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In this paper, a new methodology is presented to derive the aberration state of a lithographic projection
system from wafer metrology data. For this purpose, new types of phase-shift gratings (PSGs) are intro-
duced, with special features that give rise to a simple linear relation between the PSG image displace-
ment and the phase aberration function of the imaging system. By using the PSGs as the top grating in a
diffraction-based overlay stack, their displacement can be measured as an overlay error using a standard
wafer metrology tool. In this way, the overlay error can be used as a measurand based on which the phase
aberration function in the exit pupil of the lithographic system can be reconstructed. In practice, the
overlay error is measured for a set of different PSG targets, after which this information serves as input
to a least-squares optimization problem that, upon solving, provides estimates for the Zernike coefficients
describing the aberration state of the lithographic system. In addition to a detailed method description,
this paper also deals with the additional complications that arise when the method is implemented ex-
perimentally and this leads to a number of model refinements and a required calibration step. Finally, the
overall performance of the method is assessed through a number of experiments in which the aberration
state of the lithographic system is intentionally detuned and subsequently estimated by the newmethod.
These experiments show a remarkably good agreement, with an error smaller than 5 mλ, among the
requested aberrations, the aberrations measured by the on-tool aberration sensor, and the results of
the new wafer-based method. © 2014 Optical Society of America
OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (220.3740) Lithography;

(100.5070) Phase retrieval; (220.1010) Aberrations (global); (050.0050) Diffraction and gratings.
http://dx.doi.org/10.1364/AO.53.002562

1. Introduction

In recent years, the specifications and tolerances for
aberration control in the lithographic industry have
reached a level at which the contributions from
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dynamic effects also form a significant fraction of the
overall aberration budget of a lithographic system. In
this context, an aberration is considered dynamic
whenitscontributionmaychangeduringthecomplete
exposure of a wafer. This includes, for example, lens
heating, vibrational modes of lens elements due to
thescanningmotionof thereticle stage,orevenrefrac-
tive index variations of the immersion fluid caused by
flow or bubbles. Although, modern day lithographic
systems are all equipped with on-tool sensors to mea-
sure their aberrations, these sensors commonly oper-
ate in between wafer exposures and consequently are
unable to pick up the dynamics of the mentioned
effects. In the present work we aim at developing an
alternativewafer-basedaberrationmetrologymethod
that can pick-up and study these effects.

In the semiconductor industry, lithography is ap-
plied to transfer a desired pattern from a reticle onto
a light-sensitive layer on a wafer. If aberrations are
present, these give rise to deformations of the trans-
ferred pattern, like lateral feature displacements
and blurring effects, which in turn may lead to
malfunctioning electronic circuits or chips. As a
consequence, the tolerances for these effects are
extremely tight. For example, current and future
lithographic nodes have an overall feature displace-
ment budget that is of the order of a few nanometers,
and this includes, in addition to aberrations, contri-
butions from other sources, such as wafer stage
positioning errors and reticle defects. Effectively this
means that, for state of the art lithographic proc-
esses, aberrations should be controlled down to the
subnanometer regime and this implies that, for a
lithographic system operating at a wavelength of
193 nm, a phase measurement accuracy of the order
of a few milliwaves is required. In the current work
we therefore aim at a desired aberration measure-
ment accuracy that is better than 2.5 mλ.

Since aberration control in the semiconductor in-
dustry is mainly driven by the tight error tolerances
for the features being printed, it is also true that
aberrations are considered relevant only if they
significantly alter the pattern being printed. Looking
at the problem from this perspective, it seems natu-
ral to monitor the aberration state of a lithographic
system based on information extracted from the
wafer. However, quantitative wafer-based aberration
analysis, down to the required accuracy, proves to
be very challenging. Not only are the aberration-
induced changes very small, they are also strongly
correlated with other feature shape changing effects,
such as focusing and wafer processing. Because of
these and other complications, wafer-based aberra-
tion metrology methods have never become an
industry standard that is widely used. Nevertheless,
we will show in this paper that the above-mentioned
issues can be overcome and that a wafer-based
method can be devised that is an excellent candidate
for studying dynamic aberration effects.

The wafer-based aberrationmetrology method pre-
sented here is inspired by a paper by Nomura

published in 2001 [1]. In this paper, Nomura intro-
duced a special type of grating, based on which a
method could be devised to distinguish between
odd and even aberrations simply by measuring the
aberration-induced image shift for a few of these gra-
tings. The targets used by Nomura are of the phase-
shift grating (PSG) type and basically consist of
binary line-space gratings for which part of the light
transmitting area is phase shifted by means of an
etch into the grating substrate of the mask. The cur-
rent work builds upon Nomura’s pioneering ideas
and further exploits the aberration information
contained in the image position of a PSG.

By careful design of a PSG, and satisfying a num-
ber of constraints, a simple linear relation between
the PSG image displacement and the phase aberra-
tion function of the imaging system can be estab-
lished. This will be explained in detail in Section 2
and basically provides the possibility to obtain phase
information, for a single point in the exit pupil of the
imaging optics, by measuring the PSG image dis-
placement. However, in order to determine the aber-
rations of an optical system, the phase distribution in
the entire pupil is required. In the proposed method,
we therefore use many 1D- and 2D-PSGs, having dif-
ferent grating pitches and rotation in the object
plane, to effectively probe the phase distribution at
different locations in the pupil. In this way, enough
phase information can be collected to reconstruct
the aberration function by means of solving a
least-squares optimization problem, and the only
task that remains is the accurate measurement of
the lateral image displacements of all PSGs to serve
as input.

Measuring relative displacements is a common
task in the semiconductor industry. An electronic cir-
cuit is built up frommany different layers that should
be stacked on top of each other very accurately to as-
sure a correctly functioning chip. Layer placement is
monitored by dedicated wafer overlay metrology sys-
tems, which basically measure the relative displace-
ment (known in the industry as the overlay error)
between two functional layers on the wafer by com-
paring dedicated targets included in both layers. In
the current work we exploit this existing overlay
measurement technology by replacing the target in
one layer by a PSG-based target to directly measure
the aberration-induced PSG image shift relative to
the target in the other (reference) layer.

By the end of Section 2 we will have introduced all
basic concepts and measurement principles required
to devise a PSG overlay (PSG-OVL) based aberration
metrology method, and we will give a proof-of-
principle in simulation to show its feasibility. From
there on, the remainder of the paper is organized
as follows. Section 3 deals with the additional com-
plications that arise when the proposed method is
implemented experimentally. There it will be shown
that, although some of the distinguished experimen-
tal issues have the potential to significantly degrade
the performance of the method, they can all be
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accounted for, or compensated for, through a number
of model refinements and a calibration operation. In
Section 4 the implementation of the method is dis-
cussed and experimental results are given for a num-
ber of aberration reconstruction examples. This will
also illustrate the impact of the various model refine-
ments and the calibration operation introduced in
Section 3. Section 4 is concluded with an experiment
in which the relative aberrations measured by the
new wafer-based method and an on-tool aberration
sensor (based on shearing interferometry [2]) are
compared, showing both methods to agree to a level
better than 5 mλ. We will conclude with the overview
of our work in Section 5, where we shall summarize
and comment on the results obtained and where we
shall give recommendations for further development
of the method.

2. PSG-OVL Aberration Metrology

In this section, the basic concepts and measurement
principles exploited in this paper are discussed.
Based on a simplified image formation model and
new types of PSGs, it is shown that a straightforward
relation can be realized between the displacement of
a PSG image and the aberrations of the imaging sys-
tem. In addition, it is explained how standard wafer
metrology tools can be exploited to measure this
aberration-induced displacement for a tailored set
of different PSGs, in this way collecting enough infor-
mation to allow estimation of the aberration function
of the optical system.

A. Aerial Image and Two-Beam Interference

The simplified image formation model applied in this
section is based on the following assumptions. For
the illumination conditions in the lithographic sys-
tem, the effective illumination is assumed to consist
of a circular centered monopole with a radius σ that
is very small compared to the numerical aperture
(NA) of the lithographic projection lens and thus ef-
fectively generates a plane wave toward the reticle
(Köhler illumination configuration). Upon transmis-
sion of the incident plane wave through a periodic
structure on the reticle, a discrete number w of
diffracted beams are generated that lie within the
entrance pupil NA of the projection lens (see also
Fig. 1, where the special case of a PSG as object is
illustrated). As a result, the aerial image of the dif-
fraction grating can be considered as the superposi-
tion of a number W of two-beam interferences, with
W � �w2�. Each of these two-beam interferences gives
rise to a cosine fringe in the aerial image, character-
ized by two parameters that are its phase offset and
its amplitude. The two beams themselves are charac-
terized by their complex-valued diffraction ampli-
tudes given by C1 exp iφ1 and C2 exp iφ2, and by
their reciprocal space coordinates denoted by
�h1; g1� and �h2; g2�, respectively. The interference
of these two beams leads to a spatial frequency
component of the aerial image, at the coordinates
�h � h1 − h2; g � g1 − g2�, given by

~Ih;g � C2
1 � C2

2 � 2C1C2 cos�2π�h1 − h2�x
� 2π�g1 − g2�y� φ1 − φ2 � ΔΦ1;2�; (1)

where we will assume for now that φ1 � φ2 (the φ1 ≠
φ2 case is discussed at the end of Subsection 3.D). In
this case, the overall phase offset of the cosine fringe,
denoted by ΔΦ1;2, is given by the difference of the
wave-aberration function taken at the two spatial
frequencies or diffraction angles in the exit pupil
of the lens; the amplitude of the cosine fringe is de-
termined by the diffraction amplitudes of the grating
at mask level. The pattern shift of the aerial image is
a complicated function of the phase shift and ampli-
tudes for all the two-beam interferences that give
rise to the aerial image. A directly interpretable
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Fig. 1. PSG-based image formation. A schematic representation
of image formation for a 1D PSG, having a unit cell with N � 4
different taps and period P, is shown. The PSG at the reticle level
is illuminated by a normal incidence plane wave. Each tap in the
PSG unit cell has an effective scattering factor, f j, with
j � 0; � � � ;N − 1. The scattering factors shown correspond to the
tap design values given in Eq. (11), where a complex valued f j in-
dicates a relative phase shift for the light passing through that
particular area of the unit cell. Interaction between the incident
light and the PSG will generate a number of diffraction orders
in the entrance pupil of the projection optics. Due to the complex
scattering factors, destructive interference can take place and a
number of diffraction orders are forbidden (shown in gray). We ba-
sically end up with only two non-zero orders within the NA, the
zeroth and −1st diffraction orders, and only these will propagate
through the projection optics to contribute to the image. Note that
the reciprocal space coordinates, �h1;2; g1;2�, as used in Eq. (1), are
given by the coordinates of the two allowed diffraction orders in the
pupil and that ρ is the distance between the first diffraction order
and the pupil center in normalized pupil coordinates.
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and unambiguous relation between the pattern shift
and the aberrations of the projection lens can be
achieved when the aerial image is generated by only
a single two-beam interference (see Figs. 1 and 2). In
this case the observed pattern shift of the aerial im-
age, ΔXAI, is simply given by

ΔXAI �
ΔΦ1;2P

2π
; (2)

with P the period or pitch of the generated fringe
pattern.

