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Figure 1: Dual adjacency matrix (left), node-link-contour diagram (middle), and highlighted group nodes (right) that depict a

trade network of countries (nodes) with substantial changes in volume traded (links) over a fifty year period. One group of links

is selected in the top-left matrix, which covers countries such as Japan (ASI_JPN) and the USA (AME_USA).

Abstract

Node grouping is a common way of adding structure and information to networks that aids their interpretation.

However, certain networks benefit from the grouping of links instead of nodes. Link communities, for example,

are a form of link groups that describe high-quality overlapping node communities. There is a conceptual gap

between node groups and link groups that poses an interesting visualization challenge. We introduce the Dual

Adjacency Matrix to bridge this gap. This matrix combines node and link group techniques via a generalization

that also enables it to be coordinated with a node-link-contour diagram. These methods have been implemented in

a prototype that we evaluated with an information scientist and neuroscientist via interviews and prototype walk-

throughs. We demonstrate this prototype with the analysis of a trade network and an fMRI correlation network.

Categories and Subject Descriptors (according to ACM CCS):
Computer Graphics [I.3.3]: Picture/Image Generation–Line and curve generation—

1. Introduction

Many networks are derived through experimental observa-
tion of real-world systems for analysis purposes. Social net-
works, for example, describe interactions between people
and provide insights about the functioning of society (see
Fig. 2(a)). Some of these networks are dense, in which most
nodes are so interconnected that their individual roles are
of less interest than the concert of their interactions. This

phenomenon appears as the notion of a network module, or
community, which is a dense network section (with a high
link-to-node ratio) that reflects part of a system that is likely
to have a special role (see Fig. 2(b)). For example, commu-
nities in the social network of a company could be corre-
lated to departmentalization, where team members are likely
to interact. Likewise, communities emerge via natural se-
lection in organisms and appear in protein interaction and

c© 2015 The Author(s)
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Figure 2: Example of a network and derived community structures: (a) Plain social network, people are nodes (dots) and their

interactions are links (connecting lines); (b) Densely interconnected nodes of (a) have been grouped into communities, in which

Dalia is part of a single community in spite of her widespread interactions; (c) Densely interconnected links of (a) have been

grouped into communities, in which Dalia is part of multiple communities.

metabolic networks [RSM∗02, YOB04]. Communities are
often defined in terms of node groups.

Node group A group (or cluster) of nodes that together ful-
fill a role within a network. Node groups are disjoint.

Node groups ease the visual aggregation of networks into
several joint nodes for which information is summarized.
However, certain networks benefit from grouping (or clus-
tering) links instead of nodes.

Link group A group (or cluster) of links that together fulfill
a role within a network. Link groups are disjoint.

Suppose the links of a network are accompanied by a time
series. Grouping these links by similar behavior over time
will expose links–and the nodes that they connect–that act in
concert, indicating a shared role. Likewise, link groups that
are clustered by network connectivity can be used to deter-
mine high-quality overlapping node communities [ABL10],
as shown in Fig. 2(c).

Link groups are more difficult to grasp as a concept than
node groups and therefore pose an interesting visualization
challenge. We bridge this conceptual gap by contributing:

• Generalization and combination of node and link group
techniques into a Dual Adjacency Matrix (DAM) and
node-link-contour diagram;

• A prototype implementation and demonstration of our ap-
proach on a trade network and fMRI correlation network;

• Informal evaluation by an information scientist and neu-
roscientist via interviews and prototype walk-throughs.

2. Related Work

Visualization of network topology has been the subject of
much research [HMM00, vLKS∗11], where node groups
often occur to, for example, support node time series or
multivariate analysis [HSCW13, vdEvW14]. Shifting focus
from nodes to links has already appeared in various forms.
Bundling links by the position of their nodes in a prede-
fined hierarchy reveals correlations between links and the
properties of their nodes [Hol06]. Visual manipulation of

network topology can be avoided via explicit visualization
of link to link relations by introducing an extra type of
link [VHTW13].

