Et Bt Ktλ

±F t Ct Ltλ


and
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−HMσ = −

 0 Ik 0

±Ik 0 0

0 0 λIm


A B C

D E F

G K L


σ

= −

 Dσ Eσ F σ

±Aσ ±Bσ ±Cσ

λGσ λKσ λLσ

 .

One easily deduces, in case K is a field, that the dimension of u(V, h) over

Kσ = {µ ∈ K | µσ = µ} equals n2 where n = dim(V ) = 2k +m.

Indeed, suppose h is skew-Hermitian, and µ an element from K not fixed by

σ, then the following matrices form a basis for u(V, h):

Ei,j + Ek+j,k+i, 1 ≤ i, j ≤ k,
µEi,j + µσEk+j,k+i, 1 ≤ i, j ≤ k,
Ek+i,j + Ek+j,i, 1 ≤ i < j ≤ k,
µEk+i,j + µσEk+j,i, 1 ≤ i < j ≤ k,
Ek+i,i, 1 ≤ i ≤ k,
Ei,k+j + Ej,k+i, 1 ≤ i < j ≤ k,
µEi,k+j + µσEj,k+i, 1 ≤ i < j ≤ k,
Ei,k+i, 1 ≤ i ≤ k,
E2k+i,k+j + λEj,2k+i, 1 ≤ i ≤ m, 1 ≤ j ≤ k,
µE2k+i,k+j + λµσEj,2k+i, 1 ≤ i ≤ m, 1 ≤ j ≤ k,
Ek+i,2k+j + λE2k+j,i, 1 ≤ i ≤ m, 1 ≤ j ≤ k,
µEk+i,2k+j + λµσE2k+j,i, 1 ≤ i ≤ m, 1 ≤ j ≤ k,
E2k+i,2k+j − E2k+j,2k+i, 1 ≤ i < j ≤ m,
µE2k+i,2k+j − µσE2k+j,2k+i, 1 ≤ i < j ≤ m,
λE2k+i,2k+i, 1 ≤ i ≤ m.

In a similar way, a basis can be found in case h is Hermitian.

The special unitary Lie algebra su(V, h) consists of those elements in

u(V, h) that are in sl(V ).

The finitary unitary and special unitary Lie algebras fu(V, h) and fsu(V, h)

are the intersections of u(V, h) with fgl(V ) and fsl(V ), respectively.

By psun(F) (or pun(F)), we denote the Lie algebras obtained as a quotient of

sun(F) (or un(F), respectively) by its center.

Definition 1.2.6. Let V be a vector space over a field of characteristic 6= 2

and B be a nondegenerate symmetric bilinear form B on V . The orthogonal

Lie algebra o(V,B) consists of all T ∈ End(V ) with the property

B(T (v), w) = −B(v, T (w)) for all v, w ∈ V.
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From Lemma 1.2.1 it follows that this property is invariant under the Lie

bracket.

Form ≥ 2 and dim V = n = 2m+1 a nondegenerate symmetric bilinear (which

means B(v, w) = 0 for all w ∈ V implies v = 0) form can be represented (up

to the choice of a basis and scalar) by the matrix

F =

1 0 0

0 0 Im

0 Im 0

 .

Now o2m+1 has dimension m(2m+ 1) and consists of all endomorphisms T of

V with B(T (v), w) = −B(v, T (w)). The following matrices form a basis for

this Lie algebra:

Ei+1,j+1 − Em+j+1,m+i+1, 1 ≤ i, j ≤ m,
Ei+1,m+j+1 − Ej+1,m+i+1, 1 ≤ i < j ≤ m,
Em+i+1,j+1 − Em+j+1,i+1, 1 ≤ i < j ≤ m.

For m ≥ 4 and dim V = n = 2m we can represent the form B by the matrix

F =

(
0 Im

Im 0

)
.

The dimension of the Lie algebra o2n defined by this form is m(2m− 1). It is

spanned by the following matrices:

Ei,j − Em+j,m+i, 1 ≤ i, j ≤ m,
Ei,m+j − Ej,m+i, 1 ≤ i < j ≤ m,
Em+i,j − Em+j,i, 1 ≤ i < j ≤ m.

Note that the matrices in o2m are the skew-symmetric ones, in other words

on = {X ∈ End(V )|X +Xt = 0}.

The special orthogonal Lie algebra so(V, h) consists of those elements in

o(V, h) that are in sl(V ).

The finitary orthogonal Lie algebra fo(V, h) is the intersection of o(V, h) with

fgl(V ).

By pson(F) (or pon(F)), we denote the Lie algebras obtained as a quotient of

son(F) (or on(F), respectively) by its center.

The general linear, special linear, symplectic, (special) unitary and orthogonal

Lie algebras as described above are referred to as the classical linear Lie

algebras.



CHAPTER 2

Extremal elements

In this chapter, we introduce extremal elements of Lie algebras, which are a

basic structure for all Lie algebras considered in this work. Many details about

Lie algebras spanned by extremal elements can be found in the fundamental

paper [CSUW01]; the first three sections of this chapter follow their line. A

very detailed and completely covering introduction of extremal elements can

also be found in [Coh]. We give some properties and identities of extremal

elements, and continue with some basic examples. Furthermore, we consider

the low-dimensional cases of Lie algebras generated by two or three extremal

elements. The chapter ends with the introduction of a geometric structure that

can be defined on Lie algebras using the relations between extremal elements.

2.1. General theory

Definition 2.1.1. Let g be a Lie algebra over the field F. A nonzero element

x ∈ g is called extremal if there is a map gx : g→ F such that

(2.1)
[
x, [x, y]

]
= 2gx(y)x

and moreover

(2.2)
[
[x, y], [x, z]

]
= gx

(
[y, z]

)
x+ gx(z)[x, y]− gx(y)[x, z]

and

(2.3)
[
x, [y, [x, z]]

]
= gx

(
[y, z]

)
x− gx(z)[x, y]− gx(y)[x, z]

for every y, z ∈ g.

The last two identities are called the Premet identities; see also Lemma

2.1.3 below.

As a consequence, it holds [
x, [x, g]

]
⊆ Fx

for extremal x ∈ g, and for any y ∈ g, we have

(2.4) ad3
x(y) =

[
x, [x, [x, y]]

]
= [x, λx] = λ[x, x] = 0 for some λ ∈ F.

13
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We say that x is ad-nilpotent of order at most 3.

The form gx is called the extremal form on x. Note that the extremal

form of x ∈ g is denoted by fx in most literature, but in order to distinguish

between the extremal form and other forms on the Lie algebras as e.g. the

symplectic form (see 1.2.2), we will denote it by gx.

Note that in char(F) 6= 2, two elements x and y ∈ g commute if and only if

[x, y] = [y, x].

We call an element x ∈ g a sandwich if ad2
x(y) = 0 and adxadyadx = 0 for

every y ∈ g. So, a sandwich is an element x for which gx can be chosen to

be identically zero. We introduce the convention that gx is identically zero

whenever x is a sandwich in g.

We denote the set of non-zero extremal elements of a Lie algebra by E(g) or, if g

is clear from the context, by E. Accordingly, we denote the set {Fx|x ∈ E(g)}
of extremal points in the projective space on g by E(g) or E .

Lemma 2.1.2 ([CI06], Lemma 19). For a Lie algebra g and x, y ∈ E(g), we

have gx(y) = gy(x). Moreover, we have

(2.5) gx([y, z]) = −gy([x, z])

for all z ∈ g.

Proof. We start with the following observations: Let x, y commute. Then

it follows from the identity (2.2) that gx(y)[x, z] = gx([y, z])x for all z ∈ g.

Assuming gx(y) 6= 0, applying adx to both sides of the equation gives

gx(y)
[
x, [x, z]

]
=
[
x, gx(y)[x, z]

]
=
[
x, gx

(
[y, z]

)
x
]

= 0.

Using [x, z] = gx([y,z])
gx(y) · x, that follows from the previous since gx(y) 6= 0, we

also deduce adxady′adx(z) =
[
x, [y′, [x, z]]

]
= 0 for all y′, z ∈ g, which implies

that x is a sandwich, so gx(y) = 0 by convention and we have a contradiction.

So gx(y) = 0.

Assume now [x, y] 6= 0. Consider the following equalities, that can be obtained

from identity (2.3):

(2.6)
[
x, [y, [x, [y, z]]]

]
+ gx(y)[x, [y, z]] = gx([y, [y, z]])x− gx([y, z])[x, y]

results from replacing z by [y, z] in (2.3). Moreover

(2.7) [y, [x, [y, [x, z]]]] + gx(y)[y, [x, z]] = gx([y, z])[x, z]− gx(z)[y, [y, z]]
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results also from (2.3) by applying ady to both sides. Now we exchange x and

y in (2.7) and then subtract (2.6) and (2.7), and get

(2.8)
(
gx(y)− gy(x)

)[
x, [y, z]

]
= −

(
gx([y, z]) + gy([x, z])

)
[x, y].

This proves the required identities in the case where [x, y] and
[
x, [y, z]

]
are

linearly independent. Furthermore, it suffices now to show gx(y) = gy(x); the

second equality follows since [x, y] 6= 0 by assumption.

If char(F) 6= 2, the Jacobi identity gives

[y, [x, [x, y]]] + [x, [[x, y], y]] + [[x, y], [x, y]] = 0,

which leads to 2gx(y)[x, y] = 2gy(x)[x, y]. Since [x, y] 6= 0, this implies gx(y) =

gy(x). Actually, (2.8) implies the required identities if there is any z′ ∈ g such

that [x, [y, z′]] and [x, y] or, by interchanging x and y, [y, [x, z′]] and [x, y] are

linearly independent. So it remains to consider the case where char(F) = 2

and [x, [y, g]] + [y, [x, g]] ⊆ F[x, y]. Applying ady, we see

[y, [x, [y, g]]] + [y, [y, [x, g]]] ⊆ F[y, [x, y]] = 0.

Since [y, [y, [x, g]]] = 2gy([x, g])y = 0, also [y, [x, [y, g]]] = 0. Using this in (2.3)

we get

0 = [y, [x, [y, g]]] = gy([x, g])y − gy(g)[y, x]− gy(x)[y, g]

and we deduce [y, g] ⊆ Fy+F[x, y]. Since [y, [y, x]] = 0 by (2.1), we know that

Fy + F[x, y] is a commutative Lie subalgebra of g and therefore also [y, g] as

its subspace. Using (2.2) and (2.3), we get
[
y, [g, [y, g]]

]
=
[
[y, g], [y, g]

]
= 0 so

adyaduady = 0 for all u ∈ g. Together with the fact that ad2
y = 0, this implies

that y is a sandwich and therefore by convention, gy is zero. Similarly, we can

deduce [x, g] ⊆ Fx+ F[x, y] and with the same arguments as above, gx is also

zero. �

Lemma 2.1.3 (Premet). If char(F) 6= 2, the equations (2.2) and (2.3) follow

from (2.1).

Proof. We start with[
[x, y], [x, z]

]
=−

[
[x, z], [x, y]

]
=
[
x, [y, [x, z]]

]
+
[
y, [[x, z], x]

]
=
[
x, [y, [x, z]]

]
+
[
[x, [x, z]], y

]
=
[
x, [y, [x, z]]

]
+ 2gx(z)[x, y].(2.9)
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On the other hand, we have[
[x, y], [x, z]

]
=−

[
x, [z, [x, y]]

]
−
[
z, [[x, y], x]

]
=−

[
x, [z, [x, y]]

]
−
[
[x, [x, y]], z

]
=−

[
x, [z, [x, y]]

]
− 2gx(y)[x, z].(2.10)

Again using the Jacobi identity, we have

(2.11)

[
x, [z, [x, y]]

]
=−

[
x, [x, [y, z]]

]
−
[
x, [y, [z, x]]

]
=− 2gx

(
[y, z]

)
x+

[
x, [y, [x, z]]

]
.

Now replacing (2.11) in (2.10) and adding it to (2.9), we get twice (2.2), and if

we subtract the two equation, we get twice (2.3). So if char(F) 6= 2, we deduce

(2.2) and (2.3). �

We can deduce the following three identities.

Lemma 2.1.4. Let x, y ∈ E and z ∈ g. Then

(2.12)
[
[x, y], [x, [y, z]]] = 2gy(z)gx(y)x+ gx

(
[y, z]

)
[x, y]− gx(y)

[
x, [y, z]

]
.

and

(2.13)

[
[x, y], [[x, y], z]

]
=gx(y)

(
2gy(z)x−

[
x, [y, z]

]
+ 2gx(z)y −

[
y, [x, z]

])
+
(
gx
(
[y, z]

)
− gy

(
[x, z]

))
[x, y].

Let now x, y, z ∈ E, then[
[x, [y, z]], [y, [x, z]]

]
= −gx

(
[y, z]

)
gy(z)x− gx

(
[y, z]

)
gx(z)y

−gx
(
[y, z]

)
gx(y)z − 2gx(z)gy(z)[x, y]

+2gx(y)gy(z)[x, z]− 2gx(y)gx(z)[y, z].

(2.14)

Proof. For the first identity, we use (2.2) but replace z by [y, z]. This

leads to[
[x, y], [x, [y, z]]

]
=gx

([
y, [y, z]

])
x+ gx

(
[y, z]

)
[x, y]− gx(y)

[
x, [y, z]

]
=gx

(
2gy(z)y

)
x+ gx

(
[y, z]

)
[x, y]− gx(y)

[
x, [y, z]

]
=2gx(y)gy(z)x+ gx

(
[y, z]

)
[x, y]− gx(y)

[
x, [y, z]

]
.

For the second equality, we use the Jacobi identity and then apply (2.12) twice.[
[x, y], [[x, y], z]

]
=−

[
[x, y], [z, [x, y]]

]
=
[
[x, y], [x, [y, z]]

]
+
[
[x, y], [y, [z, x]]

]
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=
[
[x, y], [x, [y, z]]

]
+
[
[y, x], [y, [x, z]]

]
=2gy(z)gx(y)x+ gx

(
[y, z]

)
[x, y]− gx(y)

[
x, [y, z]

]
+ 2gx(z)gy(x)y + gy

(
[x, z]

)
[y, x]− gy(x)

[
y, [x, z]

]
=gx(y)

(
2gy(z)x−

[
x, [y, z]

]
+ 2gx(z)y −

[
y, [x, z]

])
+
(
gx
(
[y, z]

)
− gy

(
[x, z]

))
[x, y].

Finally, with x, y, z ∈ E now, the Jacobi identity gives

(2.15)

[
[x, [y, z]], [y, [x, z]]

]
=−

[
[y, [x, z]], [x, [y, z]]

]
=
[
x, [[y, z], [y, [x, z]]]

]
−
[
[y, z], [x, [y, [x, z]]]

]
.

We split the equation (2.15) in two parts and consider them separately. Keep

in mind that we have gx([y, z]) = −gy([x, z]).[
x, [[y, z], [y, [x, z]]]

]
=
[
x, gy

(
[z, [x, z]]

)
y + gy

(
[x, z]

)
[y, z]− gy(z)

[
y, [x, z]

]]
= −2gy(z)gx(z)[x, y]− gx

(
[y, z]

)[
x, [y, z]

]
− gy(z)

[
x, [y, [x, z]]

]
= −2gy(z)gx(z)[x, y]− gx

(
[y, z]

)[
x, [y, z]

]
− gy(z)gx

(
[y, z]

)
x

+ gy(z)gx(y)[x, z] + gy(z)gx(z)[x, y].

For the second term, we have

−
[
[y, z], [x, [y, [x, z]]]

]
= −

[
[y, z], gx

(
[y, z]

)
x− gx(y)[x, z]− gx(z)[x, y]

]
= gx

(
[y, z]

)[
x, [y, z]

]
− gx(y)gx

(
[y, z]

)
z + gx(y)gy(z)[x, z]

− gx(y)gx(z)[y, z]− gx(z)gx
(
[y, z]

)
y

− gx(y)gx(z)[y, z]− gx(z)gy(z)[x, y].

Adding the two terms, we find (2.14)[
[x, [y, z]], [y, [x, z]]

]
= −gx

(
[y, z]

)
gy(z)x− gx

(
[y, z]

)
gx(z)y − gx

(
[y, z]

)
gx(y)z

− 2gx(z)gy(z)[x, y] + 2gx(y)gy(z)[x, z]− 2gx(y)gx(z)[y, z]. �
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Definition 2.1.5. For x, y ∈ E extremal elements we define

(x, y) ∈



E−2, ⇐⇒ Fx = Fy,

E−1, ⇐⇒ [x, y] = 0, (x, y) /∈ E−2 and Fx+ Fy ⊆ E ∪ {0} ,

E0, ⇐⇒ [x, y] = 0 and (x, y) /∈ E−2 ∪ E−1,

E1, ⇐⇒ [x, y] 6= 0 and gx(y) = 0,

E2, ⇐⇒ gx(y) 6= 0.

For the corresponding extremal points 〈x〉, 〈y〉, we define

(〈x〉, 〈y〉) ∈ Ei ⇐⇒ (x, y) ∈ Ei.

For two distinct extremal points 〈x〉, 〈y〉 we say that the pair

(〈x〉, 〈y〉) is



hyperbolic , if i = 2,

special , if i = 1,

polar , if i = 0,

strongly commuting , if i = −1,

commuting , if i ≤ 0.

By abuse of notation, we will in the following often just write x for 〈x〉 if it is

clear that an extremal point is meant.

Let (x, y) be a hyperbolic pair. If z ∈ E makes (x, y, z) a hyperbolic path of

length two, i.e. x 6= z and (y, z) ∈ E2, then we call (x, y, z) a symplectic

triple if (x, z) ∈ E≤0. By abuse of notation, we sometimes also call the triple

of extremal elements (x, y, z) where x, y, z ∈ E a symplectic triple.

Note that for a symplectic triple (x, y, z) as defined above:

gx(y) 6= 0 6= gy(z) and

[x, z] = 0.

2.2. The exponential map

Since extremal elements are ad-nilpotent of order at most 3 (see 2.4), we can

define the exponential map for an extremal element x ∈ E, any y ∈ g and

some λ ∈ F:

(2.16) exp(x, λ)y = y + λ · [x, y] + λ2gx(y)x.
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Proposition 2.2.1. Let x ∈ E(g) with extremal form gx : g → F. Then

exp(x, λ) is an endomorphism on g for every λ ∈ F, and exp(x, λ + µ) =

exp(x, λ) exp(x, µ) for all λ, µ ∈ F.

Proof. Before we start with the proof of the statement, we provide two

equations that we use in the proof. We have[
[x, [x, y]], [x, [x, z]]

]
= 4gx(y)gx(z)[x, x] = 0,

and

[adx(y), ad2
x(z)] + [ad2

x(y), adx(z)] =
[
[x, y], [x, [x, z]]

]
+
[
[x, [x, y]], [x, z]

]
=2gx(z)

[
[x, y], x

]
+
[
2gx(y)x, [x, z]

]
=− 2gx(z)

([
x, [x, y]

])
+ 4gx(y)gx(z)x

=− 4gx(z)gx(y)x+ 4gx(y)gx(z)x = 0.

Now let x, y, z ∈ g and λ ∈ F. We have

[exp(x, λ)(y), exp(x, λ)(z)]

= [y + λ · [x, y] + λ2 · gx(y)x, z + λ · [x, z] + λ2 · gx(z)x]

= [y, z] + [y, λ · [x, z]] + [y, λ2 · [x, z]] + [λ · [x, y], z]

+ [λ · [x, y], λ · [x, z]] + [λ · [x, y], λ2 · [x, z]]

+
[
λ2 · gx(y)x, z

]
+
[
λ2 · gx(y)x, λ · [x, z]

]
+
[
λ2 · gx(y)x, λ2 · gx(z)x

]
= [y, z] + λ · [y, [x, z]] + λ · [[x, y], z] + λ2 · [[x, y], [x, z]]

+ λ2 · [y, gx(z)x] + λ2 · [gx(y)x, z]

= [y, z] + λ · [x, [y, z]] + λ2 · gx([y, z])x

= exp(x, λ)
(
[y, z]

)
.

This proves exp(x, λ) to be an automorphism. To show exp(x, λ + µ) =

exp(x, λ) exp(x, µ) for all x ∈ g and λ, µ ∈ F, note that gx(x) = gx([x, y]) = 0

for every y ∈ g. Now it follows that

exp(x, λ) exp(x, µ)y

= exp(x, λ)
(
y + µ[x, y] + µ2gx(y)x

)
= y + µ[x, y] + µ2gx(y)x+ λ

[
x, y + µ[x, y] + µ2gx(y)x

]
+ λ2gx

(
y + µ[x, y] + µ2gx(y)x

)
x

= y + µ[x, y] + µ2gx(y)x+ λ[x, y] + 2λµgx(y)x+ λµ2gx(y)[x, x]
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+ λ2gx(y)x+ λ2µgx
(
[x, y]

)
x+ λ2µ2gx(y)gx(x)x

= y + λ[x, y] + µ[x, y] + λ2gx(y)x+ 2λµgx(y)x

= y + (λ+ µ)[x, y] + (λ+ µ)2gx(y)x

= exp(x, λ+ µ)y. �

Lemma 2.2.2. For x ∈ E the set Ux = {exp(x, λ)|λ ∈ F} is a subgroup of

Aut(g) isomorphic to the additive group of F.

Proof. We have seen in the previous proposition that the map λ 7→
exp(x, λ), λ ∈ F, is a homomorphism. Therefore, the map F → Ux given by

λ 7→ exp(x, λ) is an isomorphism of groups. Let y ∈ E, λ, µ ∈ F:

exp(x, λ) exp(x, µ)y

= y + µ[x, y] + µ2gx(y)x+ λ[x, y] + λµ[x, [x, y]] + λµ2gx(y)[x, x]

+ λ2gx(y)x+ λ2µgx([x, y])x+ λ2µ2gx(y)gx(x)x

= y + (λ+ µ)[x, y] + (λ+ µ)2gx(y)x

= exp(x, λ+ µ)y.

We see that exp(x,−λ) is the inverse of exp(x, λ), so both are automorphisms

of g. �

2.3. The extremal form

Suppose g is a Lie algebra over the field F generated by its extremal elements.

The purpose of this section is to show the existence of a bilinear form g on g

with the property that g(x, y) = gx(y) for any two extremal elements x, y ∈ g.

We start with the following observation:

Lemma 2.3.1 ([CSUW01, Lemma 2.5]). If a Lie algebra is generated by ex-

tremal elements, it is linearly spanned by the set E of all its extremal elements.

Proof. Clearly, g is spanned by brackets of extremal elements. We prove

by induction on its length that every such bracket is a linear combination of

extremal elements. If the length is 1, there is nothing to show. Assume now

that for n ∈ N, it is already shown that all elements of length n are linearly

spanned by E. Let z ∈ E be an element with bracketing of length n+ 1, and

let x, y ∈ E be two elements such that [x, y] is the innermost bracket of z, that

is z =
[
·,
[
·,
[
. . .
[
·, [x, y]

]
. . .
]]]

. Consider v = exp(x, 1)y = y+ [x, y] + gx(y)x.
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By Lemma 2.2.1, v is also extremal. But now we can express z as a sum of

elements of length n:

z =
[
·,
[
·,
[
. . . [·, v − y − gx(y)x] . . .

]]]
=
[
·,
[
·,
[
. . . [·, v] . . .

]]]
−
[
·,
[
·,
[
. . . [·, y] . . .

]]]
− gx(y)

[
·,
[
·,
[
. . . [·, x] . . .

]]]
. �

Theorem 2.3.2 ([CSUW01, Theorem 2.6]). Let g be generated by E(g). Then

there is a unique bilinear symmetric form g : g × g → F such that the linear

form gx coincides with y 7→ g(x, y) for each x ∈ E. Moreover, this form is

associative in the sense that g(x, [y, z]) = g([x, y], z) for all x, y, z ∈ g.

Proof. From the previous result, we deduce that there exists a basis of

g, say {ui|i ∈ I}, consisting of extremal elements from E(g). Notice that if

x ∈ E and λ ∈ F, then
[
λx, [λx, y]

]
= 2λgx(y)λx = 2λg(x, y)λx for all y ∈ g,

so λx is extremal with g(λx, y) = λg(x, y).

We define the extremal form gx for an element x ∈ g with x =
∑

i∈I λiui by

gx =
∑

i∈I λigui . Notice from the above that this is
∑

i∈I gλiui .

Now we choose an element y ∈ g with y =
∑

i∈I ui, and suppose that there

is a second way to write it as a sum of extremal elements, say y =
∑

i∈I vi,

where vi ∈ E. So for z ∈ E, we have (using the result from 2.1.2):

gy(z) =
∑
i∈I

gui(z) =
∑
i∈I

gz(ui) = gz
(∑
i∈I

ui
)

=gz
(∑
i∈I

vi
)

=
∑
i∈I

gz(vi) =
∑
i∈I

gvi(z).

Since E spans g by 2.3.1, we conclude
∑

i∈I gui =
∑

i∈I gvi , so gx is a well

defined linear functional. Consequently, g(x, y) = gx(y) defines a bilinear

form, which is symmetric by 2.1.2 and 2.3.1.

To show that g is associative, take x, y, z ∈ E. Exchanging x and y in (2.12)

gives

(2.17)[
[x, y], [y, [x, z]]

]
=−

[
[y, x], [y, [x, z]]

]
=− 2g(x, z)g(y, z)y + g(y, [x, z])[x, y] + g(y, x)

[
y, [x, z]

]
.
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On the other hand, we get by the Jacobi identity and with 2.1.2:

(2.18)[
[x, y], [y, [x, z]]

]
=−

[
y, [[x, z], [x, y]]

]
−
[
[x, z], [[x, y], y]

]
=
[
y, g(x, [y, z])x+ g(x, z)[x, y]− g(x, y)[x, z]

]
− 2g(y, x)

[
[x, z], y

]
=− g(x, [y, z])[x, y] + g(x, z)

[
y, [x, y]

]
− g(x, y)

[
y, [x, z]

]
+ 2g(y, x)

[
y, [x, z]

]
=− g(x, [y, z])[x, y]− 2g(x, z)gy, x)y + g(y, x)

[
y, [x, z]

]
.

Suppose now that [x, y] 6= 0. Then, comparing the coefficients in the equations

(2.17) and (2.18) leads to

(2.19) g
(
y, [x, z]

)
= −g

(
x, [y, z]

)
.

But then, by symmetry of g, we have

g
(
x, [z, y]

)
= −g

(
x, [y, z]

)
= g
(
y, [x, z]

)
= g
(
[x, z], y

)
.

So we have

(2.20) g
(
x, [z, y]

)
= g
(
[x, z], y]

)
whenever [x, y] 6= 0.

Similarly, we get

g
(
x, [y, z]

)
= g
(
[x, y], z]

)
whenever [x, z] 6= 0 and(2.21)

g
(
y, [x, z]

)
= g
(
[y, x], z]

)
whenever [y, z] 6= 0.(2.22)

So it remains to consider the case [x, y] = 0. Obviously, in this case it holds

g([x, y], z) = 0, so our goal is to show that also g(x, [y, z]) = 0. This is clear

if [y, z] = 0. Assuming [y, z] 6= 0, we can either have [x, z] 6= 0, in which case

the required equality follows from (2.21), or [x, z] = 0. In the latter case, we

can apply (2.5) and get g(x, [y, z]) = −g(y, [x, z]) = 0 if [x, z] = 0. �

Definition 2.3.3. For a Lie algebra g generated by extremal elements, a form

g : g×g→ F as in Proposition 2.3.2 is called an extremal form of g. Notice

that g is unique (for an explicit reasoning, see e.g. [CI06]).

Definition 2.3.4. The radical of the extremal form g on g is

rad(g) := {u ∈ g|gu(z) = 0 ∀ z ∈ g}.
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Lemma 2.3.5. If B is a symmetric or antisymmetric bilinear form on g such

that

B(x, [y, z]) = B([x, y], z)

for all x, y, z ∈ g, then rad(B) is an ideal of g.

Proof. We know that rad(B) is a linear subspace of g. Let x ∈ rad(B)

and y ∈ g. Then B([x, y], z) = B(x, [y, z]) = 0 and moreover B([y, x], z) =

εB(z, [y, x]) = εB([z, y], x) = 0 for each z ∈ g and ε = 1 if B is symmetric and

ε = −1 if B is antisymmetric. It follows [x, y], [y, x] ∈ rad(B). �

Definition 2.3.6. For dimV <∞ and x, y ∈ g, the bilinear form

κg(x, y) = Tr(adxady)

is called the Killing form of g.

Lemma 2.3.7. In the corresponding Lie algebra g, rad(g) and rad(κ) are ideals.

Proof. By Proposition 2.3.2, g is associative, so can apply Lemma 2.3.5.

The symmetry of κ follows from the property Tr(XY ) = Tr(Y X), X,Y ∈
End(g) of the trace function. This identity also induces the associativity of κ:

κ([x, y], z) =Tr([adx, ady] ◦ adz) = Tr(adxadyadz − adyadxadz)

=Tr(adxadyadz)− Tr(adyadxadz)

=Tr(adxadyadz)− Tr(adxadzady)

=Tr(adxadyadz − adxadzady)

=Tr(adx ◦ [ady, adz])

=κ(x, [y, z]). �

In the following, we give a few facts about the radicals of the forms g and κ and

the radical of the Lie algebra. The proofs for these statements can be found

in [CSUW01], section 9. Note that they are just proved there for char(F) 6= 2.

The first statement is about the relation between the radicals of the extremal

and the Killing-form:

Lemma 2.3.8 ([CSUW01], 9.3 and 9.5). In general, rad(g) ⊆ rad(κ). If more-

over char(F) = 0, then rad(g) = rad(κ).

The following gives the relation between the radical of the extremal form and

the radical of the Lie algebra g as defined in 1.1.10:
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Lemma 2.3.9 ([CSUW01], 9.8 and 9.12). In general, Rad(g) ⊆ rad(g). More-

over, if char(F) 6= 2 or 3, then Rad(g) = rad(g).

The following results give a correspondence between the semisimplicity of the

Lie algebra and rad(g):

Proposition 2.3.10 ([CSUW01] 9.14). We have rad(g) = 0 if and only if g

is a direct sum of simple ideals.

This implies:

Corollary 2.3.11 ([CSUW01] 9.15). We have that g/Rad(g) is a direct sum

of simple ideals if and only if Rad(g) = rad(g).

2.4. Classical linear Lie algebras, tensors and extremal elements

In this section we describe the classical linear Lie algebras as defined in the

previous section with the help of tensors. This description turns out to be a

useful model in various computations later on.

Let V be a left vector space over the skew field K and W ∗ a subspace of V ∗,

the dual of V , which is a right vector space over Kopp, the opposite of K. Let

F be the center of K.

Definition 2.4.1. On g := V ⊗W ∗, we define an F-bilinear product [·, ·] by

[v ⊗ φ,w ⊗ ψ] := φ(w)(v ⊗ ψ)− ψ(v)(w ⊗ φ)

with v, w ∈ V and φ, ψ ∈W ∗.

