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Societal perspective

This thesis is about motion systems; systems that perform controlled movements.
For example, a robot arm that assembles a car, or a 3D-printer that prints a part
of a machine. It is important that these motion systems are accurate and fast to
enable the production of high quality products at a low cost.

The conventional techniques that are used to control these devices assume
that the mechanical structure of these machines is rigid. However, for increasing
requirements on speed and accuracy this assumption is no longer valid. This
thesis provides important contributions to take the flexibility of these systems into
account in the control design. To avoid the need for a mathematical model of these
complex machines, the controllers are designed on the basis of accurate (frequency
response) measurements.

The research conducted in this thesis contributes to the realization of very
precise manufacturing machines that have a large throughput. In the future, this
will enable the production of products with incredible functionality, e.g., the smart-
phones of the future, at a price that everybody can afford.
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Summary
Control of flexible motion systems using frequency response data

The ever increasing technological demands from society call for inexpensive man-
ufacturing of very complex products. This requires the motion systems that are
used in the manufacturing processes to be fast and precise. Fast systems will in-
crease the throughput which lowers the cost of the products, while high precision is
required to achieve high-quality products. In order to satisfy these requirements,
internal deformations of the mechanical structure that occur during the motion
tasks should be considered in the control design.

One possible way to do so is to make an accurate parametric model of the
system to be controlled. This would enable the use of advanced model-based con-
trol techniques. However, high-precision motion systems typically have multiple
inputs and outputs and a large number of internal modes. This makes the deriva-
tion of an accurate, low-order parametric model for control purposes a complex
and time-consuming task.

A different approach is to perform measurements on the system and design a
controller using the obtained data. Such a data-based approach is pursued in this
thesis, for the following reasons. Firstly, for motion systems, accurate frequency
response data can be obtained at low cost, as these systems are typically equipped
with high-precision actuators and sensors. The dynamics of these systems are
relatively fast, such that the data can be obtained within a limited amount of
time, i.e., typically in the order of minutes. Secondly, many of the control designs
that are currently used in industry, are based on loop-shaping using frequency
response data. This renders a data-based approach a natural extension of the
methods that are already used.

This thesis has two main contributions that extend frequency response data-
based methods to better cope with the internal dynamics of motion systems. The
first contribution is a method to predict closed-loop pole locations for a given con-
troller using only frequency response data of the system to be controlled. Insight in
the closed-loop pole locations is important, since the poles of these systems tend
to be lightly damped. Without appropriate control, the time-domain response
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of the system thus will be oscillatory and potentially performance limiting. The
currently used loop-shaping techniques provide only limited insight in the closed-
loop pole locations. In this thesis, a method is developed to compute so-called
transfer function data from frequency response data using Cauchy integrals. For
lightly damped mechanical systems, transfer function data can be used to esti-
mate closed-loop pole locations. Error bounds on the computed pole locations
are derived by investigating the numerical aspects of the computation of transfer
function data. This technique has been validated successfully by means of experi-
ments on a benchmark single-input single-output system consisting of two masses
connected via a flexible shaft. Moreover, experiments on a prototype lightweight
wafer stage demonstrate that this approach is also feasible on an industrial setup.
For this multi-input multi-output system, it was demonstrated that the damping
of the internal dynamics could be predicted accurately by means of the proposed
method. This aids the control engineer in the design and tuning of controllers that
have satisfactory responses in time-domain.

The second contribution of this thesis is a design method for notch filters for
multi-input multi-output systems with internal deformations. Conventional notch
filter design is done for each performance degree-of-freedom separately. However,
this does not take the directionality of the targeted modes into account. More-
over, multiple notch filters will be necessary to target a single mode. The novel
approach in this thesis takes the directionality of the targeted modes into account
by using transformation matrices in combination with conventional single-input
single-output notch filters. In this way a multi-input multi-output controller is
computed which reduces the controller order and facilitates the tuning process.
The method was successfully applied to a flexible beam setup. Especially the off-
diagonal terms of the closed-loop system show improved performance, since the
directions of the modes are taken into account in the design of the notch filters.
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Nomenclature