An overview of node community visualization can be
found in [VRW13]. Many approaches involve node-link di-
agrams in which community memberships are visualized
by layout [VRW13] and color [APF∗06, IMMS09]. A dual,
community-centric approach is taken in [APF∗06], where
communities are depicted as nodes and their overlaps as
weighted links. These techniques have all proved effective,
either for arbitrary overlapping communities or those that re-
sult from specific detection algorithms. However, to the best
of our knowledge, no visualization techniques have been ex-
plored for link groups and the node groups that they induce.

Visualizing overlapping node groups while abstracting
from the underlying network topology is equivalent to the
visualization of a set system or undirected hyper graph. Venn
and Euler diagrams represent these set systems as overlap-
ping shapes with elements placed in the shapes according
to their set memberships. Here the layout of shapes and
elements plays an important role [BE01, SAA09, HRD10]
and this layout is sometimes constrained as well [CPC09,
MRS∗13]. Some methods give priority to visualizing the dis-
tribution of elements among sets, instead of set system topol-
ogy [KBH06,AAMH13,SMDS14]. Various matrix-like rep-
resentations exist as well [KJ13, LGS∗14]. An overview of
set system visualization can be found in [AMA∗14].

3. Link Group Analysis Tasks

Related research [LPP∗06, HRD10, DvKSW12, SSK14] has
formalized a list of important tasks performed by analysts
on networks, set systems, and node groups in networks. Net-
work tasks capture how nodes are related to each other via
their link connectivity. As a dual to this, we consider relating
links to each other via their imposed groups as well as node

connectivity, and identify a set of analogous tasks, which
capture how link groups are related to each other via shared
nodes. Additional link attributes, possibly used to derive link
groups, are included in these tasks (see Table 1).

c© 2015 The Author(s)
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Table 1: Analysis tasks from Node-centric and Link-centric perspectives.

Node-centric Link-centric

T1. Membership Find link groups that cover given nodes Find the nodes of a given link group
T2. Overlap Find link groups that share given nodes Find nodes shared by given link groups
T3. Path Find paths between nodes via link groups Find paths between link groups via nodes
T4. Cluster (clique) Find multiple nodes that share many link groups Find multiple link groups that share many nodes
T5. Component Find (dis-)connected components of nodes Find (dis-)connected components of link groups
T6. Hub Find a node that is covered by many link groups Find a link group that covers many nodes
T7. Bridge Find nodes that are sole link group connectors Find link groups that are sole node connectors
A. Attribute Compare attributes of links that cover given nodes Compare attributes of given link groups

4. Concept

To the best of our knowledge, visual aggregation and navi-
gation techniques have so far only focused on node groups.
We transfer established techniques from node groups to link
groups and introduce visualizations that couple node and
link group perspectives.

Dual Adjacency Matrix. Both node and link perspectives
are combined in the dual adjacency matrix, which consists
of four quadrants, as shown in Fig. 3.

The bottom-right quadrant (see Fig. 3(b)) is the familiar
matrix that shows adjacencies between node groups. Node
groups (along the diagonal) are colored brown according to
their size, and the number of links that connect two node
groups is shown with a green color scale (see Fig. 3(e)). For
example, a node group in Fig. 3 is highlighted in blue, which
includes its matrix row and column. This node group con-
sists of Ava and two additional people (indicated by a +2),
and it is connected to only the node group of Dalia.

The top-left quadrant is the dual of the matrix at the
bottom-right; it shows adjacencies between link groups.
Again, link groups (along the diagonal) are colored green
according to their size, and the number of nodes shared be-
tween two link groups is color coded in brown. For example,
one link group in Fig. 3(a) is highlighted in red and shares
nodes with two other link groups.

The bottom-left and top-right quadrants are symmetric
and connect the top-left link groups to the bottom-right node
groups, showing which node groups are covered by which
link groups. For example, the bottom-left and top-right quad-
rant tiles that are highlighted in black in Fig. 3(c) show the
connection between the blue and red node and link groups
respectively. Here, the green color coding shows the number
of links in a link group that cover nodes from a node group.

