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QRS classification and spatial combination for robust heart rate

detection in low-quality fetal ECG recordings

G. Warmerdam, R. Vullings, C. Van Pul, P. Andriessen, S.G. Oei, P. Wijn

Abstract— Non-invasive fetal electrocardiography (ECG) can
be used for prolonged monitoring of the fetal heart rate (FHR).
However, the signal-to-noise-ratio (SNR) of non-invasive ECG
recordings is often insufficient for reliable detection of the FHR.
To overcome this problem, source separation techniques can be
used to enhance the fetal ECG. This study uses a physiology-
based source separation (PBSS) technique that has already
been demonstrated to outperform widely used blind source
separation techniques. Despite the relatively good performance
of PBSS in enhancing the fetal ECG, PBSS is still susceptible
to artifacts. In this study an augmented PBSS technique is
developed to reduce the influence of artifacts. The performance
of the developed method is compared to PBSS on multi-channel
non-invasive fetal ECG recordings. Based on this comparison,
the developed method is shown to outperform PBSS for the
enhancement of the fetal ECG.

I. INTRODUCTION

In obstetric units, timely recognition of fetal distress is a

great challenge. At present, cardiotocography (CTG) is the

most widespread method for fetal monitoring. Unfortunately,

CTG has a poor specificity, making its diagnostic value

limited [1]. Besides, to detect the fetal heart rate (FHR), CTG

uses Doppler ultrasound, which is sensitive to movement and

transmits energy into the fetal body. As an alternative, non-

invasive fetal electrocardiography (fECG), obtained from

electrodes attached to the maternal abdomen, might provide

a more robust and safer technique for prolonged monitoring

of the FHR.

The non-invasive fECG recordings are strongly contami-

nated by unwanted electrical interferences. In addition, the

low amplitude of the fECG with respect to the amplitude

of these interferences makes the detection of the FHR

difficult. Of all interferences in the abdominal recordings,

the dominant interference is the maternal ECG (mECG).

In the literature, several techniques have been proposed for

suppression of the mECG, as briefly summarized in [2].

The abdominal signals remaining after mECG suppression

still contain other interferences and their signal-to-noise-ratio

(SNR) is often insufficient for robust detection of the FHR.

To enable detection of the FHR, additional signal processing

steps are required.

In a simplified model, the electrical activity of the heart

can be represented by a single electrical field vector that

varies in amplitude and orientation over time, called the

(three dimensional, 3D) vectorcardiogram (VCG) [3]. In this
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model, each ECG lead consists of a linear combination of

the three components of the VCG. The measured fetal ECG

at the maternal abdomen (with N > 3 lead signals) contains

common components of the fECG and is, therefore, spatially

correlated.

Several techniques have been proposed to exploit this

spatial correlation to enhance the SNR of the fECG [4],

[5], [6]. Of these techniques, [4], [5] are so called blind

source separation (BSS) techniques, that require no a priori

knowledge of the physiology of the fetal cardiac electrical

system. However, this lack of physiological basis reduces

the efficiency of the BSS techniques to separate the fECG

from the noise in case of low SNR [6], as is typical for

non-invasive fECG recordings.

As an alternative to the BSS techniques, Vullings et al.

proposed a physiology-based source separation (PBSS) tech-

nique [6]. The PBSS technique spatially combines the ab-

dominal fECG signals, based on knowledge of the positions

of the recording electrodes, to obtain the VCG. The VCG has

maximum amplitude during ventricular depolarization and

the direction in which the VCG has maximum amplitude

is referred to as the electrical axis of the heart. Projection

of the VCG onto this axis maximizes the amplitude of the

QRS complex, the part of the fECG that is associated with

ventricular depolarization. These QRS complexes need to be

detected to obtain the FHR.

