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ABSTRACT: The use of antifoaming and corrosion inhibitor agents to prevent foaming and corrosion, respectively, is widely
used in the carbon dioxide (CO2) absorption process using alkanolamines. However, the effect of these agents on the capacity of
the alkanolamine solutions to absorb CO2 is unknown. We present a study on the phase equilibria and solubility of CO2 in
mixtures of aqueous methyldiethanolamine (MDEA) solutions with and without these additives and show how the liquid phase
properties and CO2 loading capacity is affected.

■ INTRODUCTION

The use of alkanolamines for CO2 separation from natural gas
is a technology that has been applied since the first patent was
granted in 1931.1 A wide variety of alkanolamines such as
monoethanolamine (MEA), diethanolamine (DEA), di-2-
propanolamine (DIPA) and n-methyldiethanolamine
(MDEA) have been used.2 The last one, MDEA, is usually
preferred when large concentrations of hydrogen sulfide (H2S)
are also present in the gas.
The first description of the use of MDEA in a process to

selectively remove H2S in the presence of CO2 is given in a
publication by Frazier and Kohl.3 Since then, numerous
publications have been reported on the solubility of CO2 and
H2S in MDEA.4−8

Although the process for CO2 capture with aqueous
alkanolamines solutions is very mature, operating problems
are still frequent. The most serious problem of alkanolamine
processes is the corrosion, because it compromises not only
operation effectiveness but also safety. In addition to selecting
suitable equipment materials, corrosion inhibitors are often
used during operation.9

Foaming is another major issue during operation of an
absorption process using alkanolamines. Several causes for
foaming formation have been identified, such as the presence of
contaminants like liquid hydrocarbons, amine degradation
products and other process chemicals including lubricant oil,
corrosion inhibitors and suspended particles.10 Foaming can be
prevented by injection of antifoaming agents, which are usually
silicones. They are added batch-like to the aqueous amine
solution when needed.
The use of corrosion inhibitors and antifoaming agents is

very common, but their effect on the CO2 absorption is not
clear and frequently disregarded. In this work, we have studied
the effects on the solubility of CO2 in aqueous MDEA (45.0
mass%) solutions, from a thermodynamic point of view, by
addition of these agents.

■ EXPERIMENTAL SECTION

Materials. The two antifoaming agents were SAG 7133 and
VP 5371. SAG 7133 was received in an aqueous solution with 1
part of active component (polydimethylsiloxane) per 9 parts of
water (10 mass%), whereas VP 5371 contained 2 parts of active
component (organic silicone) per 8 parts of water (20 mass%).
Both antifoaming agents were further diluted to 1.0 mass% in
water. Therefore, 1 part of SAG 7133 was added to extra 9 parts
of water and 1 part of the original VP 5371 solution was diluted
in 19 parts of water.
Similar guidelines were followed to prepare the solution with

the corrosion inhibitor CRO27005. The aqueous solution
containing 1 part of active compound (benzotriazole) per 9
parts of water (10 mass%) was further diluted in 1 part of
solution per 19 parts of water.
MDEA was added to the samples, so that in all cases, 45 parts

of the amine were present per 55 parts of water.
Experimental Procedure. The effects of additives in

MDEA were determined using a synthetic static method, in a
so-called Cailletet apparatus. A schematic drawing and a
detailed description of this facility can be found elsewhere.11

The Cailletet apparatus can stand pressures up to 15 MPa and
the operating temperature ranges from 275 to 370 K.
Each sample was prepared by placing a well-known amount

of the liquid solution in a thick-walled Pyrex glass tube, also
referred to as a Cailletet tube. Afterward, the tube was
connected to a gas rack, the volume of which had been
calibrated. The liquid sample was thoroughly degassed under
vacuum conditions before dosing the desired amount of gas
(CO2 in this case). The temperature and pressure in the
calibrated vessel was known, so the amount of moles of CO2
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could be calculated using the virial equation of state truncated
after the second term. Mercury was used to push the gas into
the Cailletet tube and to seal the sample in its closed top.
Besides sealing the sample in the tube, mercury also acted as a
pressure transmitting fluid.
The solubility of CO2 in the amine solution has been