Given that, for the aimed aberrationmetrology, the
entrance pupil consists of a single monopole centered
at zero, a two-beam interference can only be realized
by a diffraction grating at mask level that has at
least one diffraction order that is “forbidden,” i.e.
has zero amplitude.

B. Gratings with Forbidden Diffraction Orders

The analysis of forbidden orders of a 1D diffraction
grating with N equidistant subdivisions or taps in
its unit cell (see Fig. 1), and with for each jth tap
a respective scattering factor denoted by f j, with
j � 0; 1;…; N − 1, is typically carried out in terms
of the unit cell’s structure factor, which is, for the
kth diffraction order, given by, (e.g., Chapter 2,
Eq. (46) in [3], with i2 � −1)

FN�k� �
XN−1

j�0

f j exp
�
2πi

jk
N

�
: (3)

First, it should be noted that the tap-based scatter-
ing factors f j have to be complex valued in order to

realize a forbidden order only at the �k diffraction
order position, while the −k diffraction order has
non-zero amplitude. Indeed, for real-valued scatter-
ing factors f j, the symmetry relation jFN�−k�j �
jFN��k�j is always satisfied (also known as Friedel’s
law, a well-known property of the Fourier transform
of a real-valued function). Next, the question of how
many taps N are to be distinguished within the unit
cell should be addressed. For N � 2, only the trivial
solution for the set f j is obtained, equal to f1; 1g,
which actually implies a pitch halving. For N � 3,
only a real-valued solution for the set f j is obtained
given by f1; 1; 1g, which does not qualify. For N � 4,
nontrivial complex-valued solutions are obtained
for the set f j. Note that without loss of generality,
f �j�0� can be set equal to 1. Possible sequences of dif-
fraction orders in the reciprocal space unit cell k �
0;…; N are given in Table 1. Cases 1 and 2 in Table 1
will be shown to be the (independent) relevant cases.

Case 1 requires that jF�N�4��1�j � 0, which leads to
the condition

1� if 1 − f 2 − if 3 � 0: (4)

This single equation on ff 1; f 2; f 3g leaves 2 deg of
freedom. By making the choice f 2 � 0 � f 3, the rela-
tion reduces to 1� if 1 � 0, which yields the set f j
given by f1; i; 0; 0g, which is identified as Nomura’s
PSG [1].

Case 2 requires that both jF�N�4��1�j � 0 and
jF�N�4��2�j � 0, which leads to the simultaneous
conditions

1� if 1 − f 2 − if 3 � 0; (5)

1 − f 1 � f 2 − f 3 � 0: (6)

The latter equations still leave 1 deg of freedom on
ff 1; f 2; f 3g. By making the choice f 3 � 0, a non-trivial
solution for the set f j is found to be f1; 1� i; i; 0g.
Clearly, by having two consecutive diffraction orders
(k � 1 and k � 2) that are forbidden, a larger range
of pitches can be accommodated before a higher
diffraction order enters the NA of the projection lens.
In that sense, case 3 would hypothetically be even

beam1

beam2

x

z

(z=0)

Fig. 2. Two-beam interference image formation. Beams 1 and 2
have equal wavelengths with dashed and solid lines representing
tops and valleys of the plane wave, respectively. Where solid (or
dashed) lines intersect, both beams are in phase and constructive
interference takes place to form the image (interference fringes in-
dicated by the thick black lines). A shift of the image plane in the z
direction (defocus) and/or a phase change of either beam will only
shift the complete interference fringe in the image plane (z � 0) in
the lateral (x) direction.

Table 1. Seven Possible Sequences of Diffraction Orders for
N � 4, with “O” and “X” Indicating Nonforbidden and Forbidden
Diffraction Orders, Respectively, and the Top Row Giving the

Indices k of the Diffraction Order

k 0a 1 2 3 4

1 O X O O O
2 O X X O O
3 O X X X O
4 O X O X O
5 O O O X O
6 O O X X O
7 O O X O O

aThe 0th order relates to the centered monopole
illumination.
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more preferable, but its simultaneous conditions,
given by

1� if 1 − f 2 − if 3 � 0; (7)

1 − f 1 � f 2 − f 3 � 0; (8)

1 − if 1 − f 2 � if 3 � 0; (9)

just allow for the trivial solution of the set f j given by
f1; 1; 1; 1g, which corresponds to an effective pitch
that is a quarter of the original one. Similarly, case
4 corresponds to a pitch halving. Cases 5 and 6 are
further equivalent to cases 1 and 2, respectively,
while case 7 obviously cannot lead to a situation with
just two non-zero diffraction orders within the NA of
the exit pupil. Concluding, for N � 4, there are two
solutions for the set f j that yield a diffraction pattern
that can be used to generate a two-beam interference
process within the NA of the optical system, given by

f1; i; 0; 0g OXOOO; (10)

f1; 1� i; i; 0g OXXOO: (11)

Note that a complex scattering factor implies that
light transmitted by the corresponding tap is phase
shifted with respect to other taps. This is why a
grating involving complex-valued taps is commonly
referred to as a PSG and we will use this nomencla-
ture to address this type of grating throughout the
remainder of this paper.

C. Sampling the Phase Aberration Function

Using the grating designs given in Eqs. (10) and (11),
it is possible to generate a diffraction pattern having
only two non-zero (allowed) diffraction orders within
the NA of the optical system, while all other diffrac-
tion orders are either zero (forbidden) or lie com-
pletely outside the NA. In this case, the image of
the grating will be generated from a single two-beam
interference and the simple relation given in Eq. (2)
applies. Consequently, the phase difference of the
aberration function evaluated at the position of the
two allowed diffraction orders can be determined
by measuring the displacement of the aerial image
at the wafer level.

As the aberration function is probed at the location
of the allowed diffraction orders, we can control the
probing locations by varying the grating parameters.
Assuming normally incident plane wave illumina-
tion, the 0th diffraction order of the grating will be
generated at the center of the exit pupil, while the
higher orders can be generated anywhere in the pu-
pil by changing the pitch and rotation of the grating
accordingly (see Fig. 3). Consequently, the gratings
defined in Eqs. (10) and (11) can be used to sample
the phase difference of the aberration function be-
tween the center position and another position

elsewhere in the pupil, by controlling the 1st diffrac-
tion order position via the pitch and orientation of
the grating.

However, the grating designs given in Eqs. (10) and
(11) cannot be used to sample the entire pupil. This is
because Eq. (2) is valid only in the case of pure two-
beam imaging. This means that, for larger pitches,
when the diffraction pattern is compressed relative
to the size of the pupil, the condition should be sat-
isfied that no non-zero higher diffraction orders enter
the pupil. As a result, the following constraint
applies on the maximum allowed grating pitch:

P ≤
kminλ

NA
; (12)

where kmin specifies the lowest diffraction orders that
should be kept outside the NA to satisfy the two-
beam requirement. Note that kmin is different for
the designs given in Eqs. (10) and (11); the first
(Nomura) design has one allowed 2nd diffraction or-
der implying kmin � 2, while the second design has
both 2nd diffraction orders forbidden, thus allowing
kmin � 3. As a result of the constraint given in
Eq. (12), the aberration function cannot be sampled
close to the center of the pupil (see also Fig. 5), with
the excluded area being larger for the design in
Eq. (10) than that in Eq. (11).

D. Aberration Information from Overlay Measurements

In the previous subsections it was explained that the
image displacement of a PSG directly provides
the phase difference between two discrete points of
the aberration function. However, since the aberra-
tions we intend to measure are expected to be very
small, typically of the order of 5 mλ for well-corrected
(lithographic) systems, it can prove quite challenging
to measure the aberration-induced image displace-
ment with a high enough accuracy to pick up these
effects. Fortunately, the measurement of image dis-
placements is a common task in the lithographic
industry, known as overlay metrology, and we can
exploit existing commercially available tools to

x
x

x
x

1

xxxx
θ

xxxx

ρ

Fig. 3. PSG-based diffraction pattern control. Dots and crosses
represent allowed and forbidden diffraction orders, respectively.
Variation of the PSG pitch scales the diffraction pattern and
changes the radial sampling position of the −1st diffraction order.
A rotation, θ, of the PSG grating in the x–y plane gives rise to an
identical rotation of its diffraction pattern in pupil space.
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measure our grating displacements accurately
enough for the aimed aberration metrology described
in this paper.

In the lithographic industry several different
overlay metrology methods, which can be either
diffraction-based or image-based, are available to
determine the shift between layers, known as the
overlay error. They all have in common that both
layers for which the displacement should be com-
pared should contain standard grating features from
which it is possible to deduce the relative layer place-
ment error. In the remainder of this paper we shall
use an overlay measurement methodology known as
diffraction-based overlay (DBO) to measure the PSG
image displacements. We choose DBO as it is the
method that currently provides the highest measure-
ment accuracy and reproducibility based on a
commercially available system (ASML YieldStar
S/T-200). Nonetheless, the basic ideas and principles
enabling the aberration metrology method presented
in this paper can also be used to devise a similar
aberration metrology method based on another over-
lay measurement technique.