Acronyms

DOF Degree-of-freedom
FRD Frequency Response Data
LFT Linear Fractional Transformation
LHP Left Half-Plane
MIMO Multi-Input Multi-Output
RGA Relative Gain Array
RHP Right Half-Plane
SISO Single-Input Single-Output
TFD Transfer Function Data

Scalar variables and SISO systems

(Printed in normal font, lower- and uppercase)

roman symbols
a a constant
A actuator
b a constant
c a constant
C(s) controller
C contour in the s-plane
CD Nyquist contour in the s-plane
d distance to the imaginary axis
D(s) determinant of (I + HC)
D(si) value of D at si
D̂(si) estimated value of D(si)



Ef error due to finite integral
Ei error due to integration method
En error due to noise
Es error due to asymmetry
f frequency in Hz
g() a (complex) function
H(jω) frequency response of the plant
H(jωk) frequency response of the plant at ωk
Ĥ(jωk) measured frequency response of the plant at ωk
H(s) transfer function of the plant
H(si) transfer function data at si
Ĥ(si) estimated transfer function data at si
Hyu (y, u) entry of MIMO system H
I(ω) integrand of Cauchy integral
j

√
−1

J cost function
k gain
K maximum value of the second derivative of the integrand
L(s) open-loop
Lσ line in the s-plane parallel to imaginary axis
Lω line in the s-plane parallel to real axis
Myu (y, u) entry of mean value second derivative of the integrand
mkl entries of M
n integer nonnegative number
N integer nonnegative number
Ni(s) notch filter
pcl closed-loop pole
pol open-pole
P probability
r radius in the s-plane
Rx DOF: rotation about x-axis
Ry DOF: rotation about y-axis
Ryu set of radii for entry (y, u)
Rz DOF: rotation about z-axis
s complex frequency (Laplace variable)
si ith complex frequency point
sC a point in the s-plane on the contour C
S(s) sensitivity transfer function
t time
S sensor
T (s) closed-loop transfer function
T DOF: torsion mode
u input
u(s) Re(D(s))
v(s) Im(D(s))
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W (s) weighting filter
W (jω) frequency response of weighting filter
x DOF: translation along x-axis
y output
y DOF: translation along y-axis
z DOF: translation along z-axis

greek symbols
α a point in the s-plane
β damping ratio of filters
∆ω frequency resolution of FRD
ζ damping ratio plant
θ angle
ν(jω) circular complex noise
σ Re(s) absolute damping

σH square root of variance of Ĥ(si)
τ time constant
Φyu set of angles of entry (y, u)
φcl closed-loop characteristic polynomial
φol open-loop characteristic polynomial
φ angle
Ψ modal participation factor
ω Im(s) frequency in rad/s
ωk kth frequency point
ωmax maximum frequency

Vectors

(Printed in bold font, lowercase)

bmi ith input mode shape
cmi ith output mode shape
ki ith vector of the kernel
qm modal displacements vector
u input vector
x state vector
y output vector
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Matrices and MIMO systems

(Printed in bold font, uppercase)

roman symbols
0 zero matrix
A state-space system matrix
B state-space input matrix
Bm modal state-space input matrix
C state-space output matrix
Cm modal state-space output matrix
C(s) MIMO controller
C(si) value of MIMO controller at si
D state-space feedthrough matrix
E error term of TFD
Hdec(s) decoupled plant
H(jω) frequency response of H(s)
H(jωk) frequency response of H(s) at jωk
Ĥ(jωk) measured frequency response of H(s)
H(s) MIMO plant
H(si) value of H(s) at si
Ĥ(si) estimated value of H(s) at si
I identity matrix
L(s) open-loop matrix (HC)
M matrix used to compute mode shapes via optimization
Ni Matrix containing SISO notch in (1,1) entry for mode i
R matrix containing sets of radii
Tin,i input transformation matrix for mode i
Tout,i output transformation matrix for mode i
Tu input decoupling matrix
Ty output decoupling matrix
W weighting filter matrix
greek symbols
Z matrix of damping values
Φ matrix containing sets of angles
Ψ modal participation matrix
Ω matrix of eigenfrequencies
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Miscellaneous

ẋ derivative of x with respect to time
Im(c) imaginary part of complex variable c
Re(c) real part of complex variable c
∠(c) argument of complex variable c
c∗ complex conjugate of c
ker(M) kernel (null space) of matrix M
R set of real-numbers
C set of complex-numbers
Var[x] variance of x
Prob [x] probability of x
diag(di, ...) diagonal matrix containing elements di on its diagonal
� element wise multiplication of matrices
� element wise division of matrices
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Chapter 1

Introduction

T his chapter states the context and goals of the research presented in
this thesis. An overview of feedback control of flexible motion systems

is given after which the research approach and contributions are presented.