Proposition 2.4.2. Equipped with the product defined above, g is a Lie algebra

over F.

Proof. We have [ , ] defined to be F-bilinear and since

[v ⊗ φ, v ⊗ φ] = φ(v)(v ⊗ φ)− φ(v)(v ⊗ φ) = 0,

the bracket is also alternating. It remains to show the Jacobi identity. For

this it suffices to show that for all v, w, u ∈ V and ψ, φ, χ ∈ V ∗ we have

[w ⊗ χ, [v ⊗ φ, u⊗ ψ]] + [v ⊗ φ, [u⊗ ψ,w ⊗ χ]] + [u⊗ ψ, [w ⊗ χ, v ⊗ φ]] = 0.

Consider the first summand:

[w⊗χ[v ⊗ φ, u⊗ ψ]]



2.4. CLASSICAL LIE ALGEBRAS WITH TENSORS 25

=[w ⊗ χ, φ(u)v ⊗ ψ)− ψ(v)u⊗ φ)]

=φ(u)χ(v)w ⊗ ψ − ψ(w)φ(u)v ⊗ χ− ψ(v)χ(u)w ⊗ φ+ φ(w)ψ(v)u⊗ χ.

We get the second and the third summand just by rotation of the variables:

[v⊗φ, [u⊗ ψ,w ⊗ χ]]

=ψ(w)φ(u)v ⊗ χ− χ(v)ψ(w)u⊗ φ− χ(u)χ(w)v ⊗ ψ + ψ(v)χ(u)w ⊗ φ.

and

[u⊗ψ, [w ⊗ χ, v ⊗ φ]]

=χ(v)ψ(w)u⊗ φ− φ(u)χ(v)w ⊗ ψ − φ(w)φ(v)u⊗ χ+ χ(u)φ(w)v ⊗ ψ.

So, indeed,

[w ⊗ χ, [v ⊗ φ, u⊗ ψ]] + [v ⊗ φ, [u⊗ ψ,w ⊗ χ]] + [u⊗ ψ, [w ⊗ χ, v ⊗ φ]] = 0,

which proves the Jacobi identity. �

So we have a Lie algebra g on the vector space V,W ∗, which we denote

g(V,W ∗).

We call a nontrivial pure tensor v ⊗ φ ∈ V ⊗ V ∗ singular if φ(v) = 0. If

φ(v) 6= 0, it is called nonsingular.

Proposition 2.4.3. Let g be an F-bilinear form on V ⊗W ∗ given by

g(v ⊗ φ,w ⊗ ψ) = −ψ(v)φ(w)

for v ⊗ φ,w ⊗ ψ ∈ V ⊗ V ∗.
Then for all singular pure tensors v⊗φ and tensors w⊗ψ and u⊗χ ∈ V ⊗V ∗

we have [
v ⊗ φ, [v ⊗ φ,w ⊗ ψ]

]
= 2g(v ⊗ φ,w ⊗ ψ)v ⊗ φ,[

[v ⊗ φ,w ⊗ ψ], [v ⊗ φ, u⊗ χ]
]

= g(v ⊗ φ, ψ(u)w ⊗ χ− χ(w)u⊗ ψ)v ⊗ φ

+ g(v ⊗ φ, u⊗ χ)[v ⊗ φ,w ⊗ ψ]

− g(v ⊗ φ,w ⊗ ψ)[v ⊗ φ, u⊗ χ],

and[
v ⊗ φ, [w ⊗ ψ, [v ⊗ φ, u⊗ χ]

]
= g(v ⊗ φ,w ⊗ χψ(u)− u⊗ ψχ(w))v ⊗ φ

− g(v ⊗ φ, u⊗ χ)[v ⊗ φ,w ⊗ ψ]

− g(v ⊗ φ,w ⊗ ψ)[v ⊗ φ, u⊗ χ].
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Proof. Let v ⊗ φ be a singular pure tensor. Using the definition of the

bracket from 2.4.1, we have[
v ⊗ φ, [v ⊗ φ,w ⊗ ψ]

]
=
[
v ⊗ φ, φ(w)v ⊗ ψ − ψ(v)w ⊗ φ

]
=− ψ(v)φ(w)v ⊗ φ− ψ(v)φ(w)v ⊗ φ

=− 2ψ(v)φ(w)v ⊗ φ

=2g(v ⊗ φ,w ⊗ ψ)v ⊗ φ.

Furthermore we find[
[v ⊗ φ,w ⊗ ψ], [v ⊗ φ, u⊗ χ]

]
= [φ(w)v ⊗ ψ − ψ(v)w ⊗ φ, φ(u)v ⊗ χ− χ(v)u⊗ φ]

= φ(u)ψ(v)φ(w)v ⊗ χ− φ(w)χ(v)φ(u)v ⊗ ψ

− χ(v)ψ(u)φ(w)v ⊗ φ+ φ(w)φ(v)χ(v)u⊗ ψ

− φ(u)φ(v)ψ(v)w ⊗ χ+ ψ(v)χ(w)φ(u)v ⊗ φ

+ χ(v)φ(u)ψ(v)w ⊗ φ− ψ(v)φ(w)χ(v)u⊗ φ

= (−χ(v)ψ(u)φ(w) + ψ(v)χ(w)φ(u))v ⊗ φ

− φ(w)χ(v)φ(u)v ⊗ ψ + φ(u)ψ(v)φ(w)v ⊗ χ

+ χ(v)φ(u)ψ(v)w ⊗ φ− ψ(v)φ(w)χ(v)u⊗ φ

= (−χ(v)ψ(u)φ(w) + ψ(v)χ(w)φ(u))v ⊗ φ

+ (−φ(u)χ(v))(φ(w)v ⊗ ψ − ψ(v)w ⊗ φ)

− (−φ(w)ψ(v))(φ(u)v ⊗ χ− χ(v)u⊗ φ)

= g(v ⊗ φ, ψ(u)w ⊗ χ− χ(w)u⊗ ψ)v ⊗ φ

+ g(v ⊗ φ, u⊗ χ)[v ⊗ φ,w ⊗ ψ]

− g(v ⊗ φ,w ⊗ ψ)[v ⊗ φ, u⊗ χ].

Finally, [
v ⊗ φ, [w ⊗ ψ,[v ⊗ φ, u⊗ χ]

]
= [v ⊗ φ, [w ⊗ ψ, φ(u)v ⊗ χ− χ(v)u⊗ φ]]

= [v ⊗ φ, φ(u)(ψ(v)w ⊗ χ− χ(w)v ⊗ ψ)

− χ(v)(ψ(u)w ⊗ φ− φ(w)u⊗ ψ)]

= φ(u)φ(w)ψ(v)v ⊗ χ− φ(u)ψ(v)χ(v)w ⊗ φ
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+ χ(w)φ(u)ψ(v)v ⊗ φ− χ(v)ψ(u)φ(w)v ⊗ φ

− χ(v)φ(w)ψ(v)u⊗ φ+ χ(v)φ(w)φ(u)v ⊗ ψ

= (−χ(v)ψ(u)φ(w) + ψ(v)χ(w)φ(u))v ⊗ φ

+ φ(u)φ(w)χ(v)v ⊗ ψ + φ(u)φ(w)ψ(v)v ⊗ χ

− ψ(v)χ(v)φ(u)w ⊗ φ− ψ(v)χ(v)φ(w)u⊗ φ

= (−χ(v)ψ(u)φ(w) + ψ(v)χ(w)φ(u))v ⊗ φ

− (−φ(u)χ(v))(φ(w)v ⊗ ψ − ψ(v)w ⊗ φ)

− (−φ(w)ψ(v))(φ(u)v ⊗ χ− χ(v)u⊗ φ)

= g(v ⊗ φ,w ⊗ χψ(u)− u⊗ ψχ(w))v ⊗ φ

− g(v ⊗ φ, u⊗ χ)[v ⊗ φ,w ⊗ ψ]

− g(v ⊗ φ,w ⊗ ψ)[v ⊗ φ, u⊗ χ]. �

Corollary 2.4.4. Let K = F be a field. Then the pure tensors v⊗φ ∈ V ⊗V ∗

are extremal.

Moreover,

(2.23) exp(v ⊗ φ, λ)(w ⊗ ψ) =
(
w + λφ(w)v

)
⊗
(
ψ − λψ(v)φ

)
for any λ ∈ F.

Proof. This is a direct consequence of the above proposition. As it is

sufficient to check the extremal identities only for pure tensors w ⊗ ψ and

u ⊗ χ, we find that the singular pure tensors are extremal with associated

extremal form g.

Using the above, we also find

exp(v ⊗ φ, λ)(w ⊗ ψ)

=w ⊗ ψ + λ[v ⊗ φ,w ⊗ ψ] + λ2g(v ⊗ φ,w ⊗ ψ)v ⊗ φ

=w ⊗ ψ + λ
(
φ(w)v ⊗ ψ − ψ(v)w ⊗ φ

)
− λ2φ(w)ψ(v)v ⊗ φ

=
(
w + λφ(w)v

)
⊗
(
ψ − λψ(v)φ

)
. �

Notice that in case F 6= K and the characteristic is not 2, the elements v ⊗ φ,

for which there is an element w ⊗ ψ with φ(w)ψ(v) 6= 0, are not extremal.

Indeed, in this situation we find
[
v⊗ φ, [v⊗ φ, g]

]
to contain Kv⊗ φ, which is

bigger than Fv ⊗ φ.
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2.4.1. General linear Lie algebras. As before, let V be a left vector

space over the skew field K with center F and suppose W ∗ is a subspace of

V ∗.

As in the case where K is a field, we can denote by gl(V ) the algebra of K-

linear maps from V to V . Equipped with the standard Lie commutator, i.e.,

for all T, S ∈ gl(V ) we have [T, S] = TS − ST , we find gl(V ) to be a Lie

algebra over F.

The tensor product V ⊗W ∗ is isomorphic to a subspace of gl(V ) via the map

Φ : V ⊗W ∗ −→ gl(V )

v ⊗ φ 7→ tv,φ,

where

tv,φ : V → V

with tv,φ(w) = φ(w) · v.

Proposition 2.4.5. The map Φ is a homomorphism of Lie algebras.

Proof. To show that the Lie product is preserved, we have to prove that

Φ
(
[v ⊗ φ,w ⊗ ψ]g

)
=
[
Φ(v ⊗ φ),Φ(w ⊗ ψ)

]
gl(V )

where v, w ∈ V , φ, ψ ∈ V ∗ and [ , ]g and [ , ]gl(V ) denote the Lie products on

g and gl(V ), respectively. Starting with the left side, we have

Φ
(
[v ⊗ φ,w ⊗ ψ]g

)
=Φ
(
φ(w)v ⊗ ψ − ψ(v)w ⊗ φ

)
=tφ(w)v,ψ − tψ(v)w,φ.

Applying this to an element u ∈ V , we get(
tφ(w)v,ψ − tψ(v)w,φ

)
(u) =ψ(u)φ(w)v − φ(u)ψ(v)w

=tv,φ
(
ψ(u)w

)
− tw,ψ

(
φ(u)v

)
=tv,φ

(
tw,ψ(u)

)
− tw,ψ

(
tv,φ(u)

)
=
(
tv,φtw,ψ − tw,ψtv,φ

)
(u)

=
[
tv,φ, tw,ψ

]
gl(V )

(u). �

If V is finite dimensional over F and W ∗ = V ∗, it is well known that Φ is onto

and hence is an isomorphism. If V is infinite dimensional this is not the case.

However, we do have the following.
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Proposition 2.4.6. Suppose K = F is a field. Then the map Φ induces a

Lie algebra isomorphism of g(V ⊗ V ∗) into fgl(V ).

Proof. Clearly Φ is a linear map, mapping elements of V ⊗ V ∗, as these

are finite sums of pure tensors, to finitary linear maps.

If V is finite dimensional, then it is well known that Φ is a bijection. In

particular, then Φ is injective. Now, if V is infinite dimensional, and x ∈ V⊗V ∗

is an element of the kernel, then it can be written as a finite sum of pure

tensors. So, there is a finite dimensional subspace V0 of V such that these

pure tensors are inside V0⊗V ∗0 . But that implies that x is in the kernel of the

map Φ restricted to V0 ⊗ V ∗0 and hence x = 0. Thus also Φ is injective.

A similar argument proves that Φ is surjective. Indeed, if g is an element

from fgl(V ), then we can decompose V as V = V1 ⊕ V2 such that V1 is finite

dimensional and contains g(V ) (so the image of g) and V2 is contained in the

kernel of g. But then g is already contained in Φ(V1 ⊗ V ∗1 ). �

The subalgebra of g(V,W ∗) generated by the elements v ⊗ φ with v ∈ V ,

φ ∈W ∗ and φ(v) = 0 will be denoted by g0(V,W ∗).

The elements tv,φ, which are images of singular pure tensors, are called in-

finitesimal transvections. We call 〈v〉 the center and 〈φ〉 the axis of the

infinitesimal transvection.

The elements tv,φ, which are images of nonsingular pure tensors, are called

infinitesimal reflections.

For an element t in gl(V ), we can define an action on V ∗ by

t∗(ψ)(v) := −ψ(tv),

where v ∈ V and ψ ∈ V ∗. For t1, t2 two elements in gl(V ) and w ∈ V , φ ∈ V ∗,
we find

([t1, t2])∗(φ)(w) =− φ([t1, t2](w))

=− φ(t1t2 − t2t1)(w))

=φ((t2t1 − t1t2)w)

=φ(t2t1w)− φ(t1t2w)

=− t∗2φ(t1w) + t∗1φ(t2w)

=(t∗1t
∗
2φ)(w)− t∗2t∗1φ(w)

=([t∗1, t
∗
2](φ))(w).
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So we have defined a Lie algebra action of gl(V ) on V ∗, called the dual action.

This of course extends to an action t⊗ of t on V ⊗ V ∗ by

t⊗ : V ⊗ V ∗ → V ⊗ V ∗

v ⊗ φ 7→ tv ⊗ t∗φ.

As follows from Proposition 2.4.3, the infinitesimal transvections are extremal

if K is a field. Moreover, the exponent of an infinitesimal transvection is a

transvection, i.e, a linear transformation of the form Tv,φ := 1 + tv,φ where

φ(v) = 0 and v, φ nonzero. A transvection group is a group of the form

{1 + λtv,φ|λ ∈ F}. The actions of a transvection on V ∗ and V ⊗ V ∗ are then

given by

T ∗v,φ : V ∗ −→V ∗

ψ 7→ψ + t∗v,φψ = ψ − φψ(v)

and

T⊗v,φ : V ⊗ V ∗ −→V ⊗ V ∗

(w ⊗ ψ) 7→
(
w + tv,φ(w)

)
⊗
(
ψ + t∗v,φ(ψ)

)
=
(
w + φ(w)v

)
⊗
(
ψ − φψ(v)

)
.

This defines an action of the group generated by all transvections on V ⊗ V ∗,
respecting the Lie product.

In case the characteristic of F is not 2, we can also associate an invertible linear

map to an infinitesimal reflection tv,φ, namely the reflection Rv,φ := 1− tv,φ.

Such reflections are studied in [CCS99].

2.4.2. Special linear Lie algebras. Let V be a vector space over the

field F. If V is of finite dimension, then sl(V ) is the subalgebra of gl(V ) of

elements of trace 0. This subalgebra is the Φ-image of the subspace g0(V, V ∗)

of V ⊗ V ∗ generated by the elements

v ⊗ φ ∈ V ⊗ V ∗ with φ(v) = 0.

Indeed, each such element is mapped to an element in sl(V ). Moreover, if

v1, . . . , vn is a basis of V with dual basis φ1, . . . , φn, it is readily seen that the
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elements vi⊗φj and vk+vk+1⊗φk−φk+1 with 1 ≤ i 6= j ≤ n and 1 ≤ k ≤ n−1

form an independent set. Thus, the image of Φ is of dimension at least n2− 1

and hence sl(V ).

As it is well known, the algebra sl(V ) and hence g0(V, V ∗) is, up to its center,

simple.

If V , however, is infinite dimensional, we encounter more simple Lie algebras

in the following way.

Let W ∗ be a subspace of V ∗. Then we can consider fgl(V,W ∗) (and fsl(V,W ∗))

to be the subalgebras of fgl(V ) generated by the elements tv,φ with v ∈ V

and φ ∈ W ∗ (and φ(v) = 0), i.e., the Φ-image of g(V,W ∗) (or g0(V,W ∗),

respectively).

Let U be a subspace of the annihilator AnnV (W ∗) := {u ∈ V | ψ(u) =

0 for all ψ ∈ W ∗}. Then for u ⊗ ψ with u ∈ U we have [v ⊗ φ, u ⊗ ψ] =

−ψ(v)u ⊗ φ. Thus, if {0} 6= U 6= V we find 〈u ⊗ ψ | u ∈ U,ψ ∈ W ∗〉 to

be a proper ideal in g(V,W ∗). However, if AnnV (W ∗) = 0, then the algebra

fsl(V,W ∗) for infinite dimensional V is also simple.

2.4.3. Symplectic Lie algebras. Now suppose (V, f) is a symplectic

space, then the (finitary) symplectic Lie algebra fsp(V, f) is the image under

Φ of the subalgebra spanned by the elements v⊗f(v, ·) ∈ g. This follows from

the following two results:

Lemma 2.4.7. Let f : V × V → F be a symplectic form.

Then with tv := Φ(v ⊗ f(v, ·)) as defined before, we have f(tv(w), u) =

−f(w, tv(u)) for all u, v, w ∈ V .

Proof. Let u, v, w ∈ V . Then by definition of Φ, we have

f(tv(w), u) =f(vf(v, w), u) = f(v, w)f(v, u) = −f(w, v)f(v, u)

=− f(w, f(v, u)v) = −f(w, tv(u)). �

This lemma implies that the elements tv with 0 6= v ∈ V are in sp(V, f). That

these elements generate the finitary part of this algebra follows from the next

result.

Proposition 2.4.8. Let (V, f) be a nondegenerate symplectic space over the

field F. Then the finitary symplectic Lie algebra fsp(V ) is generated by its

extremal elements tv, with 0 6= v ∈ V .
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Proof. Let g = 〈tv | v ∈ V \ {0}〉. By the above lemma we have g ⊆
fsp(V ). We will prove equality.

First assume that V has finite dimension n = 2m.

Let v1, . . . , vm, vm+1, . . . , v2m be a hyperbolic basis for V with f(vi, vj) = 1

for 1 ≤ i ≤ m and j = m + i and 0 otherwise. Then consider the elements

tvi together with the elements tvi+vj where i < j are in {1, . . . , 2m}. These

elements are linearly independent. Indeed, suppose

2m∑
i=1

λitvi +
∑

1≤i<j≤2m

λijtvi+vj = 0.

Then evaluating this element in vl, with 1 ≤ l ≤ m yields

λl+mvl+m +
∑

k<l+m

λk(l+m)(vk + vl+m) +
∑

k>l+m

λ(l+m)k(vk + vl+m) = 0.

We deduce that λk(l+m) = 0 and λ(l+m)k′ = 0 for k < l + m and k′ > l + m,

as well as λl+m = 0.

Evaluating the above map element in vl, where m < l ≤ 2m, yields λk(l−m) = 0

and λ(l−m)k′ = 0 for k < l −m and k′ > l −m, as well as λl−m = 0.

Thus indeed, the elements tvi together with the elements tvi+vj where i < j

are in {1, . . . , 2m} form an independent set. This implies that the subspace g

has dimension m(2m+ 1) and hence equals sp(V ).

Now assume that V is infinite dimensional and x ∈ fsp(V ). Then there is a

nondegenerate finite dimensional subspace V0 of V such that x ∈ sp(V0). So,

by the above, x ∈ g. This proves the proposition. �

The elements tv are called symplectic infinitesimal transvections. Notice

that exponentiation of symplectic infinitesimal transvections leads to so called

symplectic transvections. on V .

2.4.4. Unitary Lie Algebras. Let V be a (left) vector space over the

skew field K. Let h be a skew-Hermitian form on V with respect to some anti-

automorphism σ of K. We consider elements of the form v⊗h(·, v) ∈ g(V, V ∗).

Lemma 2.4.9. With tv := Φ(v ⊗ h(·, v)) we have h(tv(w), u) = −h(w, tv(u))

for all u, v ∈ V .

Proof. Let u,w ∈ V . Then, as h is skew-Hermitian we get

h(tv(w), u) =h(h(w, v)v, u) = h(w, v)h(v, u)
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=h(w, (h(v, u)v)σ) = h(w,−h(u, v)v)

=− h(w, tv(u)). �

The elements tv as defined above, with v 6= 0 a singular vector, are called uni-

tary infinitesimal transvections. If v is nonsingular, we call tv a unitary

infinitesimal reflection.

For two unitary infinitesimal transvections tv and tw we have

[tv, [tv, tw]] = −2h(v, w)h(w, v)tv.

So, if we consider u(V, h) as an algebra over a field F inside Kσ, then for tv to

be an extremal element we should have h(v, w)h(w, v) ∈ F for all tw. In this

case, an extremal form g can be defined on u(V, h) via

g(tv, tw) = −h(v, w)h(w, v).

Proposition 2.4.10. Let h be a nondegenerate skew-Hermitian form on the

vectors space V over the field K with respect to the field automorphism σ of

order 2. The Lie algebra fu(V, h) over Kσ is generated by its elements tv,

where v ∈ V .

Proof. We first consider the case where dim(V ) = n < ∞. In this case

it is well known that u(V, h) has dimension n2, see 1.2.5.

Let v1, . . . vn be a basis such that the matrix of the form h with respect to

this basis equals H =

 0 Ik 0

−Ik 0 0

0 0 λIm

, where 2m + k = n, and λ ∈ F with

λσ = −λ.

Now consider the elements tvi , tvi+vj and tvi+µvj , where 1 ≤ i < j ≤ n and

µ ∈ F a fixed element with µσ 6= µ. (If the characteristic of F is different from

2, we can take µ = λ.)

As in the symplectic case, we easily verify that these n2 elements form an

independent set in u(V, h). So, as the dimension of u(V, h) equals n2, we

have shown that u(V, h) is generated by its infinitesimal transvections and

reflections.

If V has infinite dimension, the result follows like in the linear and symplectic

case. �

In general, a unitary space does not necessarily contain singular vectors. But

when it does, fsu(V, h) is generated by its infinitesimal transvections. Indeed,
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in view of the above result and the fact that su(V, h) has codimension 1 in

u(V, h), it suffices to prove that u(V, h) can be generated by all its infinitesimal

transvections (if they exist) and a unique reflection.

This is clearly true in the case where (V, h) is a hyperbolic 2-space over the

field K. Indeed, if v1, v2 is a hyperbolic basis of V , then tv1 , tv2 , tv1+v2 generate

su(V, h) and together with any infinitesimal reflection they generate u(V, h).

So, to prove in general that fu(V, h) can be generated by its infinitesimal

transvections together with one reflection, it suffices to prove connectedness

of the graph Γ on the nonsingular points of V , where two such points are

adjacent if and only if they span a hyperbolic line (i.e., 2-space).

We will prove this to be true for skew-Hermitian forms h.

Proposition 2.4.11. Suppose (V, h) is a nondegenerate skew-Hermitian space

over the field K, containing isotropic 1-spaces. Then the graph Γ, as defined

above, is connected.

Proof. A 2-spaceW of V can be singular, hyperbolic, tangent or anisotro-

pic. Here singular means that it only consists of singular vectors, tangent

means it contains a unique singular 1-space (which is in the radical of h|W )

and all other 1-spaces are nonsingular, and anisotropic means that all 1-spaces

are nonsingular.

As V contains an isotropic vector v 6= 0, there is also a vector w ∈ V with

h(v, w) 6= 0. Then the 2-space L = 〈v, w〉 is hyperbolic. Without loss of

generality we can assume that v, w is a hyperbolic basis of L.

Let u be a nonsingular vector in V . We will prove that 〈u〉 is in the same

connected component of Γ as some nonsingular point on 〈v, w〉.
First assume that u is perpendicular to both v and w, i.e, h(u, v) = h(u,w) =

0. Let u′ = u + λv be a nonsingular vector on 〈u, v〉 not in 〈u〉. Then

h(u′, w) 6= 0, and 〈u′, w〉 is hyperbolic. In particular, we find a singular vectors

w′ = u + λv + µw in 〈u′, w〉, which are not scalar multiples of w. For each

such w′ the 2-space 〈u,w′〉 is hyperbolic.

Then, for µ ∈ K satisfying µ−µσ = h(u, u) we have h(u+v+µw, u+v+µw) =

h(u, u) + µσ − µ = 0 and h(v + µw, v + µw) = µσ − µ = −h(u, u) 6= 0. Such

µ exists, as {µ− µσ ∈ K | µ ∈ K} = {µµσ | µ ∈ K}, see [BC13]. Moreover, as

h(u, u+v+µw) = h(u, u) 6= 0, we find the 2-space 〈u, v+µw〉 to be hyperbolic.

This implies that 〈u〉 is adjacent to 〈v + µw〉.



2.4. CLASSICAL LIE ALGEBRAS WITH TENSORS 35

Now assume that h(u, v) 6= 0 but h(u,w) = 0. After scaling v (and w), we can

assume that h(u, u)−h(u, v) 6= 0 Let µ ∈ K with h(u, u)+(µ−h(u, v))σ−(µ−
h(u, v)) = 0. Then h(u+v+µw, u+v+µw) = h(u, u)+h(u, v)−h(v, u)+µσ−
µ = h(u, u) + (µ− h(u, v))σ − (µ− h(u, v)) = 0. Moreover, h(u, u+ v+µw) =

h(u, u) − h(u, v) 6= 0. So, 〈u, u + v + µw〉 is hyperbolic and meets 〈v, w〉 in

v + µw, which is nonsingular, as h(v + µw, v + µw) = µ− µσ = h(u, u).

Again, we find that 〈u〉 is adjacent to a nonsingular point on 〈v, w〉.
Finally assume that h(u, v) 6= 0 and h(u,w) 6= 0. Let u′ ∈ 〈u, v〉 be perpendic-

ular to w. If u′ is nonsingular, then 〈u〉 is adjacent to 〈u′〉, and the latter is,

by the above adjacent to some nonsingular point in 〈v, w〉. Thus, assume u′

is singular. Then 〈u′, w〉 is singular, and as u is perpendicular to at most one

point on 〈u′, w〉, all lines on 〈u〉, except for maybe one, are hyperbolic. This

clearly implies that there is at least one hyperbolic line on 〈u〉 meeting 〈v, w〉
in a nonsingular point. This finishes the proof. �

As explained above, this result implies the following.

Proposition 2.4.12. Suppose (V, h) is a nondegenerate unitary space over a

field K containing isotropic points. Then fsu(V, h) is generated by its infini-

tesimal transvections.

2.4.5. Orthogonal Lie algebras. For the orthogonal Lie algebras,

we use the following form:

Lemma 2.4.13. Let B : V × V → F be a symmetric bilinear form. Then with

S = Φ(v ⊗B(w, ·)− w ⊗B(v, ·))

we have B(S(x), y) = −B(x, S(y)) for u, v, x, y ∈ V .

Proof. Let u, v, x, y ∈ V , then we have:

B(S(x), y) = B(vB(w, x)− wB(v, x), y)

= B(w, x)B(v, y)−B(v, x)B(w, y)

= B(x,B(v, y)w)−B(x,B(w, y)v)

= B(x,B(v, y)w −B(w, y)v)

= B(x,−S(y))

= −B(x, S(y)).

.

�
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The condition for the element to be in sln(F) is B(w, v) +B(v, w) = 0. So, if

char(F) 6= 2 we have B(v, w) = 0. We obtain the full orthogonal Lie algebra

this way as the image of Φ.

To consider the two orthogonal types of Lie algebras and their extremal el-

ements, we need a new type of linear transformations. Let therefore in the

following the vector space V be of dimension 2n or 2n− 1, where n ∈ N.

Definition 2.4.14. Let B denote the orthogonal bilinear form as in 2.4.13,

and u, v ∈ V two linearly independent vectors such that B(u, u) = B(u, v) =

B(v, u) = B(v, v) = 0. Then,

(2.24) Tu,v : V → V, x 7→ x+B(u, x)v −B(v, x)u

is called the Siegel transvection with respect to u, v ∈ V . In this case, the

map tu,v = Tu,v − 1 is called infinitesimal Siegel transvection. The group

〈1 + s · tu,v|s ∈ F〉 is the Siegel transvection group.

Lemma 2.4.15. The Lie algebra so(V ) is spanned by infinitesimal Siegel trans-

vections.

Proof. This can be proven as we did before, for example in the symplectic

case. For a proof, see [Pos07, Lemma 2.39]. �

Lemma 2.4.16. Infinitesimal Siegel transvections are extremal elements in

so(V ) with

(2.25) g(tu,v, tv,x) = (B(u,w)B(v, x)−B(u, x)B(v, w))

for u, v, w, x ∈ V as in 2.4.14. Moreover, we have

(2.26) exp(tu,v, s)tw,x = tw+stu,v(w),w+stu,v(x).

Proof. For the extremality, let a ∈ V be any vector. Then

[tu,v,tw,x](a)

=
(
tu,vtw,x − tw,xtu,v

)
(a)

=tu,v
(
B(w, a)x−B(x, a)w

)
− tw,x

(
B(u, a)v −B(v, a)u

)
=B(w, a)tu,v(x)−B(x, a)tu,v(w)−B(u, a)tw,x(v) +B(v, a)tw,x(u)

=B(w, a)
(
B(u, x)v −B(v, x)u

)
−B(x, a)

(
B(u,w)v −B(v, w)u

)
−B(u, a)

(
B(w, v)x−B(x, v)w

)
+B(v, a)

(
B(w, u)x−B(x, u)w

)
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=B(u, x)
(
B(w, a)v −B(v, a)w

)
+B(v, x)

(
B(u, a)w −B(w, a)u

)
+B(u,w)

(
B(v, a)x−B(x, a)v

)
+B(v, w)

(
B(x, a)u−B(u, a)x

)
=B(u, x)tw,v(a) +B(v, x)tu,w(a) +B(u,w)tv,x(a)−B(v, w)tu,x(a)

=
(
B(u, x)tw,v +B(v, x)tu,w +B(u,w)tv,x −B(v, w)tu,x

)
(a)

using the fact that tx,u = −tu,x.

