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We consider the problem of determining the optimal reorder intervals R and order-up-to levels S in a multi-echelon
supply chain system where all echelons are assumed to have fixed ordering costs and to operate with a (R, S) policy with
stationary nested power-of-two reorder intervals. By using the guaranteed service approach to model the multi-echelon
system facing a stochastic demand, we formulate the problem as a deterministic optimisation model in order to simulta-
neously determine the optimal R and S parameters as well as the guaranteed service times. The model is a non-linear
integer programming (NLIP) problem with a non-convex and non-concave objective function including rational and
square root terms. Then, we propose a sequential optimisation procedure (SOP) to obtain near-optimal solutions with
reasonable computational time. The numerical study demonstrates that for a general acyclic multi-echelon system with
randomly generated parameters, the SOP is able to obtain near-optimal solutions of about 0.46% optimality gap in
average in a few seconds. Moreover, we propose an improved direct approach using a global optimiser, bounding the
decision variables in the NLIP model and considering the SOP solution as an initial solution. Numerical examples
illustrate that this reduces significantly the computational time.

Keywords: inventory control; multi-echelon system; guaranteed service model; power-of-two policies

1. Introduction

Many real-world supply chains are complex multi-echelon systems consisting of suppliers, manufacturers, wholesalers
and retailers that have geographically dispersed facilities. One challenge these supply chains face is the efficient man-
agement of inventory when demand is uncertain, operating costs are important and customer service requirements are
high. This requires specifying the inventory policy at different echelons so that to minimise the total cost of the whole
multi-echelon system subject to customer service levels (Simchi-Levi and Zhao 2012). The guaranteed service model
(GSM) which is among the relevant approaches that can be used in multi-echelon inventory systems has gained interest
in recent years. In particular, this model enabled to realise important benefits in practice in general multi-echelon
systems which combine distribution and assembly systems (see e.g. Billington et al. 2004; Farasyn et al. 2011).

In this paper, we build on the power-of-two (PO2) and the GSM research to find a reasonable solution to the
problem of simultaneously optimising the reorder intervals and order-up-to levels for general multi-echelon systems
facing stochastic demand. Finding an optimal policy for this problem would be extremely difficult. Indeed, the optimal
policy is not known even for two-echelon distribution systems with deterministic demand (Snyder and Shen 2011). In
order to deal with demand variations, we use the original assumptions of the GSM that are the guaranteed service time
and the bounded demand assumptions. Besides, we assume that each stage of the supply chain operates with a
periodic-review, order-up-to (R, S) policy with stationary nested PO2 reorder intervals.

This paper has several contributions. First, in order to use the GSM approach, we show how to set the demand
bound functions associated with the supply chain stages. The demand bound function proposed here is the generalisation
of the one of Graves and Willems (2000). Second, we propose a deterministic optimisation model for general multi-
echelon systems to determine the optimal parameters R and S as well as the corresponding service times. This leads to a
non-linear integer programming (NLIP) problem with a non-convex and non-concave objective function including
rational and square root terms. Third, we propose a sequential optimisation procedure (SOP) to obtain near-optimal solu-
tions with reasonable computational time for this problem. We measure the performance of this procedure on randomly
generated instances pertaining to two supply chain structures. Fourth, by defining reasonable bounds for the decision
variables of the NLIP model, we propose an improved direct (ID) approach.
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The paper is organised as follows. Section 2 reviews the related literature. In Section 3, we develop the NLIP. We
then present the SOP in Section 4. Section 5 establishes the bounds for the decision variables of the NLIP and, hence,
proposes the ID approach. Numerical analysis on the SOP and the ID approach for serial and general acyclic multi-
echelon structures is summarised in Section 6. Finally, Section 7 draws some conclusions and suggests potential future
research directions.

2. Related literature

Our paper is built upon two research streams which are the problem of dimensioning safety stocks in multi-echelon
systems and the one of determining optimal reorder intervals.

The stochastic modelling (SM) and the GSM approach are the main approaches used for dimensioning safety stocks
in multi-echelon systems. In the SM approach, each stage of the supply chain maintains safety stock to ensure its target
service level. Even if the processing times of stages are deterministic; replenishment times between stages become sto-
chastic due to the occasional stock-outs caused by demand uncertainty. The aim is to characterise these replenishment
times properly (Graves and Willems 2003). Since the SM approach is computationally intractable for general multi-eche-
lon systems, related research mostly focuses on two-echelon pure distribution systems (see e.g. Hwarng et al. 2005; Chu
and Shen 2010). We refer the reader to Simchi-Levi and Zhao (2012) for more details on the SM approach.

The GSM approach aims at determining the optimal placement and amount of safety stocks in a multi-echelon
system to ensure the overall target service level at the lowest cost. In this approach, it is assumed that each stage
promises a guaranteed service to its downstream stages. For the purpose of satisfying the service time guarantee,
demand is assumed to be bounded (see e.g. Graves and Willems 2000; Minner 2000; Sitompul et al. 2008) which
enables to render the model deterministic and allows considering general multi-echelon systems. Early research on
the GSM mainly focus on basic multi-echelon systems such as serial (Simpson 1958), distribution or assembly systems
(e.g. Inderfurth 1991; Inderfurth and Minner 1998) which are extended to more general systems (e.g. Graves and
Willems 2000; Humair and Willems 2006, 2011). Among others, an interesting extension of the GSM is the one of Bos-
sert and Willems (2007) that studies stage-dependent reorder intervals which are considered as known input parameters
of the model. We refer the reader to Eruguz et al. (2012) for a deep literature review pertaining to the GSM approach.