Node-link diagram. Matrix visualizations are suited for the
visualization of dense networks, where link group overlaps
are common. In case of simple link group topology, we also
show how to create node-link diagrams. Coordinating these
diagrams with a dual adjacency matrix via interactive high-
lighting eases the transition from reading a familiar node-
link diagram to reading an unfamiliar matrix. For example,
the node-link diagram of Fig. 3(d) shows the node group of

a

bc

c

d

e

Figure 3: Concept of the dual adjacency matrix, in which the

network of Fig. 2(c) is depicted while aggregated according

to its link groups: (a) The rows and columns of the top-left

quadrant represent link groups, in which the diagonal shows

the number of links in each link group, and the quadrant re-

mainder shows the number of nodes that connect the row

and column link groups; (b) The rows and columns of the

bottom-right quadrant represent node groups, in which the

diagonal shows the number of nodes in each node group, and

the quadrant remainder shows the number of links that con-

nect row and column node groups; (c) The rows and columns

of (a) and (b) extend into the two remaining quadrants that

show which node groups are covered by which link groups;

(d) Node-link diagrams that match the dual matrix are used

to depict link and node group topology when it is sparse;

(e) Numbers of nodes and links are encoded by color scales,

and selected groups are shown in red and blue.

Ava highlighted in blue and covered by a link group high-
lighted in red. It also shows that the red link group covers
the Dalia node group, as can be seen in Fig. 3(c).

c© 2015 The Author(s)
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5. Network Aggregation

We regard node and link groups as each other’s dual, where
nodes and links can be interchanged. The dual of a regular
network is also known as a link-to-node dual or line graph.

Node groups. Node groups are derived from node at-
tributes [AMA08, LNS11] or topology. For example, nodes
can be grouped by similar attribute values, short topologi-
cal distance, or neighborhood similarity. The node groups in
Fig. 4(b), indicated by color, induce the aggregated network
of Fig. 4(d). Every node in the aggregated network repre-
sents a group of people and every link represents the pres-
ence of an interaction between one or more members of the
two groups. Both networks can also be represented as node

adjacency matrices, shown in Fig. 4(f) and (h).

Link groups. The grouping of links can also be expressed
as a grouping of nodes in the dual of Fig. 4(b), which can
be represented by either a node-link diagram or a link ad-
jacency matrix, as shown in Fig. 4(c) and (g) respectively.
The aggregated adjacency matrix of Fig. 4(i) depicts every
link group as a row and column in the matrix (with accom-
panying labels to the sides), and shared nodes as the dots at
intersections.

The conceptual gap between grouping nodes and group-
ing links can be bridged via a bipartite graph interpretation
(see Fig. 4(a)). Nodes and links are shown as solid and hol-
low dots that are connected if the associated nodes and links
are connected in the original network. This interpretation
structures the node-centric versus the link-centric tasks of
Section 3, for which an observer traces connections between
the two groups of the bipartite graph and the only difference
between the task categories is the type of node that the ob-
server starts from.

6. Construction of a Dual Adjacency Matrix

The link adjacency matrices of Fig. 4(g) and (i) display over-
laps of only two link groups at a time, while there is a need
to oversee the intersection of an arbitrary number of groups
(tasks T2 and T4). For example, D in Fig. 4(a) is covered
by three link groups, but this is difficult to see in Fig. 4(g).
We therefore introduce the Dual Adjacency Matrix (DAM),
which consists of a link adjacency matrix, a node adjacency
matrix, and two additional matrix quadrants representing
which link groups cover which node groups.

