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Distribution networks of many logistics service providers have evolved from single-depot to complex, dynamic
multidepot networks. In a single-depot network, the deliveries from each depot are planned for that depot only,
and drivers return to the starting depot to pick up each new order. In a multidepot network, the deliveries
from multiple depots can be planned simultaneously; therefore, a logistics service provider can efficiently
combine its resources, thus reducing its labor and transport costs. However, an increasing emphasis on reliability,
customization, and flexibility is affecting the logistics structures. This paper describes the shift from single-depot
planning to multidepot planning for Nabuurs B.V., a large Benelux logistics service provider that implemented a
centralized, automated multidepot planning process throughout its organization. We developed a simulation model
to evaluate system performance and to address performance challenges. In this paper, we discuss the results of
extensive simulation tests and the specific recommendations that Nabuurs B.V. management implemented.
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Nabuurs B.V. (Nabuurs in this paper) is a
Netherlands-based logistics service provider. Over

the past several years, the company has substantially
increased its logistics activities, both in the range of
services it provides and in the number of countries
in which it provides these services. As a result, the
transport and distribution network for its ambient prod-
ucts (i.e., dry food and nonfood items) has changed
fundamentally; it has evolved from a single-depot
(SD) to a multidepot (MD) network. This motivated
Nabuurs to implement technological innovations and
collaborate with long-term clients; it also impelled
the company to create a higher-density network and
provided opportunities for efficiency improvements.
Companies in the highly competitive logistics service
industry must make large investments in return for low
profit margins. Because the assets in these networks
have become extremely complex, carriers have become
less able to control these complexities. As a result,
efficient distribution has become increasingly difficult.

In this environment, Nabuurs and the Eindhoven
University of Technology collaborated to support deci-
sion making at Nabuurs, with a specific focus on
the company’s transport operations of fast-moving

consumer goods. We started our collaboration by build-
ing a quantitative model to provide the company with
insights into its transport planning. The performance
model we developed had to enable Nabuurs to gen-
erate and view the trade-offs of the many desirable
performance-related options, including reducing the
number of kilometers traveled with empty trucks (i.e.,
vehicles moving without goods) and the number of
trips.

In this paper, we describe research to improve
Nabuurs’ decision-making processes, with a specific
focus on its transport planning. Here, we summa-
rize our analysis and recommendations, which led to
significant changes in Nabuurs’ operations.

• Our preliminary analysis showed that MD plan-
ning provides significant cost savings over SD planning,
and these cost savings increase as the order volume
grows.

• After comparing and analyzing Nabuurs’ current
manual planning process, as executed by experienced
planners, versus an automated planning support sys-
tem, ORTEC Transport and Distribution (OTD), we
determined that Nabuurs management should upgrade
its operational planning tools. These tools can enable
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planners to quickly create automated daily planning
schedules and easily make manual adjustments when
unforeseen situations arise. This utilizes the skills of
the planners and the speed of software programs, pro-
viding Nabuurs with efficient and effective planning
operations. This will also enhance the advantages of
multidepot planning, promising significant cost reduc-
tions and substantial sustainability improvements in
the future.

• When we looked at the planning horizon, the
greater part of the incoming order volumes allows
efficient and proactive execution of the planning activi-
ties. However, the planning activities in Nabuurs occur
reactively rather than proactively. Reactive planning
refers to a situation in which a company does not plan
ahead for problems or opportunities but reacts to them
as they happen. In contrast, proactive planning occurs
when the company plans ahead to avoid or manage
problems. Our preliminary analysis showed that proac-
tive planning gives significant benefits, provided that
the order information is received in time. This analysis
showed that order arrival times and patterns vary
among the clients and that Nabuurs should work with
its customers to improve the timely availability of the
order information.

Each day, Nabuurs delivers goods from its depots
and the depots of its customers to the customers who
have placed these orders. In doing so, it faces a com-
mon problem—minimizing the costs of distributing
these goods, a problem widely known as the vehicle
routing problem (VRP). VRP, formulated by Dantzig
and Ramser (1959), is a generic name for problems
that deal with determining an optimal set of routes
to deliver to a number of geographically dispersed
customers by using a fleet of vehicles based at one or
multiple depots. Although many papers have been
published on the classic VRP, only a limited num-
ber of papers address the multidepot VRP. Therefore,
the scarcity of literature regarding the comparison
between SD and MD planning processes is not sur-
prising. Multidepot VRP (MDVRP)—the situation in
which a company has multiple depots from which it
can serve its customers—is an extension of the VRP.
If the customers are clustered around these depots,
the distribution problem can be modeled as a set of
independent VRPs. However, if the customers and
the depots are dispersed geographically, it should

be modeled as an MDVRP. In addition to address-
ing the typical VRP decisions, an MDVRP requires
the assignment of customers to depots and a fleet of
vehicles to each depot. The general objectives of the
MDVRP are to minimize the number of vehicles in a
fleet and the travel time of these vehicles. Moreover,
the demand of customers can be served from multiple
depots. In the pickup-and-delivery problem (PDP),
each transportation request specifies a single origin
and a single destination and all vehicles depart from
and return to the depot. PDPs must also satisfy prece-
dence relationships between requests and customers.
Desaulniers et al. (2002), Parragh et al. (2008), and
Berbeglia et al. (2010) provide extensive surveys of
PDPs. In our study, we formulate Nabuurs’ trans-
portation system as a heterogeneous multidepot PDP
with time windows and company-specific driver’s
rule constraints. Appendix A shows the mathematical
model formulation.