1.1 Advances in high-precision motion systems

1.1.1 Accurate and fast positioning

Nowadays, products and production processes often contain positioning devices.
For example, automated manufacturing techniques such as milling, turning and
3D-printing contain positioning devices to remove or add material at the right
location on a product. Furthermore, they are found in assembly processes ranging
from pick-and-place machines for small electronic components to the assembly
lines for complete cars. But they are also used in many consumer products such
as printers, hard-disk drives or optical drives. The positioning devices need a high
accuracy in order to produce high-quality products. At the same time, the speed
of these machines should be as high as possible to reduce the production cost. This
renders the design of these devices a challenging problem.

Machines in the chip manufacturing industry are a prime example that illustrates
the typical challenges of high-precision motion systems. Therefore, this application
is chosen as a carrier for the research described in this thesis. The results presented
in this thesis, however, are not limited to this specific application.



8 Chapter 1 Introduction

1.1.2 Integrated circuits

Over the past years, the functionality of integrated circuits (IC) has increased
tremendously, while their costs have decreased. For example, in 1994 a 4 MB
CompactFlash card would cost approximately 200 euro, while nowadays a 50 euro
MicroSD card can hold 64 GB of data, see Figure 1.1. Similar trends have been
observed for dynamic random access memory (DRAM) chips and central processing
units (CPU) (Van den Brink, 2013).

Figure 1.1: 1994 CompactFlash card of 4 MB and a 2014 microSD card of 64 GB.

A large number of transistors per chip is required to increase the functionality of
ICs. Miniaturization of the features of the ICs keeps the dimensions and power
consumption within acceptable limits and increases the speed of the chip. At the
same time, the production speed of these chips needs to be increased to reduce the
costs. Hence, a highly accurate and fast production process is required.

ICs are produced on silicon disks, called wafers. The production process involves
many steps, but the most critical step is lithography (Mack, 2008), see Figure 1.2.
In this step, (extreme) ultraviolet light is used to project the chip design from a
reticle onto the wafer, which is covered with a light-sensitive layer. Using various
chemical processes, the projected image is converted into one layer of the electrical
circuit. Typically, 20-30 layers are used to construct the complex structures of an
IC.

The image of the chip design is projected in a scanning manner by moving the
wafer and reticle with respect to each other. This increases the size of the exposed
area and the imaging performance of the lens. The resulting lithography machines
are called wafer scanners. To achieve the scanning motions very fast and accurate
positioning stages are required. Current wafer scanners obtain an accuracy of a
few nanometer, move at 0.6− 1 m/s with accelerations up to 40 m/s2 and have a
settling time of a few milliseconds (Butler, 2011).
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Figure 1.2: Lithography is a crucial step in the production process of integrated
circuits. Ultraviolet light (1) is used to project the image of the chip design in the
reticle (2) via the lens (3) on the on the wafer (4) (ASML, 2014).

1.1.3 Control of high-precision motion systems

Achieving both high speed and high accuracy poses a challenge to the control
systems of the positioning stages, see e.g., (Butler, 2011). A simplified overview
of the control schemes used in these machines is shown in Figure 1.3. Typically,
magnetically levitated stages are used with the consequence that all 6 rigid-body
degrees-of-freedom have to be actively controlled. To enable independent control
of each direction of motion the multi-input multi-output (MIMO) system H is
decoupled using transformation matrices Tu and Ty. Both feedback Cfb and
feedforward Cff controllers are used to achieve fast and accurate positioning.
Known disturbances (mainly induced by the reference trajectories r) are used to
predict the required input uff . The feedback controller stabilizes the system and
counteracts unknown disturbances by computing a correcting input ufb based on
the error signals e.