determined following the bubble point pressure method. This
method visually observes the disappearance of the CO2 gas
phase by gradually changing the temperature and/or the
pressure of the system.
The pressure was generated by pressing hydraulic oil into the

system with a screw type hand pump, which caused the level of
the mercury column in the Cailletet tube to rise and to create
the desired pressure on the sample in the top of the tube. A
dead-weight pressure gauge was used to measure the pressure.
The temperature of the sample was kept constant by

circulating a thermostat liquid through a thermostat jacket
surrounding the Cailletet tube. In this work, water was used, so
the temperature range was limited from 280 to 370 K. The
temperature was measured with a platinum resistance
thermometer in the heat jacket near the top of the sample
tube. Homogeneous mixing of the sample was realized by
moving a steel ball with two moving magnets.
The uncertainty in the measurements is ±0.005 in the mole

fraction of the composition, ±0.01 K for the temperature
measurements and the accuracy of the pressure gauge is ±0.01
MPa.

■ RESULTS AND DISCUSSION

Solubility of CO2 in MDEA Solution. The Cailletet
apparatus has been used for numerous phase equilibrium and
solubility studies, the majority of the systems being nonreactive.
Although the high accuracy of this apparatus is unquestionable,
the applicability to a reactive system was checked. Therefore,
the solubility of CO2 in a 45 mass% aqueous MDEA solution
was determined and compared with literature data. Four
isopleths (lines of constant composition) were measured at
four different CO2 loadings (α = 0.8, 0.9, 1.0 and 1.5 mol CO2
per mole of pure MDEA).
The theoretical solubility limit for the absorption of CO2 in

the aqueous solution of MDEA is one mole of CO2 per mole of
MDEA (α = 1.0) according to the data and the chemical
reaction model proposed by Jou et al.:4

+ + ⇔ ++ −R N H O CO R NH HCO3 2 2 3 3

The results for the solubility of CO2 in the 45% MDEA
solution are summarized in Table S1 of the Supporting
Information. Figure 1 shows that the samples with a CO2
loadings (α) up to 1.0 present a vapor−liquid equilibrium
(VLE) curve. As expected, only a vapor−liquid−liquid
equilibrium (VLLE) was found for the α = 1.5 sample,
meaning that the loading is beyond the solubility limit of CO2
in the MDEA solution. This can also be noticed from the
overlap of the experimental VLLE with the pure vapor pressure
line of CO2.

12

By fitting the measured isopleths to a third-order polynomial
function, the isotherms at 343.15 and 348.06 K were calculated
and compared to literature data,4,13 as shown in Figure 2. The
data reported in the literature at 343.15 K4 have been used as
reference data in handbooks,2 although it has been claimed that
the data of Sidi-Boumedine et al.13 are more reproducible, less
scattered and more reliable for modeling.14 The reported values

at 348.06 K13 were measured at lower pressures, even below the
minimum pressure of the data measured in our system.
Nevertheless, both sets of data clearly follow a similar trend, i.e.
the data we measured with the Cailletet apparatus agree with
literature data.

Effect of Additives. The effect of adding antifoaming
agents and corrosion inhibitors on the solubility of CO2 in
aqueous solutions of MDEA was determined next. Figure 3
shows the evolution of the solution containing any of the
antifoaming agents (SAG 7133 or VP 5371) in the Cailletet
tube with increasing CO2 pressure. At low pressure (Figure 3a),
most of the CO2 is in the vapor phase and the liquid is a
homogeneous transparent mixture. As the sample is pressurized
(Figure 3b), CO2 starts dissolving in the liquid solution and a
second gel-like liquid phase appears, which becomes more
pronounced at higher pressures (near the bubble point), as
shown in Figure 3c,d. Thus, at the given experimental
conditions, CO2 acts as an antisolvent for both antifoaming
agents, causing the precipitation of a gel-like silicone-based

