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Abstract

This paper presents a clustered SIMD accelerator template
for Convolutional Networks. These networks significantly out-
perform other methods in detection and classification tasks
in the vision domain. Due to the excessive compute and data
transfer requirements these applications benefit a lot from a
dedicated accelerator. The proposed accelerator reduces mem-
ory traffic by loop transformations such as tiling and fusion
to merge successive layers. Although fusion can introduce
redundant computations it often reduces the data transfer, and
therefore can remove performance bottlenecks. The SIMD
cluster is mapped to a Xilinx Zynq FPGA, which can achieve
6.4 Gops performance with a small amount of resources. The
performance can be scaled by using multiple clusters.

1. Introduction

Nowadays embedded computer architectures embrace cus-
tomization to realize the best possible performance within a
low power envelope. This trend has successfully brought com-
plex tasks such as HD video playback to Smartphones, and
in the extreme to wearable devices such as Smartwatches or
Glasses. A current trend is to improve intelligence of these
so called smart devices by releasing applications for speech,
image, and video recognition e.g., Siri (speech), and Impala
(image categorization).

Recently the state-of-the-art for such complex classifica-
tion tasks is improved significantly by the availability of huge
amounts of training data combined with the use of Deep Con-
volutional Networks [6]. These networks are all-in models
that perform Feature Extraction and Classification in a single
trainable model, consisting of 5 to 8 successive layers of pro-
cessing [7]. Mapping these large-scale models to embedded
processors is very challenging. Firstly, the compute workload
is huge e.g., the winning network in the ILSVRC-2012 [6]
image classification task has 6.4∗108 connections, resulting
in 6.4∗108 Multiply Accumulate (MACC) operations to pro-
cess a RGB image patch of 224x224 pixels. Secondly, the
data transfer requirements are huge, this network has 6∗107

parameters while the intermediate neuron data in successive
layers holds 7.7∗105 values. To make things even worse, if
this network is used for a detection task on larger images the
compute and transfer requirements increase substantially.

1.1. Prior work

Due to the success of Convolutional Networks other works
have mapped this model to different platforms. Often GPUs
are used to accelerate workload that involves the training or
detection tasks [4, 8, 3]. With massive amounts of parallelism
and huge data transfer rates a GPU platform seems a natural
choice for Convolutional Networks. However, from an energy
perspective a GPU is far from ideal for embedded devices. As
a result, a number of researchers have successfully proposed
dedicated accelerators for FPGA or ASIC platforms [1, 5, 9, 2].
Most of these works focus on efficient implementation of the
computational primitives by using systolic implementations.
Consequently, data transfer is considered secondary and solved
by advanced DMA or neglected for simplicity.

The most recent works admit that data transfer should be a
first order concern to achieve efficient processing [9, 2]. Both
works consider a layer of a Convolutional Network as a deep
nested loop on which transformations such as interchange
and tiling can be applied to improve data locality. However
architectural design choices prevent merging of successive
layers, which forces them to transfer the hidden layer outputs
to- and from-external memory.

1.2. Contributions

To reduce data transfer requirements further we propose a
clustered SIMD architecture with local buffers that can merge
successive layers. Layer merging is performed by adding loop
fusion to the list of optimization, which is possible due to
our flexible SIMD architecture. More specifically we make te
following contributions:
• We present loop fusion as an additional transformation to

further reduce data transfer for Convolutional Networks.
• We propose a clustered SIMD template to exploit the bene-

fits of merging network layers by fusion.
• We mapped the cluster to a Xilinx Zynq FPGA to evaluate

performance, and resource usage.

2. Fusing Network Layers
Deep Convolutional Networks, as depicted in figure 1, can be
written as a series of deep nested loops representing successive
layers in the algorithm. The order of computations in layers is
not fixed, so it can be changed by loop transformations. The
upper part of figure 1 outlines tiling of neurons in a single
layer to improve data locality. In addition, we propose fusion
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Figure 1: Graphical overview of Convolutional Network layers.
Layer 1 hold an input image which is convolved by different fil-
ters to extract features. Tiling transformations can improve data
locality in a layer, which can also span multiple layers removing
the need to store intermediate layers externally.

to prevent external storage of a hidden layer. However, for
fusion to be valid dependencies over layers must be taken
into account. In figure 2, we show the data access patterns
of our pipelined fusion approach, which involves redundant
computations to solve dependencies. Figure 2, shows that
for small tiles the redundant work is significant; therefore tile
size must be optimized to minimize redundancy. If applied
correctly, fusion reduces data transfer between 1.5 - 2x for our
example networks.

3. SIMD Accelerator Template
To balance flexibility and efficiency we use a clustered SIMD
based accelerator. This gives us programmable control over
data streams, and in addition we can split convolutions in sep-
arate MACC operations. As a result we have more scheduling
freedom compared to the bigger convolution primitives. Fig-
ure 3 outlines the pipelined cluster template, which can process
a stream of overlapping tiles as shown in figure 1-2. Key in
this design is the dual-port vector reuse buffer, which enables
flexible local storage of coefficients, inputs, and outputs.

For control a distributed micro-program is used, which con-
trols the individual pipeline stages. The instruction sequences
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Figure 2: A). Data access, and buffer storage pattern when only
inter-tile reuse optimization is applied. B). Access pattern when
layer fusion used, introducing redundant compute workload, but
without external storage of layer Y results
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Figure 3: Pipelined data path for a SIMD compute cluster. The
cluster contains a 1024 entry local buffer, a vector register file
with shift functionality, and 16 MACC units. The activation LUT
has a feedback to the local buffer to enable merging of succes-
sive layers.

are very similar to software-pipelining for VLIW processors.
An example instruction sequence is given in figure 4.

4. Conclusions

We presented layer merging by nested loop fusion as an ad-
ditional transformation to improve data locality for Convolu-
tional Networks. In our example networks fusion can reduce
external memory traffic by 1.5 to 2 times. In addition we pre-
sented a clustered SIMD accelerator that can take advantage of
the improved data locality. We mapped the cluster to a Xilinx
Zynq FPGA board on which it can achieve 6.4 Gops, at 200
Mhz. The cluster design requires 16 DSP blocks, 4 BRAMs,
660 LUTs and 527 Flip-Flops, which is only a small amount
(7.3%). As a result we can scale performance by the use of
multiple clusters that share a dedicated DMA for efficient
memory access.

Although this design is mapped to FPGA it can be imple-
mented as accelerator core in a SOC. This would enable users
of Smartphones to run a range of complex vision applications
without depleting their battery within a few minutes.
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Figure 4: Assembly description of the steady-state program that
computes a 3x3 convolution in a feature map. Note that con-
trol is distributed over the successive stages in the architecture
pipeline. Image read and write actions with the local buffer use
modulo addressing over steady-state iterations to maximize the
efficiency of the memory.
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