With this and with B(u, u) = B(u, v) = B(v, v) = 0 and tu,u = tv,v = 0, we

can deduce

[
tu,v,[tu,v, tw,x]

]
=
[
tu,v, B(u, x)tw,v −B(v, w)tu,x +B(v, x)tu,w +B(u,w)tv,x

]
=B(u, x)

[
tu,v, tw,v

]
−B(v, w)

[
tu,v, tu,x

]
+B(v, x)

[
tu,v, tu,w

]
+B(u,w)

[
tu,v, tv,x

]
=B(u, x)

(
B(u, v)tw,v −B(v, w)tu,v +B(v, v)tu,w +B(u,w)tv,v

)
−B(v, w)

(
B(u, x)tu,v −B(v, u)tu,x +B(v, x)tu,u +B(u, u)tv,x

)
+B(v, x)

(
B(u,w)tu,v −B(v, u)tu,w +B(v, w)tu,u +B(u, u)tv,w

)
+B(u,w)

(
B(u, x)tv,v −B(v, v)tu,x +B(v, x)tu,v +B(u, v)tv,x

)
=−B(u, x)B(v, w)tu,v −B(v, w)B(u, x)tu,v

+B(v, x)B(u,w)tu,v +B(u,w)B(v, x)tu,v

=2
(
B(u, v)B(v, x)−B(u, x)B(v, w)

)
tu,v,

so g(tu,v, tv,x) = (B(u,w)B(v, x)−B(u, x)B(v, w)).

Using these equalities, we get for any s ∈ F and any a ∈ V :

(
exp(tu,v, s)tw,x

)
(a)

=tw,x(a) + s
(
B(u, x)tw,v(a)−B(v, w)tu,x(a) +B(v, x)tu,w(a)

+B(u,w)tv,x(a)
)

+ s2tu,v(a)
(
B(u,w)B(v, x)−B(u, x)B(v, w)

)
=tw,x(a) + ts(B(u,w)v−B(v,w)u),x(a) + tw,s(B(u,x)v−B(v,x)u)(a)

+ s2tB(u,w)v−B(v,w)u,B(u,x)v−B(v,x)u(a)

=tw,x(a) + tstu,v(w),x(a) + tw,stu,v(x)(a) + tstu,v(w),stu,v(x)(a)

=tw+stu,v(w),x+stu,v(x)(a). �
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2.5. The sl2-relation

As in the previous sections, let g be a Lie algebra over the field F generated

by its set E of extremal elements. Let g be an extremal form on g.

We first analyse what subalgebras of g two extremal elements elements in E

generate.

Proposition 2.5.1. Let x, y ∈ E and 〈x, y〉 the subalgebra of g generated by

x and y. Then exactly one of the following assertions holds:

(1) g(x, y) = 0 and 〈x, y〉 = Fx+ Fy is abelian.

(2) g(x, y) = 0, and 〈x, y〉 = Fx + Fy + Fz, where z = [x, y] 6= 0, and E

contains all elements of 〈x, y〉 \ 〈z〉.
(3) g(x, y) 6= 0, the subalgebra 〈x, y〉 equals Fx+ Fy + Fz and is isomor-

phic to sl2. The set E contains all elements that are mapped by this

isomorphism onto infinitesimal transvections of sl2.

Proof. We define [x, y] := z and distinguish three cases:

(1) z = 0, g(x, y) = 0.

We know from 2.3.1 that g is spanned by x and y, so g = Fx + Fy,

and g is abelian.

(2) z 6= 0 and the extremal form g(x, y) = 0.

Clearly Fx+Fy+Fz is closed under multiplication with x and y. So,

〈x, y〉 = Fx + Fy + Fz. Now, for all λ ∈ F we find exp(x, λ)(y) =

y + λ · [x, y] + λ2gx(y)x = y + λ · z and exp(y, λ)(x) = x+ λ · [x, y] +

λ2gy(x)x = x+ λ · z to be extremal.

(3) g(x, y) 6= 0.

As Fx + Fy + Fz is closed under multiplication with x and y, we

do have 〈x, y〉 = Fx + Fy + Fz. Without loss of generality we can

assume g(x, y) = 1. Now consider g(V ), where V is a 2-dimensional

vector space over F with basis v1, v2 and dual basis φ1, φ2 . Let

x̂ = v1 ⊗ φ2 and ŷ = v2 ⊗ φ1. Then, with ẑ = [x̂, ŷ] we find that

the structure constants of x, y, z and x̂, ŷ, ẑ are the same. So, we

have 〈x, y〉 ∼= g0(V ) ∼= sl2. Under this isomorphism we find that the

element exp(x, s)y is mapped to tv2+sv1,φ1−sφ2 . This implies that all

elements that are mapped to infinitesimal transvections are in E. �

Remark 2.5.2. Notice that in the above proposition E ∩ 〈x, y〉 may contain

more elements than those indicated. Indeed, all non-zero elements of 〈x, y〉
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might be extremal in the first and second case. However, in case 〈x, y〉 ∼= sl2

and the characteristic of F is not 2, there are no other extremal elements in

〈x, y〉.

Definition 2.5.3. On the set of extremal points E of g, we define the relation

x ∼sl2 y :⇐⇒ gx1(y1) 6= 0 ⇐⇒ g(x1, y1) 6= 0

for some extremal elements x1 ∈ 〈x〉 and y1 ∈ 〈y〉 with x, y ∈ E . This is, in

case F is not of characteristic 2, equivalent with saying that 〈x1, y1〉 ∼= sl2.

This relation defines a graph structure on g by taking the point set E as the

set of vertices and define two points x, y ∈ E as adjacent if and only if x ∼sl2 y.

We denote the graph (E ,∼sl2) by Γsl2(g) or, if g is clear from the context, just

by Γsl2 .

In this section, we relate properties of the graph Γsl2(g) to properties of g.

By abuse of notation, in the following we will not distinguish between the

extremal element x ∈ E and the corresponding extremal point 〈x〉 in E , and

denote both by x, if it is clear from the context what x refers to.

Lemma 2.5.4. Let Γsl2(g) have at least two connected components Γ1 and Γ2

with corresponding point sets E1 and E2. Then, we have

[x, y] ∈ rad(g)

for all x ∈ E1 and y ∈ E2.

Proof. Let z = [x, y] 6= 0. Assume that z /∈ rad(g), so let u ∈ E be

such that g(u, z) = gu(z) 6= 0. We consider the 2-dimensional space 〈x, z〉.
By Proposition 2.5.1 all 1-spaces in 〈x, z〉 except for possibly 〈z〉 are extremal

points. If there are two extremal elements x1, x2 in 〈x, z〉 with gu(x1) = 0 =

gu(x2), then by linearity of g, also gu(z) = 0, so all extremal points except

for maybe one in 〈x, z〉 must be in sl2-connection with u. So choose such an

element x3 6∈ 〈z〉 with g(x3, u) 6= 0. Now fix an element a ∈ exp(y) with

xa3 = x and an element b ∈ exp(x) with yb3 = y. Then uab is connected to

xab3 = xb = x and to yab3 = yb3 = y proving x and y to be in the same connected

component of Γsl2(g). This is a contradiction. So indeed z ∈ rad(g). �

This leads to the following consequences:
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Corollary 2.5.5. Let E0 be a subset of extremal elements in g and E0 the

corresponding set of extremal points. Further assume 〈E0〉 = g and E0 is a

connected component of the sl2-graph of g. If E1 := E \ E0 is non-empty,

it consists of sandwich elements in g and 〈E1〉 is an ideal of g contained in

rad(g).

Proof. For all x ∈ E0 and y ∈ E1 we have g(x, y) = g(y, x) = 0. Now

since g = 〈x|x ∈ E0〉, we have g(y, z) = 0 for all z ∈ g. So, y ∈ rad(g). But

then,

[y, [y, z]] = 2gy(z)y = 0

and by (2.3)

[y, [x, [y, z]]] =gy([x, z])y − gy(z)[y, x]− gy(x)[y, z] = 0

for all z ∈ g. This implies that y is a sandwich.

Finally notice that for all x ∈ E0 and y ∈ E1 we have [x, y] = exp(x)y − y ∈
〈E1〉. So, 〈E1〉 is an ideal contained in rad(g).

�

Corollary 2.5.6. If g is simple and the bilinear form g is not trivial, then

E is connected with respect to the relation ∼sl2. In particular, then the group

G = 〈exp(x, t) | x extremal, t ∈ F〉 is transitive on the points in E.

Proof. Suppose g is simple and the bilinear form g is not trivial. Then,

by Lemma 2.3.5 we find that rad(g) = 0. But then Lemma 2.5.4 implies that

E is connected with respect to the relation ∼sl2 .

Now let x, y ∈ E with (x, y) ∈ E2, and without loss of generality, assume

gx(y) = gy(x) = 1. Then exp(x, 1)y = x + [x, y] + y = y − [y, x] + x =

exp(y,−1)x. So, exp(y, 1) exp(x, 1)y = x and the elements 〈x〉, 〈y〉 ∈ E are

in the same orbit under the automorphism group. Now, the connectedness of

Γsl2(g) implies that E is one G-orbit. �

Theorem 2.5.7. Suppose rad(g) = 0 and the characteristic of F is not 2.

Then g is a direct sum of simple Lie subalgebras.

Proof. By Lemma 2.5.4 we find that g can be written as the direct sum

of Lie subalgebras, each generated by a connected class of extremal elements.

Let g1 be such summand generated by its extremal elements in the set E1 and

suppose I is a nonzero ideal of g1. Let 0 6= i ∈ I. Then, as rad(g) = 0, there is
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an element x ∈ g1 with gx(i) 6= 0. Moreover, as g1 is generated by E1, we can

assume this x to be an element in E1. So, since the characteristic of F is not 2,

we have x ∈ [x, [x, i]] ⊆ I. But then also each element y ∈ E1 with gx(y) 6= 0

is in I and by connectedness of E1 with respect to ∼sl2 , we find I = g1. �





CHAPTER 3

Chevalley algebras

In this chapter, we consider Lie algebras with a Chevalley basis, which has

the property that all structure constants are integers. We give concrete mul-

tiplication tables for this type of Lie algebras. This enables us to find their

extremal elements, as defined in the previous chapter, and the extremal form,

in a very concrete way.

We start with the introduction of the basic geometric concept of root systems,

which leads to the definition of the well-known Dynkin diagrams. So we find

the geometric motivation for the different types of Chevalley algebras, that we

introduce in the second section, and see some examples. Finally, we finish the

chapter with the proof of our result about the extremal elements in Cheval-

ley algebras: They are, with some exceptions, exactly the long root elements

with respect to the underlying root system of the Lie algebra. The descrip-

tions in the first two sections of this chapter are based on Carter [Car72],

Buekenhout-Cohen [BC13] and Roozemond [Roo10].

3.1. Root systems

Let V be a Euclidean space of finite dimension n ∈ N and let (v, w) denote

the value of the inner product on V , for v, w ∈ V . A reflection in V is an

invertible linear transformation that leaves some hyperplane fixed (pointwise)

and sends any vector orthogonal to that hyperplane to its negative. Obviously,

every reflection preserves the inner product on V , so it is orthogonal.

Definition 3.1.1. For a nonzero vector α ∈ V , the reflection σα with root α

is given by the reflecting hyperplane

Hα = {β ∈ V | (β, α) = 0}.

So, we see that nonzero vectors proportional to α yield the same reflection.

An explicit formula for the reflection is:

σα(β) = β − 2(β, α)

(α, α)
α.

43
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Since the number 2(β,α)
(α,α) occurs frequently, we denote it abbreviatory by 〈β, α〉.

Note that this is only linear in the first variable.

We define the dual vector

α∗ :=
2α

(α, α)
.

Definition 3.1.2. A subset Φ of V is a root system if the following condi-

tions hold:

(1) Φ is finite, does not contain zero and spans V .

(2) If α ∈ Φ, the reflection σα leaves Φ invariant.

(3) If α, β ∈ Φ, then 〈β, α〉 ∈ Z.

(4) if α, tα ∈ Φ with t ∈ R, then t = ±1.

The elements of a root system are called roots, and the rank of Φ is defined

to be dim V and is denoted by rk Φ. For a root system Φ, its dual Φ∗ =

{α∗|α ∈ Φ}, is also a root system. A set of fundamental roots or set of

simple roots is a subset ∆ = {α1, . . . , αn} ⊆ Φ that is a basis of V relative

to which each α ∈ Φ has a unique expression α =
∑
siαi with si integers

and all either nonnegative or nonpositive. Such a set of roots always exists;

this is proven e.g. in [Car72, 2.1.3]. Those roots where all si are nonnegative

are called positive roots and form the subset Φ+ of Φ and those with all

si nonpositive are negative roots, forming Φ−. So of course, Φ+ and Φ−

depend on the choice of ∆.

A root system Φ is irreducible if it cannot be partitioned into the union of

two proper subsets Φ = Φ1∪Φ2 such that (α, β) = 0 for all α ∈ Φ1 and β ∈ Φ2.

The length of a root α ∈ Φ is its length in V . Since there are at most

two different lengths of roots occurring in an irreducible root system (see e.g.

[Hum78, 10.4 Lemma C]), it makes sense to divide the root system into long

roots and short roots, denoted by Φlong and Φshort. By convention, if all

roots have the same length, we call them all long roots. The height of a root

α =
∑
siαi relative to ∆ is ht(α) :=

∑
si.

Two root systems Φ and Φ′ corresponding to the Euclidian spaces V and V ′

are isomorphic if there exists a vector space isomorphism φ : V → V ′ sending

Φ to Φ′ s.t. 〈φ(β), φ(α)〉 = 〈β, α〉 for each pair of roots α, β ∈ Φ.

Let Φ be a root system of the vector space V . The Weyl group W (Φ) is the

group generated by the reflections σα with α ∈ Φ. Because of the first two
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properties of root systems, W (Φ) permutes the elements of Φ and acts faithful

on Φ, so we can identify W (Φ) with a subgroup of the symmetric group on Φ,

and see that W (Φ) is finite.

In order to construct root systems, we find a few additional properties that

can be deduced from the previous ones. For two independent roots α, β ∈ Φ,

there always exist integers p, q ≥ 0 such that iα + β ∈ Φ for −p ≤ i ≤ q, but

−(p+ 1)α+ β and (q + 1)α+ β are no roots. We call the sequence

−pα+ β, . . . , β, . . . , qα+ β

the α-chain through β. The reflection σα from the Weyl group inverts

each α-chain of roots. In particular it transforms −pα + β into qα + β, so

−pα+ β, qα+ β are mirror images in the hyperplane orthogonal to α. Hence

((−pα+ β) + (qα+ β), α) = 0, which leads to

2(α, β)

(α, α)
= p− q.

If αi, αj ∈ ∆ are two distinct fundamental roots, then −αi + αj is not a root,

so αj is the first member of the αi chain through αj . With the previous

relation and p = 0, we see that (αi, αj) ≤ 0, so the angle θi,j between αi, αj

is obtuse. There are just a few possibilities for the value of this angle. Since

2(αi, αj)/(αi, αi) and 2(αi, αj)/(αj , αj) are both integers, we have

4(αi, αj)
2

(αi, αi)(αj , αj)
= 4cos2θi,j .

Since 0 ≤ cos2θi,j ≤ 1, we have 4cos2θi,j = 0, 1, 2, 3 or 4, and together with

the fact that θi,j is obtuse we have θi,j ∈ {π2 ,
2π
3 ,

3π
4 ,

5π
6 , π}. We can exclude

the possibility θi,j = π since αi, αj are linearly independent. So we have

ni,j := 4cos2θi,j =
2(αi, αj)

(αi, αi)

2(αi, αj)

(αj , αj)
= 0, 1, 2, 3

is a product of two non-positive integers. The possible factorizations that arise

in the different cases are the following:

(1) If ni,j = 1, the factorization must be 1 = (−1)(−1), so (αi, αi) =

(αj , αj) and the roots αi and αj have the same length.

(2) If ni,j = 2, the factorization must be 2 = (−1)(−2) and thus one of

αi, αj is
√

2 times longer than the other.

(3) If ni,j = 3, then the factorization is 3 = (−1)(−3) and one of αi, αj

is
√

3 times longer than the other.
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(4) If ni,j = 0, no information about the relative length of the roots can

be obtained.

To simplify handling roots of different lengths in the following, in those cases

where two different root lengths occur we define the shorter one to have length

1 and the longer one to have length
√

2,
√

3, respectively, if not mentioned

otherwise explicitly.

Regarding the defining properties of a root system, it is immediate that there

is (up to isomorphism) just one root system of rank one. The irreducible root

systems of higher rank are classified; we give them explicitly in the following.

We consider in detail the irreducible root systems of rank two afterwards.

In order to describe the irreducible root systems it is convenient to use an

orthonormal basis of the vector space containing the roots.

Example 3.1.3. (1) Type An. Let e0, e1, . . . , en be an orthonormal basis

of a Euclidian space of dimension n + 1, and let V be the subspace

of vectors
n∑
i=0

λiei with

n∑
i=0

λi = 0.

The vectors e0− e1, e1− e2, . . . , en−1− en form a fundamental system

of type An and the full system of roots with this fundamental system

is given by

Φ = {ei − ej | i, j = 0, 1, . . . , n, i 6= j}.

For Examples 2, 3 and 4, assume that e1, e2, . . . , en is an orthonormal

basis of a Euclidian space V of dimension n.

(2) Type Bn. The vectors e1 − e2, e2 − e3, . . . , en−1 − en, en form a fun-

damental system of type Bn. The full root system is given by

Φ = {±ei ± ej ,±ei | i, j = 1, . . . , n, i 6= j}.

(3) Type Cn. The vectors e1 − e2, e2 − e3, . . . , en−1 − en, 2en form a

fundamental system of type Cn. The full root system is given by

Φ = {±ei ± ej ,±2ei | i, j = 1, . . . , n, i 6= j}.

Note that in this case, we define the short roots to have length
√

2

and long ones length 2.
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(4) Type Dn. The vectors e1−e2, e2−e3, . . . , en−2−en−1, en−1−en, en−1+

en form a fundamental system of type Dn. The full root system is

given by

Φ = {±ei ± ej | i, j = 1, . . . , n, i 6= j}.

(5) Type E8. A fundamental system of type E8 is given by e1 − e2, e2 −
e3, e3 − e4, e4 − e5, e5 − e6, e6 − e7, e6 + e7,−1

2

∑8
i=1 ei. The full root

system is

Φ =
{
± ei ± ej

∣∣∣ i, j = 1, . . . , 8, i 6= j
}

∪
{1

2

8∑
i=1

εiei

∣∣∣ εi = ±1,

8∏
i=1

εi = 1
}
.

The systems E7 and E6 are easily obtainable as subsystems of E8:

(6) Type E7. Let e1, e2, . . . , e8 be as in the E8 case. A fundamental

system of type E7 is given by e2 − e3, e3 − e4, e4 − e5, e5 − e6, e6 −
e7, e6 + e7,−1

2

∑8
i=1 ei.

The vectors lie in the subspace of elements
∑8

i=1 λiei with λ1 = λ8.

The full root system is

Φ =
{
± (e1 + e8),±ei ± ej

∣∣∣ i, j = 2, . . . , 7, i 6= j
}

∪
{1

2

8∑
i=1

εiei

∣∣∣ ε1 = ε8 = 1, εi = ±1,

8∏
i=1

εi = 1
}

∪
{
− 1

2

8∑
i=1

εiei

∣∣∣ ε1 = ε8 = 1, εi = ±1,

8∏
i=1

εi = 1
}
.

(7) Type E6. Let e1, e2, . . . , e8 be as in the E8 case. A fundamental

system of type E6 is given by e3 − e4, e4 − e5, e5 − e6, e6 − e7, e6 +

e7,−1
2

∑8
i=1 ei.

The vectors lie in the 6-dimensional subspace of elements
∑8

i=1 λiei

with λ1 = λ2 = λ8. The full root system is

Φ =
{
± ei ± ej

∣∣∣ i, j = 3, . . . , 7, i 6= j
}

∪
{1

2

8∑
i=1

εiei

∣∣∣ ε1 = ε2 = ε8 = 1, εi = ±1,
8∏
i=1

εi = 1
}
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∪
{
− 1

2

8∑
i=1

εiei

∣∣∣ ε1 = ε2 = ε8 = 1, εi = ±1,
8∏
i=1

εi = 1
}
.

(8) Type F4. Let e1, e2, e3, e4 be an orthonormal basis for V . A funda-

mental system of vectors for type F4 consists of e1 − e2, e2 − e3, e3,
1
2(−e1 − e2 − e3 + e4).

The full root system is

Φ =
{
± ei ± ej ,±ei,

∣∣∣ i, j = 1, 2, 3, 4, i 6= j
}

∪
{1

2
(±e1 ± e2 ± e3 ± e4)

}
.

(9) Type G2. Let e1, e2, e3 be an orthonormal basis for V . A fundamental

system of vectors for type G2 is {e1 − e2,−2e1 + e2 + e3}. The full

root system is

Φ =
{
± (e1 − e2),±(e1 − e3),±(e2 − e3),±(2e1 − e2 − e3),

± (−e1 + 2e2 − e3),±(−e1 − e2 + 2e3)
}
.

Explicitly, we can illustrate the previously defined data regarding the irre-

ducible root systems of rank two.

Example 3.1.4. The four possible irreducible root systems of rank two are

shown in Figure 1. Table 1 gives the previously defined data of root diagrams

for the cases A2, B2, C2 and G2. Hereby, we use a more familiar notation for

the roots in the rank two cases, where the root system is spanned by two roots

named α and β. The exact subscription to the notation previously given for

the cases of higher rank is:

- A2: α = e0 − e1, β = e1 − e2.

- B2: α = e1 − e2, β = e2.

- C2: α = e1 − e2, β = 2e2.

- G2: α = e1 − e2, β = 2e1 + e2 + e3.

Definition 3.1.5. Let Φ be a root system, W (Φ) (or abbreviatory W ) the

corresponding Weyl group and ∆ = {α1, . . . , αn} a set of fundamental roots.

A Coxeter system is a pair (W,S), where S := {σα1 , . . . , σαn} a set of

reflections on the roots in Φ.

The Cartan matrix of Φ follows from the Coxeter system by taking the

n×n-matrix with entry 〈αi, α∗j 〉 at position (i, j). There is a relation between
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A2 B2 G2

Φ ±α,±β,±α+ β ±α,±β,±α+ β, ±α,±β,±α+ β,

±α+ 2β ±2α+ β,±3α+ β,

±3α+ 2β

∆ α, β α, β α, β

Φlong Φ ±α,±α+ 2β ±β,±3α+ β,

±3α+ 2β

Φshort ∅ ±β, ±(α+ β) ±α,±α+ β,

±2α+ β

height ht(±α) = ±1 ht(±α) = ±1 ht(±α) = ±1

ht(±β) = ±1, ht(±β) = ±1 ht(±β) = ±1

ht(±(α+ β)) = ±2 ht(±(α+ β)) = ±2, ht(±(α+ β)) = ±2

ht(±(α+ 2β)) = ±3 ht(±(2α+ β)) = ±3

ht(±(3α+ β)) = ±4

ht(±(3α+ 2β)) = ±5

Table 1. Root data for A2,B2,C2

the Cartan matrix C and the Coxeter system: Let mij be the order of σαiσαj ,

then

cos
( π

mij

)2
=
〈αi, α∗j 〉〈αj , α∗i 〉

4
.

The n × n matrix with entries (mij) is called the Coxeter matrix. The

next step is the construction of the Coxeter diagram Π: It is a graph with

one vertex for each root in ∆, so these vertices can be numbered as 1, . . . , n.

The edges of the graphs are given by the pairs {i, j} with mij > 2 and have

the label mij . The Dynkin diagram is the Coxeter diagram containing an

additional information about the root lengths: In case 〈αi, α∗j 〉 < 〈αj , α∗i 〉, the

edge {i, j} is replaced by an directed edge (i, j) in the Dynkin diagram. The

arrow points from the vertex of the longer root to the vertex of the shorter

one.

Notice that, if a root system is reducible, the Dynkin diagram is disconnected

and vice versa. The Dynkin diagrams of the irreducible root systems are given

in Figure 2.
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α

α+ ββ

−α

−α− β −β

A2

β

α+ 2βα+ βα

−β

α− 2β −α− β −α

B2

β

α+ β

2α+ β

α

−β

−α− β

−2α− β

−α

C2

α

2α+ βα+ β

−α

−2α− β −α− β

3α+ β

3α+ 2β

β

−3α− β

−3α− 2β

−β

G2

Figure 1. Irreducible root systems in dimension two

Definition 3.1.6. A vector w ∈ V is called a weight if 〈w,α∗〉 ∈ Z for

all α ∈ Φ. The weights form the weight lattice Λ. We denote by ΛΦ the

sublattice (of finite index) spanned by Φ. If ∆ = {α1, . . . , αn} is a set of

fundamental roots of Φ, then Λ has a corresponding basis of fundamental

weights {λ1, . . . , λn} such that 〈λi, α∗j 〉 = δij . The quotient Λ/ΛΦ is called

the fundamental group of the root system Φ.

The fundamental groups corresponding to the irreducible root systems are the

following (see [Hum78], section 13): Z/(n+ 1)Z for An, Z/2Z for Bn,Cn,E7,

Z/2Z×Z/2Z for Dn, n even and Z/4Z for Dn if n odd, Z/3Z for E6 and trivial

for E8,F4 and G2.

In order to define Chevalley Lie algebras, we will make use of the more general

concept of root data.

Definition 3.1.7. A root datum is a quadruple R = (X,Y,Φ,Φ∗) where
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· · ·An

· · ·Bn

· · ·Cn

· · ·Dn

E6

E7

E8

F4

G2

Figure 2. Dynkin diagrams
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(1) X and Y are dual free Z-modules of finite rank.

(2) 〈·, ·〉 : X × Y → Z is a bilinear pairing putting X and Y into duality.

(3) Φ is a finite subset of X and Φ∗ is a finite subset of Y .

(4) There is a one-to-one correspondence ∗ : Φ→ Φ∗.

For α ∈ Φ, we define the linear map sα : X → X for α ∈ Φ by

sα(x) = x− 〈x, α∗〉α

and similarly the linear map s∗α : Y → Y by

sα(y) = y − 〈α, y〉α∗.

We assume moreover

(1) 〈α, α∗〉 = 2 for all α ∈ Φ.

(2) Φ is closed under the action of sα.

(3) Φ∗ is closed under the action of s∗α.

(4) If α, tα ∈ Φ with t ∈ R, then t = ±1.

Then the elements of Φ are the roots and the elements of Φ∗ the coroots

of the root datum. The group W generated by all sα for α ∈ Φ is the Weyl

group of the root datum.

The connection between root systems and root data is clear: Denote by 〈Φ〉X
the submodule of X generated by Φ 6= ∅ and let V = 〈Φ〉X⊗R, then obviously

Φ is a root system in V . Similarly, Φ∗ is a root system in 〈Φ∗〉Y ⊗ R.

One can also construct a root datum from a root system in the following way:

Let Φ be a root system in some Euclidian space V with inner product (·, ·).
We defined earlier α∗ = 2α

(α,α) and Φ∗ = {α∗|α ∈ Φ}. We take X = ZΦ and

Y = {y ∈ V |(x, y) ∈ Z for all x ∈ X}, and define 〈x, y∗〉 = (x, y∗) for x ∈ X
and y ∈ Y . This makes R = (X,Y,Φ,Φ∗) a root datum.

Example 3.1.8. Let Φ = {±α ± β,±(α + β),±(α + 2β)} be a root system

of type B2 in R2. A possible choice is α = (−1, 1) and β = (1, 0). Then

α∗ = (−1, 1) and β∗ = (2, 0), and the vectors (1, 0) and (0, 1) form a basis of

ZΦ and the vectors (−1, 1) and (1, 1) form a basis for ZΦ∗. With X = Y = ZΦ,

we have a root datum R = (X,Y,Φ,Φ∗).

Definition 3.1.9. The rank of a root datum is the dimension of X⊗R which

is equal to that of Y ⊗R; the semisimple rank is the dimension of ZΦ⊗R,

and the root datum is called semisimple if the rank and the semisimple rank

are equal. The root datum is called irreducible if Φ is irreducible.
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A root datum R = (X,Y,Φ,Φ∗) is isomorphic to another root datum

R′ = (X ′, Y ′,Φ′,Φ∗
′
) if there are isomorphisms betweenX andX ′ and between

Y and Y ′ both denoted by ϕ, such that their restrictions to Φ and Φ∗ are iso-

morphisms of root systems, and fulfill 〈ϕx, ϕy〉 = 〈x, y〉 for all x ∈ Φ, y ∈ Φ∗.

We defined a weight vector w in X⊗R to be any vector such that 〈w,α∗〉 ∈ Z
for all α ∈ Z. The weights form a weight lattice and the fundamental group

is the quotient of this lattice by the root lattice ZΦ. This fundamental group

determines the possible semisimple root data with a given root system Φ via

the quotient X/ZΦ. For our work, it will be of some importance that there

can be more than one possible root datum corresponding to a root system Φ,

depending on the choice of the weight lattice. To consider this, we introduce

the isogeny type of a root datum. If X/ZΦ is the trivial group, we say that

R is of adjoint isogeny type, or the adjoint root datum of type Φ. If X/ZΦ

is on the other hand the full fundamental group, R is said to be of simply

connected isogeny type or the simply connected root datum of type Φ. If

neither of these hold, R is said to be of intermediate isogeny type, but note

this can only occur for root systems of type An (if (n+1) is not prime) and Dn.

To distinguish the different root data, we denote the irreducible adjoint root

datum of type Xn by Xad
n and the corresponding simply connected root datum

by Xsc
n . Intermediate root data of type An are denoted by A

(k)
n , where k|n+ 1,

and intermediate root data of type Dn will be denoted by D(1) if n is odd, and

by D
(1)
n ,D

(n−1)
n and D

(n)
n if n is even.

The following computational rules and examples are taken from [Roo10].

Let n be the rank of R and l be the semisimple rank. Fix X = Y = Zn

and define 〈x, y〉 = xyT ∈ Z for x a row vector and y a transposed row, so

a column vector. Let A be the integral l × n-matrix containing the simple

roots as row vectors. We call A the root matrix of R. Similarly, let B be

the l × n-matrix containing the simple coroots in the corresponding order; B

is the coroot matrix of R. Then the Cartan matrix C is equal to ABT and

ZΦ = ZA and ZΦ∗ = ZB. For α ∈ Φ we define cα to be the Z-valued size l

row vector satisfying α = cαA.

In the following, we will mostly deal with semisimple root data, where l = n.

Here, the definition of the adjoint isogeny type implies that for the adjoint

isogeny type we may take A to be the n × n identity matrix and B = CT .
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Vice versa, for the simply connected root datum we may take A = C and B

as the identity.

Example 3.1.10 (Rank one root data). We classify the semisimple root data

of rank one. There is only one root system of rank one, namely A1 with the

roots α and −α, but nevertheless there are two non-isomorphic semisimple

root data of rank one, Aad
1 and Asc

1 . They can be obtained as follows: Fix the

root lattice X = Z and the coroot lattice Y = Z, so the pairing is just simple

multiplication: 〈x, y〉 = xy. The Cartan matrix C is equal to (〈α, α∗〉) = (2).

So for A and B we are looking for integral 1×1 matrices such that ABT = C.

So obviously A = (1), B = (2) and A = (2), B = (1) are two possible choices,

where the first one is the adjoint and the second the simply connected case.

The choices are nonisomorphic since the determinants of the root matrices A

differ.