We organized the remainder of this paper as follows.
In the About Nabuurs section, we introduce Nabuurs
and its current distribution planning system. The Prob-
lem Description and Analysis section provides a detailed
explanation of the current challenges based on our
preliminary analysis. Design of an Automated Multidepot
Planning System explains our proposed methods to
address these challenges. In Results, we then discuss
the results of extensive computational experiments and
include managerial insights. We discuss our conclusions
in Conclusions and Future Outlook. Finally, the appen-
dices describe the mixed-integer programming model
and the algorithms used in our simulation model.

About Nabuurs
Headquartered in Haps, the Netherlands, Nabuurs was
founded in 1962 by Jacques Nabuurs. Starting with
one truck for transporting live poultry, the company
has grown to be 13th in the top 50 logistics service
providers in the Netherlands. It has an annual turnover
(i.e., sales revenue) of more than 100 million euros and
operates over 170,000 square meters of warehouses
in the Netherlands, Belgium, Germany, and Poland.
The family business, directed by Tjebbe and Ard
Nabuurs, employs more than 1,000 people (Nabuurs
2013). Nabuurs focuses on transportation planning (i.e.,
cost, service, sustainability) for its customers’ products.
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Production
Warehousing
of end product

Wholesaler Supermarket

Transport

Figure 1: Transportation activities in which Nabuurs is involved are depicted
in the supply chain network for refrigerated, frozen, and ambient products—
its three market segments.

Its clients include H. J. Heinz, FrieslandCampina, SCA
Hygiene Products, and Refresco.

Outside the Netherlands, transport is Nabuurs’ core
activity; within the Netherlands, both transport and
warehousing are its major businesses. Nabuurs provides
services in three market segments: refrigerated, frozen,
and ambient products (see Figure 1).

The refrigerated market segment includes refriger-
ated products, for which Nabuurs offers distribution
services for the retail and wholesale sectors. To main-
tain the conditions these products require, its trucks
and warehouses are equipped with temperature con-
trol systems. In the frozen market segment, Nabuurs
addresses all the distribution, storage, and picking
requirements of its clients.

“Ambient” is a term used within the food and bev-
erage industry to describe products (or storage of
such products) that require only an ambient temper-
ature (i.e., room temperature). The ambient market
segment covers both food and nonfood products, such
as soft drinks, biscuits, cereals, tinned meat, tinned
fruit, rice, and pasta. This market segment provides the
largest share of revenue to Nabuurs and requires more
trucks and employees than either of the other mar-
ket segments. The implementation we discuss in this
paper focuses exclusively on the logistics operations of
ambient products.

Problem Description and Analysis
The planning process at Nabuurs is centrally controlled
using a planning support system, OTD. OTD controls
a dynamic and complex multidepot network. However,
its responses to planning requirements are usually
reactive rather than proactive; in addition, because
OTD is a manual system, it hinders the planning
process.

In the following sections, we give a detailed analysis
of the current processes, structure, and performance of
the transport and distribution activities within Nabuurs’
ambient product transport network. We follow the
process, control, and information model of Bemelmans
(1986). This framework provides a structured analysis
approach from the perspective of improving the corre-
sponding planning and control structure. Bemelmans
assumes that the primary process of an organization
determines the type of control required; therefore, its
information structure results from the control structure
adopted.

Process and Service
We define a process as a method or system. For
Nabuurs, this is mainly the execution of logistics ser-
vices to reduce travel time and distance within its
transport and distribution network. Nabuurs is posi-
tioned in the center of the supply chain, which executes
three types of services: (1) transport between a pro-
duction location and (or) a distribution center (DC),
(2) warehousing, and (3) transport and distribution to
a wholesaler or customer (e.g., Refresco). Nabuur’s
central position in the supply chain can be considered
as dependent. However, this can be a competitive
advantage because it allows the company to build and
maintain long-term relationships with its clients. More-
over, a logistics service provider can foster a strong
partnership with a client by assuming responsibility for
that client’s entire transport and warehousing activities.

Control and Structure
The entire transport and distribution planning process
for the ambient market segment is centrally controlled
from a Nabuurs office in Ede, the Netherlands; however,
it is supervised from an office in Haps, the Netherlands.

The planning process addresses the control of the
depots, transport flows, resources, and level of plan-
ning tasks. For the ambient market, loading sites of
discharge locations are often production locations of
long-term clients and (or) DCs. Any process to improve
distribution planning must consider these loading and
unloading locations.

Ghiani et al. (2013) categorize transportation plan-
ning tasks into three levels—strategic, tactical, and
operational (see Figure 2). The relationship between the
operational and tactical levels is particularly important
for our research.
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Strategic

Tactical

Operational

Long-term planning (1–3 years):

    distribution depots

Medium-term planning (> 1 week, < 1 year):

•  The planning of distribution sectors

•  The planning of customer groups
•  The allocation of these customers to
    distribution depots

Short-term planning (1–7 days):

•  Weekly and daily operations concern the
    generation of (variable) routes

•  The assignment of orders to fixed and

•  The location, size, and number of

    semifixed routes

Figure 2: Nabuurs’ transportation decisions are based on hierarchical planning levels.

Information and Performance
According to Bemelmans (1986), information serves as
a resource for several control and decision processes.
We can look at information from two perspectives:
functionality and performance. To support the transport
activities in the ambient market segment, various infor-
mation technology (IT) systems—including Microsoft
Office, the data warehouse, and OTD—provide infor-
mation; Nabuurs’ IT systems are also directly linked to
client warehouse management and enterprise resource
planning (ERP) systems. Performance indicators within
the network determine when the information must
be produced. Using a planning support system (e.g.,
OTD) can reduce costs and improve service levels.
OTD considers all the factors and conditions that are
important within the specific organization or branch.
However, this planning tool must be considered as an
addition to the ERP and (or) transport management
system that support(s) the planner.