The problem of determining the appropriate R and S parameters has also attracted interest in the literature for
single-stage inventory systems. Under stochastic demand, it is a common practice to optimise the policy parameters
sequentially to obtain a near-optimal solution (see Silver, Pyke, and Peterson 1998). Silver and Robb (2008) provide
some counter-intuitive results about how the best reorder interval changes as the values of various parameters are
modified. Recently, Liu and Song (2012) develop efficient algorithms to compute the global optimal (GO) policy param-
eters. The cost formulation considered in such studies is based on the approximation of Hadley and Whitin (1963).
However, this has several shortcomings for one or few weeks long reorder intervals. In order to remedy these shortcom-
ings, Chiang (2006, 2007) introduces different dynamic programming models for both backorder and lost-sales cases in
which holding and shortage costs are computed based on the ending inventory of each period that composes the reorder
interval. For the lost-sales case, he assumes that lead time is less than or equal to the length of reorder intervals. Bijvank
and Johansen (2012) extend this assumption and develop new models allowing constant lead times of any length.

Concerning multi-echelon systems, most of research interested in determining optimal reorder intervals has consid-
ered the integer-ratio policies in which the reorder interval of each stage is an integer multiple of a base planning period
(e.g. a day, a week or a month). The so-called PO2 policy (which is a subset of the integer-ratio policies) has received
considerable attention. Under a PO2 policy, reorder intervals are PO2 multiples of the base planning period. PO2
policies have some practical and computational advantages (see Muckstadt and Roundy 1993). Besides, stationary PO2
policies have been shown effective for deterministic multi-echelon systems. Available algorithms generate solutions
within 6% (see Roundy 1985a) or 2% (see Roundy 1985b) of optimality. Additionally, under stochastic demand, it is
shown that the integer-ratio policies obtained by solving the deterministic counterpart of the problem can be an effective
heuristic approach for serial (see e.g. Chen and Zheng 1998; Shang 2008) and distribution systems (see e.g. Chu and
Shen 2010; Shang and Zhou 2011).

There are many policies within the class of PO2 policies that could be considered. Among others, stationary nested
replenishment policies have been popular in the literature. Under a nested policy, every replenishment epoch of an
upstream stage coincides with a shipment epoch towards its downstream stage. Stationary nested policies are proven to
be optimal for deterministic serial (see Schwarz 1973) and assembly systems (see Muckstadt and Roundy 1993).
However, they may be suboptimal for distribution and general multi-echelon structures (see Roundy 1985b).
Nevertheless, many researchers assume nested policies for distribution and general multi-echelon systems because of
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their significant practical importance and ease of computation (see e.g. Maxwell and Muckstadt 1985; Graves 1996; Yao
and Wang 2006).

3. Optimisation model

This section presents the optimisation model we propose: Section 3.1 introduces our assumptions; Section 3.2 calculates
the associated appropriate demand bounds; and Section 3.3 provides the mathematical programming formulation.

3.1 Assumptions of the model

A1. We consider a general multi-echelon system. We assume that with each stage of the system, certain process is asso-
ciated such as procurement of raw materials, production or transportation of items. Each stage is also a potential loca-
tion to store the processed item. We model this system as a network where nodes represent stages and arcs denote the
precedence relationship between stages. We denote the set of nodes by N and the set of arcs by A. We partition the set
of nodes into three disjoint sets: NS, NI and ND where NS is the set of nodes without predecessors, i.e. the set of supply
nodes. Nodes in the set of demand nodes, i.e. ND, have no successors. The set of internal nodes, i.e. NI, is the set of
nodes having at least one predecessor and one successor.

A2. We assume that external demand occurs only for nodes j 2 ND. For each node j 2 ND demand follows a stationary
i.i.d. process with mean μj and standard deviation σj per base planning period which can be a shift, a day, a week or a
month. For internal and supply nodes, i.e. when node j 2 NI [ NS, we can compute the mean demand μj per base
planning period by:

lj ¼
X

k:( j; k)2A
hjklk

where the scalar hjk represents the number of items at upstream node j required for downstream node k. We consider
the case of no risk pooling. Hence, demand variability at stage j 2 NI [ NS is equal to the sum of demand variability
associated with its successors. For j 2 NI [ NS, we compute the standard deviation σj per base planning period by:

rj ¼
X

k:( j; k)2A
hjkrk

Furthermore, as in the original GSM, we assume that demand satisfied from stock is bounded for any long period τj
and for every stage j. The existence of demand bounds does not imply that arrival demand can never exceed the bounds.
When arrival demand exceeds the upper bound, excess demand would be handled by some extraordinary measures such
as subcontracting, overtime production, expediting and/or premium freight transportation. However, the impact of these
extraordinary situations on the company is not studied in the GSM, neither in our model. We assume that bounds are
defined by the company policy in such a way that the effect of excess demand is tolerated.

A3. At each stage, we assume a known and constant lead time Lj which corresponds to the duration of the process being
realised at each stage, given that all necessary components are available. It also includes the waiting time and the trans-
portation time to put the processed item into inventory.

A4. We assume that each stage j operates with a stationary (Rj, Sj) policy where Rj is the reorder interval and Sj is the
order-up-to level. There is no time delay in ordering. We restrict attention to stationary nested PO2 policies. Thus, the
reorder interval Rj can take the following values: 1; 2; . . . ; 2lj

� �
where lj is a non-negative integer. Furthermore, since

we consider nested policies, the reorder interval of a stage j 2 NI [ ND cannot be greater than the reorder interval(s) of
its upstream stage(s). We note that the reorder epochs are offset to allow each stage to replenish from its immediate
upstream stage(s) at the exact moment an order arrives at the upstream stage(s) and equidistant times of length Rj

thereafter.

A5. As in the original GSM, we assume that each echelon j promises a guaranteed outbound service time soutj to its
customers. That is we assume that demand occurred at time t within the demand bounds is fully satisfied with 100%
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service at time t þ soutj . Demand nodes should ensure the maximum service time sclientj tolerated by the final customer.