Whereas the ability of BSS techniques to extract the fECG

depends on the SNR, the use of a priori knowledge in PBSS

allows to linearly combine (and enhance) the fECG regard-

less of the SNR. Although PBSS has been demonstrated to

outperform BSS techniques, especially for recordings with

low SNR [6], PBSS is susceptible to artifacts. In this study

an augmented physiology-based source separation technique

(PBSSa) is developed that reduces the influence of artifacts

in the enhancement of the fECG.

II. FETAL ECG ENHANCEMENT

A flowchart of the signal processing steps used in PBSS

and PBSSa to enhance the fECG, is shown in Fig. 1. In both

techniques, the signals of the individual leads remaining after

mECG suppression (V) are combined into the VCG (S) by

a fixed linear combination [7]. Since the typical time-path

of the QRS loop in the VCG through 3D space has a planar

shape [8] and resembles an ellipse, an ellipse fit is used to

determine the direction of the electrical axis. The electrical

axis is approximated by the elliptic long axis (~rlong). Prior

to the ellipse fit, a sample selection attempts to primarily

include those samples ( j) of the VCG in the ellipse fit, that

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 2004



V 

NxT 2xT 1xT 

VCG 
Sample 

selection 

Ellipse 

fit 

Project 

on rlong 
R-peak 

detection 

S SPBSS(a) 

QRS 

classification 

Sj 

Fig. 1. Flow chart of the signal processing sequence to enhance the fECG,
with V the signals remaining after mECG suppression, N is the number of
lead signals, and T the sample length of the VCG.

contain information of the QRS complexes. The selected

data for the ellipse fit are further denoted as S j. Then, S

is projected onto~rlong to obtain a fECG with enhanced QRS

complexes. The projected signal is further denoted as SPBSS

and SPBSSa for PBSS and PBSSa, respectively. Subsequently,

a wavelet-based R-peak detection is performed in SPBSS(a) to

detect the FHR [9].

Note that to account for changes in the orientation of the

electrical axis due to fetal movement, PBSS calculates the

orientation of ~rlong based on the ellipse fitted to S j in a

moving window of 10 seconds length. After each step (n), the

window is shifted by two seconds. Furthermore, this study

uses a 2D representation of the VCG (in the coronal plane)

because the 2D VCG is less susceptible to artifacts than the

3D VCG and because the third dimension of the 3D VCG

(sagittal plane) is often difficult to estimate from the non-

invasive fECG recordings.

In the original PBSS technique, interferences in V other

than the mECG are partly suppressed by frequency selective

filtering. Taking into account the frequency content of the

fetal ECG [10], the signals are filtered by a fourth order

Butterworth high-pass and low-pass filter with cutoff fre-

quency of 15 Hz and 35 Hz, respectively. However, despite

the high- and low-pas filtering, a significant fraction of these

interferences remains.

Correct estimation of the electrical axis is crucial since

inaccuracies in the direction of this axis directly affect the

quality of the QRS complexes in SPBSS(a). The main limita-

tion of PBSS is that the estimation of the electrical axis is

susceptible to artifact. To reduce the influence of artifacts in

the ellipse fit, that is used to estimate the electrical axis, this

study presents an improved sample selection in combination

with a newly developed QRS classification (indicated by the

dotted line in Fig. 1). To further increase the robustness of

the electrical axis estimation, an assessment is performed

on the orientation of the estimated electrical axis. These

improvements are discussed in detail in Section II-A, II-B,

and II-C.

A. Sample selection

In the estimation of the electrical axis by PBSS, the

noise is assumed to be limited to the lower 90% of the

VCG amplitudes. These amplitudes are determined as the

Euclidian distance from the origin. Artifacts with amplitude

larger than the QRS complex are assumed to occur less

than 1% of the time. For these reasons, only the top 10%

of the samples of the VCG is retained and the upper 1%

is omitted. If either one of these assumptions is false, e.g.

due to a relatively large noise amplitude in the VCG or the

presence of numerous artifacts, the ellipse fit will be affected

and the estimation of the electrical axis will be inaccurate.

As a result, the SNR of the QRS complexes in SPBSS will

decrease.

