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Abstract

High Level Synthesis tools have reduced accelerator design time. How-
ever, a complex scaling problem that remains is the data transfer bottle-
neck. Accelerators require huge amounts of data and are often limited by
interconnect resources. Local buffers can reduce communication by ex-
ploiting data reuse, but the data access order has a substantial impact on
the amount of reuse that can be utilized. With loop transformations such
as interchange and tiling the data access order can be modified. How-
ever, for real applications the design space is huge, finding the best set of
transformations is often intractable. Therefore, we present a new method-
ology that minimizes the data transfer by loop interchange and tiling. In
contrast to other methods we take inter-tile reuse and loop bounds into
account. For real-world applications we show buffer size trade-offs that
can give speedups up to 14x, alternatively these can reduce the required
FPGA resources substantially.

1 Introduction

For many algorithms, especially in the domain of computer vision and image
processing, the compute efficiency can be improved orders of magnitude by
using specialized hardware accelerators instead of general purpose processor
cores. Recently the relatively long development time of such accelerators, com-
pared to software, is substantially reduced by High-Level Synthesis (HLS) tools.
This short development time is of high importance since video coding standards
change very often, and new applications are constantly introduced, e.g. Insta-
gram. However, a very complex scaling problem that is not solved by HLS is
the data transfer bottleneck of such accelerators. If for example, we consider
FPGAs, there is plenty of hardware for parallel compute units, but providing
these with the required high-speed data streams is a major challenge.
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Figure 1: A host processor with accelerators to achieve high compute efficiency
by heterogeneity. Data transfer is reduced with local buffers.

Especially in the computer vision and image processing domain the data
transfer requirements are challenging, since the high resolution frames or im-
ages that must be processed do not fit in on-chip memories. Therefore, these
frames are stored in external memory which has limited transfer throughput,
and requires much more energy per access compared to on-chip memories. How-
ever, data elements that are accessed more than once can be transferred to small
on-chip buffers, so a huge number of transfers can be converted into reuses of
data. In Figure 1, a schematic overview is given of a heterogeneous architec-
ture that reduces communication with local buffers in the accelerators. The
dominant compute workload for accelerators is often a series of nested loops.
The data access order of these loops can be altered by loop transformations
such as interchange and tiling, which changes the amount of utilized data reuse.
Obtaining the best set of transformations is often intractable, due to the huge
design space.

Our objective is to provide methods that reduce the huge designer effort
which is required to develop efficient hardware accelerators. To the best of our
knowledge, this is the first work that provides an accurate and efficient model
based solution for tile size optimization for static nested loop accelerators. In
contrast to others, our work can perform design space exploration for data reuse
and buffer size allocation in seconds instead of hours or days. More specific, we
make the following contributions:

• Development of analytical models that take intra- and inter-tile reuse into
account. These also include the effect of loop bounds on tile size selection.

• A method to perform quick search space exploration, to obtain the best
schedules given a memory bandwidth constraint.

• We show that our technique can be used to equip a simple processor with
high performance accelerators.

• We evaluate our technique on real-world applications, and show that huge
speedups can be achieved with a modest amount of on-chip buffer size.

2



The remainder of the paper is organized as follows. Section 3 gives a moti-
vational example for data locality optimization, and Section 4 outlines our iter-
ation reordering models for data reuse optimization. In section 5 the scheduling
exploration is discussed, and section 6 outlines the implementation of schedules
into an accelerator platform. Section 8 offers an evaluation of our method on
real-world applications.

2 Related work

Defining the scheduling of loop iterations which is required to optimize data
reuse in hardware controlled memories such as caches is studied for decades [16].
These works often rely on a Polyhedral description [3] of the loop iterations, on
which automatic transformations are applied that enhance performance, e.g.
Pluto [4], and POCC [13]. These works have a strong emphasis on x86 CPU
execution, which is very different from execution on an accelerator. For instance,
the avoidance of conditionals in inner most loops is an important objective
because these interfere with branch predictors, and prevent vectorization. In
contrast, hardware accelerators can handle inner conditionals with a simple
multiplexer that can improve resource sharing, which is key for FPGAs.