The feedback controllers for these systems are designed by (manual) loop-shaping
using frequency response data. As these systems are designed to exhibit predomi-
nantly linear, time-invariant behaviour, they are characterized by their frequency
responses very well. Moreover, the frequency responses can be obtained accu-
rately and at low cost, due to the availability of an accurate actuator and sensor
system with a high signal-to-noise ratio. Loop-shaping is a method that is rela-
tively straightforward to implement and to use. The dynamics of a magnetically
levitated stage are dominated by the mass characteristics of the stage and by a
number of high-frequency resonant vibration modes of the stage. This allows for
a control design that consists of a limited number of filters, whose functionality
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is well understood. Tracking of the reference trajectory is achieved by PID-type
controllers in combination with feedforward controllers. Because the system can
be decoupled very well, each degree-of-freedom can be tuned individually. The
stage is designed such that the resonances, which can potentially endanger the
stability, lie well above the target bandwidth. As a result, they can be suppressed
by including only a few notch filters in the control loops.

+ TuCfb TyH

Cff

+
−

r e u y

uff

ufb

Figure 1.3: Control loop with feedback Cfb and feedforward Cff controller to
control the plant H which is decoupled using matrices Tu and Ty. The signals
are: the reference r, the error e, the input u (which is the sum of the input due
to feedback ufb and feedforward uff ) and the output y.

1.1.4 Challenges for high-precision motion systems

The specifications for the next generation of lithography machines will be more
demanding in terms of accuracy and throughput. In van den Brink (2013) it
is stated that resolutions will go below 10 nm in the near future. At the same
time, the throughput must be increased to reduce production costs. This has
implications on the required speed and accuracy of the positioning stages of these
machines. To increase the accuracy, the bandwidth of the controllers should be
increased for better disturbance rejection. At the same time, more aggressive
motion profiles will be required to increase the speed, leading to larger disturbance
forces, which again requires a higher bandwidth.

Another direction for increased throughput is to increase the size of the wafers
from the current 300 mm to 450 mm as to reduce production overhead (Pettinato
and Pillai, 2005). Obviously, this also requires larger positioning stages. Up-
scaling of current designs would lead to heavy stages. That is, if the requirement
that the resonance frequencies have to lie well above the target bandwidth is
maintained. This would mean that large actuator forces are required which lead
to large disturbance forces and thermal issues due to the heat production of the
actuators. Therefore, it is often advocated that the next generation positioning
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stages will have to be lightweight (Makarovic et al., 2004; Oomen et al., 2014). A
lightweight design leads to a decrease in stiffness of these systems, which causes the
resonances to shift to lower frequencies. Furthermore, the disturbance rejection
properties (obtained by virtue of Newton’s second law) of a light stage are less
favorable compared to a heavy stage. This poses a challenge for the control system
design.

It is clear that the target bandwidths have to increase while the frequencies of the
resonant modes might decrease. As a result, the flexible modes of these stages will
lie around or even below the target bandwidths. These resonant modes typically
have a low damping due to the materials that are used to construct motion stages.
This means that a flexible mode that is excited by the control system or by external
disturbances will deteriorate the performance of these systems. The currently used
control designs use notch filters to cope with the vibration modes of these stages.
A notch filter decreases the gain at the resonance frequency to prevent excitation
of the flexible mode by the control system. However, this also causes the control
system to lose control authority at the frequency of the mode, which is not desirable
for frequencies below the bandwidth. It is clear that the current approach does not
allow for active control of the flexible modes. Also, the flexible modes will hamper
the decoupling of the system. The flexible modes will oscillate in directions that
in general do not align with the rigid-body degrees-of-freedom. This introduces
coupling between the rigid-body directions of motions at and above the resonance
frequency of these flexible modes, which degrades performance.