As in Graves and Willems (2000), we also assume that each echelon j proposes a unique guaranteed service time for its
customers. Clearly, node j cannot start its process without receiving all inputs. Here, it is useful to introduce an addi-
tional variable which is called the inbound service time sinj . These service times define the time for node j to get all the

inputs from node i : (i; j) 2 A to start the process. The inbound service time of a stage cannot be smaller than the maxi-
mum service time of its suppliers. Hence, sinj � souti should be ensured for all arcs (i; j) 2 A. We note that soutj and sinj
are decision variables for our optimisation problem. These decision variables serve to determine the safety stock level
and the target order-up-to level Sj at each stage j. We assume that the outbound and the inbound service times are inte-
ger multiples of the base planning period likewise the review periods and lead times. For the sake of simplicity, we will
further consider the base planning period as one unit of time and the decision variables as positive integers.

A6. Two types of cost are considered in our model: the fixed ordering and the holding cost.
Let Aj be the fixed ordering cost and v be the number of base planning periods per year. The annual fixed ordering

cost (AFOC) is calculated similarly to economic order quantity model:

AFOC ¼
X
j2N

Aj

Rj
v

The annual holding cost formulation is based on the approximation of Hadley and Whitin (1963) which is the sum
of the cycle stock and the safety stock costs.

In order to compute the cycle stock cost, we use the echelon stock approach. The on-hand stock evolutions for eche-
lon stocks are always of the saw-tooth form no matter the network topology. Thus, it is easier to compute the average
echelon stock compared to average on-hand stock. Besides, the two approaches yield the same cycle stock costs for the
multi-echelon system with nested PO2 policies (Muckstadt and Roundy 1993). The echelon holding cost of stage j is
denoted by hej . The annual cycle stock cost (ACSC) of the system can be calculated by:

ACSC ¼
X
j2N

1

2
ujh

e
j Rj

where, hej ¼ hj for all node j 2 NS and hej ¼ hj �
P

i:(i; j)2A hi for all node j 2 NI [ ND.
The annual safety stock cost (ASSC) of node j is the product of annual unit holding cost and the safety stock level

SSj of stage j:

ASSC ¼
X
j2N

hjSSj

In our mathematical model, the cost of pipeline stock is ignored since it depends only on input parameters and does
not affect the optimisation. However, this is not to say that the pipeline stock is not a significant part of the inventory in
a supply chain. Therefore, the annual cost function that we aim to minimise is the sum of the AFOC, the ACSC and
the ASSC.

3.2 Demand bound functions

The existence of guaranteed service times implies that if stage j faces demand dj(t) at time t, the demand within the
demand bounds is fully satisfied with 100% service at time t þ soutj . We assume that a replenishment is available to

serve demand in its period of arrival. Let consider the replenishment mechanism at an internal or supply node
j 2 NI [ NS. Without loss of generality, stage j places orders at times n � Rj for n= 0, 1, 2,…. Let t ¼ mþ n � Rj where
m 2 1; 2; . . . ;Rj

� �
. The stage j places an order for dj(t) at time t þ Rj � m and the order corresponding to this demand is

received at time t þ sinj þ Lj þ Rj � m. In the worst case, m ¼ 1 and the reception occurs at time t þ sinj þ Lj þ Rj � 1. If

a demand is served first and the replenishment corresponding to this demand occurs at a subsequent period, node j has
to store the inventory that would satisfy the demand within the guaranteed service time. That is, if
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sinj þ Lj þ Rj � 1 > soutj , node j should have the amount of inventory to cover the demand over an interval of length

sj ¼ sinj þ Lj þ Rj � 1� soutj , that is called the net replenishment time of node j 2 NI [ NS.

We assume that the external demand occurs continuously over the base planning period. Thus, taking into account
an additional increase of the net replenishment time by the base planning period, the net replenishment time sj for a
demand node j 2 ND is equal to sinj þ Rj þ Lj � soutj . As in Graves and Willems (2000), one can set the demand bound

function for demand nodes as follows:

Dj(sj) ¼ sjlj þ zjrj
ffiffiffiffi
sj

p
for j 2 ND

where zj is the safety factor which relates to a non-stock-out probability in a node j during an arbitrary period. This
function is mostly referred in the mono-echelon inventory theory to compute the reorder points or order-up-to levels
(see Schneider 1981; Silver, Pyke, and Peterson 1998). In practice, the safety factor at different stages is chosen accord-
ing to the company policy. In fact, the choice of zj indicates how frequently the manager is willing to resort to extraordi-
nary measures to cover demand variability at stage j. Besides, in some contexts, customer demand may be bounded due
to capacity constraints (see Graves and Willems 2000).

We propose a more general demand bound function than Graves and Willems (2000) for internal and supply nodes
to consider nested and stage-dependent reorder intervals. For these nodes, the maximum demand which can be observed
during the net replenishment time depends on the reorder intervals of their immediate successors. The average size of
an order placed by node k : ( j; k) 2 A is Rkhjklk . The number of orders placed by node k and observed by node j dur-
ing the net replenishment time sj can be calculated by the floor function n(sj; Rk):

n(sj; Rk) ¼ sj
Rk

� �
for ( j; k) 2 A

The average demand requested by node k and observed by node j during the net replenishment time sj is the product of
the number of orders placed by node k during sj and the average size of an order placed by node k. Since we consider
the case of no risk pooling, the maximum demand Djk(sj; Rk) placed by node k and observed by node j during sj can
be calculated by:

Djk(sj;Rk) ¼ n(sj;Rk)Rkhjklk þ zjhjkrk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(sj; Rk)Rk

p
for ( j; k) 2 A

To provide a guaranteed service time at stage j, the order-up-to level Sj should be equal to the demand upper bound
during its net replenishment time:

Sj ¼ Dj(sj) for j 2 ND

Sj ¼
X

k : ( j; k)2A
Djk(sj; Rk) for j 2 NI [ NS

Thus, the safety stock level at stage j, i.e. SSj becomes:

SSj ¼ zjrj
ffiffiffiffi
sj

p
for j 2 ND

SSj ¼ zj
X

k : ( j; k)2A
hjkrk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(sj; Rk)Rk

p
for j 2 NI [ NS

In the mathematical model, we will represent the safety stock function of internal or supply nodes without referring
to the floor function. Let njk be the decision variables of the mathematical model representing the floor function value
n(sj;Rk). The variables njk should verify the following constraints:
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sj � njkRk � 0; 8 ( j; k) 2 A

sj � njkRk\Rk ; 8( j; k) 2 A

njk � 0 and integer 8 ( j; k) 2 A

So considered, the term in the square root can be replaced by njkRk. The safety stock level for a node j 2 NI [ NS is
then equal to:

SSj ¼ zj
X

k : ( j;k)2A
hjkrk

ffiffiffiffiffiffiffiffiffiffi
njkRk

p
for j 2 NI [ NS

where njk verifies the constraints above.

3.3 The mathematical programming formulation

The problem P0 of finding the optimal PO2 reorder intervals and guaranteed service times in order to minimise the total
annual cost of the multi-echelon system can be formulated as follows:

P0 : Min
X
j2N

Aj

Rj
vþ 1

2
ujh

e
j Rj

� �
þ

X
j2NI[NS

X
k : ( j;k)2A

hjzjhjkrk

ffiffiffiffiffiffiffiffiffiffi
njkRk

p þ
X
j2ND

hjzjrj
ffiffiffiffi
sj

p
(1)

Rj ¼ 2lj ; 8 j 2 N (2)

Ri � Rj; 8 (i; j) 2 A (3)

sj ¼ sinj þ Lj þ Rj � soutj ; 8 j 2 ND (4)

sj ¼ sinj þ Lj þ Rj � 1� soutj ; 8 j 2 NI [ NS (5)

sj � njkRk � 0; 8 ( j; k) 2 A (6)

sj � njkRk\Rk ; 8 ( j; k) 2 A (7)

sinj � souti ; 8 (i; j) 2 A (8)

soutj � sclientj ; 8 j 2 ND (9)

lj; s
in
j ; s

out
j ; sj � 0 and integer 8 j 2 N (10)

Rj � 1 and integer 8 j 2 N (11)

njk � 0 and integer 8 ( j; k) 2 A (12)

The decision variables of this problem are: the reorder intervals (Rj), the integer variables representing the PO2 values
(lj), the net replenishment times (sj), the outbound service times (soutj ), the inbound service times (sinj ) and the number

of orders placed by stage k to stage j (njk) for each (j; k) 2 A.
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The problem P0 minimises the total cost function (1). Constraint (2) restricts the reorder intervals to PO2 solutions.
Constraint (3) is necessary to ensure nestedness. Constraints (4) and (5) give the net replenishment times of nodes. The
non-linear constraints (6) and (7) determine the number of orders placed by an internal node during the net replenish-
ment time of its immediate supplier. Constraint (8) ensures that the outbound service time of a node’s immediate sup-
plier is not greater than its inbound service time. Constraint (9) ensures that the demand nodes satisfy their service
guarantee. With Constraints (10)–(12), decision variables are forced to be positive integers.

The problem P0 is a NLIP problem with a neither convex nor concave objective function on the feasible region (see
Appendix A) including rational and square root terms.

After having solved the problem P0, the optimal order-up-to levels S�j of stages can be obtained by:

S�
j ¼ Dj(s

�
j ) for j 2 ND

S�
j ¼

X
k : ( j; k)2A

Djk(s
�
j ;R

�
k) for j 2 NI [ NS

where s�j and R�
j are the optimal solutions of the problem P0.

4. Sequential optimisation procedure

For large multi-echelon systems, the problem P0 becomes computationally intractable with direct solution approaches
because of the combinatorial nature of the problem and non-linear non-convex terms. We thus propose a SOP to obtain
near-optimal solutions with reasonable computational time. Our method consists of two optimisation procedures. First,
we determine the convenient reorder intervals using available optimisation models for nested PO2 policies with deter-
ministic demand. Second, we obtain convenient order-up-to levels, guaranteed service times and safety stock placements
using the results of the first procedure as input parameters.

The first optimisation procedure aims at determining a nested PO2 solution to the deterministic counterpart of this
problem. Therefore, we first consider the problem P1:

P1 : Min
X
j2N

Aj

Rj
vþ 1

2
ujh

e
j Rj (13)

Rj ¼ 2lj ; 8 j 2 N (14)

Ri � Rj; 8 (i; j) 2 A (15)

lj � 0 and integer 8 j 2 N (16)

Rj � 1 and integer 8 j 2 N (17)

The problem P1 is studied in the literature for general acyclic multi-echelon systems. To find an optimal solution to
this problem, one can use the polynomial time algorithm presented by Maxwell and Muckstadt (1985) and Muckstadt
and Roundy (1993).

