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In this paper we aim at predicting material properties of a cross-linked polymer by using multi-scale
simulations and to compare the elastic properties and glass transition temperature with experimentally
observed values. To that purpose we use an epoxy polymer for which the starting point is a mesoscopic
simulation of its cross-linked structure realized by Dissipative Particle Dynamics (DPD) simulations, as
recently improved to conserve local densities properly. This results in a coarse-grained structure of this
thermoset polymer, relaxed at a large length- and long time-scale. Such a mesoscopic simulation is
important as otherwise insufficient relaxation of the structures occurs for a later and proper comparison
with experimental properties. Allowing further simulations at the atomistic scale using molecular
dynamics (or any other method) to obtain material properties, a reverse-mapping procedure is required
to insert atomistic detail into the coarse-grained structures. Hence, an efficient and reliable reverse-map-
ping procedure was implemented to be able to connect these two types of simulation. For the epoxy poly-
mer chosen, Poisson’s ratio, the elastic modulus, the glass transition temperature and the thermal
expansion coefficients of the glassy and rubbery state resulting from the equilibrated reverse-mapped
structure, match the experimental values well. Overall, the paper reports a fast and straightforward pro-
cedure to bridge a mesoscopic structure to experimentally observed material properties, which can be
applied to any system of interest.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Epoxies are widely used in coatings, electronic, paint, marine,
and aerospace industries. The structure formation of these epoxies
is due to a complex cross-linking process in which chemical reac-
tions between monomers and reconfiguration of monomers and
already cross-linked chains take place. For a proper understanding
of their structure and properties, exploration of the molecular
behavior of these epoxies on a wide range of time and length scales
is needed. One of the commonly employed simulation tools for
studying materials at smaller time scales is the molecular dynam-
ics (MD) approach [1]. However, reaching the time scales necessary
to reach a sufficiently relaxed and cross-linked polymer is current-
ly unfeasible with conventional MD simulations. To create cross-
linked polymeric structures at the atomistic resolution is computa-
tionally expensive as the reactive groups diffuse slowly due to the
long relaxation times. Attempts to overcome such type of intrinsic
time-scale problems are often made by introducing algorithms
that bring the functional groups in close proximity to increase
the reaction rate [2]. A high conversion rate might be reached,
but on the other hand, this would induce internal stresses which
at the end might require even longer times to relax the cross-
linked polymer. Therefore, to create and relax the cross-linked
structure, calculations at the intermediate meso-scale level are
required [2–7]. To this end, we recently performed meso-scale Dis-
sipative Particle Dynamics (DPD) [8,9] simulations for the cross-
linked structure of an experimentally studied epoxy [10,11].

After having created the equilibrium mesoscopic cross-linked
structure of a polymer, a possible route for further investigation
is to compute material properties such that a direct comparison
with the experimental values can be done. For this purpose one
can consider, for example, a combination of DPD and Lattice spring
model [12] or a multi-scale approach by means of atomistic
simulations from reverse-mapped coordinates of DPD. We opt to
continue with the second choice as it covers a more general
approach, and also avoids many (not easily solved) problems, such
as representing the interactions necessary to quantify the material
properties at meso-scale. In this paper we report an efficient and
reliable reverse-mapping (or fine-graining) procedure generating
a reasonably well equilibrated relaxed structure and apply this
procedure to the bulk epoxy created mesoscopically (see Ref.
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[10]) in order to generate the atomistic coordinates to perform ato-
mistic simulations. The need for reverse-mapping will be clear: In a
coarse-grained description a large number of the degrees of free-
dom, such as the spatial rotations or translational mobility of the
representative atomistic units are lost; however, to perform all-
atom simulations, the proper atomistic structure (i.e., the detailed
coordinates of the atoms) of a coarse-grained entity should be
known. Finding a proper solution is not straightforward as a num-
ber of atomistic configurations within a coarse-grained entity are
possible. For instance, one procedure is the fitting of atomistic tem-
plates (representative atomistic representations of the correspond-
ing coarse-grained entities) using only two constraints: (i) the
center-of-mass (CoM) of the atomistic configuration and of the
coarse-grained beads are the same; and (ii) a proper connectivity
is realized. Here, to improve the fitting procedure, certain rotation
operations for these templates are applied for realizing a lower
energy structure. As an alternative procedure, it can be attempted
to fit the whole representative all-atom chain configuration to its
coarse-grained counterpart. After fitting procedure, methods such
as steepest descent, conjugate gradient, Newton–Raphson [1], or
a combination of these, could be applied to energy minimize the
fitted structures. These are the steps that can be found in various
applications of reverse-mapping procedures in the literature [13–
20].