More related is the Data Transfer and Storage Exploration (DTSE) method-
ology [5], which focusses on embedded programmable processors with custom
memory hierarchies. DTSE uses loop fusion and interchange to improve access
locality, and regularity. In contrast to our work, loop tiling is not used because
it is platform dependent, and not improving locality across loop nests. However,
in deeply nested loops there is often a huge amount of data reuse that can be
utilized by loop tiling. Furthermore, during accelerator development the plat-
form is not fixed, e.g. buffer size is an open parameter that should be matched
with the tiling strategy.

Recently a new tool is developed that optimizes HLS input descriptions for
parallelism and locality [14]. This method uses the polyhedral framework for
transformations and uses a HLS tool such as AutoESL to estimate the quality
of result. The downside of this approach is its long iteration time; so testing
100 design points can take up to five hours. Secondly, the polyhedral framework
generates x86 optimized code with complicated loop bounds resulting in many
extra divisions, and min/max operations. In [18] the authors improve the gen-
erated output code with a HLS friendly code generator, but the fundamental
problem of complex bounds remains.

The work on the Halide compiler [15] also focuses on static image process-
ing and computer vision applications, but for x86 and GPUs. In their work
Interval Analysis is used for optimization which is simpler and less expressive
compared to the Polyhedral model. Their approach uses an auto tuner based
upon stochastic search methods, which takes up to 2 days to converge to good
solutions. In [9] the data reuse optimization problem for FPGA hardware is
solved by efficient geometric programming. To use geometric programming a
simplified data reuse model is used. In contrast to our method, important prop-
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Figure 2: Data transfer histogram for matrix multiply, as given in listing 1. The
effect of loop transformations such as interchange and tiling is evaluated on the
data transfer.

erties such as overlap between successive tiles is not taken into account.

3 Motivation: Scheduling for data locality

For hardware controlled local memories, such as caches, the reuse distance [7] is
a good metric to predict if a value can be reused given a certain chace size. Reuse
distance is defined as: the number of distinctive data elements accessed between
two consecutive uses of the same element. A modification in the iteration order
of a loop nest can change the reuse distance of the enclosed array accesses.
Therefore, it is possible to change data transfer requirements of an accelerator
by reordering loop nest iterations. Important transformations that are used for
this purpose are loop interchange and tiling.

The effect of transformations is demonstrated on matrix multiplication, the
corresponding loop nest is given in Listing 1. For simplicity the result matrix
C is already initialized to zero, and the sizes of the bounds are set to: Bi=500,
Bj=400, Bk=300. The inner loop iterates over k, so each iteration one element
of C is reused. In addition, after Bk iterations a row of A is reused. We used
Suggestions for Locality Optimizations (SLO) [2], a reuse profiling tool, to visu-
alize the remaining data transfers. Remaining transfers are defined as the total
number of memory accesses minus the reuses of data elements. Figure 2 shows
these remaining transfers for different local buffer sizes. With a very small buffer
(22 elements) only accesses to C are reused, additionally the elements of A are
reused when the buffer increases to (210 elements).
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for(i=0; i<Bi; i++){
for(j=0; j<Bj; j++){

for(k=0; k<Bk; k++){
C[i][j] += A[i][k] * B[k][j];

Listing 1: Nested loop description of a matrix multiplication kernel as running
example.