Example 3.1.11 (Rank two root data). In the 2-dimensional case, we have a

couple of cases to distinguish. Recall that there were 5 possible root systems

A1A1,A2,B2
∼= C2 and G2, giving rise to different Cartan matrices. We also

know that the fundamental group of An is Z/(n + 1)Z , the fundamental

group of Bn and C2 is Z/2Z and the fundamental group of G2 is trivial.

Using the same computational procedures as before, we obtain the choices for

the root and the coroot matrices that can be found in Table 2. They are

unique up to multiplication with elements of SL(2,Z): if m ∈ SL(2,Z), then

ABT = (Am)(Bm−T )T ,det(A) = det(Am) and det(B) = det(Bm).

3.2. Definition of Chevalley algebras

The following definition is according to [Coh], chapter 7.

Definition 3.2.1. Let (X,Y,Φ,Φ∗) be a root datum of rank n, with bilinear

pairing 〈., .〉 : X × Y → Z. Consider the free Z-module

gZ = Y ⊕
⊕
α∈Φ

Zxα

where xα formal basis elements (complementary to Y ). As a Z-module, it is

of rank n+ |Φ|. We define on gZ a bilinear map

[·, ·] : gZ × gZ → gZ
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Cartan matrix Root matrix Coroot matrix

Aad
1 Aad

1

(
2 0

0 2

) (
1 0

0 1

) (
2 0

0 2

)

Aad
1 Asc

1

(
2 0

0 2

) (
2 0

0 2

) (
1 0

0 1

)

Asc
1 Asc

1

(
2 0

0 2

) (
2 0

0 2

) (
2 0

0 2

)

Aad
2

(
2 −1

−1 2

) (
1 0

0 1

) (
2 −1

−1 2

)

Asc
2

(
2 −1

−1 2

) (
2 −1

−1 2

) (
1 0

0 1

)

Bad
2 = Csc

2

(
2 −2

−1 2

) (
1 0

0 1

) (
2 −1

−2 2

)

Bsc
2 = Cad

2

(
2 −2

−1 2

) (
2 −2

−1 2

) (
1 0

0 1

)

G2

(
2 −1

−3 2

) (
1 0

0 1

) (
2 −3

−1 2

)
Table 2. Root data of rank 2

by the following rules:

[y, z] =0

[y, xβ] =〈β, y〉xβ

[xα, xβ] =


Nα,βxα+β if α+ β ∈ Φ,

α∗ if β = −α,

0 otherwise,

where α, β ∈ Φ, y, z ∈ Y . The numbers Nα,β are integral structure con-

stants chosen to be ±(pα,β + 1), where pα,β is the biggest number such that

−pα,βα + β is a root. With respect to the root datum (X,Y,Φ,Φ∗), these

relations define a Z-algebra on gZ that is called a Chevalley algebra. The

formal basis elements xα, α ∈ Φ together with a basis of Y form a Chevalley

basis of gZ. If gZ is moreover a Lie algebra, we call it an integral Chevalley

Lie algebra.
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If a Lie algebra g = gZ ⊗ F can be obtained by tensoring with a field F, we

call g a Chevalley Lie algebra and denote it by gF.

Actually, one can find some necessary and sufficient restrictions on the struc-

ture constants Nα,β ∈ Z for the Chevalley algebra gZ to be a Lie ring.

Lemma 3.2.2 ([Coh],7.1.2). Using the previous notation, the following condi-

tions are necessary and sufficient for the bracket [·, ·] to define a Lie ring on gZ

(note that it is not a Lie algebra since gZ is no vector space, but a Z-module).

Nβ,α =−Nα,β;(3.1)

Nα,β =0 if α+ β /∈ Φ;(3.2)

(α, α)Nα,β =(γ, γ)Nβ,γ(3.3)

if α, β, γ ∈ Φ are without opposite pairs

and α+ β + γ = 0;

〈β, α∗〉
(β, β)

=
Nα,βN−α,−β

(β + α, β + α)
−

N−α,βNα,−β
(β − α, β − α)

(3.4)

if α, β ∈ Φ are linearly independent roots;

Nα,βNγ,δ

(α+ β, α+ β)
+

Nβ,γNα,δ

(β + γ, β + γ)
+

Nγ,αNβ,δ

(γ + α, γ + α)
= 0(3.5)

if α, β, γ, δ ∈ Φ are without opposite pairs

and α+ β + γ + δ = 0.

The number of possible choices for the structure constants is restricted by

these conditions and parameterized by so-called extraspecial pairs. To define

them we equip Φ with a total ordering ≺, that we choose in such a way that

0 ≺ α for all α ∈ Φ+, respecting the height as defined above. This means

ht(α) < ht(β) implies α ≺ β.

Definition 3.2.3. Having chosen a total ordering ≺ on the root system Φ, an

ordered pair of roots (α, β) with α, β ∈ Φ is called special (with respect to

the ordering ≺) if α + β ∈ Φ and 0 ≺ α ≺ β. A special pair of roots is called

extraspecial (with respect to the ordering ≺) if for all special pairs (α′, β′)

for which α+ β = α′ + β′ we have α � α′.

So we can conclude that every root in Φ+ that is a sum of two roots in Φ+ is

the sum of exactly one extraspecial pair.
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Examples 3.2.4.

(1) The A2 case

For a Lie algebra of type A2 and with fundamental roots α, β as in 3.1.4,

we have the (long) root elements xα, xβ, xα+β, x−α, x−β and x−α−β. The

only extraspecial pair with respect to the ordering ≺ by height is (α, β). In

the following table we specify the structure constants Nα,β of the brackets

in the A2 case. Here, one can choose δ1 ∈ {−1, 1}
α β α+ β −α −β −α− β

α 0 δ1 0 0 0 −δ1

β −δ1 0 0 0 0 δ1

α+ β 0 0 0 −δ1 δ1 0

−α 0 0 δ1 0 −δ1 0

−β 0 0 −δ1 δ1 0 0

−α− β δ1 −δ1 0 0 0 0

From now on and for the remaining thesis, we choose δ1 = +1 and use this

for all computations in A2.

(2) The B2 case.

In the Lie algebra of type B2 and with the choice of the fundamental roots

α, β as in 3.1.4, the positive roots are denoted by α, β, α+ β and α+ 2β.

The extraspecial pairs are (β, α) and (β, α+ β). The following table gives

the structure constants for a Chevalley basis, with δ1, δ2 ∈ {1,−1}:
α β α+ β α+ 2β −α −β −α− β −α− 2β

α 0 −δ1 0 0 0 0 δ1 0

β δ1 0 2δ2 0 0 0 −2δ1 −δ2

α+ β 0 −2δ2 0 0 δ1 −2δ1 0 δ2

α+ 2β 0 0 0 0 0 −δ2 δ2 0

−α 0 0 −δ1 0 0 δ1 0 0

−β 0 0 2δ1 δ2 −δ1 0 −2δ2 0

−α− β −δ1 2δ1 0 −δ2 0 2δ2 0 0

−α− 2β 0 δ2 −δ2 0 0 0 0 0

From now on and for the remaining thesis, we choose δ1 = δ2 = +1 and

use this for all computations in B2.

Using the notation of the roots in the orthonormal basis as given in 3.1.4,

so α = e1 − e2 and β = e2, we can easily deduce the structure constants

for the C2 root system. Since C2 = B2 via scaling by
√

2 and a 45 degree
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rotation, the tables of structure constants in these two cases are equal.

Using the previous notation, the long roots in the Cn case are ±2ei with i ∈
{1, . . . , n} and the short roots are±(ei±ej) with i 6= j and i, j ∈ {1, . . . , n}.
The (non-unique) correspondence between B2 and C2 is therefore

α = 2e1, β = −e1 + e2 ⇒ α+ β = e1 + e2, α+ 2β = 2e2.

(3) The G2 case

Again with the notations from 3.1.4, we have the positive roots α, β, α +

β, 2α + β, 3α + β and 3α + 2β. As before, we have δi ∈ {+1,−1} for

i = 1, 2, 3, 4.

Table 3 gives the structure constants Nα,β for this root system.

The extraspecial pairs are (α, β), (α, α + β), (α, 2α + β) and (β, 3α + β).

From now on and for the remaining thesis, we choose δ1 = δ2 = δ3 = δ4 =

+1 and use this for all computations in G2.

Note that the matrices obtained from the tables of the structure constants are

skew-symmetric by definition, so any opposite choice of the signs δi (for i in

the index set of the signs), leads either to the same or to the negative (e.g. a

scalar multiple) of the same Lie product and therefore to an isomorphic Lie

algebra.

3.3. Independence of the basis

Previously, we have seen that we can consider Chevalley algebras over an

arbitrary field F by tensoring: gF = F ⊗ gZ. When we work with Chevalley

Lie algebras, we call two Chevalley bases to have the same fixed type if the

multiplication tables with respect to these bases are isomorphic, so they have

the same structure constants.

One of the main results about Chevalley algebras is the following (see e.g.

[Car72]).

Theorem 3.3.1. The automorphism group Aut(g) of a Chevalley Lie algebras

g acts transitively on the set of Chevalley bases of g of a given fixed type.

In particular, there is an automorphism in Aut(g) that transforms any Cheval-

ley basis of g into {hα, α ∈ ∆;±xα, α ∈ Φ}, where by hα, we denote the ele-

ments of the Cartan subalgebra (we will keep this notation in the following).

This allows us in the following to pick a fixed Chevalley basis and root system

for g.
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Table 3. Multiplication table of G2

α
β

α
+
β

2α
+
β

3
α

+
β

3α
+

2
β
−
α

−
β
−
α
−
β
−

2
α
−
β
−

3α
−
β
−

3
α
−

2β

α
0

δ 1
2
δ 2

3δ
3

0
0

0
0

−
3
δ 1

−
2
δ 2

−
δ 3

0

β
−
δ 1

0
0

0
δ 4

0
0

0
δ 1

0
0

−
δ 4

α
+
β

−
2δ

2
0

0
−

3δ
1
δ 3
δ 4

0
0

−
3
δ 1

δ 1
0

δ 2
0

δ 1
δ 3
δ 4

2
α

+
β

−
3δ

3
0

3
δ 1
δ 3
δ 4

0
0

0
−

2
δ 2

0
2
δ 2

0
δ 3

−
δ 1
δ 3
δ 4

3
α

+
β

0
−
δ 4

0
0

0
0

−
δ 1

0
0

δ 3
0

δ 4

3α
+

2
β

0
0

0
0

0
0

0
−
δ 4

δ 1
δ 3
δ 4

−
δ 1
δ 3
δ 4

δ 4
0

−
α

0
0

3δ
1

2δ
2

δ 3
0

0
−
δ 1
−

2
δ 2

−
3
δ 3

0
0

−
β

0
0

−
δ 1

0
0

δ 4
δ 1

0
0

0
−
δ 4

0

−
α
−
β

3δ
1

−
δ 1

0
−

2δ
2

0
−
δ 1
δ 3
δ 4

2
δ 2

0
0

3
δ 1
δ 3
δ 4

0
0

−
2
α
−
β

2δ
2

0
−

2δ
2

0
−
δ 3

δ 1
δ 3
δ 4

3
δ 3

0
−
δ 1
δ 3
δ 4

0
0

0

−
3
α
−
β

δ 3
0

0
−
δ 3

0
−
δ 4

0
δ 4

0
0

0
0

−
3
α
−

2β
0

δ 4
−
δ 1
δ 3
δ 4

δ 1
δ 3
δ 4

−
δ 4

0
0

0
0

0
0

0
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It also implies that the following definition is independent of the choice of the

basis and the root system Φ.

Definition 3.3.2. Let Aut(g) be the automorphism group of a Chevalley Lie

algebra g. Then elements of the form xgα, with α ∈ Φ and g ∈ Aut(g), are

called root elements. If α is a long root (a short root, respectively), xgα is in

particular a long root element (a short root element, respectively).

3.4. Extremal elements in Chevalley algebras

In this section, we analyse the structure of extremal elements in a Chevalley

Lie algebra g and its sl2-graph. We will first see that all long root elements are

extremal. Actually, we will prove that in most cases the extremal elements of

Chevalley algebras are exactly the long root elements. There are exceptions

that will be considered in the end of the chapter.

Definition 3.4.1. For a Chevalley Lie algebra gZ = Y ⊕
⊕

α∈Φ Zxα, we denote

gΦ = 〈xα|α ∈ Φ〉, the linear span of the formal generators xα. By hα :=

[xα, x−α], we denote the elements of the Cartan subalgebra.

Proposition 3.4.2. Long root elements xα with α ∈ Φlong in gΦ fulfill

[[xα, [xα, y]] = cxα

for all y ∈ gΦ, where c ∈ F depends on y.

Proof. Let α ∈ Φ be a long root, β ∈ Φ an arbitrary root, and xα, xβ

be the corresponding elements in g. We verify the identity for any y in the

Chevalley basis. We distinguish the following cases:

If y ∈ Y , we have [xα, [xα, y]] = 〈α, y〉[xα, xα] = 0.

For y = xβ with β ∈ Φ, we have two cases:

(1) β = −α: Applying 3.2.1 , we have

[xα, [xα, xβ]] = [xα, [xα, x−α]] = [xα, hα] = cxα

for c = −〈α, hα〉 ∈ F.

(2) β 6= −α: Here, we use 3.2.1 again. Assuming that α + β is a root,

we have

[xα, [xα, xβ]] = [xα, Nα,βxα+β] = 0
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because 2α+β /∈ Φ, where Nα,β = ±(r+1) and r the biggest number

such that −rα + β is a root. If α + β is no root, then Nα,β = 0, so

[xα, [xα, xβ]] = 0 holds again.

So in all cases, we see that [xα, [xα, y]] is either zero or a multiple of xα. Since

gΦ is spanned by the elements xβ and the elements of Y , the result is proven.

�

Proposition 3.4.3. The Lie algebra gΦ as defined in 3.4.1 is generated by

its long root elements.

Proof. We defined gΦ to be generated by all elements xα with α ∈ Φ,

and we can distinguish between short and long roots in Φ by 3.3.2.

So let xβ with β ∈ Φ be a short root element. We prove: xβ is the sum of at

most three long root elements.

(1) An-case: In this case, all roots are long by definition.

(2) Bn-case: If gΦ of Bn-type, there exists a Lie subalgebra g1 of type

B2 with xβ ∈ g1. We know that for every Lie algebra of type B2, we

can identify β with a short positive root such that the positive roots

of g1 are α, β, α + β and 2β + α. Hereby, β and α + β are the short

roots and α and 2β + α are the long ones. With respect to the given

Chevalley basis, we see:

exp(x−α−β, 1)(xα+2β)︸ ︷︷ ︸
long

= xα+2β︸ ︷︷ ︸
long

− xβ︸︷︷︸
short

− x−α︸︷︷︸
long

,

so

xβ = xα+2β − x−α − exp(x−α−β, 1)(xα+2β)

is a sum of three long root elements.

(3) Cn-case: Parallel to the Bn-case, we can also here find a Lie sub-

algebra g1 of type C2 with xβ ∈ g1. Now we use the correspon-

dence between B2 and C2 mentioned in 3.2.4, so the long roots are

α = 2ε1 and α+ 2β = 2ε2 and the short roots are β = −ε1 + ε2 and

α+ β = ε1 + ε2,

Using this, we can compute:

exp(xα+β, 1)(x−α)︸ ︷︷ ︸
long

= x−α︸︷︷︸
long

+ xβ︸︷︷︸
short

−xα+2β︸ ︷︷ ︸
long

,
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so

xβ = xα+2β − x−α + exp(xα+β, 1)(x−α)

is a sum of three long root elements.

(4) G2-case: In a Lie algebra of type G2, we have the long positive roots

β, 3α+2β and 3α+β, and the short positive roots α, α+β and 2α+β.

As before, we identify the short root element xα and get (assumed

that char(F) 6= 2):

exp(x−α−β, 1)(x3α+2β)︸ ︷︷ ︸
long

+ exp(x−α−β,−1)(x3α+2β)︸ ︷︷ ︸
long

= 2x3α+2β︸ ︷︷ ︸
long

+2 xα︸︷︷︸
short

,

so

xα =
1

2

(
exp(x−α−β, 1)(x3β+2α) + exp(x−α−β,−1)(x3β+2α)

− 2x3β+2α

)
is the sum of three long root elements.

In case that charF = 2, we use the following observation:

exp(x−2α−β, 1)(x3α+β)︸ ︷︷ ︸
long

=x3α+β + xα + 2x−α−β

=x3α+β︸ ︷︷ ︸
long

+ xα︸︷︷︸
short

,

and consequently

xα = x3α+β + exp(x−2α−β, 1)(x3α+β),

so we can express xα as the sum of two long root elements.

(5) In the cases E6,E7,E8 and Dn, all roots are long by definition, so

there is nothing to show.

(6) In the F4-case, every short root element lies in a Lie subalgebra of

type B2, so we can solve this case by referring to the B2 case above.

�

To consider the extremal elements in Chevalley Lie algebras, we need the

corresponding extremal form g as defined in 2.3. We will see that the following

definition gives a suitable choice for g.
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Definition 3.4.4. For gΦ with root system Φ, define l to be the length of a

long root in Φ. For α, β ∈ Φ roots, denote by θα,β the angle between α, β. We

define the following form on gΦ:

g(xα, xβ) = 0 if α 6= −β.

g(xβ, x−β) = 1 if β a long root.

g(xα, x−α) = l2 if α a short root.

g(xα, hβ) = 0.

g(hα, hβ) =



2‖α‖‖β‖cos(θα,β) if β 6= α of different length.

2cos(θα,β) for α 6= β both long.

2l2cos(θα,β) for α 6= β both short.

2 if α = β and α both long.

2l2 if α = β and α both short.

Proposition 3.4.5. The previous choice of the form g on gΦ over a field F
defines an extremal form as defined in 2.3, and the long root elements in gΦ

are extremal with respect to g.

Proof. As we have seen in 2.1.3, the extremality of an element xα follows

if just [xα, [xα, y]] = g(xα, y)xα for all y ∈ g and g an extremal form in the

sense of 2.3 if char(F) 6= 2. In this case, moreover the given choice for g can be

deduced from the relations defining a Chevalley algebra. So assume first that

indeed char(F) 6= 2. We consider the form evaluated on the various elements

of the Chevalley basis.

For the first case, consider α, β ∈ Φ any roots and hγ be any element in Y .

Then

g([hγ , xα], xβ) =g(〈α, γ〉xα, xβ)

=〈α, γ〉g(xα, xβ).

On the other hand, we have

g([hγ , xα], xβ) =g(xα,−[hγ , xβ])

=g(xα,−〈β, γ〉xβ)

=− 〈β, γ〉g(xα, xβ).
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Combining these two equalities, we get 〈α, γ〉g(xα, xβ) = −〈β, γ〉g(xα, xβ), so

(〈α, γ〉+ 〈β, γ〉)g(xα, xβ) = 〈α+ β, γ〉g(xα, xβ) = 0. But if α+ β 6= 0, we can

always choose an γ ∈ Φ such that 〈α+ β, γ〉 6= 0, so g(xα, xβ) = 0.

In the second case, we assume β ∈ Φ to be a long root. Then by Definition

2.1, we have

[xβ, [xβ, xα]] = 2g(xβ, xα)xβ

for any α ∈ Φ. So choose α = −β:

[xβ, [xβ, x−β]] = [xβ, hβ] = 〈β, β〉xβ = 2xβ

since 〈β, β〉 = 2(β,β)
(β,β) . So since char(F) 6= 2, this implies g(xβ, x−β) = 1.

Now assume α ∈ Φ a short root, and let β ∈ Φ be any long root. Now

g(hα, hβ) =g([xα, x−α], [xβ, x−β])(3.6)

=g(xα, [x−α, [xβ, x−β]])

=g(xα, [x−α, hβ])

=g(xα,−〈−α, β〉x−α)

=〈α, β〉g(xα, x−α).

On the other hand, the same expression can be transformed as follows:

g(hα, hβ) =g([xα, x−α], [xβ, x−β])(3.7)

=g([[xα, x−α], xβ], x−β)

=g([hα, xβ], x−β)

=g(〈β, α〉xβ, x−β)

=〈β, α〉g(xβ, x−β).

Since we know from the first case that g(xβ, x−β) = 1, this leads to

〈α, β〉g(xα, x−α) = 〈β, α〉.

Finally, we have

g(xα, x−α) =
〈β, α〉
〈α, β〉

=
(β, α)

(α, α)

(β, β)

(α, β)

=
(β, β)

(α, α)
= l2
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since α is a short root with normalized length 1.

For the next case, we first consider the case where β = α, so we compute

g(xα, hα). We have

g(xα, hα) =g(xα, [xα, x−α])

=g([xα, xα], x−α)

=g(0, x−α) = 0.

Now consider g(xα, hβ) for α 6= β. We have

g(xα, hβ) =g(xα, [xβ, x−β])

=g([xα, xβ], x−β).

Now the following cases can occur: First [xα, xβ] = 0; then of course it

holds g(0, x−β) = 0. Secondly, if α = −β, we get −g(hβ, xβ) = 0 by the

previous considerations. Or finally, if we have [xα, xβ] = Nα,βxα+β, we get

Nα,βg(xα+β, xβ) = 0 using previous cases, since α+ β 6= −β.

For the last case, we distinguish g(hα, hα) and g(hα, hβ) with α 6= β. If

α 6= β and exactly one of them is a short root, then either g(xβ, x−β) = 1 or

g(xα, x−α) = 1. W.l.o.g., assume that β is long, and α is short, so ‖α‖ = 1.

Then (3.7) gives

g(hα, hβ) =〈β, α〉

=
2(β, α)

(α, α)

=
2‖β‖‖α‖cos(θα,β)

‖α‖2

=2‖β‖cos(θα,β).

If α 6= β both long, then g(xβ, x−β) = 1 = g(xα, x−α), so (3.6) as well as (3.7)

lead to

g(hα, hβ) =〈β, α〉 = 〈α, β〉

=
2‖β‖‖α‖cos(θα,β)

‖α‖2
=

2‖α‖‖β‖cos(θα,β)

‖β‖2

=2cos(θα,β).

If α 6= β both short roots, we have

g(hα, hβ) =〈β, α〉g(xβ, x−β) = 〈α, β〉g(xα, x−α)
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=
2‖β‖‖α‖cos(θα,β)

‖α‖2
l2 =

2‖α‖‖β‖cos(θα,β)

‖β‖2
l2

=2l2cos(θα,β).

For g(hα, hα), we have

g(hα, hα) = 〈α, α〉g(xα, x−α) =

2 if α long,

2l2 if α short,

by the previous results.

Obviously, since all coefficients appearing in these computations are in Z by

definition of Chevalley Lie algebras, the previously defined Lie bracket [·, ·]
together with the given definition of g satisfies the Premet identities for all

characteristics 6= 2. So they are also true in a Chevalley Lie algebra F⊗ gZ as

constructed in [Car72] (see section 3.3) where char(F) = 2. So g also defines

an extremal form in this case, and the long root elements are extremal with

respect to this form. �

The previous results enable us to compute the radical rad(g) for gΦ.

Table 4. The cases with nontrivial radical of the extremal form

type char(F) =: p dim(g/ rad(g)) generators of rad(g)

An p|(n+ 1) n2 + 2n− 1 he0−e1 + 2he1−e2 + . . . nhen−1−en

Bn, n even p = 2 2n2 − n− 2 all xα with α ∈ Φ short,

he1−e2 + he3−e4 + · · ·+ hen−1−en

Bn, n odd p = 2 2n2 − n− 1 all xα with α ∈ Φ short

Cn p = 2 2n all xα with α ∈ Φ short,

all hα with α ∈ Φ

Dn, n even p = 2 2n2 − n− 2 he1−e2 + he3−e4 + · · ·+ hen−1+en ,

hen−1−en + hen−1+en

Dn, n odd p = 2 2n2 − n− 1 hen−1−en + hen−1+en

E6 p = 3 77 he3−e4 − he4−e5 + he6+e7 − hem
where em := −1

2

∑8
i=1 ei

E7 p = 2 132 he2−e3 + he4−e5 + he6−e7

F4 p = 2 26 all xα with α ∈ Φ short

G2 p = 3 7 all xα, hα with α ∈ Φ short
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Proposition 3.4.6. Let gΦ be as defined in 3.4.1. Then the radical of the

extremal form g as defined in 3.4.4 is trivial on gΦ, except for the cases listed

in Table 4 on page 66 (note that the dimensions in Table 4 are vector space

dimensions).

Proof. The proof is a straightforward computation of the radicals of the

extremal form; the concrete values of g on the Cartan subalgebra of the Cheval-

ley algebras can be found in the appendix on page 125.

�

Proposition 3.4.7. In general,

gΦ = [g, g] ⊆ g,(3.8)

where g is the Chevalley Lie algebra corresponding to the root system Φ as

defined in 3.2.1, and gΦ as defined in 3.4.1. Moreover, we have gΦ = g, or we

are in one of the following cases: The root datum is of adjoint or intermediate

isogeny type (as defined in 3.1.9) and the underlying field F is of characteristic

2 for Φ of type Bn,Cn,Dn,E7, characteristic 3 for E6 or characteristic p with

p | (n+ 1) or p2 | (n+ 1) for Φ of type An.

Proof. If char(F) 6= 2, we have xα ∈ 〈[hα, xα]〉 ⊆ [g, g], and hα ∈
〈[xα, x−α]〉 ⊆ [g, g], the inclusion gΦ ⊆ [g, g] in 3.8 is obvious. If char(F) = 2,

then we find that xα = [xβ, xγ ] for some roots β, γ ∈ Φ such that γ is in

the α-chain through β with the property γ + β = α. The other direction

[g, g] ⊆ gΦ is also clear regarding the bracket rules of Chevalley Lie algebras

given in 3.2.1.

The second inclusion holds for any Lie algebra g, so it just remains to consider

in which cases there is indeed an equality.

�

In [Hog82], the exact structure and codimension of [g, g] in g is described. We

find that [g, g] ⊂ g exactly in the cases of root data of adjoint and intermediate

isogeny type and characteristic 2 for Φ of type Bn,Cn,Dn,E7, characteristic 3

for E6 and characteristic p with p | (n + 1) or p2 | (n + 1) for Φ of type An.

So just in these cases, we have to distinguish furthermore between gΦ = [g, g]

and g.

Corollary 3.4.8. In all cases where all roots are of one length, we have

rad(g) = Z(gΦ).
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Proof. It is clear that Z(gΦ) ⊆ rad(g). So just the opposite inclusion has

to be shown. There we obviously just have to consider the cases where rad(g)

is nontrivial. So we go case by case.

- An, char(F)|(n+ 1):

Let x ∈ 〈he0−e1 +2he1−e2 +· · ·+nhen−1−en〉, without loss of generality

we can assume x = he0−e1 + 2he1−e2 + · · ·+nhen−1−en . It is sufficient

to consider [x, xei−ej ] for ei − ej ∈ Φ, i 6= j arbitrary, and without

loss of generality assume j > i.

[x, xei−ej ] =
[
he0−e1 + 2he1−e2 + . . . nhen−1−en , xei−ej

]
=
(
〈e0 − e1, ei − ej〉+ 2〈e1 − e2, ei − ej〉

+ · · ·+ n〈en−1 − en, ei − ej〉
)
xei−ej

=〈e0 + e1 + · · ·+ en−1 − nen, ei − ej〉xei−ej .

Now we distinguish two cases. Either j 6= n, and the previous expres-

sion is equal to (1 · 1− 1 · 1)xei−ej = 0, or j = n (i 6= n follows from

j > i), and we have (1 · 1 + (−n)(−1))xei−ej = (n + 1) · xei−ej = 0

since char(F) | n+ 1. Hence x ∈ Z(gΦ).

- Dn, char(F) = 2: Here, without loss of generality let x = hen−1−en +

hen−a+en , and x±ei±ej ∈ gΦ, i 6= j arbitrary. Now

[x, x±ei±ej ] =
[
hen−1−en + hen−a+en , x±ei±ej

]
=〈en−1 − en + en−1 + en,±ei ± ej〉x±ei±ej
=〈2en−1,±ei ± ej〉x±ei±ej
=0 · x±ei±ej = 0.

So x ∈ Z(gΦ).

- E6, char(F) = 3. W.l.o.g., let x = he3−e4−he4−e5+he6+e7−h− 1
2

∑8
i=1 ei

be the element from the radical and y ∈ g be arbitrary. We con-

sider separately y1 = x±ek±ej , j 6= k, j, k ∈ {1, . . . , 8}, and y±2 =

x±( 1
2

∑8
j=1 εkek), where εi = ±1, ε1 = ε2 = ε8 = 1,

∏8
i=1 εi = 1.

[x, y1] =
[
he3−e4 − he4−e5 + he6+e7 − h− 1

2

∑8
i=1 ei

, x±ek±ej

]
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=〈e3 − e4 − e4 + e5 + e6 + e7 +
1

2

8∑
i=1

ei,±ek ± ej〉x±ek±ej

=〈ek + ej +
1

2
(ek + ej),±ek ± ej〉x±ek±ej

=

(
±3

2
± 3

2

)
x±ek±ej

=0 · x±ek±ej = 0.

Now for y±2:

[x,y±2]

=
[
he3−e4 − he4−e5 + he6+e7 − h− 1

2

∑8
i=1 ei

, x±( 1
2

∑8
j=1 εkek)

]
=
〈
e3 − e4 − e4 + e5 + e6 + e7 +

1

2

8∑
i=1

ei,±

1

2

8∑
j=1

εkek

〉x±( 1
2

∑8
j=1 εkek)

=±
(1

4
〈e1 + e2 + e8, e1 + e2 + e8〉

+
3

4
〈e3 + · · ·+ e7, ε3e3 + · · ·+ ε7e7〉

)
x±( 1

2

∑8
j=1 εkek)

=± 6 · 3

4
x±( 1

2

∑8
j=1 εkek) = 0. �

Proposition 3.4.9. The extremal points 〈xα〉, with α ∈ Φ a long root, are

contained in a single connected component of the graph Γsl2(gΦ).

Proof. Let α, β be long roots and 〈xα〉 and 〈xβ〉 be extremal points. If

〈α, β〉 = ±2, then 〈xα〉 and 〈xβ〉 are the same or adjacent.

If 〈α, β〉 = −1, so (α, β) ≤ 0, then α + β is also a root. This implies that

[xα, xβ] = Nα,βxα+β with Nα,β 6= 0. By 2.5.1, it follows that xα and xβ span

a Lie algebra of Heisenberg type (if they generate a sl2, where 〈α, β〉 = ±2

holds, we are in the previous case). Now 2.5.1 also implies that all elements

in 〈xα, xβ〉 except for xα+β are extremal, so especially xα + xβ. This implies

g(x−α, xα + xβ) = g(x−α, xα) + g(x−α, xβ) = 1 as well as g(x−β, xα + xβ) = 1.