After having obtained the atomistic coordinates via the reverse-
mapping procedure, we perform all-atom MD simulations to com-
pute the elastic properties of the bulk cross-linked epoxy. Various
methods are available for estimating the stiffness matrix elements
from strain fluctuations such as the constant-strain minimization
method [21], which induces infinitesimal stresses to deform the
box, or the Parinello-Rahman [22] approach that employs a con-
stant stress ensemble. Here, we estimate the elastic modulus E
and Poisson’s ratio v directly from the cross-correlations in the
box fluctuations at zero external pressure. The required expres-
sions are derived following the route as employed in standard fluc-
tuation theory [23]. Moreover, we compute the glass transition
temperature Tg. As the polymer is cooled down, a transition from
the rubber-like state to a glassy state is observed. In simulations,
this transition can be monitored by evaluating different properties
of the material, such as heat capacity, mean squared displacement,
Young’s modulus, density, and volume. If these are plotted versus
temperature, the decreasing trend upon quenching differs in the
glass and amorphous regimes. Here we use the volume of the
material plotted with respect to the temperature to estimate Tg.
As a by-product the thermal expansion coefficients of the glassy
and rubbery state were estimated. For all properties, the computed
values are compared with the ones reported in the literature.
2. Computational details

2.1. Mesoscopic creation of bulk epoxy structure

The epoxy studied consists of a DGEBA (Diglycidylether-Bisphe-
nol-A) pre-polymer and DETA (Diethylene-Tri-Amine) as cross-
linker (Fig. 1). The DGEBA is two-functional monomer as it has
two reactive epoxy groups, whereas the DETA is five-functional.
Therefore, a stoichiometric 1:1 ratio of functional groups is com-
posed of a 5:2 molar ratio.

The epoxy network is created at the meso-scale by performing
DPD simulations, as described previously [10]. In brief, the cross-
link reactions are based on a statistical procedure where two
cross-linking beads are connected with a covalent bond if they
approach each other within a pre-defined distance using a step
function. By this procedure we obtained 92% cross-link conversion.
The network obtained is essentially independent of the precise
distance chosen as well of the shape of the cross-linking function,
as shown in Ref. [24] using a hyperbolic tangent function instead of
a step function.

DPD has proven to be a useful method in representing polymer
behavior. The defined interactions between coarse-grained entities
(often referred as beads) are mapped from the experimental ther-
modynamic quantities [8,25] and the method describes the hydro-
dynamic behavior correctly, which is crucial in simulating longer
time-scales. Conventionally, these beads are assumed to have simi-
lar volumes. However, beads are usually chosen to represent che-
mical groups, which obviously have different volumes. Therefore,
in a recent study, we incorporated the variable volume effect into
the DPD parameterization still preserving the Groot–Warren for-
malism, but extending the method to represent experimental
pure-liquid volumes of beads in the simulations [26]. Having the
correct volumes of the beads is crucial during the cross-linking
as reacting beads are finding each other as the simulation progress-
es. Moreover, in attempts of reverse-mapping, similarly as targeted
here, the local density variations in the system should be properly
modeled. In this paper we use exactly the same definitions of inter-
actions, simulation parameters, and the end-structure as reported
before and refer the reader to reference [10] for the mesoscopic
simulation details. We use the same spatial coordinates as generat-
ed in the aforementioned study, and applied a fast and efficient
reverse-mapping algorithm of which the details are given in the
Section 2.3.

2.2. Atomistic simulation details

Atomistic simulations of the reverse-mapped structure are per-
formed. The all-atom simulations are run with the LAMMPS code
[27] using the PCFF (Polymer Consistent Force Field) [28] which
has the functional form of a class II force field [29], and is devel-
oped specifically for polymers and organic materials.

As a first step the total energy of the reverse-mapped cross-
linked bulk epoxy structure is minimized by iteratively adjusting
the atomistic coordinates until the change in energy is less than
10�6 kcal/mol. The structure is relaxed in an NPT ensemble with a
small time step of 0.1 fs for 500 ps. Thereafter, a 6 ns production
run is performed with a 1 fs time step. Data is evaluated between
2 ns and 6 ns of the production run. The thermostat is selected as
Nosé-Hoover [30,31], the pressure control is performed by Parinel-
lo-Rahman [32] barostat while all simulations are performed at
room temperature and 1 atm pressure. Pressure control is set in
all dimensions and the box fluctuations are coupled in horizontal
(x and y) but uncoupled in vertical (z) dimension. This ensures that
the instantaneous change in box length of x and y dimensions are
equal, and unequal in z dimension. For the electrostatic contribution
the particle-mesh Ewald (PME) [33] summation is used. For Len-
nard-Jones interactions a cut-off distance of 10 Å is used. The system
consists of 20,850 atoms using a periodic box with initial dimen-
sions in xyz as 56.8 Å, 57.5 Å, and 72.5 Å. The initial dimensions of
x and y directions are different as the reverse-mapped structure is
later used in modeling the interactions with a metal-oxide surface.

To estimate Tg, we evaluated the equilibrium volumes at various
temperatures from relaxed structures, obtained from atomistic NPT
simulations performed at 1 atm external pressure. All the simula-
tion parameters are set as mentioned in the previous section, and
we started with the relaxed structure as obtained in the previous
section. Initially, we increase the temperature to 600 K, which is
significantly above the experimental Tg. Then, in a stepwise fash-
ion, we cool down to 300 K with steps of 15 K. The cooling rate
between discrete steps corresponds to 15 K/500 ps. After each step,
the structures were energy minimized (for 100 ps using a time step
of 0.1 ps) and further production runs (of duration 2 ns using a
time step of 1 ps) were carried out, similar as before.