With a loop interchange transformation, loop i can be positioned as inner
loop, hence reuse of B is exploited. However, figure 2 shows that an interchange
does not improve but worsens the total reuse, because it also influences accesses
to B and C. One could better perform tiling of loop j with factor Tj=4, as
a result the reuse distance of A is reduced to 24 entries. Tiling can also be
performed in other directions and with different factors. Listing 2 demonstrates
tiling in all three dimensions. Further experiments with different tile factors on
multiple loops, reveal that obtaining the best configuration for a buffer size is
a very intricate problem. Even worse is the huge difference in data transfers
for different configurations, i.e. the design space is very chaotic. For example,
loop tiling with Ti=16 and Tj=16 gives excellent results for a buffer size of 29,
but for 28 it is one of the worst schedules. If the designer could find the best
schedules a huge reduction in the number of communications can be achieved,
at the cost of a modest amount of buffer area.

for(ii=0; ii<Bi; ii+=Ti){
for(jj=0; jj<Bj; jj+=Tj){

for(kk=0; kk<Bk; kk+=Tk){
for(i=ii; i<ii+Ti; i++){

for(j=jj; j<jj+Tj; j++){
for(k=kk; k<kk+Tk; k++){

C[i][j] += A[i][k] * B[k][j];

Listing 2: Loop tiling to transfer parts of loop i,j,k, to the inner loop.

4 Modeling The Scheduling Space

To obtain the best tiling and interchange transformations for a loop nest we
formulate an optimization problem. Hence, a cost function that represents the
number of external transfers is used. In addition, a bounding function is used
to limit the required buffer size.

4.1 Modeling intra-tile reuse

For the cost function we assume that a loop nest is split into two parts; an inner
part (zero or more loops) for execution on the accelerator, and outer part that
runs on a host processor. The outer part facilitates the data transfer between the
external memory and the accelerator. The inner part uses this data to perform
computations, which results in temporal or output results that are transferred
back to the host. Our cost function represents the number of transfers to and
from the accelerator. For the loop nest in Listing 2 the cost function is given
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below:

Ntiles ∗ (datatransfer/tile) =

⌈
Bi

Ti

⌉⌈
Bj

Tj

⌉⌈
Bk

Tk

⌉
(2TiTj + TiTk + TkTj) (1)

The first part represents the number of tiles that is modeled by dividing
the domain of each loop by the corresponding tile factor. When modeling the
number of tiles it is important to take loop bounds into account, especially for
nested loops. This is mainly due to the fact that loop bounds are more often
visited when they are part of a loop nest. If the tile factor is not a divisor to
the loop bound; an extra check should be used on the inner loop, or dummy
data values must be used that increase the bound. The first option increases
the control complexity of the accelerator, but the second increases data transfer.
We use the second option, and take the effect into account in the cost function
by ceiling the number of tiles in each dimension. As a result, the cost function
favors tile factors that are divisors of the loop bounds, which gives the best of
both worlds. The second part of eq. (1) represents the data transfer per tile,
which depends on the array references that are used for reading and writing,
and the size of the tile. The term 2TiTj , models the reads and writes to array
C, because array A is only read it is modeled by TiTj .

Valid tile factors that fit in a buffer size constraint are obtained by using a
buffer requirement model as a constraint. The buffer requirement is modeled as
the number of distinct array elements accessed in an inner tile. For Listing 2
this results in expression (2). The selected tile factors with the array indices
decide on the data content of the inner tile.

TiTj + TiTk + TkTj ≤ [Buffer size] (2)

4.2 Adding inter-tile reuse to the model

For a simple accelerator that overwrites the buffer content after processing of
a tile, the model described in Section 4.1 is correct. However, we can do much
better; if we want to exploit inter-tile reuse we should exploit knowledge about
the data contents of the next tile. This increases complexity because the ac-
celerator must initialize the first tile of a series (prolog), compute successive
tiles with data overlap (steady state), and correctly compute the last tile of a
series (epilog). Furthermore, dependencies are created between successive tiles
that reduce inter-tile parallelism. Nevertheless, inter-tile reuse can substan-
tially reduce data transfer, which is a key issue affecting the performance of
many applications.

In figure 3a an example is depicted, which visualizes data transfer for matrix
multiplication. Optimizing for intra-tile reuse with a buffer size constraint of 32
elements results in the tile factors Ti=3, Tj=3, Tk=3. Without inter-tile reuse
the host would send 27 values (3x3 patch of A, B, C), and receive 9 values (3x3
patch of C) for every tile. On the other hand, if data overlap of successive tiles
is exploited, only 18 values (3x3 patch of A and B) are transferred in the steady
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Tile itereration kk
Data transfer intra-tile = (27 load + 9 store) / 27 iterations = 1.33 access/iter.