In DBO, the displacement between two layers is
assessed by including identical line-space (LS) gra-
tings in each layer, which are then effectively printed
on top of each other. What results is a stack with two
gratings and possibly some other unstructured
layers in between (see Fig. 4). The relative shift be-
tween the two gratings in the stack is determined via
an asymmetry in the intensity of the �1st and −1st
diffraction orders; the stack is illuminated by a spot
after which the backreflected light, containing the
first diffraction orders coming from the gratings, is
collected on a CCD camera. Combining pupil images
from two such grating stacks, both with a different
yet known displacement between top and bottom
gratings, it is then possible to accurately compute

the overlay error between both layers (for DBO
details see [4,5]).

The above-described standard DBO measurement
can be adapted for our application as follows. We gen-
erate the top resist grating in the stacks from a PSG.
As a bottom grating we use a standard LS pattern
etched in silicon having the same pitch as the PSG
and which we assume is manufactured and placed
perfectly so that it may act as an absolute reference.
In this case the overlay error measured between both
gratings in the stacks, directly gives us the PSG im-
age shift due to aberrations present during the expo-
sure of the PSG layer (potential issues originating
from a non-perfect bottom reference grating and/or
additional overlay contributions coming from other
sources than aberrations are discussed in Section 3).

A restrictive consequence of using DBO is that it
imposes a constraint on the minimum pitch of the
PSG gratings that can be used. If the pitch of the gra-
tings in the stack is too small, their first diffraction
orders will not lie within the NA of the wafer metrol-
ogy sensor and, consequently, no overlay error can be
determined. This leads to the following constraint on
the minimum pitch:

P >
λDBO

DNADBO
; (13)

where NADBO and λDBO are the NA and radiation
wavelength of the DBO tool and D is a parameter
controlling the amount of the first diffraction order
present within the NA of the DBO tool. For D ≤ 2,
first diffraction order information is available; how-
ever, to allow accurate displacement measurements
a typical value of D � 1.8 is required. Consequently,
the minimum grating pitch allowed by the DBO over-
lay measurement (with a YieldStar S/T-200;
NA � 0.95, λ � 425 nm) is P ≥ 249 nm. In pupil
space, this constraint translates to a sampling area
in the pupil bounded by the radius ρ ≤ 0.57, thus pre-
venting us from sampling close to the edge of the
pupil (see Fig. 5).

E. Sampling Close to the Pupil Edge: 2D-PSGs

The combination of the constraint on the minimum
PSG pitch, which was given in Eq. (13), and the con-
straint on the maximum PSG pitch in Eq. (12) im-
plies that the resulting pupil area that can be
addressed (see Fig. 5) is clearly insufficient to collect
enough phase information to successfully retrieve
the aberration function. Also note that the pupil area
that can be addressed by the design in Eq. (10) is
completely contained by the area accessible with
the design in Eq. (11), we will therefore exclusively
use the latter design in the remainder of this paper
and shall refer to it as 1D-PSG. To enlarge the frac-
tion of the pupil that can be sampled using PSG tar-
gets in combination with DBO, we shall now
introduce a new type of two-dimensional PSGs
(2D-PSGs) on top of the 1D-PSGs introduced in Sub-
section 2.B and will show how the additional design
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I0 I+1
I-1

OV > 0

I0 I+1
I-1

Symmetrical Shift in + directionShift in - direction

Fig. 4. Basic principle of DBO. A focused spot, with an annular
pupil distribution, is used to illuminate a stack with two gratings.
The backreflected light, containing diffraction orders, is collected
and imaged on a CCD camera (top row images). In the case that
both gratings are perfectly aligned, the image on the CCD will be
symmetrical (center column), while if a displacement is present,
the recorded CCD image is asymmetrical (left and right columns).
Then using two such grating stacks, with known biases in overlay,
the relative displacement between the top and bottom grating
layers can be determined from the measured asymmetries in
the free first diffraction orders reflected by both stacks.
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freedom for these 2D-PSGs enables one to sample the
aberration function near the pupil edge.

A 2D-PSG is defined in this context as having a
typically oblique unit cell that allows for two (truly)
diffracted beams within the NA of the projection lens,
on top of the zeroth-order beam. This implies that
there are three independent two-beam interferences
that make up the aerial image at the wafer level; two
of these three two-beam interferences comprise the
zeroth-order beam, and the third two-beam interfer-
ence occurs between the two truly diffracted beams
[with non-zero reciprocal space coordinates �h1; k1�
and �h2; k2�, respectively]. The parameters of the
2D unit cell, i.e., lattice parameters a and b and
the angle ϕ between them, are chosen such that
the DBO metrology tool is only sensitive to the latter
two-beam interference. This will be explained in
more detail below.

The structure factor of the 2D unit cell, comprising
N taps per direction and M � N2 objects, is given by

FN�h; k� �
XM−1

j�0

f j expf2πi�xjh� yjk�g; (14)

with �h; k� the indices of the diffraction order, and f j
and 0 ≤ xj, yj < 1 the scattering factor and the (frac-
tional) 2D coordinates of the jth object, respectively.
A 2D-PSG must then satisfy the following conditions
(indicating a number of so-called forbidden diffrac-
tion orders):

FN�−1; 0� � 0;

FN�0; 1� � 0;

FN�−1;−1� � 0;

FN�1; 1� � 0: (15)

These conditions yield a diffraction pattern with
forbidden orders as shown in Table 2.

Two structures that satisfy the conditions in
Eq. (15) are shown in Fig. 6, both having four non-
trivial (non-zero) scattering objects in the unit cell.
Note that outside of the scattering object, the unit
cell has no transmission. It should further be noted
that some of the objects need to have a complex-
valued scattering factor to enable the generation of
forbidden diffraction orders, following a similar argu-
mentation as in Subsection 2.B for the 1D-PSG case.
The first type of unit cell has three different phases,
0, �90 and −90 deg, while the second type has only
two different phases, 0 and −90 deg (parameters for
both types are given in Table 3). The second type of
2D-PSG has the benefit that it uses only two phases,
thus requiring fewer process steps in reticle manu-
facturing, and has better diffraction efficiency due
to its larger scattering objects. In the remainder of
this paper we shall exclusively use the second type
and we shall simply refer to it as 2D-PSG.

Next, the 2D unit cell can be deformed from a
square into an oblique one, thereby retaining the con-
ditions of the forbidden orders. At this stage it proves
more convenient to use an alternative, yet equiva-
lent, representation of the 2D-PSG unit cell as given
in the upper left of Fig. 7. The obliquity operation for
the original unit cell in Fig. 6 is equivalent to a ratio
change between the width, A, and height, B, of the
alternative design (see second row of Fig. 7). In
addition to this, we can also apply an obliquity
operation to the new unit cell definition, as shown

Fig. 5. Pupil accessibility of 1D-PSGs in combination with DBO
metrology. The concentric circle at pupil radius 0.57 represents the
maximum radial sampling position allowed by the constraint in
Eq. (13) (for DBO with a YieldStar S/T-200; NA � 0.95,
λ � 425 nm). The circles at pupil radii 0.45 and 0.36 represent
the minimum radial pupil position allowed by the constraint in
Eq. (12) for the PSG designs given in Eqs. (10) and (11), respec-
tively. Consequently, phase information from the hatched Pupil
area 1 can be obtained using the PSG design in Eq. (11) while
the design in Eq. (10) can only be used to sample the smaller pupil
subset labeled Pupil area 2.

Table 2. Schematic Representation of the Diffraction
Pattern Defined by the Conditions in Eq. (15), with “O” and

“X” Indicating Nonforbidden and Forbidden Orders,
Respectively

�h; k� −1 0 1

1 X X O
0 O O X
−1 O O X

Fig. 6. Two 2D-PSG unit cell designs satisfying the conditions in
Eq. (15). Both designs contain four scattering objects and their rel-
ative scattering factors are color coded according to the legend on
the right; i and −i indicate relative phase offsets of �90 and
−90 deg, respectively. Note that the correct positioning and rela-
tive scattering factor of the objects in the unit cell are essential
in achieving destructive interference for certain diffraction orders;
the actual shape of the scattering objects is, in this respect, of
minor importance.
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in the bottom left of Fig. 7. The impact of these trans-
formations on the gratings diffraction pattern is
shown on the right of Fig. 7. Going from the first
to the second row, it can be observed that a ratio
change between A and B compresses the diffraction
pattern in one direction, effectively bringing the
allowed diffraction orders (−1, 0) and (0, 1) closer to-
gether. On the other hand, the obliquity transforma-
tion causes the two allowed orders to be generated at
different radial distances from the pupil center, and
this will prove to be an essential feature in measur-
ing spherical aberration components later on. Full
details on the relation between the 2D-PSG unit cell
parameters and the resulting position of its allowed
diffraction orders are provided in Appendix B.

Since the diffraction pattern of a 2D-PSG contains
three allowed orders within the pupil, its aerial im-
age is comprised of a superposition of three two-beam
interference fringes [with their respective reciprocal
space coordinates �h; k�]:

�0; 0� − �1; 0� � �−1; 0�;
�0; 0� − �0;−1� � �0; 1�;
�1; 0� − �0;−1� � �1; 1�: (16)

Now the important observation to be made here is
that the first two fringes in Eq. (16), involving the
zeroth order, will have a small period, as the distance
between the orders is relatively large, and will there-
fore not satisfy the constraint in Eq. (13). On the
other hand, the third fringe in Eq. (16) stems from
interference between orders (0, −1) and (1, 0) and,
since these orders are relatively close together, gen-
erates a fringe �h � h1 − h2; k � k1 − k2� with a large
enough period to be observed by the DBO tool. As a
result, the complicated 2D resist grating generated
from a 2D-PSG will be observed by the DBO tool
as a simple 1D pattern as if it was generated exclu-
sively from interference between orders (0, −1) and
(1, 0). Moreover, it turns out that even the simple re-
lation given in Eq. (2) remains valid for the fringe
generated by the orders (0, −1) and (1, 0). Then, by
applying a resist grating imaged from the 2D-PSG
as the top grating in an overlay stack, and using a

LS grating etched in silicon matched to the DBO
observable 1D component, the phase difference be-
tween two points close to the pupil edge can again
be measured as an overlay value.