Fig. 1. Schematic representation of DGEBA and DETA chains.
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2.3. Reverse-mapping

In a reverse-mapping procedure, as mentioned in the introduc-
tion, a usual first step is fitting of the atomistic coordinates from a
library of templates to the mesoscopic coordinates. However, it is
quite likely that such a step leads to a wide distribution of the
back-bone bond lengths as the templates are oriented differently
with respect to each other. This is illustrated in the schematic rep-
resentation Fig. 2a, where randomly oriented templates are repre-
sented as vectors. Hence, bond lengths may significantly deviate
from their equilibrium values, being either too large or too small.
Such type of configurations will result in a high energy structure
and the energy minimization will be time consuming since the
number of iteration steps is proportional to how far the bond
lengths deviate from their equilibrium values. So if, with some pro-
cedure, the templates are rotated such that the sum of all the bond
lengths of the main back-bone is decreased, this would be a great
benefit in the later energy minimization.

In this paper, we present a straightforward, yet fast and efficient
atomistic detail mapping algorithm that aligns the templates in
such a way that they become ordered within a particular chain,
as depicted in Fig. 2b. Thus, the sum of bond lengths will be smaller
and the corresponding energy minimization will take less compu-
tational effort as compared to a structure composed of randomly
oriented templates.

To perform the alignment, characteristic vectors cj are intro-
duced for each of the templates labeled j, defined as the arrows
for the CoM of the templates to the atom that connects consecutive
templates. Obviously, these characteristic vectors are template-
specific, and an example of how these vectors are defined for
two different templates is given in Fig. 2c.

The method applied is a modified version of a previously estab-
lished one [34,35], where the rotation between templates was
based on the angle between consecutive templates. Here, we chan-
ged the rotation procedure by aligning the characteristic vectors
defined for each template in parallel directions, rendering a very
fast reverse-mapping procedure, yet diminishing the sum of all
the bond lengths of the main back-bone significantly. The main
components of the algorithm used here are the rotation (or align-
ment) and translation steps. In the rotation step, the aim is to pro-
vide a reasonably well pre-equilibrated structure before
proceeding with the energy minimization. Thereafter, the rotated
templates are translated to the MD coordinates, followed by an
energy minimization for the whole structure.

The algorithm operates as follows:

(1) Compute the CoM and translate the templates so that their
CoMs superimpose at the origin.

(2) Define a characteristic vector for each template.
(3) By using the characteristic vectors compute a rotation matrix.
(4) With this rotation matrix perform a rotation for each tem-

plate and translate to the coarse-grained coordinates.
(5) Check the bond length between successive templates to see

if the value is below a pre-defined value.
(6) Update coordinates and iterate from step 3 if step 5 is not

satisfied.
(7) Perform step 1 till step 6 for all templates consecutively in

all chains.
(8) Energy minimize the whole structure.

The first step is a straightforward one. Computing the CoMs of
the templates is finding the mass-weighted averages of coordi-
nates according to

rCoM ¼
1
M

X
i

miri; r ¼ ½x; y; z� ð1Þ



Fig. 2. (a) A set of randomly oriented characteristic vectors, (b) characteristic vectors aligned to orient in the same direction, and (c) demonstrating how the characteristic
vectors cj are defined. The dashed line stands for the bond between these templates while the filled circles (d) represent the mesoscopic coordinates to which the templates
are translated.
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where M is the total mass of the template, and mi and are ri are the
mass and coordinates of the constitutive atom i of the template,
respectively, while in the translation part, the CoM of each template
is subtracted from the coordinates of the atoms so that their CoM is
at the origin:

ri;new ¼ ri � rCoM ð2Þ

In the second step, the rotation operation aligns the templates in a
chain in parallel directions. The rotation procedure adapted from
the work as reported by Dollase [36] and based on the computation
of a rotation matrix. In our case, we align the characteristic vectors
cj defined for each template, as depicted in Fig. 2. In this case the
matrix equation to be solved is

cðfixedÞ
j ¼ Rcð1Þj ð3Þ

Here, cðfixedÞ
j remains fixed, as it describes the parallel direction, and

cð1Þj is rotated by the rotation matrix R, given by

R¼
l2þð1� l2Þcosh lmþð1�coshÞ�nsinh nlð1�coshÞþmsinh

mlð1�coshÞþnsinh m2þð1�m2Þcosh mnð1�coshÞ� lsinh

nlð1�coshÞ�msinh mnð1�coshÞþ lsinh n2þð1�n2Þcosh

2
64

3
75
ð4Þ

where l, m, n are the direction cosines and h provides a counter-
clockwise rotation. Solving Eq. (3) characterizes the R matrix for
the best fit. For this we use an iterative minimization procedure
using a linearized R matrix, denoted by S, and which follows a
procedure called small angle rotation [37]. If the angle of rotation
is small, then cosh � 1 and sinh � h, and R can be approximated by