Tile iteration kk+Tk
Data transfer with inter-tile = 18 load / 27 iterations = 0.67 access/iter.
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Figure 3: Data access pattern for two successive tiles for matrix multiplication,
based on listing 2. a) Data transfer for intra-tile reuse requires all accessed
elements. b) With inter-tile reuse elements of C can be reused, which gives a 2x
reduction of data transfer.

state tiles. As depicted in figure 3b the data of C can be reused. Hence, the
data transfer is reduced by 2x excluding each first and last tile of control loop
kk.

The cost function of Section 4.1 does not take inter-tile reuse into account
and therefore it gives suboptimal results regarding data transfer. The key ob-
servation that opens opportunities to find even better schedules is that tiling of
the inner control loop has no influence on inter-tile reuse. For example, if Tk=1
in figure 3b the of reuse of C does not change, but the memory footprint re-
duces. As a result, not tiling the inner control loop opens opportunities in other
dimensions to increase reuse. The data transfer effects with inter-tile reuse are
modeled by an expression similar to (1), but considering the full range of the
inner control loop as one tile. Hence, the transfers of the prolog, steady state,
and epilog are included in the model. Equation (3) shows the updated data
transfer model with kk as inner control loop.⌈

Bi

Ti

⌉⌈
Bj

Tj

⌉
(TiTj + TiBk + BkTj) (3)

The key difference is that the buffer requirement constraint, as shown in eq. (2),
does not change. The tile factor of the inner control loop Tk is set to 1, because
it is not tiled. Hence, one dimension can get all available reuse for free.

A different inner control loop influences the amount of data overlap between
successive tiles. In the example of Listing 2 the inner control loop is kk. Hence,
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Tile itereration kk
Data transfer intra-tile = (29 load + 20 store) / 20 iterations = 2.45 access/iter.

Tile iteration kk+Tk
Data transfer with inter-tile = 9 load / 20 iterations = 0.45 access/iter.

C[][]

C[][] A[][] B[][]

A[][] B[][]

0 1 2 3 4 5 j

i

0

1

2

3

4

i

0

1

2

3

4

0

1

2

3

4

k

k j0 1 2 3 4 5 0 1 2 3 4 5

0

1

2

3

0

1

2

3

0

1

2

3

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5j j

kii

Buffer size requirement = 29

4 4 4

k

a)

b)

Figure 4: Data access patterns for matrix multiply, based on listing 2. Compared
to figure 3 this pattern is optimized for inter-tile reuse. a) Intra-tile reuse is less
compared to figure 3a. b) Inter-tile reuse is more than figure 3b; with a tile
factor Tk=1 there is more reuse of C with an almost similar buffer size.

C[i][j] is reused and the send and receive transfers for array C are minimized.
By loop interchange jj can be the inner control loop, and instead send transfers
for array A are minimized. The corresponding model is given below:⌈

Bi

Ti

⌉⌈
Bk

Tk

⌉
(2TiBj + TiTk + TkBj) (4)

With the improved models it is possible to find better schedules for minimal
data transfer. In Figure 4a the optimal schedule for matrix multiplication with
a buffer size constraint of 32 elements is visualized. The inner control loop is
kk, and the tile factors are Ti=5, Tj=4, Tk=1. Similar to Figure 3a it outlines
the communication requirement for only intra-tile reuse. As expected, the new
schedule performs worse due to the inter-tile optimization target. However, if
we compare the data transfer requirement with inter-tile reuse a reduction of
1.48x per compute iteration is achieved over the schedule of Figure 3b. As
demonstrated by this matrix multiplication example, the effects of inter tile
reuse must be taken into account when optimizing the iteration order. If not, a
sub-optimal solution will be obtained.

