

A data-reuse aware accelerator for large-scale convolutional
networks
Citation for published version (APA):
Peemen, M. C. J., Mesman, B., & Corporaal, H. (2014). A data-reuse aware accelerator for large-scale
convolutional networks. In Workshop on Neuromorphic Architectures (NeuroArch), 14 June 2014, Minneapolis,
Minnesota

Document status and date:
Published: 01/01/2014

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/850eaf57-76e3-45e6-aca9-02a9524fa644

A Data-Reuse Aware Accelerator for Large-Scale Convolutional Networks

Maurice Peemen, Bart Mesman, and Henk Corporaal
Department of Electrical Engineering, Electronic Systems Group
Eindhoven University of Technology, Eindhoven the Netherlands

m.c.j.peemen@tue.nl, b.mesman@tue.nl, h.corporaal@tue.nl

Abstract

This paper presents a clustered SIMD accelerator template
for Convolutional Networks. These networks significantly out-
perform other methods in detection and classification tasks
in the vision domain. Due to the excessive compute and data
transfer requirements these applications benefit a lot from a
dedicated accelerator. The proposed accelerator reduces mem-
ory traffic by loop transformations such as tiling and fusion
to merge successive layers. Although fusion can introduce
redundant computations it often reduces the data transfer, and
therefore can remove performance bottlenecks. The SIMD
cluster is mapped to a Xilinx Zynq FPGA, which can achieve
6.4 Gops performance with a small amount of resources. The
performance can be scaled by using multiple clusters.

1. Introduction

Nowadays embedded computer architectures embrace cus-
tomization to realize the best possible performance within a
low power envelope. This trend has successfully brought com-
plex tasks such as HD video playback to Smartphones, and
in the extreme to wearable devices such as Smartwatches or
Glasses. A current trend is to improve intelligence of these
so called smart devices by releasing applications for speech,
image, and video recognition e.g., Siri (speech), and Impala
(image categorization).

Recently the state-of-the-art for such complex classifica-
tion tasks is improved significantly by the availability of huge
amounts of training data combined with the use of Deep Con-
volutional Networks [6]. These networks are all-in models
that perform Feature Extraction and Classification in a single
trainable model, consisting of 5 to 8 successive layers of pro-
cessing [7]. Mapping these large-scale models to embedded
processors is very challenging. Firstly, the compute workload
is huge e.g., the winning network in the ILSVRC-2012 [6]
image classification task has 6.4∗108 connections, resulting
in 6.4∗108 Multiply Accumulate (MACC) operations to pro-
cess a RGB image patch of 224x224 pixels. Secondly, the
data transfer requirements are huge, this network has 6∗107

parameters while the intermediate neuron data in successive
layers holds 7.7∗105 values. To make things even worse, if
this network is used for a detection task on larger images the
compute and transfer requirements increase substantially.

1.1. Prior work

Due to the success of Convolutional Networks other works
have mapped this model to different platforms. Often GPUs
are used to accelerate workload that involves the training or
detection tasks [4, 8, 3]. With massive amounts of parallelism
and huge data transfer rates a GPU platform seems a natural
choice for Convolutional Networks. However, from an energy
perspective a GPU is far from ideal for embedded devices. As
a result, a number of researchers have successfully proposed
dedicated accelerators for FPGA or ASIC platforms [1, 5, 9, 2].
Most of these works focus on efficient implementation of the
computational primitives by using systolic implementations.
Consequently, data transfer is considered secondary and solved
by advanced DMA or neglected for simplicity.

The most recent works admit that data transfer should be a
first order concern to achieve efficient processing [9, 2]. Both
works consider a layer of a Convolutional Network as a deep
nested loop on which transformations such as interchange
and tiling can be applied to improve data locality. However
architectural design choices prevent merging of successive
layers, which forces them to transfer the hidden layer outputs
to- and from-external memory.

1.2. Contributions

To reduce data transfer requirements further we propose a
clustered SIMD architecture with local buffers that can merge
successive layers. Layer merging is performed by adding loop
fusion to the list of optimization, which is possible due to
our flexible SIMD architecture. More specifically we make te
following contributions:
• We present loop fusion as an additional transformation to

further reduce data transfer for Convolutional Networks.
• We propose a clustered SIMD template to exploit the bene-

fits of merging network layers by fusion.
• We mapped the cluster to a Xilinx Zynq FPGA to evaluate

performance, and resource usage.

2. Fusing Network Layers
Deep Convolutional Networks, as depicted in figure 1, can be
written as a series of deep nested loops representing successive
layers in the algorithm. The order of computations in layers is
not fixed, so it can be changed by loop transformations. The
upper part of figure 1 outlines tiling of neurons in a single
layer to improve data locality. In addition, we propose fusion

Layer 1 Layer 2 Layer 3

Ti

Tm

j

n

Tr

Tr Ts

Figure 1: Graphical overview of Convolutional Network layers.
Layer 1 hold an input image which is convolved by different fil-
ters to extract features. Tiling transformations can improve data
locality in a layer, which can also span multiple layers removing
the need to store intermediate layers externally.

to prevent external storage of a hidden layer. However, for
fusion to be valid dependencies over layers must be taken
into account. In figure 2, we show the data access patterns
of our pipelined fusion approach, which involves redundant
computations to solve dependencies. Figure 2, shows that
for small tiles the redundant work is significant; therefore tile
size must be optimized to minimize redundancy. If applied
correctly, fusion reduces data transfer between 1.5 - 2x for our
example networks.