R ffi S ¼
1 �nh mh

nh 1 �lh

�mh lh 1

2
64

3
75 ð5Þ

with this approximation Eq. (3) can be written as cj
(fixed) = Scj

(k) in
which the superscript (k) indicates an iteration number and where
for the initial value we take cj

(1), as obtained from the
CoM matching only. Using the least-squares method we minimize
[cj

(fixed) � cj
(k)]2. Rearranging we obtain

cðfixedÞ
j;x � cðkÞj;x

cðfixedÞ
j;y � cðkÞj;y

cðfixedÞ
j;z � cðkÞj;z

2
6664

3
7775 ¼

0 cðkÞj;z �cðkÞj;y

�cðkÞj;z 0 cðkÞj;x

cðkÞj;y �cðkÞj;x 0

2
6664

3
7775

lh

mh

nh

2
64

3
75 ð6Þ

or Y = CP in short. To solve this matrix equation for P, we use one of
the procedures to compute a ‘best-fit’ solution to system of linear
equations that lacks a unique solution, called the Moore–Penrose
pseudoinverse formalism [38,39], which yields

P ¼ ðCT CÞ�1
CT Y ð7Þ

From Eqs. (6) and (7) the rotation parameters can then be extracted
as

h ¼ fðlhÞ2 þ ðmhÞ2 þ ðnhÞ2g
1=2
; l ¼ ðlhÞ=h; m ¼ ðmhÞ=h;

n ¼ ðnhÞ=h ð8Þ
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By using these parameters, the R matrix in Eq. (3) can be construct-
ed to be employed in calculating all atomistic coordinates of the
template, and the procedure is repeated for all templates. Please
note that this rotation should be considered as a rigid rotation of
the entire set (of atoms in a template). Moreover, a scaling factor
of 7.15 Å is used as derived in Ref. [10] for conversion of DPD units
to the physical values. After the templates are rotated and carried to
the atomistic coordinates, the bond length between two sequential
templates is calculated. If the distance of a new bond is below a pre-
defined value, chosen here as 2.5 Å, the iteration stops to prevent
further (and unnecessary) rotation. This value is selected to be high-
er than a typical bond length to prevent subtleties in the algorithm.
After the algorithm is run for all consecutive pairs, the computed
rotation matrix is used to rotate all the templates. Finally, the trans-
lation to the meso-scale coordinates is performed following an
energy minimization of the whole structure.
3. Results and discussion

As the structure of an epoxy as simulated by DPD has been dis-
cussed before [40], we focus here on the reverse-mapping and the
properties resulting from the reverse-mapped structure, as
evaluated by MD.
3.1. Reverse-mapping

We first tested the reverse-mapping algorithm for a single
epoxy chain (Fig. 3a), and thereafter the complete bulk epoxy
(Fig. 3b). To assess the results, the distributions of the main chain
bond lengths are plotted in Fig. 3 for three cases: (i) for templates
fitted from the library of template coordinates only; (ii) for tem-
plates rotated as described; and (iii) for the resulting atomistic
structures energy minimized.

The bond length distribution after merely fitting shows a rather
unrealistic bond length distribution with bond lengths ranging
from 2 to 6 Å. Clearly, aligning the templates in similar directions
provides a much more realistic bond length distribution with bond
lengths ranging from 1 to 2.5 Å. As the aligned structure is further
energy minimized, the tail of the histograms corresponding to
bond lengths larger than 2 Å is almost zero. The width of the bond
length distributions, especially for a single chain, results from lack
of statistics and variability of bond length within a chain. Occasion-
ally, there are values which are unrealistically high. These long
bonds correspond to the cross-links between different chains in
the epoxy. The algorithm applied obviously does not ‘correct’ bond
lengths between different chains, but these bonds will be easily
‘corrected’ during the energy minimization step since the number
of cross-link bonds is much less as compared to the number of
bonds in between different templates. Moreover, most of the bonds
that deviate from their equilibrium values are over-stretched
bonds that originate from the raw-fitted coordinates. These bonds
are partially corrected in the rotation step, but a minor portion of
these bonds corresponding to cross-links still remain. As the struc-
tures are further processed using the energy minimization, these
long-bonds are fully corrected.

To further assess the algorithm, two separate sets of simula-
tions are run: One with starting configurations taken from the
structures of fitted library of templates and one with the rotation
algorithm is applied. We show in Fig. 4a the total energy as a func-
tion of simulation time associated with the energy minimization
performed at 0 K. The initial discrepancy in the total energy values
are significantly different from each other and the energy
minimizations are observed to be quite fast in both of the systems.
For longer times Fig. 4b depicts that the total energy values for
both cases show a fast decay initially. To further analyze, we fitted
a power law equation to the total energies. It is observed that if we
continue to relax the structures, the power law fits indicate that
both of the structures from initial fit of templates and rotated tem-
plates seems to settle down, while the rotation of templates leads
to significantly lower energy values. The difference in the final
energy values is around 4.1% as realized from fit parameters. We
repeated these calculations for two extra of different initial struc-
tures taken from different snapshots of a fully cross-linked
reverse-mapped epoxy system (Fig. 4c and d). Even for a shorter
simulation time of 1 ns, we observed from the power law fits that
the total energies of the reverse-mapped structures rotated tem-
plates are smaller than the initial fit of templates with difference
of 5% and 2%. A possible reason for this might be that the structure
without rotation applied is stuck in a local energy minima. As the
epoxy structure contains benzene rings, reverse-mapping proce-
dure with randomly oriented templates might result in molecular
interlocking effects, or ring inter-penetrations, which is impossible
to be fixed for a classical MD simulation. The results clearly indi-
cate that our proposed reverse-mapping approach not only pro-
vides a fast mapping of the atomistic detail to coarse-grained
coordinates, but also improves the relaxation procedure by reach-
ing lower total energy values while possibly correcting the molecu-
lar inter-locking effects as clearly visible from the total energies.