5 Scheduling Space Exploration

When considering transformations such as interchange and tiling on deep nested
loops the scheduling space can be huge, as shown in Section 3. We use the
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models proposed in Section 4 to obtain the best schedules within seconds instead
of hours or days as reported by other search methods [14, 15]. This target is
achieved by using analytical models that can be evaluated quickly, and using
inter-tile reuse optimization, which prunes the search space. Our approach is
outlined with a simple convolution kernel, shown in Listing 3. The loop bounds
of the example nesting are Bi=50 and Bj=100.

for(i=0; i<Bi; i++){
for(j=0; j<Bj; j++){

Out[i] += X[i+j] * H[j];

Listing 3: Nested loop description for convolution.

For intra-tile optimization different tiling factors should be explored e.g.,
combinations of Ti for loop i, and Tj for loop j that fit the constraints. The
search space for this problem is depicted in Figure 5. However, for inter-tile
optimization the search space is much smaller, so one loop e.g. ii is selected as
inner control loop and for the other loop j, tile sizes are evaluated. This is also
done with the other option jj as control loop. Essentially one dimension of the
search space is removed. The corresponding cost functions are given in eq. (5),
and the buffer size constraint is eq. (6).

Cost =


⌈
Bi

Ti

⌉
(Ti + (Ti + Bj − 1) + Bj) Tj=1⌈

Bj

Tj

⌉
(2Bi + (Bi + Tj − 1) + Tj) Ti=1

(5)

Ti + (Ti + Tj − 1) + Tj ≤ [Buffer size] (6)

The search for the best configuration is performed by a bounded search
through the valid solution space. Since the buffer size requirement function is
monotonic, the bounds on the valid solution space can be efficiently set with the
guarantee that optimal solutions are obtained. This search method is visualized
in Figure 5. Important to note is the short search time that is required to obtain
the best schedules for very deep nested loops. On a standard laptop the search
space for our 8-level deep motion estimation kernel is explored in 4.2 seconds,
with a buffer size constraint of 1024 elements.

6 Implementation

An optimized schedule must be converted to host processor code and an HLS
accelerator description according to the template in figure 1. The required
conversions are outlined by the matrix multiplication example with a buffer size
constraint of 32 entries. The optimal schedule, derived from Listing 2 and inter-
tile reuse optimization, has tiling parameters Ti=5, Tj=4, and the inner control
loop is kk. The resulting data access pattern is depicted in figure 4b.

The host processor code executes the outer control loops, and takes care of
data transfers between host and accelerator. Basically, the outer control loops of
listing 2 are used. Furthermore the prolog and epilog parts are inserted, which
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Figure 5: Design space for tiling configurations on the convolution code in listing
3. Each axis represent a possible tile factor as parameter. For inter-tile reuse
optimization one of the tile factors must equal one, which prunes the space. Two
options remain Ti=1 or Tj=1 the other parameter must be optimized. The best
configuration given a buffer size, is not always located on the border as shown
for a buffer constraint of 32.

transfer input data and output results, respectively. Finally, the inner control
loop is inserted, which transfers the steady state data chunks. In Listing 4, a
description of the host code is given. Note that the Send and Receive functions
facilitate FIFO based communication. For the connection between the host and
accelerator we use the Fast Simplex Links (FSLs) from Xilinx.

for(ii=0; ii<Bi; ii+=Ti){
for(jj=0; jj<Bj; jj+=Tj){

// prolog part nothing to send
for(k=0; k<Bk; k++){ // steady state

Send(A[ii:ii+Ti-1][k]);
Send(B[k][jj:jj+Tj-1]);

}
// epilog part receive results
Receive(C[ii:ii+Ti-1][jj:jj+Tj -1]);

} }

Listing 4: Host processor code that corresponds to the matrix multiply example
of listing 2. This code performs data transfer by executing the outer control
loops.