Similar as in the 1D case, a multitude of 2D-PSG
gratings at different orientations at mask level can
be used so that the aberration function is sampled
at different azimuths in the pupil. Moreover, some
freedom in the allowed unit cell parameters can be
used to achieve additional measurement diversity
(for more details, see Appendix B). Consequently,
combining 1D-PSGs and 2D-PSGs, it is possible to
collect differential phase information on the aberra-
tion function for the larger part of the pupil via DBO
measurements (see Fig. 8). This, in principle, opens
up the route toward a method capable of estimating
the aberrational state of a lithographic system based
on a large number of overlay measurements.

Table 3. Parameters Defining the Left and Right Unit Cells
Shown in Fig. 6, Respectively, with the Four Scattering

Objects Listed for Each Case

j f j xj yj

0 1 1
8

1
8

1 �i 7
8

1
8

2 −i 1
8

7
8

3 1 7
8

7
8

j f j xj yj
0 −i 1

2
1
4

1 −i 3
4

1
2

2 1 1
4

1
2

3 1 1
2

3
4

Fig. 7. 2D-PSG unit cells and their corresponding diffraction pat-
terns (dots and crosses represent allowed and forbidden orders, re-
spectively). The first row pertains to the nominal 2D-PSG design,
which is equivalent to the minimum unit cell given on the right-
hand side of Fig 6. In the second row, the unit cell is transformed
such that A ≠ B, resulting in a compression of the diffraction pat-
tern in one direction. In the third row, the obliquity transformation
is applied, resulting in the generation of the orders (1, 0) and
(0, −1) at different distances from the pupil center. Note that
the diffraction orders (1, 0) and (0, −1) are the two truly diffracted
beams. The orders that are forbidden because of the 2D-PSG are
(−1, 0), (0, 1), �−1;−1�, and (1, 1). Some higher orders, for example
�−2;−2� and (2, 2), are not forbidden, but remain outside of the NA
of the optical system. Note that the nomenclature used here, and
throughout this paper, to indicate a diffraction order pertains to
the minimum unit cell as defined in the right-hand side of Fig. 6.
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F. PSG-OVL Aberration Model

In the previous subsections it was explained that the
phase difference, measured as an overlay value, be-
tween different points in the pupil can be obtained by
varying the type, unit cell parameters, and orienta-
tion of the PSG targets used in the overlay stack. In
this way, by using both 1D- and 2D-PSGs with varied
parameters, it is in principle possible to collect
enough information on the aberration function to re-
trieve it. However, to estimate the aberration func-
tion based on differential phase information we
need to define an appropriate model and aberration
representation and for this purpose we proceed as
follows.

Let Φ�ρ; θ� be the aberration function defined
on the pupil in normalized polar coordinates
(0 ≤ ρ ≤ 1 and 0 ≤ θ ≤ 2π). The classical Zernike ex-
pansion of the aberration function is then given by

Φ�ρ; θ� �
X
n;m

αmn Zm
n �ρ; θ�; (17)

where αmn denotes a Zernike coefficient for integer n,
m such that n − jmj is even and non-negative and
Zm
n �ρ; θ� denotes a classical Zernike circle polynomial

defined as

Zm
n �ρ; θ� � Rjmj

n �ρ�
�
cos�jmjθ� for m ≥ 0
sin�jmjθ� for m < 0

: (18)

Note that we choose to use the double index Zernike
convention here as it will prove mathematically more
convenient to construct an appropriate model. On the
other hand, we will use the single index Zernike con-
vention in the text and figures to refer to specific
aberration terms. A conversion rule, to go from the
single index Zernikes (FRINGE convention) to
the double index, and vice versa, is provided in
Appendix A.

Next, let �ρ1; θ1� and �ρ2; θ2� be the polar pupil co-
ordinates of the two nonforbidden diffraction orders
of a given PSG and let ΔΦ1;2 be the phase difference
of the aberration function evaluated at these
positions:

ΔΦ1;2 � Φ�ρ2; θ2� −Φ�ρ1; θ1�: (19)

Then, using Eqs. (2), (17), and (19), we can write the
aberration induced overlay error, OVL, for the
current PSG as

OVL � ΔXAI �
ΔΦ1;2P

2π

� P
2π

X
n;m

αmn �Zm
n �ρ2; θ2� − Zm

n �ρ1; θ1��; (20)

with the Zernike coefficients αmn describing the aber-
ration state of the imaging system.

If the aberration state of a system is unknown, the
expression in Eq. (20) allows one to devise a linear
system of equations relating the unknown Zernike
coefficients, αmn , to measured overlay values. Esti-
mates for the αmn are then obtained by solving the
standard least-square minimization problem defined
by [6]:

αmin � arg min
α

‖Eα −OVLmeas‖2; (21)

with α ∈ RG the vector of unknown Zernike coeffi-
cients, OVLmeas ∈ RH the vector of measured overlay
values per PSG target, and E ∈ RH×G a 2D matrix
containing the model predicted overlay per Zernike
term per PSG as constructed using Eq. (20). Note
that H > G.

G. Proof-of-Principle in Simulation

In Subsection 2.F it was shown how to relate the
measured PSG overlay values to the aberrations of
the lithographic system. Based on this model, a lin-
ear system of equations can be constructed that,
upon solving, provides estimates for the Zernike co-
efficients representing the aberration function. To
evaluate the potential of our method we have
executed the following numerical experiment.

1. A set of 420 PSG targets (with a set of match-
ing 1D LS reference gratings at the bottom of the gra-
ting stack) is defined, aimed at sampling throughout
the pupil while satisfying the constraints given in
Eqs. (12) and (13) and Appendix B.

2. Using a commercial lithographic simulator
[Prolith (64-bit) Version 14.2.0.29], the aerial image
of all PSG targets is simulated under realistic expo-
sure conditions, given an arbitrary aberration state
of the lithographic system.

3. The images of the reference gratings are simu-
lated in the same way. However, since these gratings
are on a different layer, the aberration conditions
during their exposure are possibly different, which
is accounted for in the simulation by using another
(unknown) aberration state.

4. The aberration-induced overlay error per PSG
target is then obtained as the shift between the aber-
rated PSG and the reference grating aerial image.

5. Finally, the simulated overlay values serve as
input to the least-square minimization problem
given in Eq. (21), which, upon solving, provides

Fig. 8. Pupil accessibility of 1D- and 2D-PSGs in combination
with DBO.
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estimates for the αmn describing the aberration
state as defined during the simulation of the PSG
images.

The results of the above-described numerical ex-
periment are presented in Fig. 9. In the top figure,
the arbitrary set of 64 Zernikes used for this simula-
tion is shown. In the bottom panel, the error per es-
timated Zernike is displayed. These simulation
results clearly show that the Zernike coefficients de-
scribing the aberrational state of a lithographic sys-
tem can in principle be estimated based on measured
relative image displacements. Note that an error is
observed in the estimated coefficients due to the fact
that the various constraints do not allow the pupil to
be sampled optimally and because the simulation in-
volved a reference grating that was produced under
different aberration conditions (random set with the
same order of magnitude as shown in the top of
Fig. 9). Nevertheless, the presented simulation
shows that the method set out in this paper is
capable of estimating the aberrational state of a
lithographic system under these conditions, with
an accuracy better than 5 mλ.

3. Experimental Challenges and Refinements

In the previous section, the basic concepts and a
numerical proof-of-principle were presented for our
wafer-based aberration metrology method. In the
present section, we discuss the complications that
arise when the proposed method is implemented ex-
perimentally, and we will evaluate the impact of
these potential issues on the overall performance
of the method. Where necessary, refinements of the
PSG-OVL model and measurement procedure are
proposed in order to minimize their negative impact.

A. Finite Illumination Source

During the discussion of the basic measurement
principles in Section 2 it was assumed that the
PSG targets at the reticle are illuminated coherently
by a plane wave at normal incidence. However, in
reality all lithographic systems have a finite source,
commonly combined with a Köhler illumination sys-
tem. In such an illumination configuration, every
source point generates a plane wave at a slightly dif-
ferent angle toward the reticle and, consequently, the
reticle image can be considered as the sum of many
coherent contributions. In addition to this, the source
is imaged in the pupil planes of the projection optics.
This implies that light incident on a PSG, originating
from different points on the source, will generate dif-
fraction orders at slightly different spatial frequen-
cies in the pupil and consequently will accumulate
a different relative phase on propagation through
the projection optics if aberrations are present (see
also Fig. 10). Under these conditions, Eq. (2) is still
valid for predicting the aberration-induced fringe
displacement for a single coherent contribution,
but does not give a good prediction for the overall dis-
placement of the total PSG image, which consists of
the superposition of all differently displaced coherent
contributions. Consequently, the method presented
in Section 2 will also not provide optimal aberration
estimates for realistic lithographic systems due to
the impact of their finite sources.

A straightforward way to reduce the impact of the
finite source is to make it smaller so that it better
approximates the coherent (single point) illumina-
tion case. In modern day lithographic systems, this
is possible via a user-defined effective source in
the entrance pupil; for example a small centered
disk. However, theminimum area of such an effective

Fig. 9. Numerical proof-of-principle. A set of 60 Zernikes (Z5 to
Z64) is defined with random values between −50 and �50 mλ
(top row). For this Zernike set, the aberration- induced shift of
all 420 PSG targets is computed and the resulting simulated val-
ues serve as input to the minimization problem defined in Eq. (21).
The bottom row presents the error in the estimated Zernike coef-
ficients, which is better than 5 mλ.

Fig. 10. Schematic representation of the projection optics exit pu-
pil for the case of a 1D-PSG in combination with an on-axis finite
monopole effective source. The monopole source, the size of which
is defined by the radius σ relative to the NA of the projection sys-
tem, is convoluted with the PSG diffraction orders at locations
�ρ1; θ1� and �ρ2; θ2�. As the source is assumed spatially incoherent,
each point on the resulting diffraction order disks can interfere
only with its corresponding point on the other disk and each
of these point pairs effectively generates a single coherent
contribution.
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source is constrained, because making it too small ei-
ther increases the exposure time too much or re-
quires the energy density to be so high that the
optics can be damaged. Consequently, the source rep-
resentation in the pupil cannot be small enough to
allow for an accurate coherent treatment of the prob-
lem and we need to accommodate for the finiteness of
the effective source through the PSG-OVL model, for
which we proceed as follows.