We get the chain xα ∼sl2 x−α ∼sl2 xα+xβ ∼sl2 x−β ∼sl2 xβ, which proves that

xα and xβ are in the same connected component of the sl2-graph.

If 〈α, β〉 = 1, the same argument as in the previous case is applicable just

replacing α+ β by α− β.

It remains to consider the case where 〈α, β〉 = 0, so the roots α and β are

orthogonal to each other. If Φ is not of type Cn, we can find a long root γ
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such that 〈α, γ〉 6= 0 and 〈β, γ〉 6= 0 and then apply the above, to conclude that

both 〈xα〉 and 〈xβ〉 are in the connected component of Γsl2 containing 〈xγ〉.
If Φ is of type Cn, the long roots are ±2εi and the short roots are ±(εi ± εj),
where 1<i ≤ j<n. Note that in this case, we have the root lengths

√
2 and 2.

We will show that all elements x±2εi are in the same sl2-component.

Obviously, pairwise the elements x2εi and x−2εi span an sl2-subalgebra. We

need to prove that all these sl2-subalgebras are connected. By way of example,

we consider the pairs x2ε1 , x−2ε1 and x2ε2 , x−2ε2 . Obviously, the result is then

also true for any other two pairs x2εi , x−2εi and x2εi+1 , x−2εi+1 .

Define

d = exp(x−ε1−ε2)(x2ε1) = x2ε1 − xε1−ε2 − x−2ε2 ,

which is a long root element since x2ε1 is one.

Bilinearity of g gives

g(x−2ε1 , d) =g(x−2ε1 , x2ε1)− g(x−2ε1 , xε1−ε2)− g(x−2ε1 , x−2ε2)

=1 + 0 + 0 6= 0.

Moreover

g(x2ε2 , d) =g(x2ε2 , x2ε1)− g(x2ε2 , xε1−ε2)− g(x2ε2 , x−2ε2)

=0 + 0 + 1 6= 0.

So we have a chain 〈x2ε1〉 ∼sl2 〈x−2ε1〉 ∼sl2 〈d〉 ∼sl2 〈x2ε2〉 ∼sl2 〈x−2ε2〉. �

Proposition 3.4.10. Let ḡ := gΦ/ rad(g). Then Γsl2(ḡ) is connected, and if

char(F) 6= 2, then ḡ is simple.

Proof. Assume that x ∈ ḡ is extremal, but not in the same connected

component as some element xα ∈ ḡ with α ∈ Φlong. Since gΦ is generated

by its long root elements, that are in one connected component by 3.4.9, it

follows by 2.5.4 that [x, ḡ] = 0 and x ∈ Z(ḡ) = {0}. So Γsl2(ḡ) is connected,

and therefore ḡ is simple, applying 2.5.4 and 2.5.7. �

If charF 6= 2, we will determine all extremal elements in gΦ.

We assume char(F) 6= 2. Using the previous result, we conclude that each

extremal element in ḡ is in the Aut(gΦ)-orbit of an element t(xα + rad(g)) for

some scalar t ∈ F, where α ∈ Φ a long root.

Considering an extremal element x ∈ gΦ, we know that also x + rad(g) ∈ ḡ

is extremal. We have seen that if char(F) 6= 2, we have Z(gΦ) = rad(g) in all
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cases except for G2 in characteristic 3. This case, we will consider later. So

instead of x+ rad(g) we can write x+ Z(gΦ).

But any extremal element in ḡ, so in particular also x+Z(gΦ), is in the orbit

of t(xα +Z(gΦ)), t ∈ F. W.l.o.g., we can assume x+Z(gΦ) = xα +Z(gΦ). So

x− xα ∈ Z(gΦ). But this implies that x = xα + z for some z ∈ Z(gΦ).

Now we can choose some y ∈ gΦ such that

[xα + z, [xα + z, y]] =[xα + z, [xα, y]]

=[xα, [xα, y]]

=cxα

for some 0 6= c ∈ F (which must exist, since xα + z is a sandwich otherwise).

But since x = xα+z was supposed to be extremal, there also must be a c′ ∈ F
such that cxα = c′(xα+ z). So z = 0, and all extremal elements in gΦ are long

root elements.

Corollary 3.4.11. Let gΦ as before and char(F) 6= 2, and if char(F) = 3

assume that Φ is not of type G2. Then all (non-sandwich) extremal elements

of gΦ are long root elements.

Finally, we consider the exceptional case of a Chevalley Lie algebra of type G2

in characteristic 3.

Proposition 3.4.12. For gΦ with root system Φ of type G2 over a field F of

characteristic 3, the short root elements are in rad(g) and gΦ/ rad(g) is simple.

The extremal elements in gΦ are the long root elements.

Proof. We have already seen that the short root elements are in rad(g)

in 3.4.6. Moreover, gΦ/rad(g) is of type A2 (modulo center). Let x ∈ gΦ

be extremal. Then x = xβ + r, where r ∈ 〈xα, hα|α ∈ Φshort〉 = rad(g), and

β ∈ Φlong. We show that r must be zero here. W.l.o.g. we can assume that

the long root is indeed the one denoted by β in 3.2.4, just by symmetry of

the root system. We have

r =cαxα + c−αx−α + cα+βxα+β + c−α−βx−α−β

+ c2α+βx2α+β + c−2α−βx−2α−β + dαhα + dα+βhα+β + d2α+βh2α+β,

where cα, c−α, cα+β, c−α−β, c2α+β, c−2α−β, dα, dα+β, d2α+β ∈ F.
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If xβ + r is extremal, the equality

[xβ + r, [xβ + r, y]] = k(xβ + r)

must hold for all y ∈ gΦ and some k ∈ F depending on y. A tedious, but

straightforward computation filling in x−β, xα, x−α−β, x3α+β in place of y and

comparing the coefficients on both sides of the resulting equation leads to

cα = c−α = cα+β = c−α−β = c2α+β = c−2α−β = dα = dα+β = d2α+β = 0, so

indeed xβ + r is extremal only if r = 0, as required. �

Remark 3.4.13. Note that in a Lie algebra gΦ of type A2 over a field F of

characteristic 3, there is a non-trivial center Z = rad(g) containing sandwich

elements, see 3.4.6 and 3.4.8. As we have seen before, ḡ := gΦ/ rad(g) is

isomorphic to ḡ′ := g′Φ/ rad(g′), where g′Φ is of type G2 (and g′ the corre-

sponding extremal form). So, the extremal elements of ḡ′ and ḡ are the same

and come from ḡ′. With the previous result, it follows that they are the long

root elements.



CHAPTER 4

Buildings and geometries

In this chapter, we lay the groundwork for the subsequent chapters. It is a

collection of definitions and results that will, all together, enable us to give a

geometric characterization of the Lie algebras considered in the following two

chapters. In the first section, the basic concepts of graphs, Coxeter systems

and buildings are introduced, based on the fundamental book of R. Weiss

[Wei03]. We use it to define root shadow spaces, the subject of an important

result of A. Cohen and G. Ivanyos about the extremal geometry of Lie algebras

and central in Chapter 5.

In the second section, we define point-line spaces and consider their properties,

followed by the central result of [Cuy94]. We use this in Chapter 6 for the

special consideration of the symplectic Lie algebras.

Section 3 prepares the use of the main results of [CI06] and [CI07], giving the

definition and some examples of root filtration spaces.

Finally in section 4, we consider embeddings of point-line spaces into projective

spaces and deduce some helpful properties; we close with the main statement

of [KS01].

4.1. Buildings

We have already been concerned with graphs in chapter 2, but we start here

by giving their formal definitions to implement the notation for subsequent

introduction of buildings and root shadow spaces. We follow [Wei03].

Definition 4.1.1. A graph Γ is a pair (V,E) of two sets V,E where the

elements of V are called vertices and the elements of E are pairs (v, w) of

vertices v, w ∈ V and are called edges. If an edge (v, w) exists in E, we say

that v, w ∈ V are joined by an edge or that they are adjacent, and write

v ∼ w.

A subgraph Γ′ ⊆ Γ = (V,E) is a pair (V ′, E′), where V ′ ⊆ V and E′ ⊆ E,

and is moreover a induced subgraph if for all v, w ∈ V ′ with (v, w) ∈ E

73
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also (v, w) ∈ E′. A path in Γ is a sequence v1, v2, . . . , vn (n ∈ N) of elements

of V with the property that v1 ∼ v2 ∼ · · · ∼ vn. The number of edges going

through a vertex v ∈ V is called the valency of v; it is the cardinality of the

set {(x, y) ∈ E|x = v or y = v}.
Consider an index set I, where we usually choose I = {1, . . . , n}, and whose

elements we call colours. Then an edge-coloured graph Γ = (V,E) is a

graph where there is an element i ∈ I assigned to each edge (v, w) ∈ E, in

which case we write v ∼i w, and say that v and w are i-adjacent. Considering

a subset J ⊆ I, a connected component of the graph obtained from Γ by

deleting all edges in E labelled with a colour in I \ J is called a J-residue of

Γ. In the special case where J = {j}, we call a J-residue of just one colour a

j-panel of Γ. The cardinality of J is called the rank and the cardinality of

I \ J the corank of a J-residue.

An isomorphism of two edge-coloured graphs Γ = (V,E),Γ′ = (V ′, E′) with

the same index set I is a pair of bijections (φ, σ) such that φ : V → V ′ is a

bijection and σ : I → I such that the vertices v and w in V are i-adjacent if

and only if the vertices φ(v) and φ(w) in V ′ are σ(i)-adjacent, in symbols

v ∼i w ⇔ φ(v) ∼σ(i) φ(w).

If hereby σ is the identity, we call the isomorphism special.

A chamber system ∆ is an edge-coloured graph Γ = (V,E) with index set

I, where the elements of V are called chambers and for all i ∈ I, the i-panels

in Γ are complete graphs with at least two vertices. A chamber system is

called thick if each panel has at least three chambers and thin if each panel

has exactly two chambers. A gallery is a path in a chamber system and

the distance of two chambers v, w ∈ V , denoted by dist(v, w), is the length

of a minimal gallery between v and w. A subset of chambers X is called

convex if every minimal gallery of points v, w ∈ X is also contained in X,

and the diameter of X is defined as diam(X) := sup{dist(v, w)|v, w ∈ X}.
A chamber system which is an edge-coloured induced subgraph of a chamber

system ∆ and preserves the colours of ∆ is a subchamber system.

In the previous chapter, we already introduced Weyl groups, which are a

special, namely the finite, case of Coxeter groups. Recall the definition of

Coxeter systems (W,S), Coxeter Diagrams Π and the Coxeter matrix
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(mij) in 3.1.5. The Coxeter group is a generalization of the Weyl group

introduced there, omitting the finiteness assumption.

Definition 4.1.2. Let I = {1, . . . , n} be an index set and mij a Coxeter

matrix with entries mij ≥ 2 and mii = 1 for all i, j ∈ I. Then a Coxeter

group W is a group having a set of generators {ri|i ∈ I} indexed by I such

that W is defined by the relations

W = 〈ri|(rirj)mij = 1 for all i, j ∈ I,mij 6=∞〉.

In particular, r2
i = 1 for all i ∈ I.

Since Coxeter group and Coxeter diagram determine each other (up to auto-

morphism of the diagram), we consider them as a pair and say that W is the

Coxeter groups of type Π and (W,S) is the Coxeter System of type Π.

Let WJ for J ⊂ I be a subgroup of W generated by SJ = {rj |j ∈ J}. We

define ΠJ to be the subgraph of Π obtained by deleting the vertices I \J , and

we get the Coxeter system (WJ , SJ) of type ΠJ (for a proof, see [Bou68, Ch.

iv, §1.8 Thm. 2]).

Definition 4.1.3. For a Coxeter system (W,S) of type Π, we define the

Coxeter chamber system ΣΠ, having as chambers the elements of W and

two chambers x and y are i-adjacent if and only if xri = y for ri ∈ S.

The group of special automorphisms of a Coxeter chamber system ΣΠ is de-

noted by Aut◦(ΣΠ). Notice that left multiplication by an arbitrary element

of W is a special automorphism of ΣΠ, and moreover Aut◦(ΣΠ) ∼= W (for

a proof, see e.g. [Wei03, 2.8]). Using this identification, a reflection is a

nontrivial element s ∈W of order two, i.e. s interchanges two chambers of an

edge. The set of edges that is fixed by a reflection s is called the wall of s and

denoted by Ms. The complimentary set Γ \Ms of the wall of s in the graph

has two connected components, called half-apartments.

Equipped with all this nomenclature, we are now able to introduce those types

of graphs that we are actually concerned about in this thesis.

Definition 4.1.4 (according to [Wei09, Thm 29.35]). Let W be a Coxeter

group of type Π and let I be the vertex set of Π. A building of type Π

with index set I is a chamber system ∆ with index set I with a collection of

subchamber systems A called apartments such that
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(1) Each Σ in A is isomorphic to the Coxeter chamber system ΣΠ.

(2) Each pair of chambers x, y is contained in a common apartment.

(3) For each pair of chambers x, y and each pair of apartments Σ,Σ′

containing both x and y , there exists a special isomorphism from Σ

to Σ′ that fixes x and y.

(4) For each chamber x and each pair of apartments Σ,Σ′ that contain

x and each panel P such that P ∩Σ and P ∩Σ′ are nonempty, there

exists a special isomorphism that fixes x and sends P ∩Σ to P ∩Σ′.

A building is called spherical if its apartments have finite diameter, thick

(resp. thin) if the underlying chamber system is thick (resp. thin), irre-

ducible if the corresponding diagram Π is connected and reducible if Π is

not connected. The rank of a building is the cardinality of the index set I.

Remark 4.1.5. Let Σ be a Coxeter chamber system of type Π. Then Σ is a

thin building of type Π whose collection of apartments is {Σ}. The properties

of a building follow easily since there is only one apartment in the building.

The following result is well known, a proof can be found in [Wei03, Chapter

12].

Theorem 4.1.6. Let ∆ be a thick irreducible spherical building of type Π and

rank at least 3. Then Π is An for n ≥ 2, Bn for n ≥ 2, Cn for n ≥ 3, Dn for

n ≥ 4, E6, E7, E8, F4 or G2.

In the following, we specify the type of a building ∆ if it is known according

to the previous theorem and say that ∆ is a building of type Xn.

The following definition is useful for the construction of an example.

Definition 4.1.7. The Witt index of a quadratic form κ of a vector space

V over a field F is the maximum dimension of a linear subspace of V on which

κ vanishes.

Example 4.1.8. Let (V, f) be a pair of a vector space V over the field F and a

form f on V . We consider all subspaces Vi of V that are singular with respect

to f , i.e. f |Vi = 0. The maximal chain of such singular subspaces can be

written as a flag geometry on subspaces Vi of V with the incidence relation of

inclusion. This means that a chain of inclusions

V1 ⊂ V2 ⊂ V3 ⊂ . . . Vn−1 ⊂ Vn
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is represented by

· · ·
V1 V2 V3 Vn−1 Vn

An Here, we choose the form f on V just to be trivial, so f ≡ 0. There-

fore, the singular subspaces w.r.t. f are simply all subspaces of V .

The obtained flag complex is a building of type An.

Conversely, a spherical building of type An with n ≥ 3 is isomorphic

to the flag complex of an n-dimensional projective space over F.

Bn = Cn Now, let f be non-degenerate quadratic form of Witt index n ≥ 2 (if

V is of odd dimension 2n + 1) or a symplectic form (if V is of even

dimension 2n). The singular subspaces w.r.t. these forms give rise to

a building of type Bn = Cn, that we therefore denote in the following

by BCn (we obtain the Coxeter diagram, with is the Dynkin diagram

without arrows, so there is no distinction between Bn and Cn).

Dn Assume that V is a vector space of even dimension 2n and f is a

non-degenerate quadratic form of Witt index n. The flag complex of

the singular subspaces w.r.t. f is a building of type Dn. We denote

this incidence system by Γ(V ). Assume moreover that each residue

of Γ(V ) of type n has size 2.

Then the corresponding dual polar graph, which is the graph hav-

ing maximal singular subspaces as vertices that are connected by an

edge if and only if they have a common geometric hyperplane, is the

disjoint union of two cocliques C1 and C2 (see [BC13, Lemma 7.8.4]).

The oriflamme geometry ∆(V ) of V is the incidence system over

{1, . . . , n} whose elements of type i = 1, . . . , n − 2 are of the same

type and with the same incidence as in Γ(V ). The elements of type

n− 1 (respectively, n) of ∆(V ) are the members of C1 (respectively,

C2). Elements in C1 ∪ C2 are incident in ∆(V ) if and only if their

corresponding maximal subspaces of V have a common geometric

hyperplane. Now a spherical building of type Dn with n ≥ 4 is the

chamber system of the oriflamme geometry (see [BC13] for details).

To construct the apartments for these buildings in this example, we introduce

frames for the vector space V . A frame for (V, f) is a hyperbolic basis {vi}i∈I
(with respect to the form f) determined up to scalar multiplication. So a frame
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determines a set of one-dimensional singular subspaces Li := {Fvi}i∈I , and any

subset consisting of k of these subspaces generates a k-dimensional singular

subspace. An ordered frame L1, . . . , Ln defines a complete flag

Ui := L1 ⊕ · · · ⊕ Li.

Any reordering of the spaces {Li}i∈I also gives a frame. So the subspaces

obtained as sums of the Li’s form the apartments of the building.

The new point of view on our geometry uses points and lines instead of vertices

and edges. We deepen this in the following section. This enables us to give

examples of spherical buildings and root shadow spaces of the Coxeter families

introduced in the previous chapter.

4.2. Point-line spaces

We introduce a new geometric structure of central importance.

Definition 4.2.1. A point-line space (P,L) is a pair of a set P of points

and a set L of lines, where each element of L is a subset of P of size at least

two.

It is called a partial linear space if any two points are on at most one line,

and a linear space if any two points are on exactly one line.

Let (P,L) be a point-line space. The collinearity graph of (P,L) is the

graph where two (possibly coinciding) points in P are connected if and only

if there is a line in L containing both of these points.

Two points p, q of (P,L) are called collinear if they are adjacent in the

collinearity graph, and the line through them is denoted by pq in this case.

Notice that in this definition, a point is not collinear with itself. The set of

points that is collinear with a point p ∈ P is denoted by p∼.

The point-line space (P,L) is connected point-line space if and only if the

collinearity graph is connected.

A subspace of P is a subset P ′ of P such that whenever p and q are two

collinear points of P ′ are on a line l ∈ L, then l is fully contained in P ′. So

if P ′ is a subspace of (P,L) then P ′ together with the set of lines in L that

meet P ′ in at least 2 points forms a partial linear space. It is clear that the

intersection of any collection of subspaces is again a subspace, and we define

for any subset X of P the subspace generated by X to be the intersection

of all subspaces containing X and denote it by 〈X 〉.
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If any two points of a subspace of a space are collinear, we call it a singular

subspace, and the singular rank of the space is the supremum of all ranks

of maximal singular subspaces.

If we have a point-line space (P,L) and if n ∈ N is the minimal number of

generating elements of (P,L), then n is the generating rank of (P,L).

We now relate some partial linear spaces to buildings. For an irreducible

building ∆ of type Xn, we denote by Φ the root system of the corresponding

Dynkin diagram, as defined in 3.1.2. Since the buildings of type Bn and Cn

are equal, we agree to take the roots from Bn. We can choose a root α of

maximal length form a set of fundamental roots {αi} with i ∈ I, and define

the subset j ⊆ I such that J consists of all i ∈ I with 〈−α, αi〉 6= 0.

In the Dynkin diagram of type Π whose vertices are numbered by {1, . . . , n},
we add a new node numbered 0 and connect this new node with the vertices

carrying a number of the set J as defined above. The root nodes of Xn are

exactly these nodes in J .

Equipped with all this notation, we can construct a point-line space on a

building of type Xn.

Definition 4.2.2. Let ∆ be an irreducible spherical building of type Xn with

root nodes in the set J . We construct a point-line geometry (E ,F) on ∆,

where there points are called J-shadows, defined to be the (I \ J)-residues.

The lines are the sets of all J-shadows that contain chambers form a given

j-panel, called the j-lines, for j ∈ J . The point-line space (E ,F) is the root

shadow space of type Xn,J , or Xn,j , if J = {j}.

Example 4.2.3. We pick up the cases considered in Example 4.1.8 again.

An We have seen that any building of type An is associated to the flag

complex of an n-dimensional projective space and vice versa. A build-

ing of type An is the only irreducible case where the set J of root

nodes has more than one element, namely J = {1, n}. This implies

that, regarding the flag of singular subspaces as in 4.1.8, the points

of the corresponding root shadow space can be identified with inci-

dent point-hyperplane pairs of a projective geometry of rank n. The

lines are of two different types, namely the sets of incident point-

hyperplane pairs (p,H) where p runs over a projective line, and H is
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fixed, or dually, where p is fixed and H runs through the set of hyper-

planes containing a fixed codimension 2 subspace. See also example

4.3.2.

BCn Examples of root shadow space of type BCn,1 can be obtained from

a vector space V equipped with a (nondegenerate) sesquilinear form

f whose singular subspaces give rise to a building of type BC as

in 4.1.8. The points and lines are the singular 1 and 2-dimensional

subspaces of V with respect to the form f . In these partial linear

spaces a point p is collinear to one or all points of a line.

Examples of root shadow spaces of type BCn,2 are the point-line space

where the points are the singular 2-spaces. A line of the root shadow

space is then the sets of all singular 2-spaces on a singular point 1-

space and contained in a singular plane 3-space. We consider the

resulting geometric structure somewhat closer in 4.3.3.

Dn Here again, we have the root node J = {2}. Starting with the ori-

flame geometry of singular subspaces of an orthogonal geometry of

type Dn, root shadow spaces of type Dn,i can be obtained in a similar

way as those of type BCn,i for i ∈ {1, 2} as described above, see 4.3.3.

As we have seen above, buildings give rise to partial linear spaces. These

partial linear spaces have been used to give geometric characterizations of

buildings, just in terms of points and lines. With discuss some of these results.

A projective plane is a point-line space with the following properties:

(1) For any two distinct points, there is exactly one line containing both

of them.

(2) For any two distinct lines, there is exactly one intersecting point.

(3) There are three distinct points such that no line contains more than

two of them.

If all lines in a projective plane have the same number r of points, r is said to

be the order of the projective plane.

Clearly, the points and lines from a projective space P(V ) of some vector space

V form a partial linear space in which any two intersecting lines generate a

subspace isomorphic to a projective plane. One of the earliest and most famous
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results on partial linear spaces, the Veblen and Young Theorem, characterizes

projective spaces, and hence buildings of type An, by this property:

Theorem 4.2.4 (Veblen and Young). Let (P,L) be a connected partial linear

space such that

(1) all lines contain at least 3 points;

(2) any two intersecting lines generate a subspace isomorphic to a pro-

jective plane;

(3) there are two lines in L that do not intersect.

Then (P,L) is isomorphic to the partial linear spaces of 1- and 2-dimensional

subspaces of some vector space V .

A polar space is a partial linear space (P,L) satisfying the so-called ‘one-or-

all’ or Buekenhout-Shult axiom:

A point p is collinear with one or all points of a line `.

If p, q are points of a polar space, then by p ⊥ q we denote that p = q or p and

q are collinear. By p⊥ we denote the set of all points collinear to p. A polar

space is called nondegenerate if p⊥ 6= P for all points p ∈ P.

As we have seen in example 4.2.3, buildings of type BC and D related to

sesquilinear and quadratic forms give rise to polar spaces. More generally,

given a vector space equipped with a sesquilinear form f , one can construct

a polar space whose points are the singular 1-spaces and whose lines are the

singular 2-spaces of V .

Building upon work of Veldkamp and Tits, Buekenhout and Shult [BS74]

showed that under some weak restrictions, the converse is also true. See also

the work of Johnson [Joh90] and Cuypers, Johnson, and Pasini [CJP93].

Theorem 4.2.5. Let (P,L) be a nondegenerate polar space such that

(1) all lines have at least 3 points;

(2) there exist two nonintersectiong lines l,m such that p ⊥ q for all

p ∈ l, q ∈ m.

Then (P,L) is isomorphic to the polar space of 1- and 2-dimensional singular

subspaces of vector space V with respect to a sequilinear or pseudoquadratic

form on V .
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Here, a pseudoquadratic form generalizes the concept of a quadratic form.

The results of Buekenhout and Shult characterize geometries on singular sub-

spaces with respect to sesquilinear forms. The following result, due to Cuypers

[Cuy94], provides a characterization of symplectic spaces in terms of nonsin-

gular 2-spaces.

Before we state the result, we give some definitions.

Definition 4.2.6. Let V be a vector space equipped with a nontrivial sym-

plectic form f . Then denote by P the set of 1-dimensional subspaces of V

outside the radical of f . A hyperbolic line of V is the set of 1-spaces of a 2-

space of V on which f is nondegenerate. By HSp(V, f) we denote the partial

linear space (P,L), where L is the set of all hyperbolic lines of V . We call

HSp(V, f) the geometry of hyperbolic lines of (V, f).

Definition 4.2.7. A projective plane from which a single line and all points

on that line are removed is called an affine plane. A dual affine plane, also

called symplectic plane, is a projective plane from which a single point and

all lines through this point are removed.

A (dual) affine plane corresponding to a projective plane of order r is also of

order r.

It is straightforward to check that inside the geometry of hyperbolic lines of

a symplectic space two intersecting lines generate a symplectic plane. But,

there are more examples of partial linear spaces with this property. Indeed, if

one considers a projective space P and removes from it all the points and lines

that are in or meet a fixed codimension 2 space nontrivially, then what is left

is again a partial linear space in which any two intersecting lines generate a

symplectic plane. In case the projective space P is the projective space of a

vector space V over a commutative field, this does not provide new examples.

However, if the underlying field is not commmuative it does.

Now we can state Cuypers’ result:

Theorem 4.2.8 ([Cuy94], Thm. 1.1). Let (P,L ) be a connected partial linear

space such that

(1) all lines contain at least 4 points;

(2) any pair of intersecting lines is contained in a subspace isomorphic

to a symplectic plane;



4.3. ROOT FILTRATION SPACES 83

(3) there are two lines in L that do not intersect.

Then (P,L ) is isomorphic to the geometry of hyperbolic lines of a symplectic

(V, f) or to the space of points and lines of a projective space P(V ), where

V is of a vector space over a noncommutative field, missing a codimension 2

subspace.

4.3. Root filtration spaces

In the following section, we introduce an additional structure on partial linear

spaces. This leads to the main results of [CI06], [CI07]. We follow their

notation.

Definition 4.3.1. Let (E ,F) be a partial linear space. For {Ei}−2≤i≤2 a quin-

tuple of symmetric relations partitioning E × E , we call (E ,F) a root filtra-

tion space with filtration {Ei}−2≤i≤2 if the following properties are satisfied,

where we write E≤i for ∪j≤iEj .

(A) The relation E−2 is equality on E .

(B) The relation E−1 is collinearity of distinct points of E .

(C) There is a map E1 → E , denoted by (u, v) 7→ [u, v], such that, if

(u, v) ∈ E1 and x ∈ Ei(u) ∩ Ej(v), then [u, v] ∈ E≤i+j(x).

(D) For each (x, y) ∈ E2, we have E≤0(x) ∩ E≤−1(y) = ∅.
(E) For each x ∈ E , the subsets E≤−1(x) and E≤0(x) are subspaces of

(E ,F).

(F) For each x ∈ E , the subset E≤1(x) is a geometric hyperplane of (E ,F).

We call a pair (x, y) ∈ Ei hyperbolic if i = 2, special if i = 1, polar if i = 0,

collinear if i = −1 (that means that only distinct points are considered to be

collinear) and commuting if i ≤ 0.

According to previous definitions, the collinearity graph of (E ,F) is the

graph whose vertices are the points in E and two vertices x, y are joined by

an edge if and only if they are contained in a common line, so if (x, y) ∈ E−1,

so we can denote it by (E , E−1). Two points joined by an edge inside (E , E−1)

are called neighbours.

If (E ,F) satisfies additionally the following two conditions, it is called a non-

degenerate root filtration space.

(G) For each x ∈ E , the set E2(x) is not empty.

(H) The collinearity graph (E , E−1) is connected.
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We describe in detail the filtrations of the root shadow spaces of type An,{1,n}

and BCn,2, Dn,2 from the examples 4.2.3.

Example 4.3.2. We consider the space E = {(p,H)|p ∈ H} of point-hyper-

plane pairs of a projective space, where collinearity of (p,H), (q,K) ∈ E is

given if p = q or H = K. The lines in this space are given as follows: Let

(p,H), (q,K) be collinear, then the line through them consists of all points

(r,M) with r ∈ 〈p, q〉, the line on p and q in the underlying projective space.

This is the root shadow space of type An,{1,n}, as introduced in 4.2.3, provided

the dimension of the underlying vector space is n+1. We show that it is also a

root filtrations space. The relations on pairs of points x := (p,H), y := (q,K)

are defined as follows:

(-2) x ∼−2 y ⇔ p = q,H = K

(-1) x ∼−1 y ⇔ p = q or H = K but not (p,H) = (q,K)

(0) x ∼0 y ⇔ p ∈ K, q ∈ H, but H 6= K, p 6= q

(1) x ∼1 y ⇔ q ∈ H but p /∈ K or p ∈ K but q /∈ H
(2) x ∼2 y ⇔ p /∈ K, q /∈ H.

The properties (A) and (B) of 4.3.1 are fulfilled by construction of the space.

For property (C), assume that (x, y) ∈ E1, and furthermore w.l.o.g. assume

that q ∈ H but p /∈ K. We define [x, y] := (q,H) ∈ E . Now consider some

z ∈ Ei(x) ∩ Ej(y), say z = (r, L) ∈ E . We have to show that (q,H) ∈ Ei+j(z).
Therefore, we consider the possible cases for i, j ∈ {−2, . . . , 2} that can occur,

and w.l.o.g. assume i ≤ j. If i = −2, then j = −2 gives the trivial case

with x = y = z and there is nothing to show. The only other possible case if

i = −2 and therefore x = z is j = 1, since (x, y) ∈ E1. But z = x implies that

(q,H) = [x, y] ∼−1 z = (p,H), so indeed [x, y] ∈ E≤−1(z). If i = −1 = j, we

have by definition of x that r = p of L = H and by definition of y that r = q

or L = K. The only combination of these assumptions that does not lead to

a contradiction is L = H and r = q, which implies that (q,H) ∈ E−2(r, L).