Link group intersections. The need to oversee intersections
of arbitrary numbers of link groups can be met by grouping
nodes according to the link groups that cover them, as shown
in Fig. 5(a) & (b). This is similar to visualizing overlapping
sets by grouping nodes according to set membership combi-
nations [AMA∗14, LGS∗14]. However, in this case each set
consists of the nodes covered by a link group. The resulting
link group to node group relationships can also be shown as
the matrix in Fig. 5(c), where node groups are not prede-
fined (as in Fig. 4) but derive from link groups. These node
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Figure 4: Overview of network aggregations, applied to

the network of Fig. 2: (a) Bipartite network that bridges

the node and link duality of (b) and (c), in which the

node-to-node (solid dots) and link-to-link (hollow dots) con-

nections correspond to node-link-node and link-node-link

paths respectively; (b) Node-link diagram in which nodes

(solid dots) are colored by group; (c) Node-link diagram

of the dual of (b) in which links (hollow dots) are col-

ored by group; (d) and (e) Node-link diagrams in which

the respective groups of (b) and (c) are aggregated into

single nodes; (f),(g),(h), and (i) Adjacency matrices of the

(b),(c),(d), and (e) networks respectively.

groups also derive the node adjacency matrix of Fig. 5(d),
in which row and column intersections depict links that are
shared between node groups. This type of adjacency matrix

c© 2015 The Author(s)
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Figure 5: Providing a node group interpretation of link

groups with a dual adjacency matrix: (a) Network of

Fig. 4(a), but with links colored to emphasize their groups;

(b) Euler diagram of the set system that is induced by the

link groups of (a), in which every set contains those nodes

covered by its corresponding link group; (c) Set membership

table (or matrix) of the set system of (b) that depicts all link

group overlaps as the composition of node groups; (d) Node

adjacency matrix of the node groups of (c); (e) Combination

of (c), (d), and Fig. 4(i) that forms a dual adjacency matrix.

enables node-centric hub (T6) and bridge (T7) identification,
which is familiar to analysts.

Combination and extension. The matrix of Fig. 5(c) forms
the bridge between node and link groups that enables combi-
nation of the node and link adjacency matrices into the dual
adjacency matrix shown in Fig. 5(e). This combination sup-
ports both node- and link-centric tasks, in particular mem-
bership (T1) and overlap (T2).

The top-left quadrant of a dual adjacency matrix shows
the nodes that connect link groups and the bottom-right
quadrant shows the links that connect node groups. This
leaves the quadrants of Fig. 5(c) open to what their cells (row
and column intersections) represent; either connecting nodes
or connecting links. Showing connecting nodes is superflu-
ous, because our link groups induce node groups such that
any cover of a node group by a link group is complete (all
nodes are covered). Representing links does provide addi-
tional information however, as shown in Fig. 3(c). It conveys

which links of a link group cover a node group; a column
shows how a link group decomposes over node groups, and
a row shows how the neighborhood links of a node group
distribute over link groups.

7. Construction of a Node-link Diagram

The dual adjacency matrix focuses on the visualization of
link groups and their overlaps (tasks T2, T4, and T6) as an
extension of common adjacency matrices. Adjacency matri-
ces are difficult to read and they perform poorly on global
topology tasks (T3, T5, and T7) in comparison to node-link
diagrams [GFC04]. We have therefore also explored link
group visualization as forms of node-link diagram.

Detailed node-link diagram. Early prototypes featured a
node-link diagram of the entire network, in which nodes
have a pre-computed position (see Fig. 6(a)). Interactions
with the link and node groups of the duality matrix are coor-
dinated with this node-link diagram, where nodes and links
are colored according to hovered groups. This approach was
valued by users for small and sparse link groups but did not
scale due to a lack of aggregation.

Aggregated node-link diagram. Aggregating the detailed
node-link diagram down to the groups of the dual adjacency
matrix gives a less cluttered but more abstract visualization:
Every node group appears as a node and every link group
as multiple lines; one line runs between two nodes for every
link group that covers them. This approach is common for
the visualization of multiple (overlapping) link types, but in
this case it shows link groups.

Node-link-contour diagram. Link groups facilitate the cre-
ation of the overlapping shapes of an Euler diagram because
their individual links can be inflated and combined (see
Fig. 6(c)). The links that underlie a community therefore act
as a skeleton, which can be inflated to form hulls [LQB12,
MRS∗13]: a contour is derived per link group by dilating
its links (the application of a Minkowski sum [DBVKOS00]
with a circle), dilating covered node groups with a greater ra-
dius for emphasis, then eroding the contour to smoothen it,
and finally subtracting the areas around non-member nodes
to avoid invalid overlaps. Contours are separated by dilating
with different radii at nodes that are shared by multiple link
groups (see the nested contours in Fig. 6(c)). Contours are
also cohesive per link group, provided that the link groups
themselves are cohesive, which is often the case [ABL10]. It
is also possible to visualize aggregated links (see Fig. 6(d)).
This provides more insight into network topology at the ex-
pense of some additional clutter.