A typical example of the resulting atomistic configuration of the
bulk epoxy after application of the reverse-mapping algorithm is
depicted in Fig. 5a. The density profiles plotted for the different
directions in the box show no systematic trend with direction
and the fluctuations are due to statistics. Therefore, we assume
that the epoxy network is isotropic.

3.2. Elastic properties of bulk epoxy

In this section we discuss the results of the atomistic simulations
for the elastic properties of the bulk epoxy. The simulations are per-
formed in the NPT ensemble where the box dimensions are allowed
to change independently of each other, but the box shape remains
rectangular. The goal is to obtain the elastic constants, elastic mod-
ulus E and Poisson’s ratio v, from the shape fluctuations of a simula-
tion box, by using standard fluctuation theory [23].

The bulk epoxy can be assumed to be an isotropic material. If
we consider normal stresses only, i.e., tensile and compressive
but no shear stresses, and also assume that we are in the linear
elastic regime, then Hooke’s law

ei ¼
1
E

rið1þ mÞ � mðrx þ ry þ rzÞ
� �

ð9Þ

is valid, where ri and ei are the stress and strain in the x, y or z direc-
tions, respectively.

In an NPT simulation the number of particles, pressure and tem-
perature are constant. Here the pressure and temperature are set by
the external thermostat and barostat, respectively. We will consider
a somewhat generalized setup where in each of the three directions
an independent normal stress can be set. The thermodynamic
potential that is relevant for these control variables is the Gibbs
energy G(N,T,rx,ry,rz). Since the situation that will be considered
is at constant temperature and constant number of particles, only
the variation with respect to the externally applied stresses is con-
sidered here and the variation with temperature and amount of par-
ticles is not discussed. So, keeping the notation compact, we discuss
G = G(N,T,rx,ry,rz) – G(N,T,0,0,0) and to obtain this quantity from
Eq. (9), we integrate with respect to the three strains resulting in

dG ¼ �V
X

i

eidri ! G ¼ �V
2E

r2
x þ r2

y þ r2
z

� �
� 2m rxry þ rxrz þ ryrz

� �h i
ð10Þ



Fig. 3. The distribution of bond lengths after different steps are applied: templates are fitted from a library of template coordinates, rotated in parallel, and energy minimized
for (a) a single epoxy chain, and (b) the whole cross-linked epoxy structure. The insets show a zoom-in of the main plots of (b) in order to depict the less visible tails. Above
the histograms of (a), the configurations of a particular chain after each step are depicted.
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In this equation V is the volume of the box at zero external stresses,
i.e., if Li is the size of the box in the i-direction and �Li its average val-
ue at zero tension (in all directions), then V � �Lx

�Ly
�Lz. Using the

quantities Li and �Li, the small-deformation strains ei are defined as

ei ¼
Li � �Li

�Li
ð11Þ

The second order derivatives of G are related to the elastic constants
via

@2G
@r2

i

¼ �V
E
;

@2G
@ri@rj

¼ Vm
E
; i – j ð12Þ

Calculating the (inverse) bulk modulus B�1 = �V�1@V/@p, mean-
while using the relations V ¼ Vð1þ exÞð1þ eyÞð1þ ezÞ and
rx ¼ ry ¼ rz ¼ �p, results in

1
B
¼
X

i

X
j

@ei

@rj
¼ � 1

V

X
i

X
j

@2G
@ri@rj

¼ 3ð1� 2mÞ
E

ð13Þ

as expected for the bulk modulus for homogenous isotropic materi-
als. From statistical mechanical considerations about fluctuations of
the box size (see Appendix) we have
� mE�1 ¼ V
kBT

ðew � hewiÞðez � heziÞh i;

E�1 ¼ V
kBT
hðez � heziÞ2i;

ð14Þ
m ¼ � ðew � hewiÞðez � heziÞh i
ðez � heziÞ2
D E : ð15Þ

where ei and heii represent the instantaneous and time-averaged
strain, respectively.