1.2 Research objectives

1.2.1 The Xtreme Motion project

The research presented in this thesis is part of the Xtreme Motion project, a
project funded by Senter Novem, an agency of the Dutch ministry of economic
affairs. The goal of the project is to perform research for the next generation po-
sitioning devices that can be applied in the semiconductor industry. The project
is conducted in close collaboration with the following industrial and academic
parters: ASML, Bosch-Rexroth, Heidenhein, Magnetic Innovations, MI-Partners,
Philips Innovation Services, Prodrive, Vision Dynamics Mechaphysics, Delft Uni-
versity of Technology and Eindhoven University of Technology. Five sub-targets
have been defined to cover the broad range of research fields that play a role in
the development of the next generation positioning devices, including dynamics,
control, actuators and thermal effects:
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1. dynamic optimization of actuator and sensor locations for over-actuation and
over-sensing of non-rigid-body dynamics,
Durango-Galvan et al. (2012)

2. development of control strategies of dynamic effects in non-rigid-body struc-
tures,
Silvas et al. (2012); Bruijnen and van Dijk (2012)

3. development of an actuator concept with optimal force distribution and lin-
earity,
Vrijsen et al. (2014, 2013a,b)

4. development of control strategies for electromagnetic effects with spatial dis-
tribution in non-rigid-body structures,
Katalenić (2013)

5. development of transient thermal models for frequency-dependent thermal
sensitivity and real-time compensation strategies.
Hooijkamp et al. (2012c,b,a)

The references included above are a selection of the publicly accessible results that
are available at the moment of writing. These references provide a good starting
point for further reading on these closely related research topics. The research
described in this thesis is part of sub-target 2.

1.2.2 Scope and problem formulation

The goal of this research is to enable high-precision motion control for the next
generation positioning devices, which exhibit flexible dynamics. The research fo-
cusses on the control design rather than the system design. Every system has its
limitations, which might be overcome by improving the mechanical structure or by
using more or better actuators and sensors. However, before the system design can
be optimized, it is necessary to know how such a system can be controlled, given
a particular configuration. Therefore, the mechanical structure and the number
and locations of the actuators and sensors is assumed to be fixed beforehand. The
systems considered in this thesis are thus characterized by

• a mechanical structure exhibiting multiple flexible modes with low damping,

• predominantly linear, time-invariant behaviour,

• multiple force inputs and position outputs at fixed locations,
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• a performance location that can be located at any position on the mechanical
structure.

The control systems of high-precision motion systems typically consist of a feed-
back and a feedforward controller, recall Figure 1.3. Although feedforward control
is very important for performance, it is not considered in this thesis; the recent
thesis by Ronde (2014) is completely devoted to this topic.

Furthermore, a data-based approach will be pursued, rather than a model-based
approach. Although a large number of model-based control design techniques are
available, obtaining an accurate model is no straightforward task. One approach
is to model a flexible structure as a continuum described by partial differential
equations, see e.g., Meirovitch (1997). This renders the system a distributed pa-
rameter system. Solutions for the partial differential equations are only available
for very simple geometries such as beams and plates. To enable the analysis of
more complex geometries Finite Element Modelling (FEM) techniques have been
developed. However, the accuracy of these models can be limited for complex
structures due to inevitable geometric differences between the model and the ac-
tual system that is built, due to assumptions on material behaviour and due to
numeric approximations in the model. Furthermore, FEM models are typically of
high order, which will lead to high-order controllers that cannot be implemented
in practice.

Therefore, reduced-order models are often used for control design. These reduced
order models can be derived from high-order models using model reduction tech-
niques. Alternatively, low-order models can be obtained from fitting parametric
models on measured data, see e.g., Pintelon and Schoukens (2001). In the field
of vibration control, these reduced order models are often considered in a modal
representation. This makes it possible to synthesize LQR, H2, or H∞ controllers
that satisfy control goals specified for each mode, see Gawronski (2004); Preumont
(2011). In motion control, model-based control has been considered for systems
that exhibit predominantly rigid-body dynamics in Steinbuch and Norg (1998);
de Callafon and van den Hof (2001); van de Wal et al. (2002). However, the com-
bination of motion and vibration control is still a topic of ongoing research, see
e.g., Oomen et al. (2014). Regardless of the chosen synthesis method a model-
based control design is as good as the model that is used. Using a model with a
large modelling error can lead to a controller that gives large control errors and
can even lead to an unstable closed-loop system. Obtaining an accurate, low-order
parametric model of the system to be controlled is not a straightforward task, as
these systems have a large number of inputs and outputs as well as a large number
of flexible dynamics (Van Herpen, 2014). Therefore an alternative approach is
followed in this thesis.
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The currently used control design methodology for high-precision motion systems,
i.e., loop-shaping using frequency response data, leads to high-performance con-
trollers. It would be desirable to extend this proven method such that it can
better deal with the flexible dynamics of next generation motion systems. Two
main aspects of flexible motion systems cannot be dealt with using the currently
available methods. Firstly, the flexible dynamics will lead to oscillations with
very low damping. Classical loop-shaping techniques are not suitable to design
controllers to maximize the damping of the flexible modes. Secondly, the flexible
dynamics result in a large number of deformation modes, giving the system com-
plex directionality properties. Consequently, besides the six rigid-body directions,
many flexible directions will become important in the control design and need to
be taken into account. This leads to the problem statement of this thesis:

Explore and develop frequency response data-based feedback control design
methods that can address the flexible dynamics of advanced high-precision mo-
tion systems. These methods should be able to

• analyse and increase the damping of the flexible modes,

• incorporate the complex directionality of the flexible modes in the control
design.

1.3 Feedback control of flexible motion systems

This section briefly summarizes data-based feedback control design methods that
are considered relevant for the control of flexible motion systems.

1.3.1 Frequency-domain data-based approaches

Data-based frequency-domain control design methods are often used to control
high-precision motion systems. The main advantage of these methods is that
frequency response data (FRD) can often be obtained at high accuracy and at low
costs. Furthermore, the frequency-domain is well-suited to visualize the closed-
loop sensitivities, the effect of plant uncertainty, disturbances and sensor noise.
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Loop-shaping

The best known FRD-based control design method is probably loop-shaping in the
Bode diagram. Through Bode diagrams, the effect of loop-shaping filters on the
magnitude and phase of the open-loop FRD is easily visualized as a function of
frequency (Bode, 1945; Horowitz, 1963). Closed-loop performance and robustness
against variations in the plant can be specified in terms of phase- and amplitude
margins and bandwidth.

Alternatively, loop-shaping can be performed using the Nichols chart which plots
magnitude against phase instead. The Nichols chart is well-known due to its use
in Quantitative Feedback Theory (Horowitz, 1993). The advantage of this method
is that it can deal with the uncertainties in the FRD in a straightforward way by
introducing so-called QFT-bounds. The poles, zeros and gain of the controller are
tuned on the basis of these bounds.

Although these loop-shaping techniques are limited to SISO systems, MIMO sys-
tems can be handled as well if the system can be decoupled in independent SISO
systems. This approach is used in many high-precision motion systems, where the
rigid-body degrees-of-freedom are decoupled using information about the geome-
try of the system. As the internal dynamics of high-precision motion systems are
increasingly important for performance the flexible dynamics have to be taken into
account.

This problem was also encountered in the ’80s in the design of large space struc-
tures. Many of the challenges faced in high-precision motion systems are also
found in the control of large space structures. Namely, the systems are difficult
to model, have a large number of lightly damped resonant modes and very high
specifications on positioning accuracy and vibration suppression (Balas, 1982). It
was found that space structures could be modelled using a limited set of modes
(Hughes, 1987). However, model-based controllers synthesized using a reduced-
order modal model were hampered by spill-over effects; unmodelled modes that
degrade the performance and could even cause instability.

A model-based approach was pursued in the control of large space structures, while
in this thesis a data-based approach is preferred for reasons mentioned earlier. A
method that is based on partial modelling of the system is modal decoupling. It
only uses the (static) mode shapes and not a dynamical model of the system.
Modal decoupling is described by Inman (1984) and applied in the motion control
context for example by Makarovic et al. (2004); Schneiders et al. (2004); Friswell
(2001); Anthonis and Ramon (2003). In modal decoupling often a number of
flexible modes is decoupled in addition to the rigid-body directions of motion. The
mode shapes can be identified using modal testing (Ewins, 1986) or from FEM



16 Chapter 1 Introduction

models. Any errors in the mode shapes will be visible in the interaction terms
in the decoupled frequency response of the system. Moreover, the use of static
transformation matrices cannot destabilize the system. By using the technique
of sequential loop-closing (Hovd and Skogestad, 1994) the stability of the MIMO
closed-loop system can be guaranteed. The disadvantage of this approach is that it
requires sufficient actuators and sensors to actuate and observe the flexible modes.
As more actuators and sensors are required compared to conventional rigid-body
decoupling, this technique is sometimes referred to as over-actuation and over-
sensing (Makarovic et al., 2004; Schneiders et al., 2004).