8. Prototype Design

We implemented the DAM in a prototype that was refined in
an iterative fashion with feedback from link group experts.
The prototype includes additional node and link information.

c© 2015 The Author(s)
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(a) (b)

(c) (d)

Figure 6: Node-link diagrams that incorporate link groups:

(a) Detailed, full node-link diagram with color coding of

nodes and links via interaction; (b) Aggregated node-link di-

agram with links between node group pairs, color coded like

(a); (c) Link group contours derived (and color coded) from

the links of (b); (d) Addition of links between group pairs to

(c) for improved depiction of topology.

Node labels. Node groups are labeled to provide an indi-
cation of their contents. This label consists of the name of
the most important node in the group (by input score) and
is shown at an extension of its matrix row (see Fig. 3(b)). It
also shows the remaining number of nodes in the group to
emphasize it being a group.

Multi-level link groups. We expect input link groups to be
the result of clustering, based on link topology and/or at-
tributes like a time series. Such clusterings are often hierar-
chic, which is why the prototype supports a link hierarchy.
This hierarchy is mirrored at the top and side of the top-left
matrix quadrant as icicle plots that extend to the rows and
columns of the matrix (see Fig. 1). The sides of this icicle
plot are tapered to get a tree-like representation with pro-
nounced hierarchy branches. Interactive hierarchy naviga-
tion is enabled for better scalability, where changes to the vi-
sualizations due to splitting high-level groups are animated.

Aesthetics. The colors for highlighted groups are derived
from color brewer [HB03]. Strong contrast and hard outlines
are avoided, though black is used for highlights and node
legibility. Matrix rows and columns are of a translucent gray
such that their intersections are more pronounced. A large
space is placed between the dual matrix quadrants to make
them appear cohesive and emphasize their difference. The
color scales for node and link abundance (see Fig. 3(e)) are
divided into four levels: the first level encodes zero abun-
dance, the second level encodes a single node or link, and
the remaining levels follow a log scale.

Highlighting. Highlighting is enabled via mouse-over of up

to two matrix rows, columns, or diagram contours. If two of
such elements belong to the same group, then this group is
highlighted in red (and translucent red in the background),
as shown in Fig. 1. If two different groups are hovered, then
one group is shown in red, the other group in blue, and their
overlap in black (see Fig. 3). This simultaneous highlighting
enables the comparison of two groups in coordinated views,
which include additional information (task A).

One such coordinated view is shown at the right of Fig. 1,
which lists the nodes of a highlighted node group, or those
nodes covered by a highlighted link group. Three lists are
shown when two groups are highlighted: two lists that show
all nodes per group, and one list in the middle that shows
overlapping nodes. Links are coupled to time series data in
another view (see Fig. 7). It visualizes the time series of up
to two highlighted groups as semi-transparent colored trend
plots. For a highlighted link group, these are the time series
that belong to its links, and for a highlighted node group,
these are the time series of the links that cover any of its
nodes. Time series of links that are shared by two groups are
emphasized as black plots.

9. Exploration Demonstration

We demonstrate the described concepts and the use of the
tool by exploring a dense network of countries (20 nodes)
and their trade relations (95 links). These trade relations are
the combined import and export (in millions of dollars) be-
tween countries, measured on a yearly basis between 1948
and 2000 (53 time points).