Let Rseq
j be the reorder interval of stage j obtained by solving the problem P1. By considering reorder intervals as

input parameters, reorder interval of stage j, Rseq
j can be aggregated into its lead time Lj. Hence, lead times of stage j

may be replaced by L0j where:

L0
j ¼ Lj þ Rseq

j for j 2 ND

L0
j ¼ Lj þ Rseq

j � 1 for j 2 NI [ NS
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Therefore, the problem P0 can be reduced to problem P2:

P2 : Min
X
j2N

cj sinj ; s
out
j

	 

(18)

sinj þ L0
j � soutj � 0; 8 j 2 N (19)

sinj � souti ; 8 (i; j) 2 A (20)

soutj � sclientj ; 8 j 2 ND (21)

sinj ; s
out
j � 0 and integer 8 j 2 N (22)

Where;

cj sinj ; s
out
j

	 

¼ hjzjrj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinj þ L0

j � soutj

q
for j 2 ND

cj sinj ; s
out
j

	 

¼

X
k : ( j;k)2A

hjzjhjkrk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinj þ L0

j � soutj

Rseq
k

� �
Rseq
k

s
for j 2 NI [ NS

The second procedure aims at finding an optimal solution to the problem P2. The problem P2 is a GSM with a
non-continuous objective function. The cost function of stages only depends on its own service times and is increasing
in sinj and decreasing in soutj . Therefore, considering the multi-echelon system structure, generic solution techniques
developed in Graves and Willems (2000), Humair and Willems (2006, 2011) can be used to solve this problem to opti-
mality. In fact, for these techniques, there are no structural limitations on cj(sinj ; s

out
j ) as long as the cost functions of a

stage j depend on only sinj and soutj .

By solving the problem P2, we obtain the best service times for the multi-echelon system given reorder intervals
Rseq
j . As presented in Section 3.3, we can deduce the safety stock and order-up-to levels corresponding to this solution.

A feasible solution for the problem P0 is then obtained by combining the solutions found for problems P1 and P2.

5. Improved direct approach

A direct approach to obtain a GO solution for the problem P0 is to solve it by using a global optimiser such as BARON
with 0% optimality margin. BARON provides global optima for this problem if finite lower and upper bounds on the
decision variables are properly specified. When the default decision variable bounds are too large, this approach requires
significant computational time (cf. Section 6). Otherwise, if these bounds are too tight, global optima may not be
obtained. We improve this default direct (DD) approach: first, we establish the solution obtained by the SOP as an initial
solution. Second, we develop appropriate decision variable bounds using the solution obtained by the SOP.

In what follows, we will show how to establish the decision variable bounds in order to develop an ID approach.
By solving the problem P1, we obtain for each node j the reorder interval Rseq

j that optimises the convex part of the cost
function including the annual fixed ordering cost and the annual cycle stock cost. If the optimal reorder interval of a
supply node j 2 NS is greater than Rseq

j found by the sequential optimal solution, the cost of the convex part increases.
However, this also increases the net replenishment time of node j 2 NS and, hence, its annual safety stock cost. There-
fore, it is not beneficial for a supply node to set a reorder interval greater than its Rseq

j . Besides, since we only consider
nested policies, the reorder interval of a non-supply node must be smaller than or equal to the maximum reorder interval
of the supply nodes. Hence, we can establish the upper bounds for all reorder intervals by:

Rj � max Rseq
j j j : j 2 NS

� �
for j 2 N (23)
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Similarly, the upper bound for the integer decision variable lj becomes:

lj � max lseqj j j : j 2 NS

� �
for j 2 N (24)

Since an upper bound can be defined for reorder intervals, we can deduce upper bounds for service times as well.
We can define the maximum replenishment time for nodes by:

Mj ¼ Lj � 1þmax Rseq
j j j : j 2 NS

� �
for j 2 NS

Mj ¼ Lj � 1þmax Rseq
j j j : j 2 NS

� �þmaxfMiji : (i; j) 2 Ag for j 2 NI

Mj ¼ Lj þmax Rseq
j j j : j 2 NS

� �þmax Miji : (i; j) 2 Af g for j 2 ND

The total cost increases when the inbound service times or the net replenishment times increase and when the
outbound service times decrease. Hence, as in the original GSM, there always exists an optimal solution for the problem
P0 such that all the inbound service times of the supply nodes are equal to 0 and the inbound service time of each
non-supply node is equal to the maximum service time of its upstream nodes (see Lesnaia 2004). Therefore, we can
establish upper bounds for the inbound and outbound service times as follows:

soutj � Mj for j 2 N (25)

sinj � maxfMi i : (i; j) 2 Aj g for j 2 NI [ ND (26)

sinj � 0 for j 2 NS (27)

Hence, upper bounds for sj and njk become:

sj � Mj for j 2 N (28)

njk � Mj for ( j; k) 2 A (29)

Besides, the natural lower bounds for these decision variables are given by Constraints (10)–(12). The ID approach
is then obtained by setting the bounds (23)–(29) to the decision variables and by considering the sequential optimal
solution as an initial solution.

6. Numerical analysis

In this section, computational experiments are carried to test the relevancy of the SOP and the direct approaches.
Randomly generated five-echelon serial and five-echelon general acyclic multi-echelon systems are used to show
different results. While Section 6.1 presents the data generation procedure for both systems, Section 6.2 provides results
on the GO reorder intervals based on illustrative examples. Section 6.3 discusses the optimality gap of the SOP and
identifies conditions under which the SOP performs relatively bad. Finally, Section 6.4 compares the performance of the
SOP and the direct approaches in terms of computational time.

6.1 Data generation

For numerical analysis, we consider a five-echelon serial (Figure 1) and a five-echelon general acyclic system (Figure 2).
Common parameters for both structures are as follows. The length of the base planning period is a business day and
there are 260 business days in a year. The safety factors for all stages are the same and equal to 1.645 (which corre-
spond to a 95% service level). The maximum service times at demand nodes are set to 0. The parameter hjk is set equal
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to 1 for all stages ( j; k) 2 A. Besides, we consider different groups as in Bossert and Willems (2007) based on the
ordering cost ratios (i.e. the ratio Aj=hj for stage j). For the serial five-echelon structure, we define three profiles for each
group (see Table 1). For each echelon of the five-echelon general acyclic system, we specify intervals in which the
ordering cost ratios are generated randomly if the ratio is not set to 0 (see Table 2).