In Fig. 6 the fluctuations in box size are plotted as a function of
time. The change of box shape is due to a slow relaxation of the
structure. In order to compute the statistics of fluctuations, these
results were used even though equilibrium was not fully reached
yet by fitting the slowly changing box sizes to third order polyno-
mials. A third-order polynomial fit is used as it represents the trend
of curve quite well. The fluctuation of a quantity is computed as the
difference between an instantaneous value minus the value of the
polynomial fit at that time such that only the amount of instanta-
neous fluctuations is taken into account. From these fluctuations,
via the equations as derived in the Appendix, Poisson’s ratio v
and elastic modulus E are estimated. We predict from Eq. (15) that
Poisson’s ratio m = 0.403 (±0.048). The error in parenthesis is



Fig. 4. (a) Total energy as a function of CPU time of the computation for a system fitted from the library of templates (no rotation applied) and for a system with rotated
templates. Parallel simulations are performed with Intel� Xeon� X5660 2.80 GHz with 6 cores. (b) Total energies of reverse-mapped structures from initial fit of templates and
rotated templates as a function of simulation time. The lines indicate the power law fits in form of y ¼ axb þ c. The fit parameters are
a ¼ 1:26� 106; b ¼ �0:6558; c ¼ 1:102� 104 for only fitted templates, and a ¼ 1:879� 105; b ¼ �0:4299; c ¼ 1:059� 104 for rotation applied case. Consecutively, for
the reverse-mapping procedure of initial fit of templates and rotated templates, the power law fit parameters are for (c) a ¼ 1:062� 106; b ¼ �0:6621; c ¼ 1:154� 104, and
a ¼ 2:819� 105; b ¼ �0:474; c ¼ 1:092� 104 (d) a ¼ 2:37� 105; b ¼ �0:4524; c ¼ 1:086� 104, and a ¼ 1:514� 105; b ¼ �0:3973; c ¼ 1:063� 104.
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computed by means of the block averages method [41]. From
Eq. (14) we have for the elastic modulus E = 1.909 (±0.103) GPa.
Moreover, we calculated E from three consecutive blocks of the fit-
ted region of Fig. 6, which resulted in E = 1.76 ± 0.18, 1.92 ± 0.15
and 2.10 ± 0.18 GPa, respectively. Within error, these values are
the same, although taken from a decreasing overall trend (first)
block, an approximately constant (second) block and an increasing
trend (third) block, indicating the validity of the approach. Finally,
from Eq. (13), we have for the bulk modulus B = 4.45 (±2.39) GPa.

We compare our simulation results of the DGEBA/DETA based
epoxy with the available experimental data. Although Poisson’s
ratio is not so commonly reported and specifically not at the
stoichiometric ratio (�95:5 wt. ratio), Possart et al. estimated as
0.39 (±0.10) [42]. For a non-stoichiometric mixture (�90:10 wt.
ratio [43]), Poisson’s ratio is reported as 0.345 which is in the range
of typical values for various epoxy systems 0.3–0.4 [6,44,45].

The elastic modulus values found in literature show a variation
depending on the epoxy-amine composition. For example,
Grishchuk et al. [46] prepared mixtures at the stoichiometric
ratio, measured E by three-point bending tests, and reported
E = 2.8 (±0.07) GPa. In addition, Aufray and Roche [47] report
E = 2.7 (±0.1) GPa, also from three-point flexure tests. However,
for non-stoichiometric samples (�90:10 wt. ratio), Denq et al.
[48] estimated as E ffi 1.7 GPa by tensile testing, while Asp et al.
[43] measured 2.07 GPa by biaxial testing.

In all, in view of the scarcity of experimental data, our estima-
tion for Poisson’s ratio is in good agreement with the reported
experimental values in literature. However, our computational
prediction for the E modulus is lower than experimental measure-
ments for stoichiometric mixtures. The discrepancy in E modulus
may be attributed to the slow relaxation of the cross-linked epoxy
structure. The standard fluctuation approach to calculate the Pois-
son’s ratio solely depends on the instantaneous fluctuations of the
box length in different dimensions. This represents the instanta-
neous deformation of the box, and independent of the equilibrium
value of the box dimension. On the other hand, as Eq. (14) signi-
fies, the prediction of Young’s modulus depends on the equilibri-
um volume of the box. If the box is not yet relaxed to its
equilibrium value, the prediction of Young’s modulus is in princi-
ple incorrect. As the epoxy is at the near-equilibrium (or quasi-e-
quilibrium) state, this can also be a source of discrepancy between
the experimental and simulated values of Young’s modulus. We
summarize the computed and experimentally reported elastic
properties in Table 1.



Fig. 5. (a) DPD output coordinates are presented on the left, and the reverse-
mapped atomistic structure is on the right. (b) The density profiles plotted in
different dimensions of the box.

Table 1
Poisson’s ratio m and elastic modulus E for bulk epoxy compared with available
experimental values. When available, the experimental error is indicated in brackets.
The error for the computed values is estimated with the block averages method [41].

Poisson’s ratio m Elastic modulus E (GPa)

Experiments 0.39 (±0.10) [42]� 2.9 (±0.3) [42]�

2.8 (±0.07) [46]�

2.7 (±0.1) [47]�

0.345 [43]� 2.07 [43]�

1.7 [48]�

Simulations 0.403 (±0.048) 1.909 (±0.103)

� Stoichiometric compositions.
� Non-stoichiometric compositions.
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We calculated Poisson’s ratio m and Young’s modulus E for the
structure obtained from the initial step of the reverse-mapping
procedure (that is, using initial fitted coordinates, as described by
the first step of Fig. 3) and repeated the same procedure as
described above. The calculated values are m = 0.382 and
E = 1.80 GPa, which are lower than the predictions of the full
reverse-mapping procedure applied. Therefore, the computational
gain in implementing a rotation algorithm is also evident in the
calculated properties.