In contrast to PBSS, sample selection for the ellipse fit in

PBSSa is based on previously detected QRS complexes. PB-

SSa only includes samples provided by m previously located

QRS complexes that were identified by the R-peak detection.

This sample selection ensures that only the information of

QRS complexes is used to estimate the electrical axis and

that no selection based on the VCG amplitude is required,

as shown in Fig. 2.

The choice for m QRS complexes to produce the VCG

ensures that the influence of a detected artifact that is

accidentally detected as QRS complex (mis-detection) is

reduced. On the other hand, fetal movement can change the

orientation of the electrical axis and information from previ-

ously detected QRS complexes might be outdated. Therefore,

the value of m is a trade-off between robustness against

mis-detections and the ability to account for changes in the

orientation of the electrical axis due to fetal movement, and

is experimentally determined as 10.

B. QRS classification

Before a QRS complex Zi is included in the data used

for the ellipse fit (S j), it is analyzed by comparing the QRS

waveform and energy content to a running average of the

QRS waveform (Z̄) to verify that Zi is not a mis-detection.

If a QRS complex is classified as a mis-detection, Zi is not

included in S j.

The QRS complex Zi is defined by a 50ms window

centered around the ith R-peak and baseline fluctuations in

Zi are suppressed by a fourth order Butterworth high-pass

filter with a cutoff frequency of 1.5 Hz. The resemblance in

QRS waveform between Zi and Z̄ is evaluated by means of

the inproduct between the normalized Zi and the normalized

Z̄ (further denoted as Ẑi and ˆ̄Z, respectively). The energy

of the waveforms is determined as the variance in the

(unnormalized) QRS complexes Zi and Z̄.

The minimally required inproduct between Ẑi and ˆ̄Z is

denoted as CI , and the maximally allowed energy difference

between Zi and Z̄ as CE . The values of CI and CE are

empirically determined as 0.95 and 3 respectively. If the

inproduct between Ẑi and ˆ̄Z is less than CI , or the energy

of Zi is either larger than CE or smaller than 1
CE

times the

energy of Z̄, the complex Zi is not included in the ellipse fit.

C. Assessment of the estimated electrical axis

Besides fetal movement, also artifacts in the VCG can

cause changes in the estimated orientation (~rlong) of the

electrical axis that are unrelated to changes due to fetal

movement. In PBSS, the estimation of the electrical axis

cannot distinguish between changes in orientation of the axis

due to fetal movement or due to artifacts. However, changes

due to fetal movement are typically gradual, whereas changes

due to artifacts can be arbitrarily large. As a result, the
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Fig. 2. Effect of an artifact on the estimation of the electrical axis for
PBSS and PBSSa. (a) Two out of eight signals of V are displayed with
artifacts disturbing the abdominal fECG around 1.5 and 4 seconds. (b) The
left images display the ellipse fit for PBSS (above) and PBSSa (below). The
points correspond to S j and the arrow corresponds to ~rlong. The difference
in amplitude of the VCG of PBSS compared to PBSSa is caused by the
artifact in V. The presence of the artifact does not disturb the VCG of
the PBSSa. The angle between the estimated electrical axis of PBSS and
PBSSa is 40◦. The right graphs display SPBSS (above) and SPBSSa (below).
The combined effect of improved sample selection, QRS classification, and
assessment on the orientation of ~rlong, results in improved quality of the
QRS complexes in SPBSSa with respect to the QRS complexes in SPBSS.

orientation of ~rlong in PBSS is not necessarily related to the

actual electrical axis in the case that an artifact disturbs the

ellipse fit. This can lead to a reduced quality of the QRS

complexes in SPBSS.

To distinguish changes in the orientation of ~rlong caused

by fetal movement from changes caused by artifacts, a

new orientation (~rlong[n+ 1]) is restricted with respect to a

previous orientation (~rlong[n]). Instead of accepting the new

orientation ~rlong[n + 1], the orientation change in ~rlong is

restricted by means of a learning rate CLR. The orientation

of the new projection axis is given by

~̂rlong[n+1] = R(CLR ·θ)~̂rlong[n] (1)

with R(x) the (2D) rotation-matrix over x radians. In Eq.