As stated in Skogestad and Postlethwaite (2005) directionality is the main differ-
ence between SISO and MIMO systems. It is the complicated directionality of
the summation of all modes that makes it difficult to decouple all modes using
a limited number of actuators and sensors. Apart from the directionality of the
internal dynamics, the directionality of disturbances has to be included in the con-
trol design too (Skogestad and Morari, 1987). Boerlage et al. (2010) describe a
method to design controllers that counteract disturbances in the appropriate di-
rections. However, this method does not provide a way to cope with the internal
directionality caused by the flexible modes.

Stability analysis of MIMO systems is also not straightforward if no parametric
model of the system is available. For SISO systems, stability can be assessed by
inspection of the Nyquist plot. Generalisations of this technique can be made by
using the eigenvalues of the open-loop per frequency, which are called the charac-
teristic loci (MacFarlane and Postlethwaite, 1977). Alternatively the Nyquist plot
of the determinant of the return difference equation can be used (Brockett and
Byrnes, 1981).

Active vibration control

A number of techniques from the field of active vibration control (Gawronski,
2004; Preumont and Seto, 2008) can be applied without the use of a paramet-
ric model. These include positive position feedback (Goh and Caughey, 1985),
lead control, direct velocity feedback (Balas, 1979) and integral force feedback
(Preumont et al., 1992). For collocated actuator-sensor pairs, a robust method
is obtained to add damping to resonant modes. The controllers are designed us-
ing classical loop-shaping techniques where the open-loop characteristics in the
Bode diagram representation are shaped according the specified gain and phase
margins. However, without a model it is unclear how much damping is added by
these controllers. Furthermore, dedicated actuator-sensor pairs for vibration con-
trol increase the amount of required actuators and sensors. This will certainly be
a consideration for high-precision motion systems that already require the control
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of six rigid-body degrees-of-freedom.

A lot of attention in the field of vibration control is given to the development of
smart materials and structures. Smart materials are materials where strain can
be generated by different mechanisms including temperature, electric- or magnetic
fields (Preumont, 2011). These materials are characterized by a high level of inte-
gration of the actuators and sensors with the structure, which causes interaction
between the actuator/sensor and system dynamics. Piezo actuators and sensors
are often used in smart materials, see e.g. Inman (2001). Furthermore, electro-
magnetic dampers are proposed in Jung et al. (2012). Again, additional actuators
and sensors are required, which is why this approach is not pursued in this the-
sis. Besides, the addition of extra actuators and sensors may enable improved
performance, but still the question remains how to design the controllers.

Optimization based approaches

A number of frequency-domain methods have been developed that rely on opti-
mization techniques to find a controller that satisfies a certain performance mea-
sure. QFT is one technique that lends itself for optimization if the QFT-bounds
are parametrized, see e.g., Halikias et al. (2007); Molins and Garcia-Sanz (2009).
Many results on the optimization of PID controllers are available. In Grassi et al.
(2001), for example, the optimal PID parameters are found by integrating identifi-
cation and control design by minimizing a weighted difference between the actual
and a target loop transfer function. Keel and Bhattacharyya (2008) show the
computation of the set of all stabilizing PID controllers that achieve a certain per-
formance, specified by the phase or gain margin or by the H∞ norm. Furthermore
genetic algoritms (Mitsukura et al., 1999) and swarm-based optimization (Gaing,
2004) are considered. Karimi et al. (2007); Karimi and Galdos (2010) propose to
use linear programming with linear constraints in the Nyquist diagram to design a
fixed-order H∞ controller. The advantage is that a convex optimization problem
can be formulated, but with the disadvantage that the performance can only be
specified as a lower bound on the crossover frequency.