For the five-echelon serial supply chain system, mean and standard deviation of daily demand at the demand node
(Stage 5) are respectively μ= 150 and σ = 45. The annual unit holding cost for Stage 1 is generated randomly in U[0,
20]. Then, the annual unit holding cost of other stages is obtained by adding a random number in U[0, 20] to the annual
unit holding cost of its upstream stage. The lead time value of each stage is an integer, generated randomly in U[1, 20].
Following these rules, 15 instances that comprise the lead time and the annual holding cost data are obtained. The 15
instances (Table 3) permuted with the 21 ordering cost profiles (Table 1) generate the 315 problem instances considered.

The considered five-echelon general acyclic system corresponds to the real-world supply chain presented in Willems
(2008). For this system, we use data provided by Willems (2008) that includes the lead times (the average values are
considered), the stage costs (holding cost rate is set to 10%) and mean and standard deviation of demand at demand
nodes. For the ordering costs, we generate 15 instances for each of the 21 ordering cost profiles using intervals reported
in Table 2. Hence, we obtain 315 problem instances.

The SOP and direct approaches are coded in GAMS 23.7 on a VAIO computer with Intel Core i3–2310M processor
(2.10GHz) and 4GB RAM. BARON (version 9.3.1) is used for the computational experiments. For all problem
instances, the GO solutions are obtained by the ID approach using the global optimiser BARON. The sequential optimal
(SO) solutions are the feasible solutions obtained from the SOP.

6.2 Results

Results presented in this section concern reorder intervals associated with the SO and GO solutions over the problem
instances considered.

We observe that when the SO and GO solutions are not the same, the GO solution may lead to smaller reorder
intervals than the SO solution. In this case, the sum of total annual fixed ordering and annual cycle stock costs
(AFOCj+ACSCj of stages j 2 N) increases in comparison with the SO solution. Besides, this may also increase the
annual safety stock cost ASSCi at the upstream stage(s) i : (i; j) 2 A since stage j will order more frequently during the
net replenishment time of stage i. On the other hand, this leads to a potential reduction of the annual safety stock cost
at stage j or at the one(s) of its downstream stage(s). The additive effect of these deviations may reduce the total cost.
To illustrate this result, we provide in Table 4 an example case representing the SO and GO solutions pertaining to a
five-echelon serial structure. For this example, the total cost of the SO and GO solutions is respectively $90,100 and
$89,208, which represents a relative gap of 1.00%.

Another interesting result is the reduction of the total cost when the reorder interval of a non-supply stage j is
increased over its SO reorder interval. This action may increase the sum AFOCj+ACSCj for stage j. However, it may
decrease ASSCi at the upstream stage(s) i : (i; j) 2 A. This is due to a better order coordination between customer–sup-
plier stages. Besides, this may also reduce the safety stock cost at other stage(s) sharing a same supplier with stage j
since each supplier quotes a unique service time for all of its customers. To illustrate this result, we provide in Table 5
the GO and SO solutions for a general acyclic problem instance. For this example, the total SO and GO costs are
respectively $3180,765 and $3141,906 and this represents a relative gap of 1.24%.

Concerning the reorder intervals obtained for different groups of ordering cost ratio profiles, ending, uniform and
increasing groups lead to the same reorder interval among all stages since we only consider nested policies. In this case,
decreasing the reorder intervals of all stages together may improve the SO solution. In the general acyclic structure, this
may imply high cost deviations and may significantly reduce the total cost. For decreasing and random groups, the total
cost of the system may be reduced by increasing or decreasing the reorder interval of the SO solution for one or several
stages. For the starting group, the SO solution may be improved by decreasing the reorder interval at supply stages.
Similarly, for the middle group, a better solution than the SO solution may be found by decreasing the reorder intervals
at the first three upstream echelons. However, for this group, the improvement of the total cost function is restrictive
and it usually implies small cost deviations.

1 2 3 4 5 

Figure 1. Five-echelon serial supply chain system used for the numerical analysis.
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We note that for the considered general acyclic problem instances, the GO reorder intervals usually tend to be the
same among all stages. This stems from the benefit obtained due to the order coordination. This benefit is significant
since the considered general acyclic system represents high demand variability at demand nodes. However, the SOP
does not consider demand variability to compute the SO reorder intervals.

6.3 Optimality gap

Table 6 summarises the performance of the SOP for both structures and for different groups of ordering cost profiles in
terms of optimality gap. Optimality gap is computed by (ObjSO-ObjGO)/ObjGO where ObjSO denotes the SO objective
value and ObjGO the GO objective value. The average (Avr.) and the maximum (Max.) gaps are reported for each

1 

2 

3 

4 

5 

6

Echelon 1: 
Procurement  

Echelon 2: 
Manufacturing_1  

Echelon 4 : 
Manufacturing_2  

Echelon 3: 
Transportation  

Echelon 5 : 
Distribution  

9

7

8

10

11

12

13

14 

15 

16 

17 

Figure 2. Five-echelon general acyclic system used for the numerical analysis.

Table 1. Ordering cost ratios used for the serial structure.

Ordering Cost Profiles

Stages

1 2 3 4 5

Starting 4 0 0 0 0
25 0 0 0 0
80 0 0 0 0

Middle 0 0 4 0 0
0 0 25 0 0
0 0 80 0 0

Ending 0 0 0 0 4
0 0 0 0 25
0 0 0 0 80

Uniform 2 2 2 2 2
25 25 25 25 25
50 50 50 50 50

Increasing 0 2 2 2 25
0 2 4 25 80
1 2 16 25 50

Decreasing 25 2 2 2 0
80 25 4 2 0
50 25 16 2 1

Random 11 8 9 0 2
13 25 0 4 12
60 10 8 24 11
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Table 2. Ordering cost ratio intervals used for the general acyclic structure.