Now consider i = −1, so r = p or L = H, and j = 0 implying r ∈ K, q ∈ L
but L 6= K and q 6= r. The required (q, L) ∈ E≤−1(r, L) is equivalent to

q = r or H = L, and the latter is obviously fulfilled. The next possible

combination i = j = 0 implies that r ∈ H, p ∈ L but H 6= L, p 6= r as well as

r ∈ K, q ∈ L but K 6= L, r 6= q. So in particular q ∈ L, r ∈ H,H 6= L, r 6= q,

which is equivalent to (q,H) ∈ E0(r, L). Next, let = −1 and j = 1. The

first one implies r = p or L = H and the second r ∈ K but q /∈ L or
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q ∈ L but r /∈ K. The only combinations of these cases that do not lead

to a contradiction are r = p, r ∈ K, q /∈ L and r = p, q ∈ L, r /∈ K, and

both imply that (q,H) ∈ E≤0(r, L). The last (nontrivial) case to consider is

i = 0, j = 1. We have p ∈ L, r ∈ H,H 6= L, r 6= p and either q ∈ L, r /∈ K or

q /∈ L, r ∈ K. Since the E2-case requires r /∈ H, it cannot occur and we have

(q,H) ∈ E≤1(r, L).

Considering property (D), assume (x, y) ∈ E2. Then by definition p /∈ K

and q /∈ H. Now suppose that z := (s,M) ∈ E≤0(x) ∩ E≤−1(y) 6= ∅. By

z ∈ E≤0(x), it follows s ∈ H and p ∈ M . By (s,M) ∈ E≤−1(y), it follows

either q = s or M = K. In the first case, we have by assumption that

s = q /∈ H, a contradiction. In the second case, it follows p ∈ M = K, also a

contradiction. So it follows E≤0(x) ∩ E≤−1(y) = ∅. Property (E) is obviously

fulfilled, since E≤−1(x) is the set of all hyperplanes containing a distinct point

p if x = (p,H), and E≤0(x) is the intersection of all hyperplanes containing p.

The subset E≤1(x) is the set of all hyperplanes having nonempty intersection

with H for x = (p,H). This is a geometric hyperplane of E and (F) holds.

Example 4.3.3. Here, we consider the root shadow spaces of type BCn,2 and

Dn,2, as described in 4.2.3. Notice that the root shadow spaces of type BCn,1

are the polar spaces themselves. Let (P, E) be a nondegenerate polar space.

Recall that we defined in 4.2.3 the point-line space (E ,F) by taking the lines

of the polar space as our points (so the points here are the lines in the BCn,1

type) and F to be the set of all lines through a point p in a singular plane

π. The collinearity relation for two elements l,m ∈ E is that l,m must span a

singular plane. We define the following relations:

(-2) l ∼−2 m⇔ l = m.

(-1) l ∼−1 m⇔ l,m span a singular plane.

(0) l ∼0 m ⇔ l,m either span a singular subspace not contained in a

plane or l,m intersect but do not span a singular plane.

(1) l ∼1 m⇔ there is a unique line n such that the span of n and l and

the span of n and m are singular planes. Define n := [l,m] in this

case.

(2) l ∼2 m if none of the previous cases occurs.

This defines a root filtration space on (E ,F), as one can deduce following the

same steps as in 4.3.2.
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The following Lemma follows from several technical results in [CI06]. A proof

can be found in [Rob12], Lemma 4.2.8.

Lemma 4.3.4. Let (E ,F) be a nondegenerate root filtration space. Then its

defining relations can be characterized by the collinearity graph (E , E−1) in the

following way.

(-2) (x, y) ∈ E−2 if and only if x = y.

(-1) (x, y) ∈ E−1 if and only if x and y are distinct collinear points.

(0) (x, y) ∈ E0 if and only if x and y have at least two common neighbours.

(1) (x, y) ∈ E1 if and only if x and y have a unique common neighbour.

(2) (x, y) ∈ E2 if and only if x and y have no common neighbours.

Furthermore, pairs of points in E−2, E−1, E0∪E1 and E2 have a distance between

them in the collinearity graph (E , E−1) of 0, 1, 2 and 3, respectively.

We have seen that the root shadow spaces of type An,{1,n} and BCn,2 are root

filtration spaces. The following theorem gives the general statement.

Theorem 4.3.5 ([CI07, Thm. 36]). Suppose that Xn is an irreducible Dynkin

diagram, n ≥ 2. Then the root shadow space Γ of type Xn,J (where J denotes

the set of root nodes for Xn, according to 4.2.2), is either a non-degenerate

polar space, namely in case that Xn,J is of type Cn,1, or a non-degenerate root

filtrations space for all other types. If the latter is the case, then Γ is a root

filtration space with respect to the relations from 4.3.4.

Proof. The first part is Thm. 36 from [CI07], and the second statement

follows from the remarks on page 1438 in [CI07]. �

The following is the main result from [CI07] and gives us the opposite assign-

ment.

Theorem 4.3.6 ([CI07, Thm. 1]). Let Γ = (E ,F) be a non-degenerate root

filtration space. If the singular rank of Γ is finite, then Γ is a root shadow

space of type An,{1,n} (n ≥ 2),BCn,2 (n ≥ 3),Dn,2 (n ≥ 4), E6,2, E7,1, E8,8,

F4,1 or G2,2.

4.4. Polarized embeddings

The following leads to the main result of [KS01] that will be given in 4.4.6; we

use it in the next chapter. We follow the notation in [KS01].
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Definition 4.4.1. Let V be a vector space over the field F. The projective

space P(V ) of V is the point-line geometry Γ = (P,L), where the projective

points P are the 1-dimensional subspaces and the projective lines L are the

2-dimensional subspaces of V , with the natural incidence.

A projective embedding of Γ over F is an injective map e from P to a set

of points that span P(V ), such that the image of the point-shadow of each line

comprises all projective points of a projective line. Note that this induces an

injection from L into the line set of P(V ).

Let now e : Γ → P(V ) be such an embedding and t : V → W be a surjective

semilinear transformation, with the property that K := ker(t) intersects any

span 〈p, q〉 for any pair (p, q) ∈ P×P trivially. Then e can be carried onwards

to the coset of K, and we obtain an embedding e′ : Γ→ P(W ). We call e′ the

morphic image of e, or we say that e′ is derived from e or e covers e′. In

particular, e′(p) := t(e(p)) ∈W is a 1-space in W for all p ∈ P.

If all embeddings e′ of Γ can be obtained in such a way from e, we call e

absolute or absolute universal.

Let now Γ = (E ,F) be a nondegenerate root filtration space.

Let ψ : Γ→ P be an arbitrary projective embedding of Γ. We call ψ polarized

if and only if ψ(E≤1(x)) is contained in a hyperplane of P for all x ∈ E .

The radical Rψ of a polarized embedding ψ is the intersection

Rψ :=
⋂
x∈E
〈ψ(E≤1(x))〉.

Here 〈ψ(E≤1(x))〉 denotes the subspace of P generated by ψ(E≤1(x)).

Lemma 4.4.2. Let ψ : Γ→ P be a projective embedding covering of a polarized

embedding φ. Then ψ is polarized.

Moreover the kernel of the projection of ψ to φ is contained in the radical of

ψ.

Proof. The first statement is trivial.

Now suppose the kernel K of the projection τ of ψ to φ is not contained in

the radical of ψ. Then there is an element x ∈ E such that 〈E≤1(ψ(x))〉 does

not contain K. But that implies that the image under τ of the hyperplane

〈E≤1(ψ(x))〉 of P is the full space P(g). This contradicts that φ is polarized. �

Proposition 4.4.3. Let ψ be a cover of a polarized embedding φ of Γ. If the

radical of φ trivial, then φ is isomorphic to ψ modulo its radical Rψ.
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Proof. The projection τ of ψ onto φ maps the radical of ψ into the radical

of φ. However, since the radical of φ is trivial, we find the kernel of τ to be

the radical Rψ. �

Theorem 4.4.4. Suppose Γ admits an absolute universal embedding and a

polarized embedding φ with trivial radical.

Then any polarized embedding ψ of Γ covers φ.

Proof. Let χ be the absolute universal embedding of Γ. By Lemma

4.4.2, χ is polarized and both ψ and φ are isomorphic to the quotient of χ by

a subspace Kψ and Kφ, respectively, of its radical Rχ.

Since the radical of φ is trivial, we find Kφ to be equal to Rχ. But this implies

that Kψ ⊆ Kφ and ψ clearly covers φ. �

Theorem 4.4.5. Suppose (P,L) is a point-line geometry admitting an absolute

universal embedding ψ. If φ is a polarized embedding of (P,L), then

φ/Rφ ∼= ψ/Rψ.

Proof. Lemma 4.4.2 shows that φ ∼= ψ/R for some R ⊆ Rψ. The radical

of ψ/R is Rψ/R ∼= Rφ, and we get

φ/Rφ ∼= (ψ/R)/Rφ ∼= (ψ/R)/(Rψ/R) ∼= ψ/Rψ.

�

We close this section with the following result of A. Kasikova and E. Shult:

Theorem 4.4.6 ([KS01]). Let Γ = (E ,F) be a root filtration space of type

BCn,2, Dn,2, E6,2, E7,1, E8,8 or F4,1. Then Γ admits an absolute universal

embedding.

Proof. Kasikova and Shult prove the existence for each of these cases in

[KS01]. The case BCn,2 for n ≥ 4 can be found in [KS01, 4.8] and C3,2 in 4.7,

Dn,2 for n ≥ 5 is covered in 4.5 and the special case D4,2 is treated in 4.1, E6,2,

E7,1 and E8,8 in 4.11, and F4,1 in 4.9.

�

The results in this section on polarized embeddings have also been obtained

by R. Blok, see [Blo11].



CHAPTER 5

From the geometry to the Lie algebra

In this chapter we use the structures introduced in the previous chapter for

a geometric characterization of Lie algebras generated by extremal elements.

So, we start with a Lie algebra g that is generated by its extremal elements

and equipped with an extremal form g as defined in 2.3.3.

5.1. The extremal geometry

In order to assign a geometry to the given Lie algebra g, we follow the method

explained in [Coh12], and firstly construct a point-line-geometry out of the

extremal elements E(g).

In 2.1.5, we introduced names for the five possible relations on a pair (x, y)

of extremal elements. Recall that we named these relations as follows:

(-2) (x, y) ∈ E−2 if and only if x and y are linearly dependent;

(-1) (x, y) ∈ E−1 if and only if x and y are linearly independent, [x, y] = 0,

and λx+ µy ∈ E for all (λ, µ) ∈ F2, (λ, µ) 6= (0, 0);

(0) (x, y) ∈ E0 if and only if [x, y] = 0 and (x, y) is not in E−2 ∪ E−1;

(1) (x, y) ∈ E1 if and only if [x, y] 6= 0, but gx(y) = 0;

(2) (x, y) ∈ E2 if and only if gx(y) 6= 0.

Note that gx(y) = 0 whenever (x, y) ∈ E≤1 and [x, y] 6= 0 for all (x, y) ∈ E≥1.

Moreover, as follows from Lemma 24 [CI06] and Lemma 5.3.5 that we state

later in this chapter, the sum x + y of two commuting linearly independent

extremal elements x and y is extremal if and only if (x, y) ∈ E−1.

As in 2.1.5, the symmetric relations {Ei}2i=−2 correspond to {Ei}2i=−2 in a

natural way via (Fx,Fy) ∈ Ei if and only if (x, y) ∈ Ei for i ∈ {−2, . . . , 2}.
The five relations {Ei}2i=−2 on E are disjoint where E−1 is collinearity and E−2

is equality.

Definition 5.1.1. Let E be the set of projective extremal points of the Lie

algebra g and let F be the set of projective lines Fx + Fy for (x, y) ∈ E−1.

Hereby, we identify a 2-space with the set of 1-spaces it contains. Then the

89
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point-line space (E ,F) together with the previously defined relations Ei, i ∈
{−2, . . . , 2} on E define the extremal geometry of g. We usually denote it

by Γ(g).

So the unique line in F containing two incident points Fx and Fy is Fx+ Fy,

which makes (E ,F) a partial linear space.

In the previous chapter, we already have seen extremal geometries of classical

Lie algebras, namely in terms of root filtration spaces. The relations E−2≤i≤2

of root filtration spaces are exactly the relations of the extremal geometry, as

defined above. The extremal elements of the classical families of Lie algebras

were computed in section 2.4. In 4.3.2, we discussed the case of a root shadow

space An,{1,n}, where the point-hyperplane pairs of a polar space define the

points in the extremal geometry. The root shadow space for Lie algebras of

the families Bn,Cn and Dn were considered in 4.3.3. Hereby, the root shadow

space of type BCn,1 is a polar space, so in this case we find E−1 = E1 = ∅. The

other root shadow spaces and therefore the (connected components of the)

extremal geometries are nondegenerate root filtration spaces.

We will use the following fundamental results of Cohen and Ivanyos (see [CI06]

and [CI07]) in the next section.

Theorem 5.1.2 ([CI06], Theorem 28). Suppose that g is a Lie algebra, gener-

ated by its extremal elements E(g) and with extremal form g, where the radical

of g is trivial, i.e. Rad(g) = 0. Then the extremal geometry (E ,F) of g is

a root filtration space with filtration {Ei}2i=−2 as defined above. Let Bi be the

connected components of (E , E2) and let gi be the Lie subalgebra generated by Bi
of g. Then each Bi is a nondegenerate root filtration space or a root filtration

space without lines, g is the direct sum of Lie subalgebras gi and [gi, gj ] = 0

whenever i 6= j. In particular, gi is an ideal of g.

By the above result we are able to use the classification of root filtration spaces

as discussed in 4.3.6 and find the following.

Theorem 5.1.3 ([CI07], Theorem 1). A connected compontent of the extremal

geometry (E ,F) of a finite dimensional Lie algebra g, generated by its set

of extremal elements and equipped wth a nondegenerate extremal form g, is

isomorphic to a root shadow space of type An,{1,n},BCn,2,Dn,2, E6,2, E7,1, E8,8,

F4,1 or G2,2 or consists of a single point.
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Proof. The results follows from Theorem 5.1.2 and Theorem 4.3.6 to-

gether with the observation that extremal points in different components B1

and B2 of (E , E2) are not collinear, so that these components are unions of

connected subspaces of the extremal geometry. Indeed, suppose x ∈ B1 and

y ∈ B2 are collinear, then, as g is nondegenerate, there is a z ∈ E2(x). Then it

follows necessarily that z 6∈ E2(y). But, as E≤1(y) is a geometric hyperplane,

see 4.3.1(F), that implies that z ∈ E2(v) for each extremal point v on the

line through x and y different from y. In particular, all these points v are in

B1. Similarly we can prove that all points v on the line through x and y but

different from x are in B2. But, as the line through x and y contains at least

three points, we find that there is a point in the intersection of B1 and B2.

This contradiction proves that points from different components of (E , E2) are

never collinear in (E ,F). �

Note that the labeling of the Coxeter diagrams follows [Bou68].

5.2. The embedding

We fix the properties that we assume for Lie algebras in this chapter. If

not mentioned otherwise, any Lie algebra in the remainder of this chapter is

supposed to fulfill these conditions.

Setting 5.2.1. By g we denote a Lie algebra generated by its set E of extremal

elements and with nondegenerate extremal form g. By Γ = (E ,F), we denote

the extremal geometry of g. We assume Γ to be nondegenerate and connected

so in particular E−1 6= ∅.

Considering g as a vector space, it carries a natural projective geometry

via the natural incidence geometry of all proper subspaces of g. Hereby, the 1-

subspaces of g are the projective points and the 2-subspaces are the projective

lines. We denote this point-line geometry by P(g) and call it the projective

space on g.

The natural projective embedding of the extremal geometry Γ = (E ,F) into

P(g) is defined to be the injection

φ : E ↪→ projective points of P(g),

so for x ∈ E , we have

φ(x) = x.
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For any line l ∈ F , the restriction of φ to all points of l is the full set φ(l) of

points of some projective line and, as the extremal points in E linearly span g

(see 2.3.1), the set φ(E) spans P(g). We find

φ : Γ ↪→ P(g)

p ∈ E 7→ 1-spaces = points,

l ∈ F 7→ 2-spaces = lines.

Lemma 5.2.2. The embedding φ is polarized.

Proof. For each x ∈ E we find φ
(
E≤1(x)

)
to be contained in the hyper-

plane {y ∈ g | g(x, y) = 0}. �

Theorem 5.2.3. Suppose g1 and g2 are two Lie algebras as in the setting

5.2.1, each of them generated by its set of nondegenerate extremal elements

and equipped with a nondegenerate extremal form. Assume their corresponding

extremal geometries Γ1 and Γ2 are isomorphic to each other and admit an

absolute universal embedding. Then their natural embeddings are equivalent.

Proof. We can apply the results of section 4.4 and find by 4.4.4 that

the natural embeddings φ1 and φ2 are equivalent, provided their radicals are

trivial.

Since, for i = 1, 2, the radical Ri of embedding φi is the intersection of all the

subspaces 〈E≤1(x)〉 where x runs through the set of extremal points of gi, we

find these radicals to be contained in the radical of the extremal form gi of gi.

As the radical of the forms g1 and g2 are trivial by assumptions, the radicals

of the embeddings are also trivial. �

In view of the Theorems 5.1.2 and 5.1.3 and using the classification given in

5.1.3, we obtain the following.

Corollary 5.2.4. Let g1and g2 be Lie algebras as in 5.2.1. Assume the

corresponding extremal geometries Γ1 and Γ2 are isomorphic to each other

and to a connected root shadow space of type BCn,2, Dn,2, E6,2, E7,1, E8,8, or

F4,1, where n ≥ 3. Then their natural embeddings are equivalent.

Proof. As stated in 4.4.6, Kasikova and Shult [KS01] show that Γi, with

i = 1, 2 admits an absolute universal embedding. So Theorem 5.2.3 applies. �
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Remark 5.2.5. For root shadow spaces of type An,{1,n} and of type G2,2 it is

not known whether they admit an absolute universal embedding.

The results of Völklein [Völ89] imply that the natural embeddings of the ex-

tremal geometries of type An,{1,n} and of type G2,2 of the Chevalley Lie alge-

bras of type An and G2 do have a universal cover.

Blok and Pasini [BP03] obtain some partial results on embeddings of the

geometries of type An,{1,n} under some extra conditions on the underlying

field. Van Maldeghem and Thas [TVM04] show that the natural embedding of

finite dual Cayley hexagons in the Chevalley Lie algebra is, up to isomorphism,

the unique embedding of the hexagon in dimension ≥ 14.

In the next section we will prove that given an embedding of the extremal

geometry of a Lie algebra there is, up to a scalar multiple, at most one Lie

bracket corresponding to it. This implies that the Lie structures g1 and g2, in

the cases considered in 5.2.4 are isomorphic.

5.3. Uniqueness of the Lie product

Let g be a Lie algebra generated by its set of extremal elements E with respect

to a nondegenerate extremal form g. As before let Γ = (E ,F) be the extremal

geometry of g. In the previous section we have seen that the natural embedding

of Γ into the projective space P(g) is uniquely determined (up to isomorphism),

if Γ admits an absolute universal embedding. Our goal is to prove that not

only the embedding of the extremal geometry is uniquely determined, but that

also the Lie product is determined up to scalar multiples.

Our strategy to show this uniqueness of the Lie product (up to scalar multiples)

for a given embedded extremal geometry is to prove uniqueness first on small

subspaces and then extend the result to the full projective space by building

it up by small subalgebras. We consider these subalgebras in small dimension

in detail in the following.

So, in this section we assume the following.

Setting 5.3.1. Let g be a Lie algebra as in 5.2.1, with Γ naturally embedded

into the projective space P(g).

Let [·, ·] denote the Lie product on g. We consider a second Lie product [·, ·]1
defining a Lie algebra g1 on the vector space underlying g with extremal form

g1 and also Γ as extremal geometry.
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We want to show that [·, ·]1 = λ[·, ·] for some fixed λ ∈ F∗. Notice that the

relations Ei with −2 ≤ i ≤ 2 are determined by Γ (see 5.1.1). So elements

x, y ∈ E are in relation Ei in g if and only if they are in relation Ei in g1.

Lemma 5.3.2. Let (x, y) ∈ E≤1, then there is a λ ∈ F∗ such that [x, y]1 =

λ[x, y].

Proof. If (x, y) ∈ E≤0, then [x, y]1 = 0 = [x, y].

If (x, y) ∈ E1, then both [x, y] and [x, y]1 span the unique point in E collinear

to both 〈x〉 and 〈y〉. So indeed, there is a λ ∈ F∗ with [x, y]1 = λ[x, y]. �

Now we concentrate on the subalgebra of g generated by a hyperbolic pair.

Such a subalgebra is isomorphic to sl2(F).

We examine sl2(F) a bit closer.

Example 5.3.3. Recall the definition of classical linear Lie algebras given in

section 2.4. The Lie product of a Lie algebra structure on V ⊗ V ∗, where

v, w ∈ V, φ, ψ ∈ V ∗, is given by

[v ⊗ φ,w ⊗ ψ] = φ(w)(v ⊗ ψ)− ψ(v)(w ⊗ φ)

as defined in 2.4.1 and the extremal elements with respect to the extremal

form g(v⊗φ,w⊗ψ) = −ψ(v)φ(w), introduced in 2.4.3, are the pure tensors (we

proved this in 2.4.4 and 2.5.1). We consider the case where V is 2-dimensional

and denote the corresponding Lie algebra by g. Then g is isomorphic to the

special linear Lie algebra sl2(F).

Any hyperbolic pair of elements (x, y) ∈ E2(g) generates the algebra g. Let

x := e1 ⊗ φ2 and y := e2 ⊗ φ1,

where {e1, e2} denotes the standard basis of the underlying 2-dimensional

vector space V and {φ1, φ2} a dual basis such that φi(ei) = 1 and φi(ej) = 0

for i, j ∈ {1, 2}, i 6= j. Written as matrices, we have

e1 ⊗ φ2 =

(
0 1

0 0

)
,

e2 ⊗ φ1 =

(
0 0

1 0

)
,

[e1 ⊗ φ2, e2 ⊗ φ1] =

(
1 0

0 −1

)
,
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so the span is given by matrices of the form

m =

(
c a

b −c

)
,

with a, b, c ∈ F, and the (nonzero) pure tensors correspond to the nonzero

elements where ab + c2 = 0, which are exactly those matrices of rank 1. We

see that

g(x, y) = g(e1 ⊗ φ2, e2 ⊗ φ1) = −φ1(e1)φ2(e2) = −1.

So these extremal elements form a quadric which can be described by ab =

g(x, y)c2.

Below, we will see that the extremal elements are exactly the matrices of rank

one. To consider the case of a Lie subalgebra generated by a hyperbolic pair

where charF = 2, we use the following results of [CI06].

Lemma 5.3.4 ([CI06, Lemma 21]). Let x ∈ E(g), y ∈ g and gx(y) 6= 0. Then

x, y, [x, y] are linearly independent. If y ∈ E(g), then the subalgebra generated

by x and y is isomorphic to sl2(F).

Lemma 5.3.5 ([CI06, Lemma 27]). Let g be a Lie algebra generated by its set of

extremal elements E and let x, y be linearly independent extremal elements with

x not a sandwich in g. If λx+ µy ∈ E for some λ, µ ∈ F∗, then (x, y) ∈ E−1.

Proposition 5.3.6. Let (x, y) be a hyperbolic pair of g. Then the subalgebra

of g generated by x and y is 3-dimensional. If charF 6= 2, the extremal points

inside this subalgebra form a quadric. If charF = 2, the extremal elements can

be found in the union of a quadric and the center of the subalgebra.

Proof. By 5.3.4, the Lie subalgebra h generated by x and y is isomorphic

to sl2(F). So we identify h with sl2(F) as in Example 5.3.3. In particular, we

can identify

x =

(
0 1

0 0

)
, y =

(
0 0

1 0

)
.

Suppose an element

z = ax+ by + c[x, y] =

(
c b

a −c

)
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is extremal for some a, b, c ∈ F. With exp(x, t) =

(
1 t

0 1

)
for t ∈ F, the

element

z′ := exp(x, t) · z · exp(x,−t) =

(
1 t

0 1

)(
c b

a −c

)(
1 −t
0 1

)

=

(
c+ at −t(c+ at) + b− ct
a −ta− c

)

is also extremal. Now suppose that a 6= 0. If we choose t = a−1c, so c+ta = 0,

and we obtain

z′ =

(
0 b− ct
a 0

)
.

It follows z′ = a · y + (b − tc) · x. By Lemma 5.3.5, this is just possible if

b − ct = 0 (since a 6= 0 and (x, y) ∈ E2). Then we have b = ct = a−1c2, and

therefore

c2 − ab = c2 − aa−1c2 = 0,

so z is of rank one.

If we suppose b 6= 0, a similar argument with exp(y, t) =

(
1 0

t 1

)
leads to

same result that z is of rank one.

It remains to consider the case where a = b = 0. Here, we have z =(
c 0

0 −c

)
, so z = c·[x, y] and therefore not extremal if c 6= 0 and charF 6= 2.

If charF = 2, the element z clearly lies in the center Z of g. This completes

the proof.

�

Lemma 5.3.7. Let (x, y) be a hyperbolic pair generating a subalgebra h of g.

Then there is a λ ∈ F∗ such that for all v, w ∈ h we have [v, w]1 = λ[v, w].

Proof. Without loss of generality suppose that g(x, y) = 1. Inside both

g and g1 the elements x and y generate a subalgebra isomorphic to sl2.

Inside Γ(g) we take two distinct lines l1 and l2 on 〈x〉 with [l1, l2] = 〈x〉.
Notice that such lines exist. For i = 1, 2, fix a point 〈xi〉 on li which is at

distance 2 from 〈y〉. Let yi := [y, xi]. Then for each point 〈z1〉 on the line

through 〈x1〉 and 〈y1〉, there is a point 〈z2〉 on the line through 〈x2〉 and 〈y2〉
which is in relation E1 with 〈z1〉. This follows from the observation that the



5.3. UNIQUENESS OF THE LIE PRODUCT 97

group 〈Exp(x),Exp(y)〉 leaves the lines 〈x1, y1〉 and 〈x2, y2〉 invariant and is

transitive on the points of these lines.

We claim that both in g1 and g2 the unique common neighbour 〈z〉 = 〈[z1, z2]〉
of 〈z1〉 and 〈z2〉 is inside the subalgebra generated by x and y.

Indeed, within Aut(g) we find that the elements of Exp(〈x〉) fix, for i = 1, 2,

the point 〈xi〉 as well as the line spanned by xi and yi. Moreover, Exp(〈x〉)
acts transitively on the points of this line different from 〈xi〉. Thus there is

an element g ∈ Exp(〈x〉) that maps 〈y1〉 to 〈z1〉. As g leaves the line spanned

by x2 and y2 invariant, it maps 〈y2〉 to the unique point on this line which

is at distance 2 from 〈z1〉, the point 〈z2〉. But then 〈y〉 is mapped to 〈z〉 by

the element g, as 〈z〉 is the unique common neighbor of 〈z1〉 and 〈z2〉. This

clearly implies that 〈z〉 is inside the subalgebra of g generated by x and y. In

particular, x, y and z linearly span the subalgebra of g generated by x and y.

But similarly, these three elements are also contained in the subalgebra of g1

generated by x and y and span this subalgebra. So, these subalgebras have to

coincide as linear subspaces.

The above proves more. Indeed, it shows that the point 〈z〉 is in the Exp(〈x〉)-
orbit of 〈y〉 both with respect to [·, ·] and to [·, ·]1. Actually, these two orbits

have to be equal.

In g this orbit, together with 〈x〉, consists of all 1-spaces spanned by elements

ax+ by + c[x, y],

where a, b, c ∈ F satisfy ab = c2.

Now, suppose

[x, y]1 = αx+ βy + γ[x, y],

for some fixed α, β, γ ∈ F. Note that [x, y]1 6= 0 6= [x, y], since (x, y) is a

hyperbolic pair with respect to both Lie products by the general assumptions

in 5.3.1. Note moreover that γ 6= 0, since otherwise the result of 5.3.4 leads

to a contradiction.

The images of y under elements from Exp(〈x〉), but now with respect to [·, ·]1,

are of the form

y + λ[x, y]1 + λ2g1(x, y)x = (λ2g1(x, y) + λβ)x+ (1 + λα)y + λ2γ2[x, y]

where λ ∈ F. These elements are also extremal in g and hence satisfy the

equation

(1 + λα)(λ2g1(x, y) + λβ) = λ2γ2.
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This implies that the qubic equation

(1 + αX)(g1(x, y)X2 + βX) = γ2X2

has |F| zeros. So, if |F| > 3, this means

α = β = 0, and γ2 = g1(x, y),

and we deduce

[x, y]1 = γ[x, y].

But this implies that [ , ]1 is a scalar multiple of [ , ], and completes the proof.

In case that |F| = 2, the above equation for λ = 1 reads as follwos:

(1 + α)(1 + β) = γ2.

Now if α = 1 or β = 1, it follows that γ2 = 0 and so γ = 0, which is a

contradiction. So also here, α = β = 0 must hold.

In case that |F| = 3, there are more cases to consider for α 6= 0 or β 6= 0, all

leading either to no possible solution for γ or to γ = 0, which is a contradiction.

So, we conclude that the Lie product is unique up to scalar multiples. �

Lemma 5.3.8. Let x ∈ E and l ∈ F . Suppose y1, y2 ∈ E span l. Then we can

find an element λ ∈ F∗ with [x, yi]1 = λ[x, yi] for both i = 1 and i = 2.

Proof. Under the given conditions, Lemma 5.3.2 and Lemma 5.3.7 imply

that there exist λi for i = 1, 2 with [x, yi]1 = λi[x, yi]. If [x, y1] = 0 or [x, y2] =

0, then clearly we can take λ1 and λ2 to be equal. So assume [x, y1] 6= 0 6=
[x, y2] and let y3 := −(y1+y2) such that there exists λ3 with [x, y3]1 = λ3[x, y3].

Suppose λ1 6= λ2. We find

0 = [x, y1 + y2 + y3] = [x, y1] + [x, y2] + [x, y3]

and

0 =[x, y1 + y2 + y3]1 = [x, y1]1 + [x, y2]1 + [x, y3]1

=λ1[x, y1] + λ2[x, y2] + λ3[x, y3].

But this implies that

(λ1 − λ2)[x, y1] + (λ3 − λ2)[x, y3] = 0

and hence

0 =[x, (λ1 − λ2)y1 + (λ3 − λ2)y3]
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=[x, (λ1 − λ2)y1 + (λ3 − λ2)(−y1 − y2)]

=[x, (λ1 − λ3)y1 + (λ2 − λ3)y2].

With the definition z := (λ1 − λ3)y1 + (λ2 − λ3)y2 6= 0, we have [x, z] = 0

and we find z ∈ E≤0(x) and hence [x, z]1 = 0 by Lemma 5.3.2. Since [x, y1] 6=
0 6= [x, y2], the element z is not a multiple of y1 or y2, and hence there are

µ1, µ2 ∈ F∗ with y2 = µ1y1 + µ2z. Now we find

[x, y2]1 =[x, µ1y1 + µ2z]1 = [x, µ1y1]1 + [x, µ2z]1

=λ1µ1[x, y1] + 0 = λ1µ1[x, y1]

and

[x, y2] = [x, µ1y1 + µ2z] = µ1[x, y1] + 0 = µ1[x, y1].

So,

[x, y2]1 = λ1[x, y2].