Preprocessing. The analyzed data set was derived from a
larger trade network by selecting the countries from four ma-
jor regional trading groups (North-America as AME, Europe
as EUR, Arabia as ARA, and Asia as ASI). In addition, trade
relations were filtered for high variance, which leaves the
most dynamic relations for analysis. These trade relations
were attached to corresponding links as time series, and the
links were then grouped according to these time series with a
k-means algorithm. This clustering uses angular (cosine) dis-
tance for the time series vectors such that links with similar
trade dynamics are grouped together. Links from the same
group could therefore be trade relations with common ex-
ternal influences, explaining their similar dynamics, or they
could have been grouped as a clustering artifact. Cluster-
ing was applied twice to get a multi-level grouping, with
k = 5 for top groups and k = 3 for subgroups. The result-
ing five top link groups can be typified as follows: a large
group with consistent trade growth but a lot of missing data,
a large group with consistent growth and little missing data, a
smaller group with a minor trade slump in the 1980s, a group
of four links with major slumps in the ’90s, and a group of a
single link with the same slump in the ’90s.

Matrix perspective. Dual adjacency matrix and node-link-
contour visualizations of the initial, top-level link groups are

c© 2015 The Author(s)
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(a) (b) (c)

Figure 7: Elucidation of link groups in a trade network, in which time series of highlighted groups are shown as trend plots that

show trade volume on a log scale: (a) Comparison of the time series of a large link group (red) that has a mostly steady growth

of trade volume, and a smaller link group (blue) with a significant trade slump in the 90’s; (b) Overlap of all available trade

relations of Iraq (red) with the relations of the smaller link group of (a) (blue), showing that many 90’s volume slumps involve

trade with Iraq (overlap colored black); (c) The blue link group of (a) is split into three subgroups of which one subgroup is a

single link (red, covering ARA_IRQ and EUR_GFR) that is compared to the single link of a smaller top group (blue, covering

ARA_IRQ and AME_USA).

shown in Fig. 1. These visualizations provide insights into
the trade network topology. For example, the matrix at the
top-left shows that all link groups overlap, which indicates
that different trade behaviors intermingle. Three link groups
at the top-left have a strong overlap (they share many nodes),
which is shown by dark brown matrix intersections (T4).

The bottom-left and top-right matrix quadrant confirm
a strong overlap of these link groups. These quadrants
also reveal a large node group, led by the United King-
dom (EUR_UKG), that is exclusively covered by these link
groups (T1). Only two other groups of countries, led by
the United States (AME_USA) and Japan (ASI_JPN), are
covered by more link groups, making them link group
hubs (T6). However, China (ASI_CHN) is isolated to one
link group, making this link group a bridge (T7), while the
bottom right matrix shows that China has links to many
countries, making China a conventional hub that is con-
strained to one link group.

Node-link-contour perspective. The node-link-contour di-
agram in Fig. 1 enables the same observations as the dual
adjacency matrix because the link group topology is plain.
The overlap between all link groups is not as apparent in the
diagram as in the top-left matrix. On the other hand, sparsely
connected node groups such as Iraq (ARA_IRQ) and Bahrain
(ARA_BAH) are easier to spot in the diagram than in the ma-
trices. Moreover, small link groups stand out, such as the two
groups that bridge to Iraq.

Inspecting link groups. The three large link groups and
two smaller link groups can be explained by inspecting their
associated time series in an additional view (task A). In

Fig. 7(a) we highlight one of the larger link groups (colored
red) and one of the smaller groups (blue) by hovering their
intersection in the top-left matrix quadrant. The large group
contains a large number of links that appear as numerous red
trend lines. These series are noisy until 1970, likely caused
by a lack of data (defaulting trade volume to nil), but show
consistent trade growth afterwards. Comparing the large link
groups to each other confirms that all large link groups share
this growth pattern. The smaller group shows a significant
trade slump in the 90’s and the bottom-left matrix quadrant
shows that this link group covers Iraq.

We request more detail about Iraq in Fig. 7(b) (colored
red) by hovering its overlap with a link group (blue). Hover-
ing the row or column of a group of countries shows all of
their trade relations in the time series view. Trade volume
plots of the blue link group that involve Iraq are colored
black like the matrix overlap cell. We see that all of Iraq’s
relations are covered by the blue link group except for one
(the red plot). Nonetheless, all of Iraq’s trade relations fea-
ture the 90’s volume slump, which is likely caused by the
regional conflicts during this period.