Ordering cost profiles

Echelons

1 2 3 4 5

Starting U[0, 5] 0 0 0 0
U[15, 25] 0 0 0 0
U[65, 80] 0 0 0 0

Middle 0 0 U[0, 5] 0 0
0 0 U[15, 25] 0 0
0 0 U[65, 80] 0 0

Ending 0 0 0 0 U[0, 5]
0 0 0 0 U[15, 25]
0 0 0 0 U[65, 80]

Uniform U[5, 10] U[5, 10] U[5, 10] U[5, 10] U[5, 10]
U[20, 25] U[20, 25] U[20, 25] U[20, 25] U[20, 25]
U[45, 50] U[45, 50] U[45, 50] U[45, 50] U[45, 50]

Increasing U[0, 5] U[5, 10] U[10, 15] U[15, 20] U[20, 25]
U[0, 10] U[10, 20] U[20, 30] U[30, 40] U[40, 50]
U[0, 15] U[15, 30] U[30, 45] U[45, 60] U[60, 75]

Decreasing U[20, 25] U[15, 20] U[10, 15] U[5, 10] U[0, 5]
U[40, 50] U[30, 40] U[20, 30] U[10, 20] U[0, 10]
U[60, 75] U[45, 60] U[30, 45] U[15, 30] U[0, 15]

Random U[0, 15] U[0, 15] U[0, 15] U[0, 15] U[0, 15]
U[0, 30] U[0, 30] U[0, 30] U[0, 30] U[0, 30]
U[0, 50] U[0, 50] U[0, 50] U[0, 50] U[0, 50]

Table 3. Lead time and annual holding cost data of the serial problem instances.

Instance Stage j Lj hj ($) Instance Stage j Lj hj ($) Instance Stage j Lj hj ($)

1 1 10 15.9 6 1 16 15.6 11 1 17 5.3
2 14 32.3 2 8 22.7 2 15 16.5
3 2 36.4 3 1 25.1 3 6 23.0
4 8 55.8 4 15 30.4 4 6 37.1
5 11 61.1 5 16 43.7 5 6 49.3

2 1 16 13.2 7 1 20 9.3 12 1 8 12.9
2 5 28.4 2 13 12.3 2 11 20.5
3 12 36.9 3 15 29.5 3 19 31.7
4 20 53.4 4 4 42.4 4 1 47.8
5 13 58.5 5 20 56.7 5 12 49.1

3 1 15 10.8 8 1 10 14.6 13 1 5 8.9
2 6 15.6 2 9 19.6 2 11 12.9
3 1 18.7 3 9 29.8 3 4 13.0
4 12 20.8 4 8 36.4 4 3 21.9
5 9 24.0 5 8 39.7 5 10 35.3

4 1 4 14.8 9 1 3 15.3 14 1 16 7.0
2 18 31.6 2 3 21.4 2 14 19.9
3 18 35.7 3 12 24.5 3 19 28.4
4 1 43.2 4 2 36.9 4 11 36.9
5 9 59.6 5 2 43.8 5 13 47.8

5 1 20 10.1 10 1 13 17.9 15 1 12 10.2
2 19 13.9 2 19 33.2 2 13 26.0
3 5 25.7 3 8 45.1 3 4 35.5
4 6 26.0 4 11 50.8 4 5 53.5
5 16 31.9 5 8 68.6 5 14 69.0
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ordering cost profile that comprises 45 problem instances. The last column (titled ‘Occ.’) reports the number of
occurrences where the SO solution is different from the GO solution.

For the serial structure, the SO solution is usually equal to the GO solution. Decreasing and random profiles reveal
a relatively inferior performance. The SOP is able to obtain near-optimal solutions of about 0.01% optimality gap in
average with an observed worst case of 1.23%.

In the general acyclic structure, similarly to the serial one, the gap is important for decreasing and random groups.
Besides, the gap of ending and increasing groups is higher compared with the serial structure. However, the SO
solutions are still near-optimal with 0.46% optimality gap in average and with an observed worst case of 4.87% for the
considered structure.

The demand variability considered in the general acyclic system lays between 0.50 and 1.05. In order to investigate
the impact of demand variability on the SOP performance, we perform a second set of experiments for the serial
structure. When we increase the coefficient of variation from 0.30 to 1 for this system, the performance of SO solutions
deteriorates. Particularly, the performance of the starting, uniform, decreasing and random profiles gets worst. The
observed worst case still belongs to the random profile with 3.41% optimality gap. However, the SO solutions still
represent an average optimality gap of 0.15% for all groups of ordering cost profiles.

6.4 Computational time

For serial problem instances, computational time is less than 1, 2 and 6 s using respectively the SOP, the ID and DD
approaches. Therefore, the computational times of these approaches are very short and similar for five-echelon serial
structure. However, the differences become significant for the general acyclic structure.

Table 4. The SO and GO solutions for the serial problem obtained by permuting instance 14 with the second decreasing ordering
cost profile.

Stage j
The SO solution The GO solution

Rj (days) sj
out (days) ASSCj ($) AFOCj+ACSCj ($) Rj (days) sj

out (days) ASSCj ($) AFOCj +ACSCj ($)

1 16 0 2061 17,451 16 0 2524 17,451
2 16 22 – 23,508 8 14 – 23,850
3 8 45 – 8829 8 37 – 8829
4 4 59 – 7326 4 51 – 7326
5 1 0 30,109 817 1 0 28,411 817
Total 32,169 57,931 30,935 58,273

Table 5. The SO and GO solutions for the general acyclic problem pertaining to the first decreasing ordering cost profile.