We assume the effective source in the pupil to be a
small disk (monopole), with radius σ, that is spatially
incoherent and uniform. In addition, it is assumed
that the diffraction efficiency of the scattering objects
at the reticle do not vary with the angle of incidence
of the light. The total PSG image is then obtained as
the incoherent summation of all fringe intensities
while integrating over the source, and the effective
aberration-induced shift simply becomes the average
of the individual fringe displacements. In this case,
an expression similar to Eq. (2) can be obtained, re-
lating the overall PSG-image shift, in the case of a
finite source, to the average phase difference be-
tween two areas in the pupil:

ΔXAI �
P
2π

�Φ̄σ�ρ2; θ2� − Φ̄σ�ρ1; θ1��; (22)

where Φ̄σ denotes the average of the aberration func-
tion, taken over a disk with radius σ at the diffraction
order positions �ρ; θ� (see Fig. 10). Next, the phase
average over a disk-shaped area in the pupil can also
be written in terms of Zernikes and we can finally
write an equivalent expression for Eq. (20) in which
the finiteness of the source is accounted for:

OVL � ΔXAI �
P
2π

�Φ̄σ�ρ2; θ2� − Φ̄σ�ρ1; θ1��

� P
2π

X
n;m

αmn �Z̄m
n;σ�ρ2; θ2� − Z̄m

n;σ�ρ1; θ1��; (23)

with Z̄m
n;σ�ρ; θ� the average of a Zernike function taken

over a possibly truncated disk with radius σ at the
pupil position �ρ; θ�. Accurate computation of Zernike
function averages required in Eq. (23) is discussed in
Appendix C. It should be noted that the 2D-PSGs in-
troduced in Subsection 2.E require some additional
attention. As they are meant to sample the aberra-
tion function near the pupil edge, we also have to
deal with the case that, for either one or both of
the relevant interfering diffraction orders, the aver-
aging disk is partly outside the NA of the litho-
graphic system. Since the effective source is
considered incoherent, a point on the averaging disk
will contribute only if the corresponding points in the
other diffraction order also lie within the NA of the
system. Source points for which only one diffraction
order lies within the NA cannot interfere and, conse-
quently, produce only a spatially uniform yet irrel-
evant contribution to the image. In Fig. 11 the
common area of both allowed diffraction orders is

indicated for a general case that both orders are
cut differently by the NA limited pupil. The task
of computing the relative phase for the resulting
strangely shaped common area, which is indicated
in Fig. 11, is also dealt with in Appendix C.

In Fig. 12 the impact of a finite source (on-axis mo-
nopole) on the effective phase of a diffraction order
area is shown. On the left, the effective diffraction
order phase, for Zernike function Z36, is shown as
a function of the source radius, σ, for four radial po-
sitions of the averaging disk in the pupil. It can be
seen that the effective diffraction order phase devi-
ates substantially from the coherent case (σ � 0), al-
ready for modest illumination σ, clearly showing the
necessity of the finite source correction. The right-
hand figure compares the effective diffraction order
phase for σ � 0.0 (coherent case) and σ � 0.122

1 2

Pupil

Common Area

Pupil

Fig. 11. 2D-PSG diffraction orders partly outside the pupil. A
point on one diffraction order disk can only interfere, and thus con-
tribute to the overall image, if its corresponding point on the other
disk also lies within the pupil. As a result, the effective diffraction
order phase is obtained by integration over the common area of
both orders, which will be an irregular shaped area when one,
or both, diffraction orders lie partly outside the pupil. Systemati-
cally computing the average phase for such areas is dealt with in
Appendix C.

Fig. 12. Finite source impact. Assume a phase distribution in the
pupil, defined by Zernike function Z36. On the left, we plot Z36

averaged over a disk as a function of the averaging disk radius,
σ, for four different radial positions in the pupil. On the right,
the disk average is plotted as a function of its radial position to
illustrate the impact of a finite monopole source (σ � 0.122) com-
pared to the coherent case (σ � 0.0).
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(realistic lower bound for the σ in a lithographic
system). Especially for averaging areas near the pu-
pil edge (ρ → 1), as encountered for the 2D-PSGs, the
difference between the coherent and finite source
models is non-negligible.

B. Asymmetric Resist Gratings

Another experimental complication comes from the
fact that the PSGs are imaged by a two-beam process
into a layer of resist with a finite thickness. As a re-
sult of this, the resist grating formed from a 1D-PSG
will be asymmetric (see left-hand side of Fig. 13). In
the 2D-PSG case, where the image is formed by mu-
tual interference among three orders, the resulting
resist grating looks even more exotic, with effective
grating lines built up from tilted pillars (see right-
hand side of Fig. 13). These irregular grating shapes
introduce an offset in the asymmetry signal of a DBO
measurement and, consequently, also give rise to a
process and PSG dependent, yet constant, offset in
the measured overlay values. When not accounted
for, these offsets introduce very large errors on the
reconstructed spherical aberration terms (see also
Fig. 16). Fortunately, these artifacts are independent
of the aberrations that we want to determine, thus
making it possible to remove them via a calibration
step. For this purpose one can execute the presented
aberration metrology method on a very well-
corrected lithographic system and assume that the
overlay values measured on that system for all PSGs
are exclusively due to the PSG grating asymmetries.
Now by subtracting these measured overlay resid-
uals, as a reference measurement, from any sub-
sequent PSG-OVL measurement, one effectively
removes the Zernike reconstruction error coming
from the resist grating asymmetry. The price that
is paid for this is that the reconstructed Zernikes
are now no longer independent and describe the
aberration state of the unknown system relative to
the reference system.

C. Other Overlay Contributions

In this paper, the aberrations are estimated based on
measured overlay values. Therefore, it can be easily
understood that overlay contributions coming from
sources other than aberrations directly propagate
into the Zernike reconstruction error. Possible other
sources contributing to the overlay are:

1. Mechanical overlay.
The actual displacement between different layers

of the wafer, caused by wafer stage and reticle stage
positioning errors.

2. Reticle registration errors.
The misplacement of features on the reticles with

respect to the reticle designs.
3. Reticle and wafer deformations.
Temperature gradients, (thermo-)mechanical

strain and/or processing can cause the reticle and
wafer to deform, introducing position-dependent rel-
ative displacements of the features they contain.

In its simplest form, mechanical overlay imposes a
relative �x; y� position shift between features in two
different layers of the wafer; this shift is identical
throughout our small-sized target area in the die.
In our method, where we measure the grating dis-
placement in the direction of the grating vector only,
the mechanical overlay contribution is given by the
projection of the vector �x; y� on the grating vector.
As a result, mechanical overlay gives a pitch-
independent contribution to the PSG grating dis-
placement, but does vary with the PSG orientation.
It turns out that the mechanical overlay fingerprint,
the fingerprint being the combined response of all
PSG targets to a given overlay source, is identical
to that of a tilt aberration (linear combination of
Z2 and Z3), and we may conclude that mechanical
overlay does not contribute to the relevant Zernikes
(Zt for t > 3).

The second overlay contribution listed is coming
from the reticle. If features on the reticle are not
placed exactly at the position defined in the reticle
design, this displacement contributes directly to
the observed overlay for the displaced target. Since
the overlay is defined as the displacement between
two gratings in two different layers imaged from
two different reticles, the combined overlay contribu-
tion of both reticles is in fact the target specific rel-
ative displacement between its bottom and top
gratings, also known as the registration error be-
tween the two reticles. This registration error, which
is basically a manufacturing defect that remains
static during the lifetime of a reticle, is commonly
measured during manufacturing of a reticle set
and could therefore be compensated for in the
PSG-OVLmodel. However, this is not even necessary
when a calibration as described in Subsection 3.B is
performed, as this calibration step also automati-
cally compensates for the static overlay contribution
induced by the reticle registration error. Other reticle
defects also contribute to the Zernike reconstruction

250nm 250nm

Fig. 13. Cross-section scanning electron microscopy (SEM) im-
ages. On the left a cross-section SEM image of a 1D-PSG wafer
stack is shown and one can observe a significant difference in
side-wall angle between the sides of the grating lines. On the right,
a cross-section SEM image of a 2D-PSG wafer stack is shown. It is
clearly observed that, although the line appears to be built up from
tilted pillars, the 2D-PSG generates effectively a 1D grating with a
pitch matched to the bottom grating. The fine structure in the gra-
ting line is subresolution for the DBO measurement, but can pos-
sibly contribute to the asymmetry signal generated by the whole
stack.
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error of our method, but these are discussed in more
detail in the next subsection.

The final contribution listed above is trickier. The
mentioned deformations introduce overlay errors
according to the samemechanism as the reticle regis-
tration error, but in this case depend on environmen-
tal and exposure conditions, implying that they are
not static and are, therefore, not automatically re-
moved by the calibration. The overlay contribution
generated by wafer and reticle deformations is posi-
tion dependent and can in principle result in an
arbitrary overlay fingerprint for a PSG-target set.
However, temperature, strain, and processing defor-
mations typically give rise to overlay contributions
that vary slowly over the wafer. By placing all
PSG targets required for our method close together,
we canminimize the variation and, therefore, the im-
pact of these deformations to an acceptably low level.
If this is insufficient, one may resort to complex com-
putational models to predict temperature-induced
deformations, but this has not been investigated fur-
ther in this paper.

D. Reticle 3D Effects and Manufacturing Errors

A typical lithographic reticle consists of a quartz sub-
strate on which a thin layer of chromium is deposited
to make it opaque. By selectively removing chro-
mium using electron beam lithography, a desired
binary pattern can be transferred. In addition to this,
our PSG designs require that certain transmissive
areas on the reticle are assigned a different phase,
and this can be achieved by selectively etching those
areas into the substrate. Combined, this allows us to
manufacture a reticle with PSG targets according to
the designs described in Section 2. However, since
the resulting PSG feature sizes on the reticle are
of the same order of magnitude as the illumination
wavelength and the grating cannot be considered op-
tically thin, the diffraction efficiency of the PSG
targets is not predicted well by the Kirchhoff diffrac-
tion model. Instead, a rigorous 3D-diffraction model
should be applied to correctly account for the light–
matter interactions taking place at the reticle. In the
first two rows of Fig. 14, the simulated diffraction
pattern is shown for these two cases, clearly illustrat-
ing that the forbidden diffraction orders of the nomi-
nal PSG design are no longer zero when the 3D
structure of the reticle is accounted for. At the bottom
row of Fig. 14, however, it is shown that this issue can
be solved by optimizing the nominal PSG design so
that it compensates for the 3D-diffraction effects to
again achieve forbidden diffraction orders.