3. SIMD Accelerator Template
To balance flexibility and efficiency we use a clustered SIMD
based accelerator. This gives us programmable control over
data streams, and in addition we can split convolutions in sep-
arate MACC operations. As a result we have more scheduling
freedom compared to the bigger convolution primitives. Fig-
ure 3 outlines the pipelined cluster template, which can process
a stream of overlapping tiles as shown in figure 1-2. Key in
this design is the dual-port vector reuse buffer, which enables
flexible local storage of coefficients, inputs, and outputs.

For control a distributed micro-program is used, which con-
trols the individual pipeline stages. The instruction sequences

0 1 2 3 4 5

0

1

2

3

4

0 1 2 3 4 5

0

1

2

3

4

Y[m][n]

X[m+k][n+l]

m

m+k

nn+l

5

0 1 2 3

0

1

2

3

4

Z[i][j]i

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4 5

0

1

2

3

4

Y[m][n]

X[m+k][n+l]

m

m+k

nn+l

5

j

A).

B).
6

Read from external

Write to external

Read from buffer

Redundant work

Figure 2: A). Data access, and buffer storage pattern when only
inter-tile reuse optimization is applied. B). Access pattern when
layer fusion used, introducing redundant compute workload, but
without external storage of layer Y results

PE
0-7

PE
8-15

EX VMAC

IMG
Reg
0-7

IMG
Reg
8-15

IMG
Reg

16-22

W
Reg
0-3

Reg Op

Local
Buffer
1024x
8 Byte

Rd
Port

A

Rd
Port

B

Wr
Port

A

Wr
Port

B

Rd LocalWr LocalInput Bus
64 bit

O
Reg
0-7

O
Reg
8-15

Saturate

Sgm
LUT

WB Sgm Output Bus
64 bit

Figure 3: Pipelined data path for a SIMD compute cluster. The
cluster contains a 1024 entry local buffer, a vector register file
with shift functionality, and 16 MACC units. The activation LUT
has a feedback to the local buffer to enable merging of succes-
sive layers.

are very similar to software-pipelining for VLIW processors.
An example instruction sequence is given in figure 4.

4. Conclusions

We presented layer merging by nested loop fusion as an ad-
ditional transformation to improve data locality for Convolu-
tional Networks. In our example networks fusion can reduce
external memory traffic by 1.5 to 2 times. In addition we pre-
sented a clustered SIMD accelerator that can take advantage of
the improved data locality. We mapped the cluster to a Xilinx
Zynq FPGA board on which it can achieve 6.4 Gops, at 200
Mhz. The cluster design requires 16 DSP blocks, 4 BRAMs,
660 LUTs and 527 Flip-Flops, which is only a small amount
(7.3%). As a result we can scale performance by the use of
multiple clusters that share a dedicated DMA for efficient
memory access.

Although this design is mapped to FPGA it can be imple-
mented as accelerator core in a SOC. This would enable users
of Smartphones to run a range of complex vision applications
without depleting their battery within a few minutes.

Wr[c3,i0-7], 4

Wr[c3,i8-15], 5

Wr[c3,i16-17], 6

Read Local
Rd a 0, [b0 w0-1]

Rd ab 4 5, [c0,i0-15]

Rd b 6, [c0,i16-17] Set W0

Reg Operation

Set i0 i1, Shift W

Set i3, Shift i0 i1, Shift W

Set, b0

EX VMAC

MAC,w0, c0 i0

MAC,w1, c0 i1

MAC,w2, c0 i2

MAC,w3, c1 i0

Shift i0 i1, Set W2

Set i0 i1, Shift W

Set i0 i1, Shift W

Rd b 9, [c1,i16-17]

Rd ab 7 8, [c1,i0-15]

Shift i0 i1, Set W1

Set i3, Shift i0 i1, Shift WRd ab 10 11, [c2,i0-15]

MAC,w4, c1 i1

MAC,w5, c1 i2

Rd a 2, [w5-8]

MAC,w6, c2 i0

MAC,w7, c2 i1

MAC,w8, c2 i2

Set i3, Shift W

Shift i0 i1, Shift W

Rd a 1, [w2-4]

Rd b 12, [c2,i16-17]

Write Local WB Sgm

Sigm0, Wr

Sigm1, Wr

NOP

Figure 4: Assembly description of the steady-state program that
computes a 3x3 convolution in a feature map. Note that con-
trol is distributed over the successive stages in the architecture
pipeline. Image read and write actions with the local buffer use
modulo addressing over steady-state iterations to maximize the
efficiency of the memory.

2

References
[1] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynam-

ically configurable coprocessor for convolutional neural networks,” in
ISCA, 2010, pp. 247–257.

[2] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: a small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of ASPLOS ’14. ACM, pp. 269–284.

[3] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmid-
huber, “Flexible, high performance convolutional neural networks for
image classification,” in Proceedings of AAAI ’11, 2011, pp. 1237–1242.

[4] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with cots hpc systems,” in Proceedings of The 30th
International Conference on Machine Learning, 2013, pp. 1337–1345.

[5] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. Le-
Cun, “Neuflow: A runtime reconfigurable dataflow processor for vision,”
in Computer Vision and Pattern Recognition Workshops (CVPRW), 2011
IEEE Computer Society Conference on, 2011, pp. 109–116.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks.” in NIPS, vol. 1, no. 2, 2012.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, pp.
2278–2324, 1998.

[8] M. Peemen, B. Mesman, and H. Corporaal, “Efficiency optimization
of trainable feature extractors for a consumer platform,” in Advances
Concepts for Intelligent Vision Systems. Springer, 2011, pp. 293–304.

[9] M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for convolutional neural networks,” in Com-
puter Design (ICCD). IEEE, 2013, pp. 13–19.

3