Cluster assessment. In Fig. 7(a)&(b) the blue link group
contains one trade relation that does not slump and which ex-
cludes Iraq. This mismatch appears to be a fault in the clus-
tering, so we split the blue link cluster by clicking on its link
hierarchy branch at the top-left to get the new matrix con-
figuration in Fig. 7(c). This unveils that the link without the
slump, positioned between the blue and red subgroups, does
not involve Iraq but Saudi Arabia (ARA_SAU) and France
(EUR_FRN), which explains the trade development that is
similar to Iraq up to the war and why their trade links were
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clustered together. Comparing one of the link subgroups that
involve Iraq with the only other link group that involves Iraq
(colored red and blue respectively in Fig. 7(c)) shows simi-
lar trade developments, but the isolation of the cluster (being
the trade link with the United States) could be explained by
its very strong increase in trade volume before the turn of the
millennium.

10. Preliminary Expert Feedback

We performed interviews and walk-throughs of our proto-
type with two experts from different fields to gather feedback
on our approach. We first performed a series of interviews
with each expert to collect several of their datasets and asso-
ciated analysis questions. Then, during an one-hour session,
one of the authors walked the experts through the prototype
while they used their own data.

Information science expert. Our first expert, Jevin West,
is an academic researcher at the information science school
of the University of Washington, with a solid expertise in
analyzing complex networks and a focus on understanding
communities. The datasets he was primarily interested in
were scientific journal citation networks, composed of sev-
eral hundreds of nodes and several thousands of links that are
hierarchically partitioned into link communities [ABL10].
After our presentation of the tool, it took about 15 minutes
for Jevin to interact with the system and make effective use
of the dual adjacency matrix to explore his data. Jevin com-
mented that the tool had a steep learning curve, but is pow-
erful once understood. This enables him to answer questions
on link and node communities that were not easy to answer
before. In particular, it helped him make the leap from link
groups to shared node groups. For example, he identified
nodes acting as hubs by glancing at the link to node group
matrix and reviewing node groups. He also pointed out link
communities sharing many nodes, commenting that this was
potentially helpful to identify noise in the data or regions
with a low clustering quality.

Jevin was quickly familiar with the link group intersection
matrix and used the hierarchical navigation several times
to adjust the level of link groups to the desired granular-
ity. Jevin concentrated most of his analysis on the link to
node group matrix and the conventional node group ma-
trix. He explained that “the most useful feature here [point-
ing at the node group adjacency matrix] is [seeing] what is
not connected because we usually know about the [presence
of] clusters [themselves]”. He commented that it was com-
pelling to see holes in this matrix and argued that this could
be useful to identify missing data or, if not missing, serve to
make predictions on future connections, which he mentioned
is of interest in many scenarios.

Neuroscience expert. Our second expert, Tara Madhyastha,
is an academic researcher at the radiology department of
the University of Washington, with expertise in analyzing

functional brain connectivity networks extracted from mag-
netic resonance imaging. She was primarily interested in dy-
namic weighted networks, composed of two dozens of re-
gions of interest in the brain and their weighted connections
that evolve over time. We augmented the prototype with a
spatial brain view to provide a familiar context to the nodes
and weighted connections. In our initial interview, Tara ex-
plained that she had experimented with several link grouping
algorithms before. The output usually contained one large
group of links and many small ones, from which she con-
cluded it was not worth pursuing this type of analysis. Aware
of these past attempts, we experimented with several other
algorithms to get to a more balanced distribution of the num-
ber of links in groups. We presented the output of k-means
clustering on vectors of link weight to Tara in our walk-
through session. Tara had never before used visual tools to
inspect link and node groups at the same time.