In addition to the 3D-diffraction effects discussed
above, reticle manufacturing errors can also contrib-
ute to unwanted energy in the forbidden orders.
These are, for example, corner rounding, under-etch,
and nonvertical etch side walls, and they can all
modify the diffraction efficiency of the features on
the reticle (see also Fig. 15). As these imperfections
are difficult to predict and to parameterize, it is
impractical to accurately estimate their impact via

computational means. Instead, one may choose to
further optimize the PSG designs for these effects ex-
perimentally. This would be done by making a test
reticle containing PSGs for different combinations
of design and processing parameters. Next, the
amount of energy in the forbidden orders is assessed
by measuring the diffraction pattern, which can, for
example, be done using a Zeiss AIMS system. The
combination of parameters for which the forbidden
order strength is minimal is then used to manufac-
ture the actual measurement reticle.

In reality, the forbidden diffraction orders will
never be completely zero. The first order effect of a
small to moderate non-zero forbidden order is that
it reduces the sensitivity of our proposed method
for aberrations having an even azimuthal depend-
ence (αmn with m is even), while not influencing the
sensitivity of odd aberrations (m is odd). However,
since we can, in principle, measure the relative
forbidden-order strengths of all PSGs with an AIMS
microscope, this effect can also be accounted for in
the model by adjusting the sensitivity matrix [E in
Eq. (21)] accordingly. Nevertheless, it remains best
practice to strive for the lowest possible amount of
energy in the forbidden orders to avoid higher order
effects and to have the highest possible sensitivity for
all aberrations.

Fig. 14. Computed diffraction patterns for the nominal 1D-PSG
defined in Eq. (11). The top image shows the diffraction pattern
computed according to Kirchhoff, with, as expected, only two
non-zero orders within the NA (indicated by the white circle).
The middle image shows the diffraction pattern for the same tar-
get when correctly accounting for the reticle 3D effects. In this
case, three non-zero orders are predicted within the NA, destroy-
ing the pure two-beam process. In the bottom image, the rigorously
computed diffraction pattern is shown for an optimized 1D-PSG
design, showing that the pure two-beam process is restored.
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Even in the case of perfectly forbidden orders,
there is one other reticle characteristic that can im-
pact the overlay measured in our method and has not
yet been discussed. This is the relative phase of the
allowed diffraction orders, φ1 and φ2, as occurring in
Eq. (1). Looking at Eq. (1), it can be understood that if
φ1 − φ2 ≠ 0 this directly adds up to, and cannot be
distinguished from ΔΦ1;2, the aberration-induced
phase contribution and, consequently, contributes
directly to the error of the Zernikes reconstructed
by our method. Furthermore, the diffraction order
phase is not easily measured using existing semicon-
ductor equipment, which implies that a model-based
correction of this artifact is not feasible. But again,
this reticle effect can also be assumed static, assuring
that it is also effectively removed by the calibration
procedure described in Subsection 3.B.

E. Stochastic Overlay Variations

The final topic we want to discuss in this section is
the uncertainty in the overlay measurement. Two
distinct sources generating stochastic variations in
the measured overlay signal are recognized. The first
is the uncertainty coming from the DBO measure-
ment itself and is extremely small, of the order of
a few tenths of an angstrom. This very high measure-
ment reproducibility was, in fact, the main reason
why DBO was selected as the overlay methodology

of choice for our application. It basically means that
no significant contribution to the method error is ex-
pected from the DBO measurement. The second con-
tribution is caused by small differences in the resist
gratings used in the overlay measurement. These
differences may, for example, originate from the com-
plicated and random interaction between exposure
radiation and light-sensitive molecules in the resist
layer or any other stochastic process during exposure
or processing of the wafers. The uncertainty intro-
duced by these mechanisms is much larger than that
of the DBOmeasurement and experiments have also
shown that their magnitude may vary as a function
of the PSG parameters.

Under these conditions, the ordinary least-squares
minimization problem given in Eq. (21) is no longer
optimal and should be replaced by the weighted
least-squares minimization problem given by

~αmin � arg min
α

‖Q�Eα − �OVLmeas −OVLref ��‖2; (24)

where OVLref denotes the calibration measurement
on the reference system, which we assume to be in-
dependent of OVLmeas, in which case K simply be-
comes the sum of the experimentally determined
covariance matrices

K � Kmeas �Kref ; (25)

and Q denotes the Cholesky decomposition of K−1

according to

K−1 � QQ�: (26)

The optimal generalized least-squares estimator,
~αmin, for the Zernike coefficients describing the aber-
ration state of the lithographic system, can then be
explicitly written as

~αmin � �E�K−1E�−1E�K−1�OVLmeas −OVLref �; (27)

where we have now correctly accounted for the PSG-
target-specific overlay measurement uncertainty
and the additional uncertainty introduced by the cal-
ibration measurement.

An additional uncertainty related problem that we
are facing for the current measurement reticles is
that the 420 targets included in the measurement
modules do not sample the pupil optimally. As a re-
sult, the conditioning of the resulting linear system is
not very good and this gives rise to a relatively large
variance for specific (spherical) Zernikes. In this
case, the least-squares estimation can be further im-
proved by exploiting a Tikhonov-like regularization
approach, which introduces an additional term in
the cost function:

~αmin�ζ� � arg min
α

‖Q�Eα − �OVLmeas −OVLref ��‖2

� ζ2‖D�α − αp�‖2: (28)

Fig. 15. Illustration and impact of reticle manufacturing defects.
The top row shows SEM images of typical 1D- and 2D-PSGs on the
reticle. The 1D SEM image was taken before the phase etch step,
while the 2D SEM image was taken afterward. One can observe
significant corner rounding and additional deformations due to
the phase etch into the substrate. In the bottom row, typical dif-
fraction patterns for 1D- and 2D-PSGs are shown as measured
by an AIMS. Due to the writing and etching defects, the intended
forbidden orders (indicated by dashed circles) are non-zero. Note
that the monopole source of the AIMS is relatively large, resulting
in overlapping orders and higher diffraction orders showing up at
the pupil edge that are of no concern in the actual experiment in
the lithographic system where a much smaller source is used.
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HereD is the regularization operator and αp the prior
mean, which are both set based on prior knowledge of
typical aberration states of lithographic systems. The
parameter ζ ≥ 0 determines the importance of the
regularization term. Obtaining a good recipe for an
optimal choice of ζ is a non-trivial task. For a more
detailed description of the applied regularization
techniques and the determination of the regulariza-
tion parameter, the reader is referred to [7].

4. Experimental Verification of the Method

In this section we present the experimental valida-
tion of our method. We shall start by discussing
the hardware used and we will describe the applied
experimental procedures in detail, aimed at avoiding
the experimental complications discussed in the pre-
vious section. Subsequently, aberration retrieval
results are presented for the case that a known aber-
ration was intentionally introduced to the projection
lens of a lithographic system and, additionally, these
wafer-based reconstruction results are compared to
the aberrations measured by the on-tool aberration
sensors.

A. Reticle Design

The most important components required by the
PSG-OVL aberration metrology method are the
two matched PSG and REF reticles required to con-
struct the PSG-OVL targets. For the reticle set used
in the experiments presented in this paper, the top-
level layout is identical. They contain 7 × 7 measure-
ment modules, where each module consists of 420
PSG-based overlay targets. In turn, each overlay tar-
get consists of several grating stacks that together
allow one to determine a single overlay value (see
also Fig. 4). The grating stacks themselves are built
up from two stacked 40 μm× 40 μm gratings, where
the top and bottom grating are constructed from the
PSG and REF reticle, respectively. Basically, the only
difference between the two reticle designs is the unit
cell used to fill the 40 μm× 40 μm grating areas.
[Note that dimensions are given at wafer level
(1X) and that dimensions at reticle level are 4 times
larger.] For the PSG reticle, the unit cell definitions
are given in Subsections 2.B and 2.E for the 1D- and
2D-PSG cases, respectively. The gratings used in the
REF reticle design are simple LS gratings, which
have the same effective pitch, P, and grating orien-
tation, θ, as the corresponding grating on the PSG
reticle.

As mentioned above, the modules on the aberra-
tion measurement reticles contain 420 PSG-OVL
targets. This set is composed from 28 different
PSG-OVL targets (three 1D-PSGs and 25 2D-PSGs),
all included at 15 different orientations (rotation an-
gles in the reticle plane). For the current reticles, we
have included three grating stacks per PSG-OVL tar-
get, and this results in a minimum area required for
a complete module that is a little bit larger than
2 mm2. Note that on our test reticles the module size
is substantially larger due to the inclusion of visually

observable labels and additional test and calibration
features. Nevertheless, our test reticles already in-
clude 7 × 7 modules, thus allowing one to also mea-
sure the field dependence of the aberrations in a
single exposure.

B. Experiment Description

Experimental verification of the method is executed
as follows. First, a set of reference wafers is created:
using the complimentary binary REF reticle, coated
silicon wafers are exposed and subsequently etched,
stripped, and cleaned. The chosen illumination con-
dition used to print the reference gratings was a wide
conventional setting (0.94σ at 1.35 NA), this in order
to minimize the impact of possible aberrations on the
reference features. The etch depth for the reference
gratings is 30 nm.

The chosen resist process for all our experiments is
105 nm JSR resist AIM5484 on top of 95 nm Brewer
BARC ARC29SR; this should result in sufficient pla-
narization of the etched reference gratings. All coat-
ings and development are done inline on a Sokudo
Duo track fitted to an ASML NXT:1950Ai scanner.
Before starting experiments, we determined the
smallest safe conventional illumination possible on
the scanner (0.122σ at 1.35 NA). We then determined
the dose at which all required phase gratings would
print simultaneously to an acceptable pattern by
qualitative SEM inspection. That exposure dose
was then used for all experiments.