3.3. Tg of bulk epoxy

Another important property for polymers is the glass transition
temperature Tg and we attempted to assess its value for bulk epoxy
under discussion.
Fig. 6. The fluctuations of the box lengths in x and z dimensions as a function of
time. The lines indicate the third order polynomial fit ðy ¼ aþ bxþ cx2 þ dx3Þ to
data with parameters are a ¼ 55:77; b ¼ �7:94� 10�7; c ¼ 1:67� 10�13;

d ¼ �1:03� 10�20 for Lx, and a ¼ 68:97; b ¼ 1:95� 10�6; c ¼ �4:58� 10�13;

d ¼ 3:32� 10�20 for Lz.
Fig. 7 shows the volume of the epoxy, demonstrating a clear
transition at about 150 �C between two different regions, where
the lower temperature region corresponds to the glassy state,
and the higher temperature region corresponds to the rubbery
state.

The Tg is calculated as the intersection temperature from fitting
lines to these upper and lower temperature regions, resulting in
168.1 ± 3.2 �C. Experimentally, the glass transition temperature of
DGEBA/DETA is measured as 130 �C, and 135 �C from DSC and
DMTA measurements, respectively [46]. Our computed value for
Tg is different from the experimental values. There might be a num-
ber of reasons for the discrepancy between calculated and
experimental values for Tg, such as line fitting error, selection of
the force field, relaxation times of cross-linked polymers, the inac-
curacy in the experimental measurements, the additive and impu-
rities present in the epoxy in reality and polydispersity. For the
comparison of Tg, the cooling rate is of prime importance, shifting
Tg to lower temperature using lower cooling rates [49–51].
Experimentally the effect of cooling rate is estimated as 5 �C for a
change of cooling rate from 10 �C/min to 1 �C/min [46] correspond-
ing to an order of magnitude. If we assume a similar effect in
simulations, the simulated Tg = 168 �C (using a cooling rate of
15 �C/500 ps) would have to be corrected to about 113 �C (for a
typical experimental cooling rate of 10 �C/min). The effect of cool-
ing rate is somewhat different as predicted by computer simula-
tions for a similar epoxy-amine system. A difference of about
3 �C per order of magnitude is predicted from the William–Lan-
del–Ferry (WLF) equation taking into consideration the correlation
between the relaxation times and the cooling rate and reported in
[52]. In this case, the corrected Tg would be about 135 �C in our
estimation.

We estimate the coefficient of thermal expansion aT using
aT ¼ 1=V0ð@V=@TÞp, where V0 is the volume at 300 K and 510 K for
Fig. 7. Volumetric variation of epoxy as a function of the change in temperature.
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the glassy and rubbery state, respectively. We use the values in
calculating aT as plotted in Fig. 7. The calculated values of aT are
3:52ð	0:18Þ � 10�4=K for the glassy regime, and 6:72ð	0:13Þ�
10�4=K for the rubbery regime. For a rough comparison, experimen-
tal values for the corresponding regimes for an example epoxy sys-
tem are measured as 1:95� 10�4=K and 5:79� 10�4=K, respectively
[53].
4. Conclusions

In this paper coupling of mesoscopic and atomistic scale
simulations for material properties is presented. To that purpose
we used coordinates of a cross-linked epoxy structure created at
the DPD-scale as an input to reverse-mapping. We established a
fast and efficient algorithm to insert the atomistic details into
the mesoscopic structure which allows performing atomistic
simulations from a structure equilibrated at much larger length
and time scales as is generally feasible with MD simulations. The
algorithm contains various steps to obtain the best alignment
between characteristic vectors of consecutive atomistic templates.
The reverse-mapping of the atomistic detail was tested by observ-
ing the bond length distributions between these templates for a
single chain and for a fully cross-linked structure of an epoxy resin.
The rotation step implemented in the algorithm provided a better
energy minimization of the structure as compared to the structure
with non-rotated (randomly oriented) templates.

The reverse-mapped structure was used to compute some char-
acteristic properties of the bulk epoxy. Atomistic simulations were
performed using the reverse-mapped structure and the elastic
modulus, Poisson’s ratio, glass transition temperature and thermal
expansion coefficients below and above the glass transition tem-
perature were calculated. A derivation using standard fluctuation
theory for computing these properties from the instantaneous
box length fluctuations was presented. Moreover, the computed
properties were compared with the experimental values reported
in the literature. Although some deviations from the experimental-
ly available data were observed, the results are considered to be in
agreement. The reasons for these deviations are discussed and
regarded as the effect of the slow relaxation of the cross-linked
epoxy (quasi-equilibrium), fitting errors, selection of the force
field, inaccuracy in the experimental measurements, the additive
and/or impurities as well as polydispersity present in the
experimental epoxies.