Tara had a very different exploration process than Jevin.
She spent most of the session inspecting the content of the
link group matrix coupled with the time series view. As we
presented the tool, she immediately identified a link group of
interest, pointing at the time series view, and asked a series
of questions about the clustering algorithm. From this point,
Tara used the prototype to visually assess the quality of the
link groups. In a later session we combined Tara’s own link
clusters of three large-scale intrinsic brain zones [MG14]
for her to explore a subset of individuals with Parkinson’s
Disease (PD) and age-matched controls. Research, includ-
ing Tara’s, suggests that the coupling of these zones may be
dysregulated in PD. The DAM enabled her to examine the
time series of multiple link communities in multiple zones
at the same time, expecting that some are coupled and oth-
ers are not (see Fig. 8). For example, she discovered partial
coupling of the Posterior Default Mode zone and parts of the
Fronto-Parietal Task Control zone in a PD subject at rest.

11. Discussion and Limitations

We have demonstrated DAMs for small but dense networks
where links are subject to multi-level grouping. Even for net-
works with few nodes this poses a visualization challenge,
because standard node-link diagrams are hard to read (see
Fig. 7(c)). However, such a diagram is likely to enable more
effective analyses for a sparse network, provided its link
groups are coherent (see Fig. 6).

DAMs scale to larger networks by adding interaction tech-
niques to manipulate link groups and their hierarchy: filter-
ing link groups on criteria such as size and density, interac-
tive branch pruning, and automated branch expansion. This
involves common hierarchy interaction that is peripheral to
the concept of DAMs but was vital to support Jevin’s large
link community analyses with our prototype. Nonetheless,
analyses with DAMs can be impeded by flat or imbalanced
link hierarchies.

An alternative to DAMs of dense networks are regular ad-
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(a)

(b)

(c)

(d)

(e)

Figure 8: Exploration of 20 brain regions connected by 183 links that encode (sliding window) fMRI signal correlations along

200 time points. The brain is divided into three zones (DAN, FPTC, and DMN) and links are grouped accordingly: three intra-

zone link groups that are subgrouped [MG14], and three inter-zone link groups: (a) The top-left matrix shows no overlap

between the three intra-zone link groups, but that they do overlap with the inter-zone link groups. The bottom-right matrix has

three node groups that match the zones. The intra-zone link group DMN (red) has mixed signals, while DAN (blue) and FPTC

have positive signals. (b) Both the FPTC link group (red) and the link group between FPTC and DAN (blue) have positive

signals. (c) Splitting DMN because of its mixed signals reveals its overlapping link subgroups. Two link subgroups have strong

overlap, where one group (red) is strongly correlated and tightly positioned in the brain, and the other group (blue) is less

correlated and more spread across the brain. (d) The bottom-right adjacency matrix shows a missing link between spatial

opposites Rlattemp and Llattemp. Hovering the empty spot compares all neighboring links of Rlattemp and Llattemp, where

their signals show a consensus. (e) One node group (red) acts as a hub to DMN link groups. Hovering this node group and the

DMN link groups shows that the node group has many anti-correlations within the DMN zone. However, hovering the inter-zone

link groups (blue) shows that this node group has mostly positive correlations with the ‘remainder’ of the network.

jacency matrices with links color coded by group, and rows
and columns arranged by link group similarity. While this
regular adjacency matrix might be easier to read, color cod-
ing limits the number of link groups shown and complicates
interactive link group navigation. One benefit of a DAM is its
dual representation of link groups, which enables the attach-
ment of explicit hierarchy representations, and the mouse-
over highlighting and comparison of two groups.

12. Conclusion

We have introduced a generalization of the adjacency ma-
trix for exploring link and node groups. This generalization
enables analysis of (hierarchical) link groups while provid-
ing both node and link group perspectives. Iterative imple-
mentation of this concept, while relying on feedback from
link group experts, has resulted in an interactive system

with coordinated matrix and node-link diagram views. Walk-
through sessions with two experts revealed that DAMs help
link and node group analysis, bridging the concepts.

The experts had different exploration processes, in which
they understood and relied on all quadrants of the adjacency
matrix in spite of a steep learning curve. This feedback sug-
gests that our approach enables analysts to bridge the gap
between link and node groups. We believe this is an encour-
aging first step towards visual exploration of link groups.
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