Design of an Automated
Multidepot Planning System
Nabuurs did not optimally use OTD for several rea-
sons. First, its planning processes were still manual,
principally because of problems with OTD settings;
these problems relate to truckers who spend the night
in their trucks. Because a majority of Nabuurs’ drivers

only stay overnight between shifts, these problems
impeded effective MD planning. A driver who is asked
to stay overnight must receive additional compen-
sation. Second, Nabuurs lacked clear performance
measurements and required more knowledge about
the quantitative factors (e.g., travel time, kilometers
traveled) and qualitative factors (e.g., driver flexibility,
availability) that affect these measurements. For exam-
ple, the company did not have precise information on
the performance per delivery (e.g., the ratio between
the number of kilometers traveled by empty trucks
and the number of KMs traveled by trucks with full
loads). Third, simulating network changes was diffi-
cult and time consuming. For example, in responding
to a tender, Nabuurs might want to determine and
quantify the additional efficiencies it could obtain by
implementing a more efficient route-planning process.
To address these issues, we designed our study with
three objectives: (1) to design a model to verify whether,
for the current network of the ambient market segment,
an MD operating process would be more cost efficient
than an SD process; (2) to determine the benefits of
automated MD planning over manual planning; and
(3) to implement the model to calculate the effects of
changing volumes and (or) adding or deleting clients.

Based on our analysis of the processes, control mech-
anisms, and the information available, we generated
a detailed cause-and-effect diagram (Ishikawa and
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automatic routing
planning

ImplementationMeasurement

Motivation Data Environment

Benefits of MD
over SD unknown

No insight on current
situation vs. alteration

Improper methods
OTD system

Complexity

Dynamic

Too many
disruptions

Invoicing

Unclear
procedures

Standardization

Lack of goal-oriented
performance

relationship
between clients

Lack of understanding
of cost factors

Interdependency

Inefficient (semi)

Figure 3: The cause-and-effect diagram shows an inefficient, semiautomatic route-planning process.

Loftus 1990) (see Figure 3) of Nabuurs’ route-planning
process.

Improving route planning and reducing logistics
costs by more efficiently executing the planning pro-
cesses must be an ongoing objective. The right side of
Figure 3 shows the main objective, an efficient (i.e.,
semiautomatic) route-planning system for daily use.
We determined that this objective would be feasible
if Nabuurs implemented the following three recom-
mendations: (1) completion and implementation of
OTD changes, (2) improvement of the current planning
process, and (3) adoption of a consistent invoicing
policy.

Because the first recommendation depends on exter-
nal factors, we could not include it in our study.
However, the time needed for replanning the trans-
port requests requires calculations and improvements
that involve complex solutions; this is impracticable
without automated planning support. The Nabuurs
network may benefit from an automated route-planning
process, whether Nabuurs uses the process in daily
planning or merely for performance measurement and
(or) scenario analysis. If this recommendation cannot
be performed within OTD, Nabuurs should reconsider
OTD’s implementation.

We also omitted the third requirement from our
scope of work because it is based on profits, margins,
and exception handling rather than on bottom-line

costs. Improving the daily planning process requires a
new invoicing policy. Nabuurs should implement a
consistent tariff structure that clearly defines what each
party pays and appropriately divides the cost savings
and corresponding profits.

Based on the cause-and-effect diagram in Figure 3,
the objective of our design is to build a model (1) to
substantiate that an MD operating process is more cost
effective than an a SD operating process in the current
network, and (2) to quantify the benefits of changing
from an SD process to an MD process. We implemented
the model to calculate the effects of adding (deleting)
clients and of increasing (decreasing) volumes on the
costs of the network. Therefore, we divided the design
phase into two phases, as follows.

• Phase 1: We developed a performance evaluation
model (PEM) to calculate and visualize the network
performance by means of the kilometers driven by
empty trucks and the kilometers traveled by trucks
with full loads.

• Phase 2: We developed and implemented a sim-
ulation model, which we based on ORTEC’s tool,
SHORTREC. This tactical tool provides insights into
the routing decisions to allow the user to minimize
total costs.

Phase 1: The Performance Evaluation Model
Measuring the performance (i.e., the number of kilo-
meters traveled by empty trucks versus the number
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•  Organize and correct the data

•  Sort the data according to
    the specific truck code

•  Filter the data according to
    the kilometers driven with
    empty trucks and the
    kilometers traveled with
    loaded trucks

•  Match and categorize
    both the number of
    kilometers driven with
    empty trucks and the
    number of kilometers
    traveled with loaded
    trucks per postcode area

•  Determine the frequencies
    of tour lengths per
    postcode area
•  Structure and calculate the
    total length of tours for
    both the kilometers driven
    with empty trucks and the
    kilometers traveled with
    loaded trucks

Performance by
means of the

kilometers driven
with empty

trucks and the
kilometers traveled

with loaded
trucks per

postcode area

Frequency rate of
tour lengths per
postcode area

Output 1

Output 2

CalculatingCategorizingFiltering

VisualizingData
from
DWH

Figure 4: The diagram shows an overview of the PEM.

traveled by fully loaded trucks) within the network
is imperative. At the time of our study, (1) the net-
work did not include any substantial performance
measurements, and (2) a tool to evaluate the expected
performance did not exist. Figure 4 shows an overview
of the PEM we used, including the input (i.e., data
from the data warehouse (DWH)), process, and output
variables.

The PEM has three building blocks; they (1) filter
the input data, (2) run a Visual Basic program for
categorization, and (3) run calculations to allow the
user to visualize the output.