(1), θ describes the angle between the previously calculated

~̂rlong[n] and a newly found~rlong[n+1]. The use of CLR ensures

that the projection axis only fully adjusts to a new orientation

if this orientation lasts for several steps. The value of CLR

is a trade-off between sensitivity to fetal movement and

robustness against artifacts, and is chosen 1
3
.

D. Implementation

Due to the fact that PBSSa requires knowledge on lo-

cations of QRS complexes, PBSSa is only activated after

sufficient QRS complexes have been detected and classified

as correct in an initialization phase. Furthermore, if no QRS

complex is identified for a prolonged period of time, fetal

Fig. 3. Schematic illustration of the electrode configuration on the maternal
abdomen. The ground electrode is not displayed.

movement could have occurred in between. The information

contained by these previously detected QRS complexes about

the orientation of the electrical axis might be outdated.

Therefore, if any of the QRS complexes used for the es-

timation of the electrical axis is older than 10 seconds, the

traditional PBSS is used as source separation technique.

Since no a priori information is available about an average

QRS waveform, QRS classification in the initialization phase

is based on the R-R intervals of consecutive R-peaks, rather

than on QRS waveform. The initialization phase searches for

m consecutive peaks for which all individual R-R intervals

are within the physiological R-R boundaries (based on a

heart rate of 50-255 BPM in accordance with the values

used in [9]) and no R-R interval deviates more than 20%

from the average R-R value. After m QRS complexes have

been identified and accepted, PBSSa is used for further signal

processing.

III. EVALUATION

A. Data acquisition

For this study, an in-house database is used to evaluate the

performance of the developed algorithms. In total, recordings

have been performed in 13 women after having given written

informed consent, with gestational age ranging from 22 to

41 weeks. The recordings are 200 seconds long, consisting

of 8 bipolar signals with the electrode configuration as

schematically illustrated in Fig. 3. The measurements are

performed at the Máxima Medical center (Veldhoven, the

Netherlands) and are acquired at a sample frequency of 1

kHz. The recordings are preprocessed to suppress the mECG

by an adaptive template-based technique [2] and the fetal

VCG is obtained by a vectorcardiography method [7].

B. Evaluation criteria

To compare the performance of PBSSa and PBSS, visual

annotation is used as a gold standard. This annotation is

performed by an expert, in the signals that remain after

suppression of the mECG (V). Evaluation criteria used to

quantify the performance of the developed algorithm are

based on the percentage of correctly detected QRS com-

plexes and the SNR.

The percentage of correctly detected QRS complexes is

expressed by means of the sensitivity (Se) and the positive

predictive value (PPV):

Se =
nT P

nT P+nFN
·100% (2)

PPV =
nT P

nT P+nFP
·100% (3)
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TABLE I

PERFORMANCE OF PBSSA COMPARED TO PBSS, BASED ON SE, PPV,

AND THE SNR.

Technique SNR (dB, median) Se(%) PPV (%)
PBSS 11.7 93.9 97.7
PBSSa 12.7 95.3 97.7

with nTP the number of True Positives (correctly detected

peaks), nFP the number of False Positives (falsely detected

peaks), and nFN the number of False Negatives (missed

peaks). The Se and PPV are calculated based on the total

nTP, nFP and nFN found in all 13 recordings.

Besides based on the percentage of correctly detected QRS

complexes, improvements in the signal enhancement can also

be quantified based on the SNR. Confer with the definition

of SNR in [6], the SNR is measured by comparing a

running average QRS complex ˆ̄Z in SPBSS(a) to the individual

QRS complexes Ẑi in SPBSS(a). The SNR (ΨSNR,i) of Zi is

calculated as

ΨSNR,i(dB) = 10log
Ẑave · Ẑ

T
ave

(Ẑi− Ẑave)(Ẑi− Ẑave)T
(4)

IV. RESULTS

In PBSSa, the original PBSS technique is used in 1% of

the recording time. The performance measures for PBSS

(for the entire database) and PBSSa are shown in Table

I. The median of the SNR for PBSSa measures 12.7dB,

compared to 11.7dB for PBSS. For PBSSa the Se is 1.5%

higher than for PBSS (95.3% versus 93.9%, respectively).