Each experiment consists of a set of exposures on
the reference wafers using the above-mentioned
resist process and tools. The use of so-called image-
tuner subrecipes allowed us to dial in specific
aberration offsets per wafer. The validity of each sub-
recipe was first verified by measuring the wavefront
using the scanner’s own integrated interferometer
when applying the offsets requested in the subrecipe.
For the exposures themselves, we used a specific
scanner test that would also allow us to measure
the wavefront before and after each exposure with
the scanner’s interferometer while still working in-
line with the track to bake and develop each wafer
immediately after exposure.

Measurements were then performed on each wafer
on a YieldStar S200 and raw pupil data was gathered
that was subsequently processed offline to determine
the overlay error for each PSG target. These mea-
sured overlay values, together with uncertainty in-
formation gathered from multiple measurements,
then serve as input to the minimization problems de-
fined in Eqs. (24) and (28), which, upon solving, pro-
vide us with estimates of the aberration state of the
lithographic scanner at the time of the PSG reticle
exposure.

C. Experimental Results

In this subsection we give an overview of the exper-
imental work done to validate the method. We begin
with an experiment in which a single non-zero
Zernike (Z7 � 3nm) has been dialed in as an
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aberration offset of the lithographic system. This in-
tentionally detuned system is subsequently used to
print the PSG reticle on top of the reference features
already on the wafers. Next, the overlay is measured
for all targets in a single module and, based on these
measured overlay values, we try to recover the mag-
nitude of the dialed-in Zernike term. In Fig. 16 the
Zernike estimates obtained with the PSG-OVL
method are shown. The bar plot on the top pertains
to retrieval based on the raw measured overlay
values, while the finite source is correctly accounted
for according to Subsection 3.A. It may be observed
that, although a Z7 with a magnitude between 2 and
3 nm is detected, the method erroneously recon-
structs large values for several other Zernikes, with
most profound values for the spherical aberration
terms (Z16, Z25, and Z36). These large spherical terms
are mainly due to the PSG asymmetry effect dis-
cussed in Subsection 3.B. Therefore, by applying
the calibration proposed in Subsection 3.B, a strong
improvement can be achieved, resulting in the aber-
ration retrieval result shown in the middle row of
Fig. 16. Note that, due to this calibration step, the
Zernikes shown in the middle row of Fig. 16, and
in all subsequent figures, now represent the aberra-
tions of the measured system relative to the refer-
ence system on which the calibration was based.
Even for the calibrated result, some reconstructed
spherical Zernikes remain substantial. A systematic
analysis of this phenomenon has shown that it is
caused by the suboptimal sampling of the aberration
function achieved by the current set of measurement
reticles. As a result, the conditioning of the linear
system being solved is not optimal and, in this case,
results in relatively large uncertainty, specifically for
the spherical Zernikes. A proven concept to improve
estimates from poorly conditioned systems is the use
of regularization, and doing so further improves the
Zernikes estimates obtained with the PSG-OVL
method, as is shown in the bottom row of Fig. 16.
In the remainder of this subsection, all presented
reconstruction results will be obtained with regulari-
zation and are based on calibrated overlay data.

The results of a second experiment, in which a
cocktail of three non-zero Zernikes (Z8 � 2 nm,
Z10 � −2 nm, and Z27 � 2 nm) was dialed in, is
shown in Fig. 17. Also in this experiment, a very
good correlation is observed between the requested
and retrieved Zernike terms and all residual
Zernikes are smaller than 1 nm (1 nm ≈ 5 mλ for a
lithographic system operating at 193 nm). This gives
a good indication that the PSG-OVL method can de-
termine arbitrary aberration states and does not suf-
fer from a strong cross correlation between different
aberration terms.

So far, reconstruction results are shown for only
odd Zernike terms. As explained in Subsection 3.D,
the aberration-induced overlay sensitivity of even
Zernikes is reduced when the intended forbidden
orders of a PSG are non-zero. The impact of this phe-
nomenon may be observed in the retrieval results

shown in Fig. 18, where a cocktail of even Zernikes
(Z5 � 2 nm, Z13 � −2 nm, and Z17 � 2 nm) is
dialed in during exposure. In the top row, the

Fig. 16. Zernikes estimated with the PSG-OVL method for the
case that a single non-zero coefficient (Z7 � 3 nm) was dialed in
during exposure of the PSG layer onto the wafer. On the top, es-
timates for the Zernikes (Z5 − Z36), obtained from the raw overlay
measurements, are shown. In the middle, the corresponding
retrieval result is shown for the case that the measured overlay
values are first calibrated with respect to an aberration-free refer-
ence system. The bottom row shows the calibrated result when ad-
ditional regularization is applied in the fitting procedure.

Fig. 17. PSG-OVL reconstructed Zernikes for a requested cock-
tail of three non-zero coefficients (Z8 � 2 nm, Z10 � −2 nm, and
Z27 � 2 nm).
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PSG-OVL-based estimates are shown when this ef-
fect is neglected, indeed showing Zernike estimates
that are too small. A significant improvement is ob-
served when this effect is accounted for in the model
using AIMS-measured forbidden-order information
(see bottom row Fig. 18). Note that AIMS measure-
ments were available only for a subset of all PSGs
and that missing data was supplemented by extrapo-
lated values. Therefore, the improvement achieved
by this correction is expected to be even more drastic
when forbidden-order information is available for all
PSGs used in the reconstruction.

Finally, we present in Fig. 19 a comparison
between the aberration coefficients measured with
the on-tool aberration sensor of the exposure system

and those estimated by the PSG-OVL method. Also
here, a very good agreement between both measure-
ments is observed for the imposed non-zero Zernike
coefficients. A comparison of the residuals of both
methods shows larger differences between the two
methods, where it should be pointed out that the re-
siduals of the PSG-OVL method are slightly larger
than those of the on-tool sensor. Nevertheless, it is
remarkable that such a good agreement, down to
the subnanometer regime, can be achieved between
a wafer-based method and a dedicated on-tool sensor
that is based on shearing interferometry.

5. Conclusions and Discussion

In this paper we have presented a new methodology
for deriving the aberration state of a lithographic
projection system based on wafer metrology data.
This method uses the aberration-induced image shift
of specially designed overlay targets as a measurand
based on which the phase aberration function in the
exit pupil of the lithographic system can be recon-
structed. In Section 2 it was explained how PSG tar-
gets can be designed such that a very simple relation
emerges between their relative image position and
the difference of the phase aberration function
evaluated at the location of their diffraction orders.
Moreover, it was shown that, using a combination
of 1D- and 2D-PSGs, the phase difference between
different points throughout the pupil can be probed,
eventually providing enough information to accu-
rately estimate the Zernikes representing the phase
aberration function. At the end of Section 2, this
methodology was proven to be feasible in simulation
via a numerical experiment based on a lithographic
simulator and showed an aberration reconstruction
accuracy of better than 5 mλ.

Before continuing with the experimental verifica-
tion of the method, first a number of practical com-
plications were addressed in Section 3. There it was
shown that, for all complications currently recog-
nized, their impact can either be accounted for in
the PSG-OVL model or their negative effect can be
strongly reduced through a calibration step. This
was illustrated in Section 4 through a number of ex-
periments, with and without the mentioned correc-
tions, which showed the most drastic improvement
when the reference scanner calibration was included.
Altogether, using all model refinement and correc-
tions discussed in Section 3, the accuracy of the
wafer-based aberration estimation method intro-
duced in this paper was shown to be remarkably
good. The retrieval error, with respect to the
dialed-in aberration and independent measurement
with the on-tool aberration sensors, is below 1 nm,
which corresponds to approximately 5 mλ at the
exposure wavelength of the lithographic system
being evaluated.

Nonetheless, we still observe residuals in the re-
constructed Zernikes that are between 0.5 and
1 nm. Although extremely small, aberrations of
this order of magnitude are nowadays considered

Fig. 18. Zernikes estimated with the PSG-OVL method for the
case that a cocktail of three even Zernikes (Z5 � 2 nm,
Z13 � −2 nm, and Z17 � 2 nm) is dialed in. The top axis shows
the Zernike estimates obtained using both calibration and regu-
larization. The results in the bottom panel are obtained using
an additional correction based on the AIMS-measured residual for-
bidden-order intensities generated by the PSG reticle.

Fig. 19. Comparison between the aberration coefficients obtained
with the on-tool aberration sensors of the exposure tool and the
PSG-OVL method (identical experimental settings as in Fig. 17).
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significant by the lithographic industry. Therefore,
the aim of the current research was to achieve an
aberration estimation accuracy better than 0.5 nm
and, in this respect, the current work still requires
additional effort to reach the desired accuracy. Fortu-
nately, we do see several opportunities to further
improve and enhance the presented method and
we shall discuss those here briefly.

For the experiments presented in this paper, we
have used a set of reticles that was designed based
on our initial understanding and ideas regarding
wafer-based aberration metrology. Since that time,
we have gained much more insight on the physical
processes and error sources relevant for our method.
Basically, we now know that our reticles are, in many
ways, not optimal for the aimed aberrationmetrology
application. For example, the current set of 420 PSG
targets does not sample the pupil in an optimal way
and this leads to poor conditioning and significant
cross correlation in the linear system being solved
to estimate Zernikes. In fact, this is the main reason
why regularization does improve the aberration
reconstruction results obtained with the current re-
ticles. Apart from selecting the optimal PSG targets,
there is also still room to optimize the targets them-
selves. It was discussed in Subsection 3.D that,
although the PSG designs are optimized to compen-
sate mask 3D effects, there will always remain
differences between the design and realized features,
leading to non-zero forbidden diffraction orders. An
experimental optimization approach, in which PSGs
having slightly different design parameters are
evaluated in terms of their measured forbidden-
order strength, could be a way to compensate
these manufacturing defects, which are hard to
parameterize.

Parallel to improving the PSG set and the individ-
ual designs, also the analysis and corrections pre-
sented in this paper can be further improved. For
example, the forbidden-order correction mentioned
in Subsection 3.D was based on AIMSmeasurements
on just a subset off all PSGs, with the missing data
being filled in by extrapolated values. Also, deter-
mining the target specific variance for the overlay
via a large number of experiments, which then serves
as input to the generalized least-squares problem,
will contribute to an improved stability of the
PSG-OVL method.

Altogether, we are convinced that, with a set of new
optimized measurement reticles, complete reticle
metrology data and accurate knowledge of the sto-
chastic overlay behavior of the PSGs, the aimed aber-
ration reconstruction accuracy for the method
presented in this paper is well within reach. Conse-
quently, we consider this method an excellent candi-
date to study dynamic aberration effects occurring
during exposure of a wafer.