Because the accuracy of the PEM’s results is critical,
we assessed the construct validity, which we define as
the extent to which a tool measures what it is intended
to measure (Groot 1969). We achieved construct validity
by discussing the filtering scenarios and results with the
Nabuurs staff members responsible for the transport
network. Using the methodology of Sargent (2005), we
used real data (i.e., the data used for invoicing), which
we obtained from the DWH, for our model.

Phase 2: The SHORTREC-Based Simulation Model
We use simulation to describe and analyze a system’s
behavior, allow a user to ask what-if questions about
the live system, and aid in the systems design process
(Banks 1999). After developing the PEM, we had to con-
struct the simulation model to (1) obtain insights about
situations in which MD planning is more advantageous

than SD planning and (2) compare networks in which
changes have been made to previous and (or) potential
(i.e., future) versions of that network. To implement our
design, we constructed a simulation model, SHORT-
REC, a tactical tool that meets all three objectives, as
we discuss at the beginning of this section.

We designed SHORTREC to minimize overall costs.
The solution methodology starts with a basic solu-
tion and then tries to improve on that solution by
running optimization routines multiple times. This
is clearly a time-intensive process, especially when
many alternatives are possible. SHORTREC includes
both construction and improvement algorithms, indi-
cating the versatility of its optimization possibilities
(see Table 1). Appendix B provides additional details
of these algorithms.

Construction algorithms Improvement algorithms

Sequential insertion algorithm Optimization algorithms
Savings algorithm Cyclic transfer algorithm
Priority-based parallel insertion algorithm Tabu search algorithm
Cluster-based insertion algorithm
Multidepot insertion algorithm
Group-based insertion algorithm
Pickup-and-delivery insertion algorithm

Table 1: The table categorizes the two types of algorithms—construction
and improvement—used by SHORTREC, and lists the algorithms in each
category.
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Several studies, including Quak and de Koster (2006),
Kant et al. (2008), and Schittekat and Sörensen (2009),
discuss SHORTREC. Sargent (2005) defines verifica-
tion of a (computerized) model as ensuring that the
computer programming and implementation of the
conceptual model are correct. The verification step
checks whether the model has been built correctly and
functions as it should. We validated our results and
then discussed them with staff members in Nabuurs’
planning department. Based on our validations and
staff comparisons, we concluded that SHORTREC is
able to meet the above-stated objectives and require-
ments and is a viable tool for performing scenario
analysis.

Results
In this section, we discuss the results of the PEM
and scenario analysis. In response to Nabuurs’ lack
of knowledge about performance within particular
postcode areas, which often include multiple unloading
locations, we developed the PEM to evaluate existing
activities. Outputs include (1) maps that show the ratios
between the number of kilometers traveled with trucks
empty and the number traveled with loaded trucks
and (2) frequency diagrams that show trip lengths (see
Figure 5).

To determine whether the network changes affected
performance positively or negatively, we performed a
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Figure 5: For postcode 34, this figure illustrates the number of kilometers
traveled by fully loaded vehicles (“Loaded km”) and the number of KMs
traveled by empty trucks (“Empty km”).

series of tests, which we subdivided into the following
three scenarios:

• Scenario 1: SD versus MD planning.
• Scenario 2: MD (manual) versus MD (automated)

planning.
• Scenario 3: Reactive versus proactive planning.

Scenario 1: SD vs. MD Planning
In Scenario 1, we compare SD and MD planning pro-
cesses for the ambient market network. Our objective
is to verify the quantitative savings achieved by using
the MD operating process. By representing the route
planning of a particular driver, we can validate the
savings that can be achieved by using a MD setting
(versus a SD setting).

We use one day of real orders, which initially contains
174 orders. We first reduce the number of orders and
then generate four subscenarios, which we base on
Scenario 1, by deleting the 74 orders with the largest
volume and the 74 orders with the least volume. The
remaining changes we make in SHORTREC concern
the number of available preloaded vehicles and the
vehicle fixed price used. The number of available
preloaded vehicles is adjusted to the number of orders
(i.e., one-seventh of the total number of orders), and the
vehicle fixed price is set to 100 euros in the simulation.
Table 2 shows the settings we use and the resulting
key performance indicators (KPIs).

First, we can conclude from Table 2 that cost savings
diminish as the number of orders decreases. Second,
we can see that the number of available preloaded
vehicles affects the comparison between SD and MD
planning. Therefore, based on these findings, using a
minimum number of preloaded vehicles is appropriate.
Finally, we observe that deleting the smallest orders
results in greater cost savings than deleting the largest
orders; for example, deleting 10 small orders has a
lesser effect on the total order volume than deleting 10
large orders. Therefore, a larger order volume yields
higher cost savings than a smaller order volume. We
also note that driver waiting time varies in the various
scenarios. Because drivers are paid for waiting time, its
impact is outside the scope of our research. However,
this could be a topic for future research.
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Scenario 1 Performance comparison

Smallest
or largest No. of
volume available Working Driving Stopping Waiting

No. of orders preloaded Distance No. of No. of time time time time
Setting orders deleted vehicles Cost (E) (km) vehicles trips (min.) (min.) (min.) (min.)