This contradicts λ1 to be different from λ2. �

We are now ready to prove the main objective of this section.

Theorem 5.3.9. Let g be a Lie algebra generated by its set of extremal ele-

ments E, equipped with the Lie product denoted by [·, ·] and a nondegenerate

extremal form g. Assume that there is a second Lie product [·, ·]1 defined on

the underlying vector space, with corresponding nondegenerate extremal form

g1, giving rise to the same extremal geometry Γ. Then, there is a λ ∈ F∗ with

[x, y]1 = λ[x, y] for all x, y ∈ g.

Proof. Fix a hyperbolic pair (x, y). Then, by Lemma 5.3.7, there is a

λ ∈ F∗ with [x, y]1 = λ[x, y]. We prove that this element λ is the one we are

looking for. We begin with the proof that for all z ∈ E we have [x, z]1 = λ[x, z].

Suppose z ∈ E different from y. If [x, z] = 0, then z ∈ E≤0(y), hence also

[x, z]1 = 0, and [x, z]1 = λ[x, z].

If z ∈ E2(x), then, as Γ has diameter 3, we can find elements z1 and z2 in

E≥1(x) such that 〈y, z1〉, 〈z1, z2〉, and 〈z2, z〉 are in F . (Notice that we allow

these subspaces to be equal to each other.) Now we can apply the above

Lemma 5.3.8 to each of these lines and eventually find that [x, z]1 = λ[x, z].

Finally consider the case where z ∈ E1(x). We construct an element z′ ∈
E2(x) ∩ E−1(z). To show that such an element exists, we use two technical
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results that can be found in [CI07]. Since (〈x〉, 〈z〉) ∈ E1, the points 〈x〉 and

〈z〉 have a unique common neighbour 〈[x, z]〉 ∈ E−1(〈x〉) ∩ E−1(〈z〉). Now

by [CI07, Lemma 3(ii)], there exists a z′ ∈ E such that the point 〈z′〉 is in

E−1(z) ∩ E1([x, z]). Applying [CI07, Lemma 2(v)], it follows that (x, z′) ∈ E2.

So actually z′ ∈ E2(x)∩E−1(z) exists. By the above we have [x, z′]1 = λ[x, z′]

and Lemma 5.3.8 implies now that [x, z]1 = λ[x, z].

Since we started with a fixed x ∈ E, it remains to show that the scalar factor

λ is independent of x. The graph Γsl2(g) (as defined in 3.4) corresponds to

the graph (E , E2). Since both g and g1 are nondegenerate, we can apply 2.5.4,

so Γsl2(g) is a connected graph. This means that every point in E is contained

in at least one hyperbolic pair and all points are in the one single connected

component of (E , E2). So starting with the hyperbolic pair (x, y) on x, we find

the same scalar λ for any other hyperbolic pair (x, z) on x and hence also

for any hyperbolic pair (z, x). Now connectedness of Γsl2(g) implies that the

scalar for all hyperbolic pairs is the same. But then it is fixed for all other

pairs of elements in E × E. Since E generates g, we find for all x, y ∈ g that

[x, y]1 = λ[x, y].

�

5.4. Conclusions

Combining the results of the previous two sections, we finally can characterize

the Lie algebras under consideration by their extremal geometry.

Theorem 5.4.1. Let g be a Lie algebra generated by its set E of extremal

elements with respect to the extremal form g with trivial radical. If Γ(g) is

nondegenerate and the natural embedding of the extremal geometry Γ(g) into

P(g) admits an absolute universal cover, then g is uniquely determined (up to

isomorphism) by Γ(g).

Proof. We combine the previous results. So let g1 be a second Lie algebra

with isomorphic extremal geometry Γ(g1) ∼= Γ(g). By 5.2.3, the projective

embeddings of g and g1 are equivalent and therefore have the same Lie struc-

ture, as a consequence of 5.3.9. �

Corollary 5.4.2. Let g1, g2 be two Lie algebras as in 5.2.1 with extremal

geometries Γ(g1) ∼= Γ(g2) isomorphic to a long root geometry of type BCn,2,

Dn,2, E6,2, E7,1, E8,8, or F4,1, where n ≥ 3. Then g1
∼= g2.
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Proof. As a consequence of the main result 4.4.6 in [KS01], the root

filtration space of g1 (and g2) of the given types has an absolute universal

cover. So Theorem 5.4.1 applies. �

The following result about Chevalley Lie algebras can be obtained from The-

orem 5.4.1, together with the results of [Rob12, Theorem 5.2.15], that cover

the full An-case.

Corollary 5.4.3. Suppose g is a Lie algebra and Γ(g) is isomorphic to Γ(ch)

for some Lie algebra ch of Chevalley type Xn 6= Cn where n ≥ 3. Then

g/Rad(g) ∼= ch/Rad(ch).

Proof. The extremal geometry of a Lie algebra of Chevalley type Xn 6=
Cn with n ≥ 3 is a long root geometry of type An,{1,n}, BCn,2, Dn,2, E6,2, E7,1,

E8,8, or F4,1 (see e.g. [CRS14]). So, we can apply [Rob12, Theorem 5.2.15] in

case of a geometry of type An,{1,n} and 5.4.2 otherwise.

�

Remark 5.4.4. The extremal geometry of a Lie algebra of Chevalley type Cn

does not have lines. So, we cannot apply the results of the present chapter.

This case will be covered in the next chapter.

Remark 5.4.5. Notice that in the simply laced case, i.e., Xn is An, Dn or En,

the above result has also been obtained by Cuypers, Roberts and Shpectorov

in [CRS14]. In this paper the authors reconstruct a Chevalley basis (or its

image in a quotient) for the Lie algebra starting from the shadow space of an

apartment of the building in the extremal geometry.





CHAPTER 6

A characterization of sp

In the previous chapter, we used the classification of non-degenerate root fil-

tration spaces by Cohen and Ivanyos (2007) for the identification of a Lie

algebra g with E−1(g) 6= ∅ via its extremal geometry.

Now we consider the case of a Lie algebra g with E−1(g) = ∅. As a consequence,

also E1(g) = ∅ holds (see [i’p09] for a proof). A typical example of a simple

Lie algebra with E±1(g) = ∅ which is generated by its extremal elements is

spn(F) provided that charF 6= 2 (where n ≥ 2 is even). In the following we

will assume E−1(g) = E1(g) = ∅ and charF 6= 2. Our goal is to characterize

spn(F) under these assumptions.

As a result of Cuypers and in ’t panhuis (see [i’p09]), the adjacency defined on

points in E0-relation gives a polar graph on E(g), i.e. (E , E0) is the collinearity

graph of a polar space. Moreover, Cuypers and in ’t panhuis proved that any

triple of elements (x, y, z) with x, y, z ∈ E(g) such that 〈x, y〉 ∼= sl2(F) ∼= 〈y, z〉
generates a subalgebra of g which can be of two possible types. The first case

is that 〈x, y, z〉 is contained in some subalgebra generated by a symplectic

triple (as defined in 2.1.5) and is isomorphic to sp3(F) (if the subalgebra is 6-

dimensional) or its central quotient psp3(F) (if it is 5-dimensional). We define

and consider these subalgebras in the next section of this chapter.

In the second case, the triple (x, y, z) generates a subalgebra isomorphic to

su3(F), or its central quotient psu3(F) as shown in [i’p09]. In particular, we

find that over a quadratic extension F̂ of F, the three elements x, y, z gen-

erate a subalgebra isomorphic to sl3(F̂) or its central quotient psl3(F̂). But

within (p)sl3(F̂), one finds pairs of strongly commuting extremal elements, i.e.

E−1((p)sl3(F̂)) 6= ∅. So we are back in the situation considered in the previous

chapter.

Of course it still remains to find the isomorphism type of g as the results of

chapter 5 just provide a list of possible types, and to consider the situation

before the quadratic field extension. But it is natural to first consider the

103
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case where we only have subalgebras isomorphic (up to center) to sp3(F). We

provide the following characterization.

Main Theorem 6.0.6. Let g be a simple Lie algebra of finite even dimension

over the field F with charF 6= 2 and generated by its set of extremal points

E where E±1(g) = ∅ and for any (x, y), (y, z) ∈ E2(g), the subspace 〈x, y, z〉
embeds into a subalgebra isomorphic to sp3(F) or psp3(F). Then g ∼= spn(F)

for some (even) n ≥ 2.

6.1. The symplectic Lie algebra

We begin with a description of the symplectic Lie algebra in terms of sym-

metric tensors. Using this, we provide a description of the extremal elements

of sp2m(F) being the pure symmetric tensors.

6.1.1. Symmetric tensors. Let (V, f) be a symplectic space as defined

in chapter 1. According to the results of section 1.2, we can describe the

symplectic Lie algebra sp(V, f) in terms of tensors of the form v ⊗ f(v, ·),
where v ∈ V and f(v, ·) ∈ V ∗, provided that f is nondegenerate.

To simplify the notation, we will denote in the following the dual vector

f(v, ·) ∈ V ∗ by φv.

Let (V, f) be a nondegenerate symplectic space with hyperbolic basis {vi|i ∈ I}
for some index set I. Then, using the notation above, {φvi |i ∈ I} forms an

independent set of elements in V ∗, which is moreover a basis for V ∗ if V has

finite dimension. We will denote φvi by φi if it is clear which vector vi we refer

to.

By
(
s(V ⊗ V ∗), f

)
or, by abuse of notation just s(V ⊗ V ∗), we denote the

subspace of V ⊗ V ∗ generated by the tensors of the form v ⊗ φv, v ∈ V , so

we consider the ”symmetric” elements in V ⊗ V ∗. Then, the vector space

s(V ⊗ V ∗) is spanned by elements of the form

wii :=vi ⊗ φvi and

wij :=(vi + vj)⊗ (φvi + φvj ) for i < j,

where i, j ∈ I.

So an arbitrary element of s(V ⊗ V ∗) is of the form∑
i≤j,i,j∈I

λijwij for λij ∈ F.
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With the result of Proposition 2.4.2, we find that

[v ⊗ φv, w ⊗ φw] =(v ⊗ φw)φv(w)− (w ⊗ φv)φw(v)

=(v ⊗ φw)f(v, w)− (w ⊗ φv)f(w, v)

=f(v, w)(v ⊗ φw + w ⊗ φv)

is a Lie product on s(V ⊗ V ∗).
(Note that since (v +w)⊗ (φv + φw) = v ⊗ φv + v ⊗ φw +w ⊗ φv +w ⊗ φw ∈
s(V ⊗ V ∗), we can consider v ⊗ φw + w ⊗ φv as an element of s(V ⊗ V ∗).)
The pure tensors v⊗φv are extremal in s(V ⊗V ∗) with respect to the extremal

form g defined by g(v ⊗ φv, w ⊗ φw) = f(v, w)2, see 2.4.4.

The results of 2.4.3 give

ϕ :
(
s(V ⊗ V ∗), f

) ∼=−→ fsp(V, f),

provided f is nondegenerate.

Lemma 6.1.1. Let (s(V ⊗V ∗), f) as defined before with f nondegenerate. The

extremal elements in the Lie algebra s(V ⊗ V ∗) are of rank at most 2.

Proof. Let x be an extremal element in the symplectic Lie algebra s(V ⊗
V ∗) and consider its action on the natural module V (see also 2.4.3). Then

for any other element y in s(V ⊗V ∗) we find that for all v the following holds:

[x, [x, y]](v) = 2g(x, y)x(v),

where g is the extremal form on s(V ⊗ V ∗). If we apply this with y being the

pure tensor w ⊗ φw, where w ∈ V , we find

2g(x,w ⊗ φw)x(v) =f(w, v)x2(w)− 2f(w, x(v))x(w) + f(w, x2(v))w

=f(w, v)x2(w) + 2f(x(w), v))x(w) + f(x2(w), v)w.(6.1)

If g(x,w⊗φw) 6= 0, it follows from equation (6.1) that x(v) ∈ 〈w, x(w), x2(w)〉
for all v ∈ V and without restriction for w ∈ V , so in particular, also

x(v) ∈ 〈w′, x(w′), x2(w′)〉 for any w′ ∈ V with g(x,w′ ⊗ φw′) 6= 0 and w′ /∈
〈w, x(w), x2(w)〉. So x(v) ∈ 〈w, x(w), x2(w)〉 ∩ 〈w′, x(w′), x2(w′)〉, and there-

fore rk x ≤ 2.

If g(x,w ⊗ φw) = 0 or g(x,w′ ⊗ φw′) = 0, we can always find new elements

u, u′ ∈ V with g(x, u ⊗ φu) 6= 0 and g(x, u′ ⊗ φu′) 6= 0, and come back to the

previous case. The reason is as follows. Let W be the 2-space spanned by w

and w′. Then Ws :=
〈
r⊗φr|r ∈W

〉
is a 3-space inside s(V ⊗V ∗). The points
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〈r ⊗ φr〉 with r ∈W form a quadric in this 3-space. Now H := ker g(x, ·) is a

hyperplane in s(V ⊗ V ∗), so it meets Ws in a 2-space. Since |F| ≥ 3, we find

at least two more points 〈u⊗ φu〉 and 〈u′ ⊗ φu′〉 on this quadric that are not

in H, and therefore u and u′ fulfill our requirements. �

Proposition 6.1.2. Let (s(V ⊗V ∗), f) as defined before with f nondegenerate.

Then the extremal elements in the Lie algebra s(V ⊗ V ∗) are exactly the pure

tensors, so the elements of the form λv ⊗ φv, v ∈ V , λ ∈ F.

Proof. As we already have seen in Section 2.4.3, pure tensors of s(V ⊗V ∗)
are extremal and, as they generate the algebra, they define the extremal form

g by the following

g(v ⊗ φv, w ⊗ φw) = f(v, w)2.

Let x be an extremal element. Then by Lemma 6.1.1 x is of rank at most 2.

If x is of rank 1, then clearly it is a pure tensor.

So, assume that the rank of x equals 2. Then we can find independent v, w ∈ V
and φ, ψ ∈ V ∗ with x = v ⊗ φ+ w ⊗ ψ.

Now for every u, u′ ∈ V we have f(x(u), u′) = −f(u, x(u′)). Thus f(φ(u)v +

φ(u)w, u′) = −f(u, φ(u′)v + ψ(u′)w).

So, if f(u, v) = f(u,w) = 0, then f(x(u), u′) = 0 for all u′ ∈ V . So, φ, ψ ∈
〈φv, φw〉 and we can write x as

x = αv ⊗ φv + βw ⊗ φw + γ(v ⊗ φw + w ⊗ φv)

for some α, β, γ ∈ F.

Since x is extremal, we have for every u ∈ V

2g(x, uφu) · x =[x, [x, u⊗ φu]].

For any element u with f(v, u) = 1 and f(w, u) = 0 we have

[x, u⊗ φu] =[αv ⊗ φv + βw ⊗ φw + γ(v ⊗ φw + w ⊗ φv), u⊗ φu]

= α(v ⊗ φu + u⊗ φv) + γ(u⊗ φw + w ⊗ φu)

and, as a straightforward computation reveals,

[x, [x, u⊗ φu]] = 2α2v ⊗ φv + 2γ2w ⊗ φw + 2αγ(v ⊗ φw + w ⊗ φv)

+f(v, w)(γ2 − αβ)(w ⊗ φu + u⊗ φw),
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which has to be equal to

κ · x =καv ⊗ φv + κβw ⊗ φw + κγ(v ⊗ φw + w ⊗ φv),

where

κ = 2g(x, u⊗ φu)

= 2αf(v, u)2 + βf(w, u)2 + γ(f(v + w, u)2 − f(v, u)2 − f(w, u)2) = 2α.

This implies that

(γ2 − αβ)(2w ⊗ φw + f(v, w)(w ⊗ φu + u⊗ φw)) = 0.

If f(v, w) = 0 we find γ2 − αβ = 0. If f(v, w) 6= 0, then we take u =

f(v, w)−1w, and we find

(γ2 − αβ)(4w ⊗ φw) = 0,

so, again

γ2 − αβ = 0.

But this condition on α, β, γ implies that x is a rank 1 element, which is against

our assumption.

Indeed, if α, β and γ are nonzero elements of F satisfying γ2 − αβ = 0, then

with δ = γ/α, we have

α(v + δw)⊗ φv+δw = αv ⊗ φv + αδ2w ⊗ φw + αδ(v ⊗ φw + w ⊗ φv)

= αv ⊗ φv + βw ⊗ φw + γ(v ⊗ φw + w ⊗ φv)

is of rank 1. �

We consider an example.

6.1.2. Example: the 4-dimensional case. We consider the symplectic

Lie algebra for a nondegenerate symplectic vector space (V, f) of dimension

4, with standard hyperbolic basis {e1, e2, e3, e4}, and identify it with the sub-

algebra s(V ⊗ V ∗) of g(V ⊗ V ∗) generated by the elements v ⊗ f(v, ·) as in

2.4.3.

Let W ⊂ V be the 3-dimensional subspace spanned by e1, e2, and e3, and

denote by s the subalgebra of s(V ⊗ V ∗) spanned by the elements v ⊗ f(v, ·),
where v ∈W .

For 1 ≤ i ≤ 4 denote by φi the element f(ei, ·) ∈ V ∗. Then notice that

f(e1, e2) = f(e2, e2) = f(e3, e2) = 0
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=⇒ e2⊥〈e1, e2, e3〉

=⇒ 〈e2〉 = rad(f |W ),

so e2⊗ φ2 is nontrivial but in the center of s. Note that in the Lie subalgebra

s0 of g(W ⊗W ∗) generated by the elements v ⊗ f(v, ·) where v ∈W , we have

e2 ⊗ φ2 = 0, since f(e2, ·) is constantly zero on W . We have Z(s) = 〈e2 ⊗ φ2〉
and s0

∼= s/Z(s).

Let v ∈W and consider the elements

vλ :=v ⊗ f(v, ·)− (v + λe2)⊗ f(v + λe2, ·)

=v ⊗ f(v, ·)− v ⊗ f(v + λe2, ·)− λe2 ⊗ f(v + λe2, ·)

=v ⊗ f(v, ·)− v ⊗ f(v, ·)− λv ⊗ f(e2, ·)− λe2 ⊗ f(v, ·)− λ2e2 ⊗ f(e2, ·)

=− e2 ⊗ f(λv, ·)− λv ⊗ f(e2, ·)− λ2e2 ⊗ f(e2, ·)

for λ ∈ F. Then for all w ∈W we have

[vλ, w⊗f(w, ·)]

=[−e2 ⊗ f(λv, ·)− λv ⊗ f(e2, ·)− λ2e2 ⊗ f(e2, ·), w ⊗ f(w, ·)]

=− f(λv,w)(e2 ⊗ f(w, ·) + f(w, λv)w ⊗ f(e2, ·)

=f(λv,w)(−e2 ⊗ f(w, ·)− w ⊗ f(e2, ·))

=wf(λv,w) + f(λv,w)2e2 ⊗ f(e2, ·).

Moreover, for w ∈W and µ ∈ F we find

[vλ, wµ] =[−e2 ⊗ f(λv, ·)− λv ⊗ f(e2, ·)− λ2e2 ⊗ f(e2, ·),

− e2 ⊗ f(µw, ·)− µw ⊗ f(e2, ·)− µ2e2 ⊗ f(e2, ·)]

=f(λv, µw)e2 ⊗ f(e2, )̇− f(µw, λv)e2 ⊗ f(e2, ·)

=2f(λv, µw)e2 ⊗ f(e2, ·).

This implies that the elements vλ, with v ∈ W and λ ∈ F generate an ideal

i of s which is, modulo the center 〈e2 ⊗ f(e2, ·)〉, isomorphic to the natural

2-dimensional module for s/i ' sl2(F).

We notice that both s and s0 can be generated by a symplectic triple, i.e., a

triple of elements x, y, z with (x, y) and (y, z) in E2, z 6∈ 〈x, y〉 and [x, z] = 0.
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For example, we can choose the extremal elements

x := e1 ⊗ φ1, y := e3 ⊗ φ3, z := (e1 − e2)⊗ (φ1 − φ2)

generating both s and s0.

Indeed, we have

f(e1, e3) 6= 0 and f(e3, e1 − e2) = f(e3, e1)− f(e3, e2) = f(e1, e3) 6= 0

and

[x, z] = f(e1, e1 − e2)
(
e1 ⊗ (φ1 − φ2) + (e1 − e2)⊗ φ1

)
= 0,

so (x, z) ∈ E0 and (x, y), (y, z) ∈ E2. Hence (x, y, z) is a symplectic triple,

which is easily seen to generate s or s0.

The non-trivial pure tensors in s and s0 are extremal. They are scalar multiples

of elements of the form

s := (αe1 + βe2 + γe3)⊗ (αφ1 + βφ2 + γφ3),

with α, β, γ ∈ F.

Note that all pure tensors commuting with x = e1⊗φ1 are scalar multiples of

elements of the form

(αe1 + βe2)⊗ (αφ1 + βφ2) = α2e1 ⊗ φ1 + β2e2 ⊗ φ2 + αβ(e1 ⊗ φ2 + e2 ⊗ φ1),

so they are in the 3-space Ux spanned by {e1⊗φ1, e2⊗φ2, e1⊗φ2+e2⊗φ1}, and

their coefficients α, β, γ ∈ F w.r.t. this basis are described by the quadratic

equation αβ = γ2. Therefore the corresponding 1-spaces form a quadric inside

Ux. The same holds for any other choice of extremal x not in the center

〈e2 ⊗ φ2〉.

If we define an sl2-line to be the set of 1-spaces generated by pure tensors

inside an sl2 which is generated by two such points, then these sl2-lines induce

the structure of a symplectic plane (as defined in 4.2.7) on the extremal points

spanned by pure tensors.

Using the notation A := e1 ⊗ φ1, B := e2 ⊗ φ2, C := e3 ⊗ φ3, D := e1 ⊗ φ2 +

e2 ⊗ φ1, E := e1 ⊗ φ3 + e3 ⊗ φ1, F := e2 ⊗ φ3 + e3 ⊗ φ2, we have the following

multiplication table for s.
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A B C D E F

A 0 0 E 0 2A D

B 0 0 0 0 0 0

C −E 0 0 −F −2C 0

D 0 0 F 0 D 2B

E −2A 0 2C −D 0 F

F −D 0 0 −2B −F 0

Clearly B is in the center of s, and the space spanned by B,D and F is the

ideal i.

The algebra s0 is spanned by the elementsA,C,D,E, F with the multiplication

table

A C D E F

A 0 E 0 2A D

C −E 0 −F −2C 0

D 0 F 0 D 0

E −2A 2C −D 0 F

F −D 0 0 −F 0

The generators A,C,D,E and F are linearly independent, we have dim(s0) =

5. Moreover, we see that s0 is ismorphic to s modulo its center, and it has a

2-dimensional ideal spanned by D and F .

Definition 6.1.3. By sp3(F), we denote a Lie algebra isomorphic to s from

the example above.

By psp3(F), we denote a Lie algebra isomorphic to s0 from the example above.

Notice that psp3(F) is isomorphic to sp3(F) modulo its center.

6.2. The geometry of (E , sl2)

Setting 6.2.1. In the following, g denotes a Lie algebra over the field F
of characteristic 6= 2, generated by its set of extremal elements E(g) and

equipped with the extremal form g (as defined in 2.3.3). Let E := E(g) be

the set of projective extremal points of the Lie algebra g and {Ei}2i=−2 denote

the symmetric relations on E as defined in 5.1.1. As always in this chapter,

we assume that E−1 = E1 = ∅. Moreover, we assume the graph (E , E2) to be

connected.
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A triple of elements x, y, z ∈ E with (x, y), (y, z) ∈ E2 and (x, z) ∈ E0 is called

a symplectic triple (cf. Definition 2.1.5).

Proposition 6.2.2. A symplectic triple (x, y, z) of elements of the Lie algebra

g generates either a subalgebra isomorphic to sp3(F), in which case it is of

dimension 6, or to its quotient by its center, so isomorphic to psp3(F) of

dimension 5.

Under this isomorphism x, y and z are mapped onto pure tensors of sp3(F) or

their cosets in the quotient psp3(F).

Proof. Let (x, y, z) be a symplectic triple and s the subalgebra generated

by x, y and z.

Consider the six elements x, y, z, [x, y], [z, y] and [x, [y, z]]. Notice that after

rescaling we can assume that g(x, y) = g(z, y) = −1 and g(x, z) = 0. The

Premet identities and the relations from 2.1.4 imply that the subspace of g

spanned by these six elements is closed under multiplication. Moreover, the

multiplication table of these six generators is completely determined by the

values g(x, y) = g(z, y) = −1 and g(x, z) = 0 and the values g(a, [b, c]), where

a, b, c are equal to x, y or z. But by associativity of g, we have g(a, [b, c]) = 0

for all choices of a, b, c.

So, s has dimension at most 6 and hence is isomorphic to a quotient of sp3(F)

(compare with the Lie algebra considered in Example 6.1.2). Moreover, this

isomorphism can be chosen to map x, y and z onto pure tensors (modulo

Z). �

Since we consider in this chapter Lie algebras with the property E±1 = ∅, the

extremal geometry as defined in 5.1.1, where we defined lines to be spanned

by points in relation E−1, is no appropriate choice to characterize g. We have

to proceed differently.

We assume moreover, that for any (x, y), (y, z) ∈ E2(g), the subalgebra 〈x, y, z〉
of g embeds into a subalgebra isomorphic to sp3(F) or psp3(F).

For such a Lie algebra g, we consider the point line space Γ(g) := (E , sl2-lines)

that corresponds naturally to the sl2-graph Γsl2(g) := (E ,∼sl2) (as introduced

in 2.5). So in Γ(g), denoted abbreviatory by Γ if it is clear what Lie algebra

we refer to, the points are the extremal points and two points x, y ∈ E are on

a line if and only if gx(y) = gy(x) 6= 0. This sl2-line consists of all extremal

points in the subalgebra 〈x, y〉 ∼= sl2 (see 2.5.1). Note that if a pair (x, y) of
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distinct points is not hyperbolic, it must be commuting since we assumed that

E1 and E−1 are empty.

Definition 6.2.3. On E we define the relation ⊥ by:

x ⊥ y ⇔ (x, y) ∈ E0 ∪ E−2.

The point-line space Γ = (E , sl2-lines) is called nondegenerate if it is con-

nected and for any pair of elements x, y ∈ E with x⊥ = y⊥, it follows x = y.

Proposition 6.2.4. Let Γ(g) = (E , sl2-lines) for a Lie algebra g fulfilling the

assumptions of 6.2.1. Then every pair of points x, y ∈ E is on at most one sl2-

line, and two intersecting sl2-lines generate inside the geometry Γ a subspace

isomorphic to a symplectic plane.

Proof. The first statement is clear by definition of the sl2-lines: they are

exactly the lines between hyperbolic pairs of elements x, y ∈ E , i.e. gx(y) 6= 0,

(and two extremal elements cannot generate two different sl2-subalgebras).

We already considered the extremal elements on sl2-lines in 5.3.6.

For the second property, consider these two intersecting sl2-lines l and m.

There exists an intersection point z ∈ E with z ∈ l∩m and we can find points

x ∈ l and y ∈ m sucht that (x, z, y) is a symplectic triple.

We have seen in 6.2.2 that a symplectic triple in a Lie algebra g generates a

sp3(F) subalgebra or its central quotient psp3(F). Moreover, the elements x,

y and z are mapped to pure tensors (or their cosets). As the pure tensors not

in the center of sp3(F) form a subspace isomorphic to a symplectic plane, see

example 6.1.2, we find that x, y and z generate a subspace of Γ isomorphic

to a symplectic plane. �

Lemma 6.2.5. If rad(g) = {0}, then Γ(g) = (E , sl2-lines) is nondegenerate.

Proof. By assumption Γ is connected. Now consider two elements x, y ∈
E with x⊥ = y⊥. Then g = 〈x⊥, z〉 for any element z ∈ E2(x). Indeed, each

element z′ in E is either in x⊥ or in 〈x, z〉 or generates together with x and

z a subalgebra isomorphic to (p)sp3(F) which is generated by x, z and some

w ∈ E0(x) ∩ E2(z), see 6.2.4.

Let x0, y0 and z0 be nonzero extremal elements in x, y, and z, respectively.

Then we can find a λ ∈ F such that g(λx0, z0) = g(y0, z0). It follows

g(λx0 − y0, z0) = 0.
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Together with

g(λx0 − y, v0) = 0

for each extremal element v0 in an extremal point v ∈ x⊥ = y⊥, it follows

λx0 − y0 ∈ rad(g) = {0}, so x0 = y0 and x = y. �

Geometries in which any two intersecting lines generate a subspace isomorphic

to a symplectic plane have been studied by Cuypers in [Cuy94]. Using the main

result of [Cuy94], as stated in 4.2.8, we obtain the following.

Theorem 6.2.6. The connected partial linear space Γ = (E , sl2-lines) as de-

fined above is isomorphic to the geometry HSp(V, f) of hyperbolic lines of

a symplectic space (V, f) over F as defined in 1.2.2. This isomorphism is

denoted by

ϕ : (E , sl2-lines)
∼=−→ HSp(V, f).

The form f is nondegenerate if rad(g) = {0}.

Proof. If Γ contains a single line, then g is isomorphic to sl2(F) and Γ is

isomorphic to HSp(2,F).

So, assume that Γ contains at least two lines. By assumption, (E , sl2-lines) is

connected. By 6.2.4, we moreover know that (E , sl2-lines) is a partial linear

space, and any pair of intersecting lines is contained in a symplectic plane. Our

assumption |F| ≥ 3 guarantees that we have a line with more than 3 points

in (E , sl2-lines). This gives us all conditions for 4.2.8 and we conclude that

(E , sl2-lines) forms a geometry of hyperbolic lines in a symplectic geometry.

As each symplectic plane can be coordinatized by F, we obtain that Γ is

isomorphic to HSp(V, f) for some symplectic space over F. �

Concretely, the geometric structure of HSp(V, f) translates to the following:

Let ϕ(x) = p, ϕ(y) = q be distinct points, then

(p, q) are on a hyperbolic line in (V, f)

⇔ (x, y) is a hyperbolic pair in (E , sl2-lines)

⇔ x 6⊥ y.

So the hyperbolic lines in HSp(V, f) are the lines obtained from the sl2-lines

in (E , sl2-lines). The second type of lines in the symplectic space (V, f), the
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singular lines, correspond to commuting extremal points. Indeed, for two

distinct points ϕ(x) = p, ϕ(y) = q, we have

(p, q) are on a singular line in (V, f)

⇔ x �sl2 y

⇔ (x, y) ∈ E0

⇔ x ⊥ y.

For later use, we need a name for the equivalent of the singular lines in the

symplectic geometry for elements in E .

Definition 6.2.7. Suppose Γ is nondegenerate and x, y ∈ E with x ⊥ y. Then

the polar line through x and y is the set ({x, y}⊥)⊥.