The accelerator code performs the content of the tile loops, which is the main
compute workload. It has no notion of the position in the program; it just re-
peats execution of streams with overlapping tiles. Furthermore, it describes the
read/store policy in the local buffers. The prolog and epilog parts are specified,
and in addition the steady state inner control loop is inserted. This last part
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contains a data transfer and a compute part. If desired, the compute part can
be parallelized by adding HLS specific pragmas for pipelining or unrolling [17].
Listing 5 gives of the accelerator code:

Init(C[0:Ti -1][0:Tj-1]); // prolog
for (k=0; k<Bk; k++){ // steady state

Receive(A[0:Ti-1]);
Receive(B[0:Tj-1]);
for(i=0; i<Ti; i++){

for(j=0; j<Tj; j++){
C[i][j]+=A[i]*B[j];

} } }
Send(C[0:Ti -1][0:Tj-1]); // epilog return results

Listing 5: Accelerator code, which computes on incoming data by executing
inner loops of the matrix multiply example.

7 Evaluation Methodology

To evaluate our optimized accelerators, we map a representative set of real-world
applications. We focus on popular embedded applications, with extensive data
transfer requirements, in the image and video processing domain. As outlined
these applications should contain static deep nested loops that represent the
major compute workload. A short overview of the applications is given below,
and in addition their sources are made available on the web: http://parse.

ele.tue.nl/research/tools.

7.1 Benchmark Applications

7.1.1 Demosaicing

Camera processing pipelines typically require a demosaicing step, since the red,
green, and blue (RGB) channels of the sensor are laid out in a Bayer [1] pattern.
A demosaicing algorithm interpolates the two missing color values, at each pixel
position. However, interpolation is difficult because the color channels have an
inadequate sampling resolution, which causes color artifacts. We use a 5x5
position adaptive interpolation kernel based upon the Malvar-He-Cutler [10]
method. Furthermore, an 8 Mpixel input image is used for realistic data transfer
figures.

for(y=0; y<By; y++){
for(x=0; x<Bx; x++){

for(c=0; c<Bc; c++){
for(k=0; k<Bk; k++){

for(l=0; l<Bl; l++){
Out[y][x][c] += In[y+k][x+l] *

W[y&1][x&1][c][k][l];

Listing 6: Pseudo description of the Malvar method for demosaicing
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7.1.2 Motion Estimation

An important step in video coding is Motion Estimation; since it significantly
improves compression, though substantially increasing complexity. In modern
coding standards, such as H.264, the Integer Motion Estimation (IME) step
represents 78% of the compute workload, and 78% of the memory accesses [6].
We use a full-search block matching kernel with a window of 32x32 that searches
in a previous and future reference frame for the best matching block, using the
Sum of Absolute Differences (SAD) cost function. Furthermore, there are four
HD 720p frames between two reference frames that must be encoded by motion
vectors. As outlined in Listing 7 the algorithm can be described by a very deep
loop nest, with reuse opportunities in all dimensions.

for(f=0; f<Bf; f++){ // encoded frame nr.
for(by=0; by<Bby; by++){ //macro block

for(bx=0; bx<Bbx; bx++){
for(r=0; r<Br; r++){ // reference frame

for(sy=0; sy<Bsy; sy++){ // search window
for(sx=0; sx<Bsx; sx++){

for(y=0; y<By; y++){ //block difference
for(x=0; x<Bx; x++){

diff += abs(in[f][by,y][bx,x] -
ref[r][by,sy,y][bx,sx,x]);

Listing 7: Pseudo description of Integer Motion Estimation (IME) for a video
coding application

7.1.3 Object Recognition

Presently, an increasing number of embedded devices use object detection and
recognition, e.g. face detection in photo cameras, and speed sign recognition
in navigation devices [12]. A flexible and robust algorithm for these tasks is
a Convolutional Neural Network (CNN) [8]. In our evaluation we use a speed
sign recognition application on a 720p video stream. Specifically, we used an
optimized version with merged feature extraction layers for better locality, based
upon [11].