SD 174 0 25 27,693 21,803 57 116 34,392 18,932 14,280 1,339
MD 174 0 25 25,267 19,287 54 119 31,836 17,117 14,280 199
Difference (%) −8076 −11054 −5026 2.96 −7043 −9069 0.00 −85014
SD 100 −74 large 25 11,292 8,856 34 49 13,838 7,887 5,880 71
MD 100 −74 large 25 11,229 8,595 30 50 13,842 7,690 5,880 212
Difference (%) −0056 −2095 −11076 2.04 0003 −2050 1.02 198059
SD 100 −74 large 10 12,853 9,919 30 48 15,576 8,657 6,720 199
MD 100 −74 large 10 12,802 9,868 28 50 15,643 8,623 6,840 180
Difference (%) −0040 −0051 −6067 4.17 0043 −0039 1.79 −9055
SD 100 −74 small 25 19,183 15,206 46 96 24,096 13,237 10,140 719
MD 100 −74 small 25 18,404 14,465 41 96 23,075 12,697 10,140 238
Difference (%) −4006 −4087 −10087 0.00 −4024 −4008 0.00 −66090
SD 100 −74 small 10 21,252 17,173 47 96 25,883 14,763 11,040 80
MD 100 −74 small 10 19,892 15,563 43 96 25,081 13,567 11,100 414
Difference (%) −6040 −9038 −8051 0.00 −3010 −8010 0.54 417050

Table 2: The table presents an overview of the tests we did to compare SD and MD planning.

Scenario 2: MD (Manual) vs. MD
(Automated) Planning
In Scenario 2, we compare the current manual plan-
ning process to an automated planning process. This
comparison validates the application of SHORTREC
for the ambient market segment (see Table 3).

The total costs of manual planning are the amount
that Nabuurs charges the client minus the profit that
the company generates. However, we cannot know
whether actual planning results in higher or lower costs
than the estimated costs. Nevertheless, our comparison
focuses on the planning methods (i.e., manual and
automatic)—not the execution of the planning, which
is difficult to measure because of uncertainty in real
traffic conditions and freight demand. Based on the

Working Driving Stopping Waiting
Distance No. of No. of No. of time time time time

Scenario 2 Cost (E) (km) vehicles rides orders (min.) (min.) (min.) (min.)

Manual 5,643 5,083 10 32 32 7,945 N/A N/A N/A
SHORTREC 5,191 4,451 11 32 32 6,567 3,933 2,445 189

Difference (%) −8001 −12043 10.00 0.00 0.00 −17034

Table 3: The table shows a comparison of the KPIs in the MD manual and automated scenarios (SHORTREC).

KPI results in Table 3, we see that cost savings of eight
percent are achieved by decreasing the number of KMs
driven and the working time. In addition, the number
of vehicles increases, but the number of trips remains
the same. The cost savings are primarily the result of
fewer kilometers driven with empty trucks, mainly
because SHORTREC combines the depots, orders, and
drivers in a more intelligent and interchangeable man-
ner. Executing a SHORTREC solution for this small
number of orders takes only a few minutes, instead of
several hours as the manual planning process requires.
However, small reactive changes (e.g., a slight increase
in the time window) are easily applicable to the man-
ual planning process; therefore, in such situations,
using SHORTREC is unnecessary. For example, in the
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manual planning process, 10 vehicles can be used; no
SHORTREC solution allows this. We conclude that
because SHORTREC provides insights about best route
combinations, it can support the current planning
process.

Scenario 3: Reactive vs. Proactive Planning
In Scenario 3, we highlight the differences between
reactive and proactive planning. Proactive planning
can provide benefits (e.g., by allowing changes to the
departure locations of a vehicle fleet); however, it is
possible only if the order information is received in
time. Therefore, we assume that the order information
is available beforehand (i.e., 48 hours). In Nabuurs, only
a small number of the orders meets this requirement.

Because a depot within the network contains its
own specific types of products, the current manual
planning process, which is performed per DC, is viable.
Reactive planning does not provide any insights about
upcoming orders. This reactive planning procedure, as
currently used, is a logical method for dealing with
this complex and uncertain environment, although
a proactive approach would improve the planning
process and provide a benefit for the drivers.

Table 4 shows the KPI results of the reactive and
proactive process comparison.

To simulate these two types of planning, we define
free end location as allowing a driver to end a trip
at a depot other than the depot from which he (she)
departed. We define free start location as allowing a
driver to select the start location. However, if a reactive
daily planning schedule is generated (i.e., the planning
process does not provide information about the next
day’s orders), a start location may be random; the

Scenario 3 Performance and comparison

Option Option Option
for for free for free Working Driving Stopping Waiting

Horizon: night’s end start Distance No. of No. of time time time time
48 hours rest location location Cost (E) (km) vehicles rides (min.) (min.) (min.) (minutes)

Reactive planning:
48 hours (2× 24) No Yes Yes 23,989 17,155 62 133 29,752 15,317 13,005 1,430
Proactive planning:
48 hours Yes Yes Yes 20,447 13,399 56 130 26,897 11,827 17,040 2,350

Difference (%) −14077 −21089 −9068 −2026 −9060 −22079 31.03 64.34

Table 4: The table provides detailed results of the reactive and proactive MD ambient planning scenarios.

driver cannot select a desirable start location. Note that
the total break time for reactive and proactive planning
are found to be 0 and 72 hours, respectively. Using
proactive planning, the total costs are E20,447 when
nine drivers (72 hours’ waiting time, with an 8-hour
rest per driver) are scheduled with a one-night rest.
The results show a cost improvement of 14.77 percent
for planning with a time horizon of 48 hours and 100
orders per day. In addition, this solution requires six
fewer vehicles than the reactive planning solution does.
Because more than 150 orders are transported over
the network each day, annual cost savings resulting
from using a proactive planning procedure are large.
Nevertheless, to do a reliable comparison, we must
select an appropriate reactive planning model. Because
Nabuurs can request that the majority of the drivers
take a one-night rest within their vehicles, we can define
two scenarios for modeling reactive planning—one
scenario as an upper-bound solution and the second as
a lower-bound solution. Table 5 shows the upper- and
lower-bound solutions, which are based on reactive
planning of two separate days with 100 orders a day
(i.e., 48 hours and 200 orders).