Stage j
The SO solution The GO solution

Rj (days) sj
out (days) ASSCj ($) AFOCj+ACSCj ($) Rj (days) sj

out (days) ASSCj ($) AFOCj +ACSCj ($)

1 16 45 – 152,224 16 45 – 152,224
2 16 38 – 163,693 16 38 – 163,693
3 16 31 – 329,261 16 31 – 329,261
4 16 38 69,373 109,106 16 38 69,373 109,106
5 16 26 – 188,098 16 26 – 188,098
6 16 57 – 103,575 16 57 – 103,575
7 16 48 – 95,483 16 48 – 95,483
8 16 59 – 45,912 16 59 – 45,912
9 16 48 – 32,549 16 48 – 32,549
10 16 48 – 36,358 16 48 – 36,358
11 16 58 – 54,822 16 50 – 54,822
12 16 69 – 46,135 16 69 – 46,135
13 16 80 – 38,300 16 60 – 38,300
14 16 0 832,814 35,425 16 0 832,814 35,425
15 16 0 352,945 37,653 16 0 316,074 37,653
16 4 0 296,591 5146 16 0 282,947 12,858
17 8 0 129,588 25,713 16 0 129,588 29,657
Total 1681,312 1499,453 1630,798 1511,109
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We notice that the DD approach requires significant computational time when the complexity of the supply chain
network increases. With the ID approach, the computational time may be significantly reduced. For instance, for general
acyclic problem instances belonging to the first starting profile, the DD approach cannot converge within 18,000 s
whereas the ID approach provides global optima in 2785 s on average. In this case, the average gap between the best
feasible solution obtained by the DD approach and the global optima is about 15.31%. Therefore, the ID approach
clearly dominates the DD approach.

Besides, we notice that SOP requires significantly shorter computational time than the ID approach for all profiles.
The SOP provides near-optimal solutions within 13 s whereas the ID approach requires 2951 s in average to provide glo-
bal optima. Table 7 reports the running times of the SOP and the ID approaches for all groups of ordering cost profiles.

We observe that for the starting group, computational time of the ID approach is surprisingly long (see Table 7).
Using decision variable bounds presented in Section 5, decision variable bounds of non-supply nodes remain too large
for the starting group and this prevents a fast convergence of BARON to global optima. This also explains the relatively
long computational times for middle and decreasing groups. A converse effect is observed in ending, increasing and
uniform groups.

7. Conclusion and future research directions

In this paper, we have presented a NLIP model that determines nested PO2 reorder intervals and order-up-to levels in a
multi-echelon inventory system. The GSM approach is used to model the multi-echelon system facing stochastic
demand. Our computational studies demonstrate that the performance of the solution procedure may deteriorate when
demand variability and the complexity of the supply chain network increase. However, for a five-echelon general multi-
echelon system with 17 stages and 18 arcs facing high demand variability, the SOP provides near-optimal solutions of
about 0.46% optimality gap in average within 13 s. Besides, we also propose an ID approach to reduce the computa-
tional time when the problem is solved to global optimality using a global optimiser. For problem instances for which
the global optimiser cannot converge within 18,000 s, the ID approach provides global optima in 2785 s on average.

Some additional relevant issues remain for future consideration. The first one is the performance evaluation of the
SOP for more complex and larger multi-echelon systems. For those systems, a faster global optimisation method must
be developed in order to realise this analysis. The second issue is the extension of the model to consider non-nested

Table 6. Optimality gap results for the considered systems.

Ordering cost profiles

Serial system General acyclic system

Avr. Gap (%) Max. Gap (%) Occ. Avr. Gap (%) Max. Gap (%) Occ.

Starting 0.00 0.00 0 0.29 1.27 31
Middle 0.00 0.00 0 0.01 0.53 2
Ending 0.00 0.00 0 0.60 3.63 17
Uniform 0.00 0.21 1 0.39 2.58 13
Increasing 0.00 0.00 0 0.41 2.22 15
Decreasing 0.05 1.00 5 1.07 4.87 27
Random 0.03 1.23 1 0.45 4.61 14

Table 7. Running times for the SOP and ID approaches in the general acyclic structure.

SOP ID Approach

Ordering Cost
Profiles

Avr. Time
(secs)

Min. Time
(secs)

Max. Time
(secs)

Avr. Time
(secs)

Min. Time
(secs)

Max. Time
(secs)

Starting 7.57 3.37 12.43 18684.17 161.60 69699.39
Middle 6.90 4.36 12.18 439.69 102.68 1085.88
Ending 4.84 2.27 8.96 122.90 2.61 489.28
Uniform 3.77 2.62 8.36 214.18 13.90 1472.73
Increasing 2.99 1.91 4.15 105.53 7.41 753.98
Decreasing 5.25 2.85 11.59 853.43 26.60 4600.47
Random 4.75 1.81 9.33 243.90 9.27 3041.4
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policies which would be more relevant for general supply chain structures. By considering a non-nested policy, a better
solution in terms of total supply chain cost may be obtained. The third issue concerns the relaxation of the model so
that stages are allowed to have arbitrary integer reorder intervals. This extension would enable to estimate the cost of
the PO2 restrictions. All these extensions represent challenging future research directions for general multi-echelon sys-
tems facing stochastic demand.
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Appendix A: Proof

In order to show that the objective function (1) is neither convex nor concave on the feasible region of the problem P0, we consider
the Hessian matrix of function (1) corresponding to the variables Rj where j 2 NS and to sk where k 2 ND is:

H ¼
2Aj

R3
j

0

0 � hkzkrk

4(sk)
3=2

0
BB@

1
CCA

We assume that the input parameters for node j and k are strictly positive. The determinant of matrix H is then strictly negative when
Rj > 0 and sk > 0. Therefore, the function (1) is neither convex nor concave with respect to Rj and sk on the feasible region of the
problem P0. Hence, the function (4) is neither convex nor concave with respect to all of its variables on the feasible region of the
problem P0.
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