Remark 6.2.8. With the previous construction and the result of Theorem

6.2.6, we find, in case Γ is nondegenerate, that

P(V ) ∼= (E , {sl2-lines} ∪ {polar lines}).

6.3. Veroneseans

In this section we introduce Veroneseans, following the definitions of Schille-

waert and Van Maldeghem in [SVM13].

Definition 6.3.1. Let W be a vector space of dimension m(2m+ 1) over the

field F. The quadric Veronesean of index l = 2m−1, denoted by Vl, is the

set of points in P(W ) with projective coordinates yij , i, j = 0, 1, . . . , l and i ≤ j,
such that the corresponding symmetric matrix (y)ij ∈ M := {(m)ij , i, j =

0, 1, . . . , l | mij = mji if i > j} is of rank 1.

The above definition implies that in the vector space M2m×2m
sym (F) of all sym-

metric matrices over the field F the set of projective points spanned by rank

1 matrices is a quadric Veronesean of index l = 2m− 1.

A second example is the set of 1-spaces spanned by rank 1 symplectic matrices

inside the space M2m×2m
sp (F) of all 2m× 2m symplectic matrices.

We recall that a matrix M is called symplectic if and only if M tF = −FM ,

where (with Im the m×m-identity matrix)

F =

(
0 Im

−Im 0

)
.
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Note that there is a linear isomorphism between the space of symmetric ma-

trices M2m×2m
sym and of symplectic matrices M2m×2m

sp (F) via the bijection

τ : M2m×2m
sym →M2m×2m

sp

M 7→ −FM

Indeed, since F t = −F = F−1 we find for a symmetric matrix M that

(−FM)tF = −M tF tF = −M = −F tFM = F (FM) = −F (−FM)

and hence −FM is symplectic. Vice versa, if M is symplectic then FM , the

image under the inverse map, is symmetric. Indeed,

(FM)t = M tF t = −M tF = −(−FM) = FM.

As we can identify s(V ⊗ V ∗), for finite dimensional V , with the space of

symplectic matrices, the pure tensors corresponding to the rank 1 matrices,

we find that the extremal points, which by 6.1.2 are generated by pure tensors,

form a quadric Veronesean in s(V ⊗ V ∗).

Definition 6.3.2. An oval C in a projective plane π is a set of points of π

where no three of them are collinear and for every point x ∈ C, there is a

unique line L through x intersecting C in only x. The line L is called the

tangent line at x to C.

Notice that for each 2-dimensional subspace U of V the points in P(s(V ⊗V ∗))
spanned by pure tensors u⊗φu with u ∈ U form an oval. Indeed, if U = 〈u, v〉,
then 〈w ⊗ φw | w ∈ U〉 is a 3-dimensional subspace Us of s(V ⊗ V ∗). As we

have seen in the previous section, the pure tensors in Us are all scalar multiples

of αu ⊗ φu + βv ⊗ φv + γ(u ⊗ φv + v ⊗ φu) where γ2 − αβ = 0. The pure

tensors in 〈u⊗ φu, v ⊗ φv〉 are only the scalar multiples of u⊗ φu and v ⊗ φv.
But then the only 2-space of Us containing only pure tensors from 〈u⊗ φu〉 is

〈u⊗ φu, u⊗ φv + v ⊗ φu〉.
The set of all ovals obtained from such 3-spaces Us induces the structure

of P(V ) on the quadric Veronesean of 1-spaces spanned by pure tensors in

s(V ⊗ V ∗).
The following theorem, proven by Schillewaert and Van Maldeghem in

[SVM13], provides a characterization of the quadric Veronesean by this pro-

jective structure.
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Theorem 6.3.3 ( [SVM13, Thm. 2.3]). Let W be a vector space of dimension

d over a field F of order at least three, and X be a spanning point set of P(W )

and K, and suppose

(V1*): for any pair of points x, y ∈ X, there is a unique plane denoted

by 〈x|y〉 such that 〈x|y〉 ∩X is an oval, denoted by X(〈x|y〉).
(V2*): the set X endowed with all subsets X(〈x|y〉) has the structure

of the point-line-geometry of a projective space P(V ) for some vector

space V of dimension n ≥ 3, or of any projective plane Π (and we

put n = 2 in this case).

(V3*) : d ≥ 1
2n(n+ 1).

Then d = 1
2n(n + 1) and X is the point set of a quadric Veronesean of index

n− 1.

With the notations of the previous Theorem, we define the injective map

V : P(V )→ P(W )

mapping points to points and lines to ovals, such that for any two points

x 6= y in P(V ), we have V(〈x, y〉) = 〈x|y〉. We call this map the Veronesean

embedding of P(V ) if property (V1*) is fulfilled for the image of V (note

that (V2*) holds automatically by construction). If moreover (V3*) holds, V
is unique (up to isomorphism) and we call it the universal Veronesean

embedding.

The above implies that the map

P(V )→ P(s(V ⊗ V ∗))

〈v〉 7→ 〈v ⊗ φv〉

is a universal Veronesean embedding.

6.4. The uniqueness of the Lie product on the Veronesean

Recall our original situation as introduced in section 6.2. We have an (uniden-

tified) Lie algebra g generated by its set E of extremal points with E±1 = ∅ and

extremal form g with trivial radical. Moreover, we assume that every three

elements x, y and z in E with (x, y) and (y, z) in E2 generate a Lie subalgebra

isomorphic to (p)sp3(F). Then the geometry Γ(g) = (E(g), sl2) ∼= HSp(V, f),
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where (V, f) is a nondegenerate symplectic space. This isomorphism is denoted

by φ.

The inverse of this isomorphism, φ−1 provides us with a Veronesean embedding

of each of the sl2-lines into a 3-dimensional subspace of g.

The goal of this section is to show that, up to a scalar, the Lie product [·, ·] of g

is the unique Lie product on the vector space g, whose sl2-geometry coincides

with that of g.

The following Lemma gives a translation of the result of 5.3.7 to the situation

in this chapter. There, we used the lines coming from the relation E−1; now

we use the sl2-relation.

Lemma 6.4.1. Let (x, y) be a hyperbolic pair generating a subalgebra h of g.

Then there is a λ ∈ F∗ such that for all v, w ∈ h we have [v, w]1 = λ[v, w].

Proof. Without loss of generality we can assume g(x, y) = 1. The sub-

algebra h is isomorphic to sl2. Its extremal points are the 1-spaces spanned

by elements ax+ by + c[x, y] satisfying the equation ab = c2 (see the proof of

Proposition 5.3.6).

In g1, the extremal elements in the subalgebra generated by x, y are the 1-

spaces spanned by elements y+λ[x, y]1 +λ2g1(x, y)x. Since any two points in

Γ(g) are on at most one line, these extremal elements generate points which

are extremal points in h. So, all these extremal elements are in the subspace

h. In particular, we find that [x, y]1 is in h and hence can be expressed as

[x, y]1 = αx+ βy + γ[x, y]

for some fixed α, β and γ in F. But that implies that

y + λ[x, y]1 + λ2g1(x, y)x = (λ2g1(x, y) + λβ)x+ (1 + λα)y + λ2γ2[x, y]

satisfies the equation

(1 + λα)(λ2g1(x, y) + λβ) = λ2γ2.

As in the proof of 5.3.7 we deduce that, restricted to h, the Lie product [·, ·]1
is a scalar multiple of [·, ·]. �

Lemma 6.4.2. Let (x, y, z) be a symplectic triple in E generating a subalgebra

s of g isomorphic to (p)sp3(F).

Let [·, ·]1 denote a Lie product defined on the vector space s, such that the sl2-

geometries of [·, ·]1 coincides with the symplectic plane of Γ generated by x, y
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and z. Then there is a scalar λ ∈ F∗ such that for any two elements v, w ∈ s

we have [v, w]1 = λ[v, w].

Proof. Let S be the set of extremal points in the symplectic plane gener-

ated by x, y and z. For any subset T of S we denote by ET the set of extremal

elements whose span is in T .

To prove the lemma, it suffices to show that there exists a λ ∈ F such that for

all v, w ∈ ES we have [v, w]1 = λ[v, w].

As two points in S commute if and only if they are not collinear, we find for

all v, w ∈ S that [v, w] = 0⇔ [v, w]1 = 0.

Let L be any line of the symplectic plane on S. Then by Lemma 6.4.1 there

is an λL ∈ F with [v, w] = λL[v, w]1 for all v, w ∈ EL. Suppose L,M are two

lines in the symplectic plane on S. We will prove that λL = λM .

Let p be a point on L but not on M and let q, r, s be three distinct points on

M collinear with p, such that s ∈ L. Denote the line through p and q by Q and

through p and r by R. By t we denote the unique point on M not collinear

to p. Let p1, q1, r1 and s1 be extremal elements in p, q, r and s, respectively,

such that 0 6= q1 + r1 + s1 = t1 ∈ t. Then

0 = [p1, t1]

= [p1, q1 + r1 + s1]

= [p1, q1] + [p1, r1] + [p1, s1]

and, moreover

0 = [p1, t1]1

= [p1, q1 + r1 + s1]1

= [p1, q1]1 + [p1, r1]1 + [p1, s1]1

= λQ[p1, q1] + λR[p1, r1] + λL[p1, s1].

This implies that

(λL − λQ)[p1, q1] + (λL − λR)[p1, r1] = 0.

If [p1, q1] and [p1, r1] are linearly independent, we find λL = λQ = λR. If [p1, q1]

and [p1, r1] are linearly dependent, then λQ = λR, as then [p1, [p1, q1]]1 =

λQ[p1, [p1, q1]] but also [p1, [p1, q1]]1 = λR[p1, [p1, q1]].

With a similar argument, but permuted L,Q and R, we find λL = λQ = λR.
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This shows that for all lines L′ on p inside S we have λL′ = λL. But by

connectedness of the symplectic plane, we find this to be true for any line L′

in S. �

Proposition 6.4.3. Let [·, ·]1 denote a Lie product defined on the vector space

g, such that the sl2-geometries of [·, ·]1 coincides with Γ. Then there is a scalar

λ ∈ F∗ such that for any two elements v, w ∈ g we have [v, w]1 = λ[v, w].

Proof. Let L be a line of Γ. By Lemma 6.4.1 there is a λ ∈ F∗ with

[·, ·]1 = λ[·, ·] restricted to the subalgebra generated by L.

The above Lemma 6.4.2 implies that for any line M intersecting L we have

that [·, ·]1 = λ[·, ·] restricted to the subalgebra generated by M . But then

connectedness of Γ implies that [·, ·]1 = λ[·, ·] restricted to the subalgebra

generated by any line N , which clearly implies the proposition. �

Proposition 6.4.4. Let Γ(g) ∼= HSp(V, f) with (V, f) a nondegenerate sym-

plectic space. Suppose g has vector space-dimension m(2m + 1). If the pro-

jective embedding of g into P(g) induces a universal Veronesean embedding of

P(V ) ∼= (E , {sl2-lines} ∪ {polar lines}) into P(g), then g ∼= sp2m(F).

Proof. We extend the isomorphism (E , sl2-lines) = Γ(g) ∼= Γ(sp2m(F))

uniquely to P(V ) ∼= (E , sl2-lines ∪ polar lines) = P(Γ(g)). This, together with

the uniqueness (up to isomorphism) of the universal Veronesean embedding of

P(V ) into the projective space of sp2m(F), allows us to identify the underlying

vector spaces of g and sp2m(F) as well as the Veronesean embeddings of Γ(g)

and Γ(sp2m(F)). So w.l.o.g., we assume the equality of the vector spaces,

the sets of extremal elements E(g) = E(sp2m(F)) and their relations Ei(g) =

Ei(sp2m(F)) for i ∈ {−2, . . . , 2}.
Now we can apply Proposition 6.4.3 and find that up to a scalar multiple the

two Lie products of g and sp2m(F) are the same and hence these Lie algebras

are isomorphic. �

6.5. The Veronesean embedding

Before we begin with the last steps of the identification of the Lie algebra g,

we subsume the previous results. We started with an unknown simple Lie

algebra g over the field F with and charF 6= 2, spanned by its extremal points

E and with E±1 = ∅ and the radical of the extremal form g trivial. For any

pairs of extremal points (x, y), (y, z) ∈ E2(g), the span 〈x, y, z〉 embeds into



120 6. A CHARACTERIZATION OF sp

a subalgebra isomorphic to (p)sp3(F). The partial linear space (E , sl2-lines)

is isomorphic to HSp(V, f), for some nondegenerate symplectic space (V, f)

of dimension 2m and if E(g) forms a quadric Versonesan in P(g), then g is

uniquely identified to be isomorphic to a symplectic Lie algebra sp2m(F), where

2m = dimV .

So it is left to prove that the embedding of E(g) into P(g) is indeed a universal

Veronesean embedding. Therefore, we consider the geometry on HSp(V, f)

as the geometry of hyperbolic and singular lines, isomorphic to the geometry

of sl2-lines and polar lines between the elements of E(g). In the following,

we will denote by L the set of sl2-lines and by S the set of polar lines (as

defined in 6.2.7). Now L ∪ S induces the structure of a projective space on

E(g) isomorphic to P(V ). We prove the properties (V1*), (V2*) and (V3*) of

Theorem 6.3.3 in the following propositions.

Proposition 6.5.1 (V1*). Any two points x, y ∈ E(g) lie in a unique plane π

of P(g), where E(g) ∩ π forms a quadric, and we denote π by 〈x|y〉 and E ∩ π
by E〈x|y〉.

Proof. In general, we have to distinguish two cases for x, y ∈ E(g),

namely either (x, y) ∈ E2 or (x, y) ∈ E0. Let us first consider (x, y) ∈ E2. Since

the subalgebra sl2 spanned by x and y is as a vector space 3-dimensional, it

defines a unique plane 〈x|y〉 . Finally in 5.3.6 we have seen that the extremal

points in a Lie algebra generated by a hyperbolic pair form a quadric, so the

same holds for E〈x|y〉.
If (x, y) ∈ E0, we have a bit more to do. Let l be the singular line on x, y. We

claim that the linear span of l is a 3-dimensional subspace of g meeting E just

in l. Moreover, the points on l form a quadric in this 3-space. So, 〈l〉 will be

the required plane 〈x|y〉.
Let z be a point in E such that (x, z), (y, z) ∈ E2, so (x, z, y) is a symplectic

triple. Then z is collinear with all but one point, say a, on the polar line l.

Clearly l \ {a} ⊆ 〈x, y, z〉. As we see in the symplectic plane generated by x, y

and z, the points of l \ {a} are all contained in a subspace of g of dimension

3 if 〈x, y, z〉 ' sp3(F) and of dimension 2 if 〈x, y, z〉 ' psp3(F). In the first

case they are all but one of the points of a quadric (the missing point being

the center of 〈x, y, z〉) and in the second case all but one of the points of the

2-space.
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Now consider a second point z′ with (x, y, z′) is another symplectic triple but

this time z′ collinear with a, but not with some a′ 6= a in l. As above, we find

that all points of l \ {a′} are contained in a subspace of g of dimension 3 or 2.

Moreover, in the first case they are all but one of the points of a quadric (the

missing point being the center of 〈x, y, z′〉) and in the second case all but one

of the points of the 2-space.

If l \ {a} generates a 2-space, then this 2-space is contained in 〈x, y, z′〉, and

we find at least three extremal points in it that are not commuting with z′.

But this implies that also l \ {a′} generates a 2-space and l \ {a} and l \ {a′}
generate the same 2-space. In particular, a is contained in this 2-space. But

since a ∈ 〈x, y, z〉 ∼= (p)sp3(F) and the center of (p)sp3(F) is trivial, it follows

[a, z] 6= 0, contradicting that a is not collinear to z.

Hence l \ {a} (and l \ {a′}) generates a 3-dimensional subspace.

Let c be the center of 〈x, y, z〉. Then every element u ∈ E that commutes with

a also commutes with at least three points of some singular line on a that are

contained in 〈x, y, z〉. As c is in the span of these points, we find [u, c] = 0.

Let c1 be a nonzero element of c and a1 be a nonzero element of a and fix

λ, µ ∈ F, not both 0, such that g(z′, λc1 +µa1) = 0. As also g(u, λc1 +µa1) = 0

for all u ∈ E with a ⊥ u, we find that g(v, λc1+µa1) = 0 for all v ∈ 〈u⊥, z′〉 = g.

This implies that λc1 +µa1 is in the radical of g and hence 0. But then a = c,

so l is a quadric in l and we have proven the proposition. �

Proposition 6.5.2 (V2*). The point-line space (E(g), L∪S) has the structure

of the point-line-geometry of a projective space P(V ), with V vector space over

the field F with |F| ≥ 3.

Proof. This follows immediately from 6.2.6. �

Since in the following the dimension 2m of the vector space V with Γ(g) ∼=
HSp(V, f) is of some importance, we denote the corresponding Lie algebra by

g2m instead of g. Hereby, g2m still fulfills the same conditions as g before.

Proposition 6.5.3 (V3*). Let g2m be a Lie algebra generated by its extremal

elements corresponding to the points in E := E(g2m) and suppose that Γ(g2m) =

(E , sl2-lines) ∼= HSp(V, f) for some nondegenerate symplectic space (V, f) of

dimension 2m. Then dim g2m ≥ m(2m+ 1).

Proof. We prove this by induction on m.

If m = 1, then Γ(g2) = (E , sl2) is a line and dim g2 = dim sl2 = 3 = 1(2 ·1+1).
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Now suppose the statement is true for some m ∈ N. Then consider g2(m+1)

with Γ(g2(m+1)) = (E , sl2) ∼= HSp(V, f) with (V, f) a nondegenerate sym-

plectic space of dimension 2(m + 1). We fix an sl2-line 〈x, y〉 in Γ(g2(m+1))

and consider g0 = 〈z ∈ E|[z, x] = [z, y] = 0〉. Its geometry is isomorphic to

HSp(V ′, f ′), where (V ′, f ′) is a nondegenerate symplectic space of dimension

2m, so by induction g0 has dimension m(2m+ 1).

Now consider gx/(〈x〉+ g0), where gx := 〈z ∈ E|[z, x] = 0〉. Each singular line

s on x spans a 3-space in gx which meets g0 in at most one point, so s maps to

a space of dimension at most 1 in gx/(〈x〉+g0). Now assume that s ⊆ 〈g0 +x〉.
Then the set Cs(y) of elements in s commuting with y contains g0∩s, which is

at least 2-dimensional. But inside the sp3(F)-subalgebra spanned by x, y and

s we see that Cs(y) is a 1-space, a contradiction. So it follows that indeed s

is mapped to a 1-dimensional subspace in gx/(〈x〉+ g0).

Let s := sp3(F) as in Example 6.1.2 be a Lie algebra generated by a symplectic

triple, such that x spans the center of s. Then the intersection of the geome-

tries of s and g0 is a hyperbolic line l (so a 3-space in g0) and s is mapped

to a subspace of dimension at most 6 − (3 + 1) = 2 in gx/(〈x〉 + g0). We

prove that this subspace is indeed of dimension 2. We use that s ∼= N : sl2,

where N ∼= F1+2 is an ideal isomorphic to a non-split extension of the natural

module for sl2 by a 1-dimensional center. Note that the elements of s that are

in sl2 commute with y, as stated before. So assume there is an n ∈ N that

commutes with y. Clearly n is not in the center of N . But the action of sl2 on

N/〈x〉 is the action on the natural module, so the images of n under this action

will generate the full ideal N and commute with y. This implies [x, y] = 0, a

contradiction. So s maps to a 2-dimensional subspace in gx/(〈x〉+ g0).

Note that the geometry of the space spanned by singular lines l on x together

with all possible subspaces s as above on x is isomorphic to HSp(V ′, f ′).

As follows from the above, this space is naturally embedded into gx/(〈x〉+g0),

which therefore has dimension 2m (by 4.2.8) and is isomorphic to the natural

module for g0.

A similar construction of the spaces gy and gy/〈y〉 + g0 leads to similar con-

clusions.

So gx/(〈x〉+ g0) and gy/(〈y〉+ g0) are both 2m-dimensional and by the above

construction natural modules for g0. These natural modules are irreducible,



6.5. THE VERONESEAN EMBEDDING 123

and we deduce

dim g2(m+1) ≥dim〈x, y〉+ dim gx/(〈x〉+ g0) + dim gy/(〈y〉+ g0) + dim g0

=3 + 2m+ 2m+m(2m+ 1)

=2m2 + 5m+ 3

=(m+ 1)(2(m+ 1) + 1).

�

The consequence of 6.5.1, 6.5.2 and 6.5.3 is the following, again using the no-

tation g2m for the Lie algebra g with Γ(g) ∼= HSp(V, f), where V of dimension

2m:

Corollary 6.5.4. E(g2m) is a quadric Veronesean of index 2m−1 in P(g2m).

We can finally identify our Lie algebra.

Theorem 6.5.5. Let g be a Lie algebra with Γ(g) ∼= HSp(V, f) for some

nondegenerate symplectic space (V, f) of dimension 2m. Then g ∼= sp2m(F).

Proof. We have seen in Corollary 6.5.4 that the conditions of 6.3.3 are

fulfilled for Γ(g), so E(g) is a quadric Veronesean of index 2m − 1. Now

application of Proposition 6.4.4 finishes the proof.

�

Now, the Main Theorem 6.0.6 is the direct consequence of Theorem 6.5.5 and

Theorem 6.2.6.

Our main result of this chapter, Theorem 6.0.6, characterizes Lie algebras

g generated by the set of their extremal elements E with E±(g) = ∅ under

the additional condition that g is simple and of finite dimension. However,

the geometric results of Cuypers [Cuy94] do not have any restrictions. This

suggests that one should be able to remove both the condition of g being

simple and of finite dimension.

Indeed, if the radical of the form g is nontrivial, then the geometry allows

us to find a complement of the radical which is then a simple symplectic Lie

algebra. Moreover, it seems possible to use the methods as in the proof of

Proposition 6.5.3 to show that, up to the center of g, the radical of g is just

a direct sum of natural modules for this complement.
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Also the restriction on the finiteness of the dimension of g might be removed.

The only restriction in our present proof is the analogue of Theorem 6.3.3.

But, again, the geometry Γ(g) can be of help. Indeed, as an infinite dimen-

sional g has a basis consisting of extremal elements, every element in g is a

finite sum of extremal elements and therefore inside a subalgebra g′ gener-

ated by a subset E ′ of E whose geometry is a subspace of Γ(g), which can be

chosen to be isomorphic to HSp(V ′, f ′) for some nondegenerate finite dimen-

sional symplectic space (V ′, f ′). So, g′ is isomorphic to sp2m(F) for some finite

m. In this way we are able to construct a local system of subalgebras for g

whose members are all simple finite dimensional symplectic Lie algebras. Now

methods as used in [Hal95] and [BS02] should identify g as a symplectic Lie

algebra.



APPENDIX A

Extremal forms on Cartan subalgebras

Here, we give the concrete values of the extremal form on the Cartan subal-

gebra of the Chevalley algebras considered in chapter 2. For the G2-case, we

give the table of the full extremal form. This is an application of the rules

stated in 3.4.4. We use the result to obtain the radicals of the extremal form

(that are just nontrivial in a few distinct characteristics) in 3.4.6.

Note that all tables are symmetric since the extremal form is symmetric.

Table 1. An

The fundamental roots of a type An root system are

e0 − e1, e1 − e2, . . . , en−1 − en.

g he0−e1 he1−e2 he2−e3 . . . hen−1−en

he1−e2 2 -1 0 . . . 0

he2−e3 -1 2 -1 . . . 0

he3−e4 0 -1 2 . . . 0

. . .

hen−1−en 0 . . . 0 -1 2

Table 2. Bn

The fundamental roots for a system of type Bn are given by

e1 − e2, e2 − e3, . . . , en−1 − en, en.

g he1−e2 he2−e3 he3−e4 . . . hen−2−en−1 hen−1−en hen

he1−e2 2 -1 0 . . . 0 0

he2−e3 -1 2 -1 . . . 0 0

. . .

hen−1−en 0 . . . 0 -1 2 -2

hen 0 . . . 0 0 -2 4

125
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Table 3. Cn

The fundamental roots for a system of type Cn are given by

e1 − e2, e2 − e3, . . . , en−1 − en, 2en.

g he1−e2 he2−e3 he3−e4 . . . hen−1−en h2en

he1−e2 8 -4 0 . . . 0 0

he2−e3 -4 8 -4 . . . 0 0

he3−e4 0 -4 8 . . . 0 0

. . .

hen−1−en 0 . . . 0 -4 8 -4

h2en 0 . . . 0 0 -4 2

Table 4. Dn

The fundamental roots for a system of type Dn are given by

e1 − e2, e2 − e3, . . . , en−1 − en, en−1 + en.

g he1−e2 he2−e3 he3−e4 . . . hen−2−en−1 hen−1−en hen−1+en

he1−e2 2 -1 0 . . . 0 0 0

he2−e3 -1 2 -1 . . . 0 0 0

he3−e4 0 -1 2 . . . 0 0

. . .

hen−2−en−1 0 . . . 0 -1 2 -1 -1

hen−1−en 0 . . . 0 0 -1 2 0

hen−1+en 0 . . . 0 0 -1 0 2
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Table 5. E8

The fundamental roots for a system of type E8 are given by

e1 − e2, e2 − e3, e3 − e4, e4 − e5, e5 − e6, e6 − e7, e6 + e7

and −1
2

∑8
i=1 ei =: em.

g he1−e2 he2−e3 he3−e4 he4−e5 he5−e6 he6−e7 he6+e7 hem

he1−e2 2 -1 0 0 0 0 0 0

he2−e3 -1 2 -1 0 0 0 0 0

he3−e4 0 -1 2 -1 0 0 0 0

he4−e5 0 0 -1 2 -1 0 0 0

he5−e6 0 0 0 -1 2 -1 -1 0

he6−e7 0 0 0 0 -1 2 0 0

he6+e7 0 0 0 0 -1 0 2 -1

hem 0 0 0 0 0 0 -1 2

Table 6. E7

The fundamental roots for a system of type E7 are given by

e2 − e3, e3 − e4, e4 − e5, e5 − e6, e6 − e7, e6 + e7

and −1
2

∑8
i=1 ei =: em.

g he2−e3 he3−e4 he4−e5 he5−e6 he6−e7 he6+e7 hem

he2−e3 2 -1 0 0 0 0 0

he3−e4 -1 2 -1 0 0 0 0

he4−e5 0 -1 2 -1 0 0 0

he5−e6 0 0 -1 2 -1 -1 0

he6−e7 0 0 0 -1 2 0 0

he6+e7 0 0 0 -1 0 2 -1

hem 0 0 0 0 0 -1 2
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Table 7. E6

The fundamental roots for a system of type E6 are given by

e3 − e4, e4 − e5, e5 − e6, e6 − e7, e6 + e7 and −1
2

∑8
i=1 ei =: em.

g he3−e4 he4−e5 he5−e6 he6−e7 he6+e7 hem

he3−e4 2 -1 0 0 0 0

he4−e5 -1 2 -1 0 0 0

he5−e6 0 -1 2 -1 -1 0

he6−e7 0 0 -1 2 0 0

he6+e7 0 0 -1 0 2 -1

hem 0 0 0 0 -1 2

Table 8. F4

The fundamental roots for a system of type F4 are given by

e1 − e2, e2 − e3, e3,
1
2(−e1 − e2 − e3 + e4).

g he1−e2 he2−e3 he3 h 1
2

(−e1−e2−e3+e4)

he3−e4 2 -1 0 0

he4−e5 -1 2 -1 0

he3 0 -2 4 -2

h 1
2

(−e1−e2−e3+e4) 0 0 -2 4

Table 9. G2

Here, we give the extremal form of the full Lie algebra (see the

table on the next page). Note that the G2-case has already

been considered in Example 3.2.4, and all structure constants

can be found in chapter 3, Table 3. We obtain that indeed

in charF = 3, many entries of the following table vanish (see

3.4.6).
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The extremal form on G2
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Summary:

A Geometric Approach to Classical Lie Algebras

The second half of the 20th century has been very successful for many areas

of mathematics. Also in algebra, various striking results have been obtained,

including the classifications of the finite simple groups and of the modular

simple Lie algebras in characteristic at least 5.

The classification of all finite simple groups states that a finite simple group is

either cyclic or alternating, a group of Lie type, or one of 26 sporadic examples.

The classification of finite-dimensional modular simple Lie algebras is complete

for algebraically closed fields of characteristic greater than or equal to 5. It

implies that a simple modular Lie algebra in characteristic at least 5 is either

classical, of Cartan type or Melikian.

The groups of Lie type and the classical (modular) Lie algebra are strongly

related with each other and both form a central part in the conclusions of above

mentioned classification results. They can be connected by Tits’ unifying

geometric concept of buildings and their related geometries.

Within the theory of finite simple groups, the interaction of groups and geome-

tries has been very fruitful. The geometric method in finite group theory, as

started by the pioneering work of Fischer, has been one of the key ingredients

in the theory of finite simple groups. This successful interaction is a model

for the relations between Lie algebras and geometries that we explore in this

thesis.

An element x of a Lie algebra g is called extremal if the image of g under the

square of left multiplication by x is contained in the 1-dimensional subspace

generated by x. We notice that the long root elements of the classical Lie

algebras are extremal. However, extremal elements also occur in other classes

of Lie algebras. Indeed, Premet showed that, if the characteristic of the un-

derlying field is at least 5, each simple Lie algebra g contains an extremal

element. Moreover, over algebraically closed fields these simple Lie algebras
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are, up to a single exception, generated by their extremal elements as follows

from work of Cohen and others. The two collections of simple Lie algebras,

the classical algebras and the Cartan type algebras (including the Melikian al-

gebras), are distinguished by the dimension of the image of g under the square

of left multiplication by the extremal element x: If this dimension is 0, then

x is called a sandwich and L is of Cartan type. Otherwise, the dimension is

1, and g is classical. The construction of geometries related to Lie algebras

was introduced by A. Cohen and G. Ivanyos; they obtained a natural way to

associate a geometry to a Lie algebra generated by extremal elements that

are no sandwiches. The resulting geometric structure is a root filtration space,

that is (under some mild restrictions) the shadow space of a spherical building.

This construction was inspired by the geometric methods used in finite simple

group theory.

The resulting geometries have been classified, which raises the natural ques-

tion: can the Lie algebra be recovered from the building in a canonical way?

If one can develop the reverse construction, recovering g from the building ∆

in a canonical way, then this implies that g is, in fact, a known classical Lie

algebra.

In this thesis, we take this path from the geometries to the Lie algebras,

concentrating on classical modular Lie algebras. Given a specific geometry

related to a building, we study to what extent a Lie algebra whose associated

geometry is related to that building is unique.

In his Ph.D. thesis, K. Roberts already obtained this result for the An-case.

We extend this result to the general case of classical Lie algebras. We show

under some weak assumptions on the underlying field that a simple Lie algebra

that is generated by extremal elements that are not sandwiches and whose

associated geometry is related to a spherical building of rank at least 3 is a

classical Lie algebra.
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