Although the first solution (see Table 5) more cor-
rectly models reactive planning, it does not consider
the advantages of a one-night rest. The second solu-
tion includes advantages for drivers and for Nabuurs:
drivers can select free start and free end locations;
because Nabuurs does not consider (or pay for) a
one-night rest as working hours, the driver may choose
his destination. Therefore, based on the aforementioned
descriptions, we conclude that the following scenario
for modeling reactive planning is the most beneficial:
reactive planning with a free start location on the first
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Option for Option Option
one-night for free for free Working Driving Stopping Waiting

rest end start Distance No. of No. of time time time time
Solutions in vehicle location location Cost (E) (km) vehicles rides (min.) (min.) (min.) (min.)

Upper-bound No No No 31,589 25,063 66 131 37,226 21,972 13,680 1,574
Lower-bound No Yes Yes 20,349 13,442 55 128 26,412 11,868 12,720 1,824

Table 5: The table shows upper- and lower-bound solutions for reactive planning.

day and a free end location on the second day. This
solution precludes the night-rest issue and includes the
advantages of a free start and free end location.

Practical Implications
Based on the potential benefits our study shows, as
we summarize next, Nabuurs decided to improve its
current planning system (OTD).

• In all the cases we tested, we achieved cost savings
by switching from an SD to an MD process; additional
cost savings accrued as order volumes increase.

• In Scenario 2, when we compared automated
SHORTREC planning and the current manual planning
process using the same number of orders, we achieved
cost savings of eight percent by combining depots,
orders, and drivers to make them more interchange-
able. Although small reactive changes are easier to
apply to the manual planning process, an automated
SHORTREC solution for this small number of orders
takes only a few minutes, instead of the several hours
required for manual planning.

• In Scenario 3, using 200 orders and a time horizon
of 48 hours, the proactive planning approach reduces
costs by 14.77 percent and uses six fewer vehicles than
the reactive planning approach.

• SHORTREC is a viable tool for supporting current
planning on a tactical rather than operational level. The
planning system can generate rapid route combinations
and allow planners to do what-if analysis for planning
purposes.

Conclusions and Future Outlook
Our research allowed us to gain insights into multide-
pot distribution networks, and our results demonstrate
the benefits of applying operations research in freight
transportation and logistics.

This research convinced Nabuurs management to
make two important investments: first, it decided

to upgrade OTD, its operational planning tool. This
upgraded support allows the planners to quickly
and easily create automated daily planning sched-
ules and make manual adjustments to the schedules
when unforeseen situations arise. Second, Nabuurs
implemented the tactical planning tool SHORTREC.
Although using advanced network analyses had been
a company goal for some time, Nabuurs considered
such analyses to be too time consuming. Our research
showed that SHORTREC performs faster, particularly
in response to network changes. It provides Nabuurs
with a useful system for tactical planning activities,
such as advanced analyses using distribution and
transportation scenarios.

In our recommendations, which are based on the
results we obtained in our study, we advised Nabuurs
to focus on the following: (1) change its planning
process from reactive to proactive, (2) use automated
planning to provide improved solutions to complex
problems, and (3) measure and evaluate transport
network performance.

Appendix A. Mathematical Formulation
In this appendix, we describe the mathematical formulation
of the heterogeneous fleet multidepot pickup and delivery
problem with time windows and company-specific driver’s
rule constraints. The mathematical formulation we present
here is an extension of Desaulniers et al. (2002) and Ropke
and Pisinger (2006), and it is tailored for the transportation
requirements of Nabuurs. Let us first introduce the indices,
parameters, and variables.

Indices
P: Set of pickup nodes, P= 811 0 0 0 1n9.
D: Set of delivery nodes, D= 8n+ 11 0 0 0 12n9.
N: Set of pickup and delivery nodes, N= 4P ∪D5.
K: Set of all vehicles, K= 811 0 0 0 1 k9.
M: Set of start terminals of vehicles, M= 8m11 0 0 0 1mk9.
M′: Set of end terminals of vehicles, M′ = 8m′

11 0 0 0 1m
′
k9.

V: Set of all locations, V= 4N ∪M ∪M ′5.
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A: Set of ordered pairs of nodes (i.e., arcs)
A= 84i1 j52 i1 j ∈V1 i 6= j9.

G: A complete undirected graph, G= 4V1A5.
Pk: Set of pickup nodes that can be served by vehicle k,

Pk = 811 0 0 0 1n19 and n1 ≤ n.
Dk: Set of delivery nodes that can be served by vehicle k,

Dk = 8n+ 11 0 0 0 1n+n19 and n1 ≤ n.
Nk: Set of pickup and delivery nodes Nk = 4Pk ∪Dk5.
Ki: Set of vehicles that can serve request i Ki = 811 0 0 0 1 k19

and k1 ≤ k.
Vk: Set of all nodes that can be visited by vehicle k

Vk = 4Nk ∪Mk ∪M ′
k5.

Ak: Set of ordered pairs of nodes for vehicle k
Ak = 84i1 j52 i1 j ∈Vk1 i 6= j9.

Gk: A complete undirected subgraph Gk = 4Vk1Ak5.