Figure 1. Experimental solubility of CO2 in 45% MDEA solution.
Composition is expressed in the ratio of moles of CO2 per mole of
MDEA: α = 0.8 (square symbol), α = 0.9 (circular symbol), α = 1.0
(triangular symbol) and α = 1.5 (diamond symbol). Closed symbols,
VLE; open symbol, VLLE; solid line, VLE of pure CO2.
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Figure 2. Solubility of CO2 in aqueous MDEA solution at 343.15 K
(triangular symbol) and 348.06 K (square symbol). Solid symbols, this
work. Open symbols, literature data at 343.154 and 348.06 K.13
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substance from the liquid phase. Because antisolvation behavior
of pressurized fluids are usually caused by physical interactions,
it is expected that the interaction between CO2 and the
antifoaming agents is of physical nature.
To study if the precipitation was caused by the the

interaction of the antifoaming agent with CO2 or simply a
pressure effect, we prepared a sample with a loading of 0.1 mol
of methane (CH4) per mole of MDEA in the aqueous solution
containing the antifoaming agent VP 5371. The formation of
the gel-like phase was not observed at any temperature−
pressure condition up to 15 MPa. This proves that the
interaction with CO2 and not the pressure effect prompted the
precipitation of the silicone-based antifoaming agent.
Precipitate formation did not occur upon addition of the

corrosion inhibitor CRO27005 to the MDEA aqueous + CO2

solution.
Measured results for the effect of adding antifoaming agents

and corrosion inhibitors on the solubility of CO2 in aqueous
MDEA solutions at CO2 loadings of 0.8 and 1.0 can be found in
the Tables S2 and S3 of the Supporting Information. Figure 4
shows the bubble point pressure difference (ΔP) between the
solutions of MDEA with and without the antifoaming agents or
corrosion inhibitor for solutions of 0.8 and 1.0 CO2 loading.
It has been found that the addition of any of the antifoaming

agents increases the bubble point pressure and, as a
consequence, the absorption of CO2 in the aqueous amine

solution is negatively affected. On the basis of these data, we
estimate that the CO2 loading in the amine solution is reduced
up to 2% when SAG 7133 is added and 1% when VP 5371 is
present in the solution.
On the other hand, the solubility of CO2 in the solution

seems to be higher in the presence of the corrosion inhibitor
agent CRO27005. Thus, unlike the antifoaming agents, the
corrosion inhibitor decreased the bubble point pressure and
increased the CO2 absorption.

■ CONCLUSIONS
The effect of adding the antifoaming agents SAG 7133 or VP
5371 and the corrosion inhibitor CRO27005 on the CO2
absorption capacity of an aqueous MDEA solution (45%) was
studied. It was established that the CO2 acts as an antisolvent
for both antifoaming agents and causes precipitation of the gel-
like and silicone-based active agent. The solubility of CO2 was
negatively affected by the addition of both antifoaming agents,
whereas the solubility increased when the corrosion inhibitor
agent was used.
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Figure 3. Effect of the CO2 on the homogeneity of the liquid phase: (a) at low pressure, the CO2 has not reacted yet, (b) the pressure is increased
and the CO2 starts reacting, (c) a second liquid phase is observed in the top of the Cailletet tube near the CO2 bubble interface and (d) at high
pressure, all the CO2 has reacted and two liquid phases are observed.

Figure 4. Effect of additives on the bubble pressure of aqueous MDEA
solutions. Solid line, α = 0.8; dashed line, α = 1.0. Blue line, solution
with antifoaming agent SAG 7133; red line, solution with antifoaming
VP 5371; green line, solution with corrosion inhibitor CRO27005.
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■ ABBREVIATIONS
α = CO2 loading (moles of CO2 per mole of MDEA)
CH4 = methane
CO2 = carbon dioxide
DEA = diethanolamine
DIPA = di-2-propanolamine
H2S = hydrogen sulfide
MDEA = N-methyldiethanolamine
MEA = monoethanolamine
VLE = vapor−liquid equilibrium
VLLE = vapor−liquid−liquid equilibrium
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