Appendix A: Conversion between Z t and Zm
n

In this appendix we provide a conversion rule to go
from a Zernike function in single-index notation, Zt,

(FRINGE convention) to a Zernike function in
double-index notation, Zm

n , and vice versa.

a. Conversion: Z t → Zm
n

For t � 1; 2; � � �, we let

q � ⌊
����������
t − 1

p
⌋; p � ⌊

t − q2 − 1
2

⌋; (A1)

and

n � q� p; m � q − p; (A2)

then a single-index Zernike function, Zt�ρ; θ� equals

Zt�ρ; θ� � Rm
n �ρ�f�t − q2 − 2p� cos mθ

� �1 − �t − q2 − 2p�� sin mθg
� Zm

n �ρ; θ�: (A3)

b. Conversion: Zm
n → Z t

When n, m are positive integers such that n −m is
even and non-negative, then

Rm
n �ρ� cos mθ � Z�n�m

2 �2�n−m�1; (A4)

Rm
n �ρ� sin mθ � Z�n�m

2 �2�n−m�2; (A5)

with Eq. (A5) only valid for m ≠ 0.

Appendix B: 2D-PSG Unit Cell Definition

In this appendix we discuss the relation between the
2D-PSG unit cell definition, its corresponding pupil
positions of its allowed diffraction orders, and the
parameters we use to define them.

We use four parameters that completely define the
2D-PSG targets used by our method: the pitch, P, of
the resulting 1D pattern generated from the interfer-
ence between the two orders close the pupil edge, the
distance ρ1 between the pupil center and the allowed
diffraction order closest to the pupil edge, the frac-
tion ξ being the ratio between ρ3 and ρ0 that are de-
fined in Fig. 20, and, finally, the grating orientation
ϕ. All distances defined in Fig. 20 are then given by

ρ0 � λ

NA P
; (B1)

ρ1 � ρ1; (B2)

ρ2 �
�����������������������������������������������
�1 − ξ�2ρ20 � ρ21 − ξ2ρ20

q
; (B3)

ρ3 � ξρ0; (B4)

ρA � �1 − ξ�ρ0 (B5)
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ρB �
��
�

p
ρ21 − ξ2ρ20�; (B6)

where λ and NA are again the wavelength and NA of
the lithographic system.

Next, we can also express the real-space parame-
ters defined in Fig. 21 in terms of the 2D-PSG param-
eters and the distances defined in Fig. 20:

ω � arccos
�
ρ21 � ρ22 − ρ20

2ρ1ρ2

�
; (B7)

Ψ � arccos
�
ρ20 �

�
2 sin

�
ω
2

�
ρ2
�
2
− �ρ1 − ρ2�2

4 sin
�
ω
2

�
ρ0ρ2

�
; (B8)

Amin � λ

2NAρ1

�����������������������������������������������������
1

cos
�
ω
2

�	2
�

�
1

sin
�
ω
2

�	2
s

; (B9)

Bmin � ρ1
ρ2

Amin; (B10)

AC � Ξλ
NA ξρ0

; (B11)

BC � λ

NA
��������������������
ρ21 − ξ2ρ20

q ; (B12)

where ξ is a rational number between �1∕2� ≤ ξ ≤ 1,
and Ξ is the numerator of the smallest possible
rational representation of � ξ

1−ξ�. Note that the angles
ω and Ψ, together with the minimum unit cell rib
lengths, are sufficient to define a 2D-PSG in a reticle
design. However, the super cell defined by AC and BC
is also provided because lithographic simulators
commonly require such a rectangular (Manhatten-
type) unit cell to simulate the proposed 2D-PSGs.

For a given 2D-PSG design to be applicable, it
should satisfy requirements similar to those in the
1D-PSG case; nonforbidden higher orders should re-
main outside the pupil and the effective pitch of the
grating image should be observable by the DBO tool.
For a 2D-PSG, this translates into the following
constraints:

2λ
NA �1� σ� ≤ P ≤

λDBO

CNADBO
; (B13)

��������������������������������������������������������������
�1� σ�2 − �4 − 4ξ�

�
λ

NA P

	
2

s
≤ ρ1 ≤ 1; (B14)

1 −

��1� σ�2 − ρ21��NA P�2
4λ2

≥ ξ ≥
1
2
: (B15)

Appendix C: Semianalytic Computation of Phase
Difference Averages

After linearizing the exponential comprising the
phase difference, we must evaluate the average of
the phase difference over a specific subset of the
reference pupil. This subset consists of the inter-
section region of three disks, namely, the pupil disk,
a displaced copy of the pupil disk, and the supporting
disk of the scanner’s illumination monopole. For the
sake of mathematical convenience we will use in this
appendix the double-index complex exponential rep-
resentation of the Zernike functions, and we assume
that the disk pertaining to the scanner monopole has
radius 1 and center o, while the two pupil disks have
radius r and centers ν1 and ν2, respectively. See
Fig. 22 for the configuration, in which the hatched
region S is the averaging region.

Fig. 20. Definition of the relevant distances in reciprocal (pupil)
space.

Fig. 21. Definition of the real-space variables and relation be-
tween the minimum unit cell (dotted box), computational unit cell
(dashed box) and the unit cell as defined in Fig. 7.
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The mathematical problem at hand thus consists
of solving the integrals

ZZ
S
Zm0
n0

�
ν − ν1;2

r

	
dν; (C1)

where Zm0
n0 denotes the complex Zernike circle polyno-

mial vanishing outside the unit disk, given as

Zm0
n0 �ν�≡ Zm0

n0 �ρeiθ� � Rjm0 j
n0 �ρ�eim0θ;

0 ≤ ρ ≤ 1; 0 ≤ θ ≤ 2π; (C2)

for integer n0, m0 such that n0
− jm0j is even and non-

negative. The evaluation of Eq. (C1) can be done
using the approach in [8]. Accordingly, focusing on
the case ν1, we have

ZZ
S
Zm0
n0

�
ν − ν1
r

	
dν

�
ZZ

ν≤1
Zm0
n0

�
ν − ν1
r

	
Z0
0�ν�

�
Z0
0

�
ν − ν2
r

	
Z0
0�ν�

	�
dν

�
X
n;m

π

n� 1
βmn;1�βmn;2��; (C3)

with βmn;1 and βmn;2 the Zernike coefficients with re-
spect to the unit disk of Zm0

n0 �ν−ν1r �Z0
0�ν� and

Z0
0�ν−ν2r �Z0

0�ν�, respectively. These β can be cast into
the form of a correlation integral, as in [8], Eq. (8):

βmn;1 � n� 1
π

ZZ
Zm0
n0

�
ν − ν1
r

	
�Zm

n �−ν���dν; (C4)

βmn;2 � n� 1
π

ZZ
Z0
0

�
ν − ν2
r

	
�Zm

n �−ν���dν; (C5)

and these correlation integrals have been computed
in [8], Eq. (9) and Theorem 2.1. Thus (choosing c0 � r,
c � 1, �τ0; η0� � −ν1, �τ; η� � �o�),

βmn;1 �
n�1
π

X
n00

Cm0m
n0n;n00Zm0

−m
n00

�
−

ν1
r�1

	
; jν1j≤ r�1;

(C6)

and a similar formula for βmn;2. The summation in
Eq. (C6) is over all integers n00 such that n00

− �n0 � n�
is even and non-negative. The C are given as

Cm0m
n0n;n00 �

�
r

r� 1

	
2 �−1�n�n00 � 1�π
�n0 � 1��n� 1�

× �Sn00�1
n0n − Sn00�1

n0�2;n − Sn00�1
n0;n�2 � Sn00�1

n0�2;n�2�;
(C7)

with

Sk�1
ij �



1
2 �k� i� j�

�
!


1
2 �k − i − j�

�
!


1
2 �k� i − j�

�
!


1
2 �k − i� j�

�
!

×
ri

�r� 1�i�j

�
P�i;j�

1
2�k−i−j�

�
1 − r
1� r

		
2
; (C8)

for integers i, j, k ≥ 0 such that k − i − j is non-
negative and even and Sk�1

i;j � 0 otherwise. The
P�α;β�
l �x� are Jacobi polynomials; see [9], Chapter 22.
The series in Eqs. (C3) and (C6) are rather slowly

convergent, and so the computations must be done
efficiently. The Sk�1

ij can be expressed in terms of
the generalized Zernike functions of [10] according to

ri

�r� 1�i�j

�
P�i;j�

1
2�k−i−j�

�
1 − r
1� r

		
2
� �1 − ρ2�− i

2Rj;i
k−i�ρ�;

(C9)

with ρ � �1� r�−1∕2 ∈ �0; 1�. Finally, according to
[10], Theorem 5.2 (correcting two minor typos), the
generalized Zernike functions can be computed in
a DFT format as follows. Let n and m be integers
such that n − jmj is even and non-negative, and let
q � �1∕2��n� jmj�. Furthermore, let α > −1 and
denote by Cα�1

n the Gegenbauer polynomial of [9],
Chapter 22. Then for any integer N such that
N > n� jmj, we have�

q� α

q

	
�1 − ρ2�−αRjmj;α

n �ρ�

� 1
N

XN−1

k�0

Cα�1
n

�
ρ cos

2πk
N

	
e−2πi

km
N : (C10)

The prefactors

ak �



1
2 �k� i� j�

�
!


1
2 �k − i − j�

�
!


1
2 �k� i − j�

�
!


1
2 �k − i� j�

�
!

�C11�

in Eq. (C8) should be computed for all k such that
k − i − j is even and non-negative. We can do that
recursively according to

Fig. 22. Integration range S in Eq. (C1) consisting of the intersec-
tion of two pupil disks centered at ν1 and ν2 and a third disk cen-
tered at o defined by the scanner’s illumination monopole, with
choice of origin and radii facilitating solving the mathematical
problem.
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ak�i�j �
�
i� j
i

	
; (C12)

and, for k � i� j; i� j� 2; � � �,

ak�2 �



1
2 �k� i� j� � 1

�

1
2 �k − i − j� � 1

�


1
2 �k� i − j� � 1

�

1
2 �k − i� j� � 1

�ak: (C13)
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