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Digital linear control theory for automatic stepsize control

A.Verhoeven

Technische Universiteit Eindhoven - averhoev@win.tue.nl

Abstract. Numerical integration methods are used to find the numerical solution of the transient
analysis of electrical circuits. Because the electrical circuits are modelled by stiff differential algebraic
equations, the BDF-methods are very popular in circuit simulation. Error control is used to handle
with the trade-off between efficiency and accuracy. For optimization purposes smooth
behaviour of the errors and the stepsizes is wanted.

Application of digital linear control theory
Error control can also be considered from a control-theoretic approach. For onestep methods, the local
error estimate nr satisfies the following asymptotical model, which only depends on the last stepsize
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In logarithmic form, we get the next linear model.

.logloglog nnn hPr φ+= (1)

Here nrlog   is viewed as the output of this system, which depends on the input nhlog  and an

unknown disturbance nφlog . The goal is to keep the output close to a reference level εlog  means of
the input. A simple controller with this task is
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For multistep methods, the error estimate also depends on the previous stepsizes. It is still possible to
use the onestep model (1) or to apply linearization techniques. If the stepsize control process is
correctly modelled, a finite order digital linear controller can be designed. The closed loop dynamics
of the error model and the used controller are determined by the roots of the characteristic equation.
For stability, it is necessary that these roots must be situated within the complex unity circle. If the
disturbance nφlog  is a polynomial of degree 1−Ap and the errors nr  are equal to the reference level ε ,
the controller has adaptivity order Ap . If 1≥Ap  and the closed loop dynamics are stable, the output

nrlog  will converge to the wanted reference level εlog . The controller can also have filter properties
with respect to the output nrlog  or the input nhlog .
In the presentation, I will discuss the application of digital linear control theory for the transient
simulation of electrical simulation more profoundly. From numerical experiments, it appears possible
to get smooth results while the computational workload remains about the same or even decreases.

Example of adaptivity
Consider the initial value problem (VandePol equation) for the following electrical circuit:
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Figure 1: Stepsize and error sequences for the two tested controllers.

This IVP is solved by means of the BDF2 method with tolerance level TOL = 1e-4 and reference level
ε = 0.3TOL. A frequently used controller is (2) with 1=Ap and which pole is equal to zero.
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Often, this controller is used in combination with a buffer, e.g.
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Consider the next second order adaptive stepsize controller, which poles are equal to 0.2. This means
that it is able to predict linear trends of the disturbance φlog .
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For the next two cases, the IVP has been solved.
case 1 Controller I with buffer.
case 2 Controller II.

For these cases, 1686 and 2054 Newton iterations are required, respectively. In Figure 1, the resulting
stepsizes and errors are shown. The best results are obtained in case 2, because of the better adaptivity
at the cost of a slight increase of Newton iterations. Because of the higher smoothness of case 2, the
safety factor could be increased for case 2. Indeed, for ε = 0.6TOL, the cases need 1847 and 1667
Newton iterations, respectively.
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Towards One-Step Multirate-Methods In Full Chip Design
Michael Striebel
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Abstract. In full chip design the behaviour of electrical circuits with thousands or even millions  of
nodes  and  transistors  has  to  be  analysed  by  numerical  simulation before a circuit is build
physically.
Modified  nodal  analysis  (MNA)  is  applied  to  get  equations  describing  the lumped  electrical
network. These differential algebraic equations (DAEs) are generated  automatically  from  the
circuit s  topology  and  element  models. To solve the occuring DAE system numerically common
integrators treat the system as one unit and use just one overall stepsize for each step.
In most applications different parts of large integrated electrical circuits com- prise  different
functionality and therefore show different transient behaviour at every instant of time. To save
computational costs this physical property can be brought forward to the numerical integration of the
network-DAE by applying a multirate method that uses different stepsizes  for the different parts of
the circuit. This prevents parts to be computed more often, i. e. on a finer grid, than necessary to
guarantee given error tolerances.
To get an appropriate partitioning of the network, we divide the circuit into several  subcircuits,
duplicate the boundary nodes and connect them by virtual voltage  sources. This  causes  branch
currents u through the coupling voltage sources as additional unknowns and  the constraint that the
node potentials of the connected subsystems have to coincide at the boundaries yields an additional
algebraic equation.
If the considered electrical circuit is decomposed into r subcircuits, charge oriented MNA [1] thus
produces for each of them (i = 1, . . . , r)
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