7.2 Platform and tools

As a reference for evaluation fixed-point versions of the applications are mapped
to three different platforms:

1. Intel Core-i7 960 CPU at 3.2GHz

2. Arm-A9 CPU at 667MHz, Xilinx Zynq SoC

3. MicroBlaze configured for performance, at 200MHz

In addition, our methodology is used to develop hardware accelerators that
increase the performance of a MicroBlaze host processor. We synthesize our de-
signs for the Xilinx ML605 board, which has one Virtex-6 FPGA (xc6vlx240t-
1ffg1156). For development we use the Xilinx Vivado 2012.3 tools, including
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Vivado HLS (AutoESL), which is used to create accelerators. The clock fre-
quency of our designs is set to 200 MHz.

8 Results

To quantify the effectiveness of our inter-tile reuse optimization strategy we
firstly analyze the data transfer effects for the three benchmark applications.
So, for each application the cost functions and buffer size requirements are
derived. With these descriptions we performed the scheduling space exploration
for different buffer size constraints, as outlined in section 5.

8.1 Inter-tile reuse optimization

Figure 6 shows the data transfer requirements for the original iteration ordering,
and three other optimization strategies. The amount of data transfer is specified
as a factor with respect to the theoretical minimum, i.e. communicating each
input and final output only once. This can always be achieved with an infinite
buffer size. The communication volume is plotted against the required buffer
size, which should be as small as possible.

Intra-tile optimization shows the result for an accelerator that resets the
buffer contents after each tile, as discussed in section 4.1. This is a näıve op-
timization target; as a result it sometimes gives worse results compared to the
original iteration order. If we exploit the available inter-tile reuse for schedules
first optimized for intra-tile reuse the communication or the required buffer size
is significantly reduced. Finally, the schedule is optimized for inter-tile reuse,
which for all benchmarks results in the least amount of communication at the
smallest buffer size.

Important to note is the huge data transfer reduction. E.g. for the mo-
tion estimation benchmark the best schedule can reduce data transfer up to
50x compared to the original. Furthermore, we demonstrate that a relatively
small local buffer of 1024 elements can substantially reduces data transfer. For
motion estimation and object recognition the remaining number of transfers is
within one order of magnitude of the minimum. However, for demosaicing the
minimum is already reached with a buffer of 512 elements. A designer should
stop increasing buffer size after this point, because the amount of data transfer
stays constant and it only increases the area footprint.

8.2 Matching compute and buffer resources

As demonstrated, there is a trade-off between buffer size and communication
requirements for hardware accelerators. In addition, a designer can change the
amount of compute resources, which also influences the communication require-
ments. For HLS descriptions this can be achieved by unrolling a loop of the
algorithm. After unrolling, the data path that performs the operation is repli-
cated resulting in extra hardware that exploits parallelism in the algorithm. To
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Figure 6: External data transfers versus accelerator buffer size, for multiple
schedules. These are, the original ordering, intra-tile optimization, intra-tile
optimization while enabling inter-tile reuse, and inter-tile reuse optimization or
full optimization.
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Table 1: Data transfer and compute time for the evaluation platform

Workload Read Write Demosaic Blockmatch CNN

Throughput [MB/s] 29.9 43.2 39.9 30.0 40.9
Compute 1PE [s] - - 3.2 37.9 4.3
Transfer 128entry [s] - - 2.8 19.3 2.0

utilize this hardware the buffer size can be increased such that more data is
reused. In an efficient accelerator design, buffer and compute resources are in
balance. If not, more resources are required than necessary, because perfor-
mance is limited by either data transfer or compute time.

In figure 7 the measured execution time for different accelerator buffer sizes
and degrees of parallelism is shown. We observe e.g. that accelerators with
a buffer size of 32 elements are bandwidth limited for all three benchmark
applications. These small designs do not scale if more compute resources are
used. On the other hand, if only more and more buffer resources are used the
execution time saturates as well. In this situation more parallelism is required
because the accelerator is compute bound.