Parameters
Qk: Capacity of vehicle k 4k ∈K5.
T1: Maximum driving time on any arc (i1 j) (in seconds).
T2: Maximum route time (in seconds).
v̄r : R nondecreasing speed levels 4r = 1121 0 0 0 1R5.
cr : Fuel cost at a speed level r per kilometer 4r ∈R5.
ckij : Other travel-related costs between nodes i and j using

vehicle k 4k ∈K1 4i1 j5 ∈A5.
dij : Distance between nodes i and j 4i1 j ∈A5.
lij : Minimum speed level between nodes i and j 4i1 j ∈A5.
ai: A lower bound on the time window of customer i

4i ∈V5.
bi: An upper bound on the time window of customer i

4i ∈V5.
ti: Service time of customer i 4i ∈P∪D5.
qi: A nonnegative demand for every i 4i ∈P5.

Variables
xkij : A binary variable equal to 1 if arc (i1 j) is used by

vehicle k and 0 otherwise 4k ∈K1 4i1 j5 ∈A5.
Sk
j : The time at which service starts at node j with

vehicle k 4k ∈K1 j ∈V5.
Ok

j : The time spent on a route that has a node j as last
visited before returning to the depot with vehicle k
4k ∈K1 j ∈V5.

Lk
j : Amount of load at node j on vehicle k 4k ∈K1 j ∈V5.

wr
ij : A binary variable equal to 1 if arc 4i1 j5 is traversed at

a speed level r and 0 otherwise 44i1 j5 ∈A1 r ∈R5.

An integer linear programming formulation is shown as
follows:

minimize
{

∑

r∈R

cr
∑

i1 j∈Ak

dijw
r
ij (1)

+
∑

k∈K

∑

i1 j∈Ak

ckijx
k
ij

}

(2)

subject to
∑

k∈Ki

∑

j∈Nk

xkij = 1 ∀ i ∈P1 (3)

∑

j∈Nk

xkij −
∑

j∈Nk

xkj1n+i = 0 ∀k ∈K1 ∀ i ∈Pk1 (4)

∑

j∈Nk

xkmk1 j
= 1 ∀k ∈K1 (5)

∑

i∈Nk

xki1m′
k
= 1 ∀k ∈K1 (6)

∑

i∈Vk

xkij −
∑

i∈Vk

xkji =0 ∀k∈K1∀ j ∈Nk1 (7)

Sk
i + ti +

∑

r∈R

dijw
r
ij/v̄

r
+Mk

ij 41 − xkij5≤ Sk
j

∀k ∈K1 ∀ 4i1 j5 ∈Ak1 (8)

ai ≤ Sk
i ≤ bi ∀k ∈K1 ∀ i ∈Vk1 (9)

Sk
i ≤ Sk

n+i ∀k ∈K1 ∀ i ∈Pk1 (10)

Sk
j + tj +

∑

r∈R

dj0w
r
j0/v̄

r
− F 41 − xkj05≤Ok

j

∀k ∈K1 ∀ j ∈Ak1 (11)

Lk
i + qi +W k

ij 41 − xkij5≤ Lk
j

∀k ∈K1 ∀ 4i1 j5 ∈Ak1 (12)

Lk
i ≤Qk ∀k ∈K1 ∀ i ∈Vk1 (13)
∑

r∈R

dijw
r
ij/v̄

r
≤T1 ∀ 4i1 j5 ∈A1 (14)

Ok
j ≤T2 ∀k ∈K1 ∀ j ∈ 4Nk51 (15)

xkij ∈ 80119 ∀k ∈K1 ∀ 4i1 j5 ∈Ak1 (16)

wr
ij ∈80119 ∀ 4i1j5∈A1 r=110001R1 (17)

Sk
i 3 L

k
i 3 O

k
i ≥ 0 ∀k ∈K1 ∀ i ∈Vk0 (18)

The objective function (1) and (2) minimizes the total cost of
routing. It consists of two components—the speed-related
fuel cost and the other travel-related cost. Constraints (3)
state that each pickup location must be visited. Constraints (4)
ensure that a vehicle visits the delivery location after it has
visited the pickup location. Constraints (5)–(7) ensure that
each vehicle k starts from its start depot and terminates
its route at its terminal depot. Constraints (8), (11), and
(12) are linearized, as in Cordeau (2006). Constraints (8),
where Mk

ij = max801 bi + ti + dij/lij − aj9, enforce the time-
window restrictions. We also assume that ti1n+i + ti > 0.
Constraints (10) force the vehicle k to visit a pickup node
first. Constraints (11), where F is a large number, also enforce
the time-window restrictions. The time between nodes i and
j also holds the triangular inequality: tij ≤ til + tlj for all i,
j , l ∈V. Constraints (12) and (13) are the load constraints,
where W k

ij = min{Qk1Qk + qi}. Constraints (14) ensure that
driving time between nodes i and j must be less than T1.
Constraints (15) ensure that total route time must be less
than T2.
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Appendix B. Algorithms
In this appendix, we present the SHORTREC algorithms. The
information originates from ORTEC documents and presenta-
tions. Below, we enumerate all the algorithms included in
SHORTREC and clarify them in a summary.

Construction Algorithms
The construction algorithms build initial feasible solutions
without trying to optimize them. In construction algorithms,
two criteria play a central role: (1) the selection criterion (i.e.,
which order should be selected, given the current solution)
and (2) the insertion criterion (i.e., where should the selected
order be inserted). The goal of construction methods is to
produce a feasible initial solution that can be improved upon
later by means of improvement methods.

• The sequential insertion algorithm (SIA): Trips are
constructed sequentially, where all vehicles are empty initially.
The most important step in this algorithm is the selection of
the first order (seed) in a vehicle. The order farthest from the
depot is usually chosen as the seed. Other possibilities for
the seed are the largest order and the order with the smallest
time window. When the seed is selected, orders are added
to the vehicle until the vehicle is full. Therefore, a vehicle
is selected and filled with orders until no more orders can
be feasibly added. Then, a second empty vehicle is selected
and the procedure is repeated until a predefined number of
iterations completes.