It should be noted that by the use of the parameterization
method for DPD interactions developed previously in our group
[26], it is ensured that the local specific volumes for a particular
bead are consistent with experimental pure liquid specific volumes
(in contrast to the conventional parameterization where large
deviations can occur). This improved representation of the variable
local specific volumes, renders the reverse-mapping of atomistic
detail more efficient as these volumes of beads heavily influence
the pre-equilibrated bond lengths.

In all, we conclude that the procedures presented in this work
will be useful in bridging the computational molecular simulations
to the experimentally measured material properties with a fast and
straightforward mapping with significant accuracy.
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Appendix A. Box size fluctuations

To derive an expression for the elastic modulus E and Poisson’s
ratio m from simulation result fluctuations, we start with the obser-
vation that any probability density in statistical mechanics is pro-
portional to exp[�Stot/kB], where Stot is the total entropy, i.e., of the
system plus that of the environment. This is sometimes called the
Einstein distribution. Using the general thermodynamic relation
that the entropy equals the energy of the system Esys minus the
Helmholtz energy Asys divided by the temperature, we have

Ssys ¼
Esys � Asys

T
: ð16Þ

Since the environment is large, exchange of energy with the system
constitutes an infinitesimal change so that it can be assumed that
the temperature of the environment does not change. Similarly,
when the system changes size, the stresses applied by the environ-
ment remain constant. A change of entropy of the environment then
equals:

DSenv ¼
DEenv � DWenv

T
ð17Þ

where DEenv is the change of energy of the environment and DWenv

the reversible mechanical work performed on the environment.
This work is performed by the system and equals
Wenv ¼ �V

P
ieiri, relative to the undeformed system. If the two

entropies are added, and conservation of energy is used (Esys +
Eenv = constant), we find, using L = {N,T,Lx,Ly,Lz} as abbreviation,

StotðLÞ ¼ S0 �
AsysðLÞ � V

X
i

eiri

T
ð18Þ

The probability distribution of box sizes can now be computed from
this, using b = 1/kBT, as

pðLÞ ¼ Z�1 exp �b AsysðLÞ � V
X

i

eiri

 !" #
; ð19Þ

where for proper normalization we need the isobaric-isothermal
partition function

ZðLÞ ¼
ZZZ

exp �b AsysðLÞ � V
X

i

eiri

 !" #
dL ð20Þ

The Gibbs energy is related to this partition function as

G ¼ �kBT ln Z ð21Þ

One way to check the consistency is to evaluate its derivatives. For
example,

@G
@ri
¼ �kBT Z�1 @Z

@ri

¼ �kBT Z�1
ZZZ

@

@ri
exp �b AsysðLÞ � V

X
i

eiri

 !" #
dL

¼ �Z�1
ZZZ

Vei exp �b AsysðLÞ � V
X

i

eiri

 !" #
dL

¼ �V
ZZZ

eipðLÞdL ¼ �Vheii

ð22Þ

This result corresponds to the expected thermodynamic relation
(see Eq. (10)). Now, all is set to derive the main result, namely,
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@2G
@ri@rj

¼ �kBT Z�1 @2Z
@ri@rj

� Z�1 @Z
@ri

� 	
Z�1 @Z

@rj

� 	 !

Z�1 @2Z
@ri@rj

¼ Z�1
ZZZ

@2

@ri@rj
exp �b AsysðLÞ � V

X
i

eiri

 !" #
dL

¼ V
kBT

� 	2

Z�1
ZZZ

eiej exp �b AsysðLÞ � V
X

i

eiri

 !" #
dL

¼ V
kBT

� 	2 ZZZ
eiejpðLÞdL ¼ V

kBT

� 	2

heieji

@2G
@ri@rj

¼ � V2

kBT
hðei � heiiÞðej � hejiÞi

ð23Þ

When we equate these relations to the thermodynamic relations of
Eq. (12), we find that

E�1 ¼ V
kBT
hðei � heiiÞ2i; i ¼ x; y or z;

� mE�1 ¼ V
kBT

ðei � heiiÞðej � hejiÞ

 �

; i – j

ð24Þ

In the simulations that are presented, the x and y dimensions of the
simulation box are coupled, such that they have equal strain and
equal stress, i.e., ex ¼ ey ¼ ew and rx ¼ ry ¼ rw. Differentiating the
Gibbs energy with respect to rw, keeping rz fixed, we find

@2G
@r2

w

�����
rz

¼ @2G
@r2

x
þ 2

@2G
@rx@ry

þ @
2G
@r2

y
¼ �V ð2� 2mÞ

E

@2G
@rw@rz

¼ @2G
@rx@rz

þ @2G
@ry@rz

¼ 2Vm
E

ð25Þ

and thus to

� mE�1 ¼ V
kBT
hðew � hewiÞðez � heziÞi;

E�1 ¼ V
kBT
hðez � heziÞ2i;

ð26Þ

Upon dividing the two last relations in Eq. (26), we obtain the
expression for Poisson’s ratio, which is the same relation as report-
ed Falcioni et al. [54], namely

m ¼ �hðew � hewiÞðez � heziÞi
hðez � heziÞ2i

: ð27Þ
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