The PPV for PBSSa and PBSS is similar (97.7% versus

97.7%, respectively).

V. DISCUSSION & CONCLUSIONS

In this study, a physiology-based technique is used for

source separation of fECG recordings [6]. The main limita-

tion of the existing PBSS is the susceptibility to artifacts in

the estimation of the electrical axis. In PBSS, correct estima-

tion of the electrical axis is directly related to the quality of

the QRS complexes in the resulting fECG signal after source

separation. Hence, improvements that are developed in this

study mainly aim to provide a more robust estimation of the

electrical axis.

The developed sample selection and QRS classification to

improve the ellipse fit, allow for improved estimation of the

electrical axis, even in case the VCG is contaminated with

artifacts. Besides, PBSSa assesses the change in orientation

of the estimated electrical axis with regard to physiologically

acceptable fetal movement.

In [6] it is already shown that PBSS outperforms other

widely used blind source separation techniques, such as in-

dependent component analysis [5], in particular for the non-

invasive fECG recordings that exhibit a low SNR. Therefore,

this study only compares the performance of the developed

PBSSa algorithm to the original PBSS technique.

The performance of PBSS and PBSSa is evaluated by

means of the SNR of the enhanced fECG, and the Se

and PPV of the detected FHR. Whereas the SNR indicates

improvement in the quality of the QRS complexes after

source separation, the Se and PPV directly reflect the actual

improvement in the detection of QRS complexes.

Based on the increase in the SNR (from 11.7dB to 12.7dB

for PBSS and PBSSa, respectively), it can be concluded

that the estimation of the electrical axis has improved for

PBSSa with respect to PBSS. In particular in the vicinity

of artifacts, the improved estimation of the electrical axis in

PBSSa leads to a decrease in the number of missed peaks.

As a result, the Se increases for PBSSa compared with the

Se for PBSS (from 93.9% to 95.3%). Since artifacts only

occur infrequently in the used database, the decrease in the

number of missed peaks is relatively small compared with the

total number of annotated peaks. However, these infrequent

disturbances in the FHR might have a significant influence on

a consecutive analysis of the FHR, e.g. by spectral analysis

[11]. Unlike the decrease in the number of missed peaks,

the number of falsely detected peaks is similar for PBSS

and PBSSa, resulting in a similar PPV (97.7%). The similar

number of falsely detected peaks for both techniques is

because the same peak detection algorithm [9] is used in

PBSS and PBSSa.

The combined effect of the developed QRS classification

to select QRS samples and the assessment of the orientation

of the estimated electrical axis has led to a reduction of the

influence of artifacts in PBSSa. The increased SNR in PBSS

allows for improved detection of the FHR, as evidenced by

the increase in Se, with respect to PBSS.
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[8] F. Shellong. Grundzüge einer klinischen Vektocardiographie des

Herzens. Springer-Verlag, Berlin, 1939.
[9] M.J. Rooijakkers, C. Rabotti, S.G. Oei, and M. Mischi. Low-

complexity R-peak detection for ambulatory fetal monitoring. Physiol

Meas, 33(7):1135–1150, Jul 2012.
[10] S. Abboud and D. Sadeh. Spectral analysis of the fetal electrocardio-

gram. Comput Biol Med., 19(6):409–415, 1989.
[11] C.H.L. Peters, R. Vullings, M.J. Rooijakkers, J.W.M. Bergmans, S.G.

Oei, and P.F.F. Wijn. A continuous wavelet transform-based method
for time-frequency analysis of artefact-corrected heart rate variability
data. Physiol Meas, 32(10):1517–1527, Oct 2011.

2007