With a few simple streaming communication tests the available transfer
bandwidth can be measured. This enables designers to estimate communication
time that should be balanced with compute time for hardware efficient design
points. By using a MicroBlaze host processor we transferred 32 MB of data to
and from the accelerator to measure the transfer throughput. For each bench-
mark the best case transfer throughput is estimated with read/write ratio to
external memory, as given in table 1. E.g. demosaicing has more writes than
reads and therefore is close to the write speed. A designer can use this informa-
tion to quickly discover the interesting regions of the design space. For example,
a single PE design would not require a buffer size much larger than 128 entries
for each of the benchmarks. A buffer size over 128 entries would only make
sense if the parallelism is increased by unrolling.

8.3 Quality of results

The quality of our implemented schedules is evaluated by comparing execution
time with resource usage. For FPGAs, resource usage is defined as: MAX(%DSPs,
%BRAMs, %LUTs, %flip-flops). In figure 8 the execution time versus resource
usage is depicted by plotting the design points of figure 7. In addition, the area
execution time product is used to define the efficiency of different implementa-
tions. For each benchmark the best area execution time product is extrapolated
and plotted as a dotted line in the comparison.

The results of demosaicing and object recognition behave intuitive. Designs
that are balanced score close to the dotted line, while designs severely limited
by either compute or buffer resources occur further from this line. As already
predicted for demosaicing in figure 6, increasing the buffer size beyond 512
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Figure 7: Execution time of different buffer size constraints versus parallelism in
the accelerator, which is created by unrolling in the HLS accelerator description.
The dotted line represents the execution time without data transfer. As figure
6 showed, demosaicing exploits all reuse with a 512 entry buffer.
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Figure 8: FPGA resource utilization for accelerator mappings with an optimal
iteration order. The most efficient solution is extrapolated by the dotted line as
the area delay product.
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Table 2: Execution time comparison for multiple platforms

Platform Demosaic [s] Block Match [s] CNN [s]

Intel-i7 0.54 8.12 0.63
Arm-A9 5.75 72.32 5.92
MicroBlaze 22.10 283.96 19.05
Accelerator 1.36 3.45 0.75

entries does not improve the design any further. However, for motion estima-
tion the results behave different, e.g. increasing parallelism in a data transfer
bounded designs can improve efficiency. Important to note is that Vivado HLS
is a production tool, therefore a small change in the input description can trig-
ger different optimizations. Due to unrolling with a factor two the number of
required LUTs in the 32 and 64 entry designs are reduced. This reduces overall
resource usage and the area delay product.

Finally, we compared the best accelerators with other platforms, as shown
in table 2. The accelerators do not have a dedicated DMA controller and are
therefore constraint by communication bandwidth. However, the accelerators
can increase the original MicroBlaze performance by 16 to 82 times, at the cost
of a very small increase of overall resource usage. As a result, a very simple
and efficient embedded processor can perform on par with a high-end general
purpose processor. Dedicated DMA can be added, but it will only shift the
result of figure 8.

9 Conclusion

In this paper we demonstrated that efficient usage of local buffers in FPGA
based accelerators can give substantial performance improvements. These im-
provements are driven by maximizing efficiency in the local buffers with data
access optimizations for nested loops. Due to the efficiency increase only a mod-
est amount of buffer size is required to achieve a huge reduction of external data
transfer. The main improvement is achieved by optimizing for inter-tile reuse
with loop transformations such as interchange and tiling. Although the design
space can be huge and chaotic for very deep nested loops, we show that the
best configuration of transformations can be found with an analytical model
based solution. With our focus on transformations that are good for inter-tile
reuse, the design space can be pruned which reduces exploration time to the
order of seconds. By using the results of our optimization method with the
Xilinx Vivado HLS tools, the huge designer effort to develop efficient hardware
accelerators is significantly reduced. With our approach the number of required
design iterations is minimized, by directly computing the best candidates before
time consuming synthesis. As a result, the mapping process of static image or
video processing applications to dedicated hardware accelerators is much better
manageable.
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