• The savings algorithm (SA): The savings method by
Clarke and Wright (1964) is one of the most widely known
heuristics. The algorithm starts with a solution in which
each order is supplied by a separate trip and each trip by a
separate vehicle. Then the savings (e.g., distance saved by
combining trips) are calculated and the feasible trips with
maximum savings are iteratively selected to form the initial
solution. In the SA, the trips are constructed simultaneously.

• The priority-based parallel insertion algorithm (PbPIA):
The PbPIA groups orders based on restrictions between
orders and vehicles. It starts by constructing a matrix, the
difficulty matrix, in which it stores feasible vehicles for each
order and the row and column totals of the matrix. In each
step of the algorithm, a group of orders and vehicles that
should be scheduled is selected. That is, in each step of the
algorithm, small subproblems are constructed and solved
using the SIA.

• The cluster-based insertion algorithm (CbIA): The steps
of the CbIA are similar to the steps of the SIA and can be
summarized as follows: (1) select the seed order, (2) find a
vehicle for the seed, (3) add orders to the selected vehicle until
the vehicle is full, (4) find a cheaper vehicle, and (5) if orders
remain, go to step 1. The algorithm starts by determining
the difficulty and the cluster size of the orders. An order’s
difficulty is determined by the number of allowed vehicles
and depots. The cluster size is the number of orders within a
prespecified radius from each other.

• The multidepot insertion algorithm (MDIA): In step 1
of the MDIA, the sort method is selected. In step 2, after
all necessary data have been initialized, the seed order is
selected based on difficulty (i.e., based on the number of
depots and vehicles). In step 3, the largest remaining empty
vehicle is selected; in step 4, orders are added to the vehicle
based on the selected sort method. If no more orders can
feasibly be added to the vehicle and orders remain, the
procedure is repeated starting at step 2.

• The group-based insertion algorithm (GbIA): In the
GbIA, the orders are planned group by group. These groups
are determined by the vehicle size and order size. The steps
of the algorithm are as follows: (1) assign the vehicle to
groups based on vehicle capacity, (2) assign the orders to
groups based on order size, and (3) apply the SIA or the
SA per group. This construction method can be used in
situations in which specific orders should be given a priority
in the scheduling process. The orders that have the highest
priority within the group are scheduled first. Then, the second
group is scheduled until a predefined number of iterations
completes.

• The pickup-and-delivery insertion algorithm (PDIA):
When both pickup and delivery orders are to be scheduled,
the PDIA should be used. The algorithm consists of the
following steps: (1) select the seed order (i.e., from a set of
orders with earliest pickup times, select the order with the
largest distance between pickup and delivery location as the
seed order), (2) select the vehicle with a start location closest
to the pickup location that is allowed for the seed, (3) find a
cheaper vehicle, (4) add orders to the vehicle until it is full
(i.e., for all unplanned orders, determine the best place in
the trip for both the pickup and the delivery order), and
(5) repeat step 4 until the vehicle is full; then go to step 1.

Improvement Algorithms
Iterative improvement procedures are based on a well-known
optimization concept: the neighborhood search. In general,
the procedure searches for a better solution, starting from
an initial feasible solution. If a better solution is found, the
procedure is repeated on the new solution. This process
continues until no more improvements are found and a
(local) optimum is obtained.

• The optimization algorithms (OptA): After a construction
algorithm generates an initial solution, several iterative
improvement algorithms, OptA, can be called to improve this
solution. These algorithms can be executed successively to
find improvements, and the user can specify which algorithms
to apply and the order in which to apply them. The user can
also specify the maximum number of times each algorithm is
allowed to run. Each of these options attempts to reduce the
costs of the current planning. Because the application of a
specific improvement method may lead to the possibility of
improvement by another improvement method, the methods
can be called repeatedly.
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• The cyclic transfer algorithm (CTA): The CTA makes
optimization possible by moving a string of (consecutive)
orders between more than two trips. The concept is to
iteratively transfer orders among trips in a cyclic manner to
improve a given solution.

• The tabu search algorithm (TS): By means of the TS, the
current solution is optimized by searching for a better solution
in the neighborhood of the current solution. A solution is
characterized by the planned trips and the sequence of the
orders within the trips. Therefore, the neighborhood of a
solution can be defined as a set of solutions with almost
identical trips. The elements of this set are called neighbors.
From the set of neighbors, the TS selects the best as the
new solution, even if this solution is worse than the current
solution, unless this solution is on the tabu list (i.e., a list
of forbidden solutions). Accepting a solution that is poorer
than the current one makes moving away from a local
optimum possible, and using a tabu list prevents searching
in a cycle. The tabu list stores information about the most
recent solutions. The length of the tabu list is the number
of iterations for which a solution is forbidden; therefore,
after this number has been reached, a solution from the tabu
list can be revisited. A solution from the tabu list can also
be revisited if specific criteria, the aspiration criteria, are
satisfied. For example, when the costs of a solution are lower
than the costs of all previously found solutions, this solution
will be accepted, although it is on the tabu list.
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Verification Letter
Tjebbe Nabuurs, Manager/Owner, Nabuurs BV, Postbus 183,
5430 AD Cuijk, the Netherlands, writes:

“With this letter, I verify that the material presented in
the paper ‘Multidepot Distribution Planning at Logistics
Service Provider Nabuurs B.V.,’ by Demir, Van Woensel,
and De Kok, submitted to the journal Interfaces, Special Issue
on Operations Research in Freight Transportation and Logistics,
consists of a real-life OR application of a transportation
planning problem analyzed, designed and implemented at
our company, Nabuurs B.V.”
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