The application of these optimization-based control design methods on high-precision
motion systems is not straightforward. This is because it is not clear how to choose
the cost function to account for the flexible modes of these systems. For exam-
ple, the damping of the flexible modes cannot be included in this cost function as
generally no accurate model of the flexible modes is available. Furthermore, the
directionality of the flexible modes cannot be taken into account.
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1.3.2 Time-domain data-based approaches

Besides frequency-domain data-based control, a number of time-domain data-
based control design methods have been developed. One approach is to compute
Linear Quadratic Gaussian (LQG) controllers from the Markov parameters of a
set of input-output data (Skelton and Shi, 1994). This approach was extended
to MIMO systems by Chan (1996). In Aangenent et al. (2005), this approach is
implemented for the control of a robot arm. However, the performance was not
satisfactory for high-precision motion control. The computational load of the algo-
rithm puts constraints on the control horizon and sample rate, which degrades the
performance. In data-based LQG, a closed-form solution of the Riccati equation
is used to compute the controller that is optimal for a given cost function. As an
alternative, gradient-based optimization of the cost function is considered. The
difficulty in this approach lies in the approximation of the gradient of the cost func-
tion as no parametric model of the system to be controlled is available. For this
purpose Spall and Cristion (1998) propose to use the simultaneous perturbation
stochastic approximation method to optimize the controller parameters. Alterna-
tively, Iterative Feedback Tuning (IFT) (Hjalmarsson and Gevers, 1998), can be
used to compute an unbiased estimate of gradients of a given cost function. This
method directly uses the data measured on the actual system. Lequin et al. (2003)
use this method to optimize the parameters of a PID controller. However, IFT
requires many experiments to compute the gradients as the number of inputs nu
and number of outputs ny of the system increases. Namely, nuny + 1 experiments
are required to estimate the gradients (Formentin et al., 2012).

A different approach was proposed in Cabral and Safonov (1996), which describe
unfalsified control. In this approach, controllers are eliminated from a predefined
set of feasible controllers if they do not satisfy the performance specifications.
However, this technique is computationally demanding as the performance spec-
ification is given in terms of a solution to an expanding collection of quadratic
inequalities (Cabral and Safonov, 2004). Therefore, in Cabral and Safonov (2004)
it is proposed to use the ellipsoid algorithm to produce a sequence of decreasing
volume ellipsoids which contains the set of unfalsified candidates. This reduces
the computation time such that implementation is possible. In van Helvoort et al.
(2008), this technique was successfully applied to an industrial inkjet printer at a
sample rate of 1 kHz.

A method that can synthesize a controller from one set of input-output data is Vir-
tual Reference Feedback Tuning (VRFT) (Campi et al., 2000). In this approach,
the introduction of a virtual reference signal makes it possible to reduce the control
design problem to an identification problem (Guardabassi and Savaresi, 2000). In
Formentin et al. (2012) VRFT is used for fixed-order control design for MIMO sys-
tems. Experiments on a diesel engine show good reference tracking and decoupling
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properties.

In Karimi et al. (2003) correlation-based tuning is described where the controller
parameters are found by solving a correlation equation or minimizing the square
of a cross-correlation function. In this way, the output error between the designed
and achieved closed-loop system becomes uncorrelated with the reference signal.
A major advantage of this method is that it is less sensitive to noise.

All these control design methods specify the performance in the time-domain via
a certain cost function. Constraints on the time-domain signals can indirectly
impose constraints on the damping of the flexible modes of high-precision motion
systems. However, in the time-domain it is not easy to visualize the effect of plant
uncertainty, disturbances and sensor noise. This renders the application of these
methods for the control of high-precision motion systems often less straightforward.

1.4 Research approach and contributions

1.4.1 Towards data-based analysis and damping of flexible modes

It is clear that many frequency-domain data-based control design techniques are
available. These methods are often used in practice as frequency response data
(FRD) can be obtained accurately and at low costs. Performance specifications for
these methods are given in the frequency-domain, which is desirable for stability
and disturbance rejection properties. However the major disadvantage is that the
frequency-domain does not provide direct information on the transient response
of the closed-loop system. For high-precision motion systems, this implies that it
is not clear how to analyse and increase the damping of the flexible modes of the
system to be controlled. The reason for this is that it is not possible to directly
compute the closed-loop poles from the FRD. Conventionally, a parametric model
of the system is required to compute the closed-loop poles. As it was explained
in Section 1.2.2, it is not straightforward to obtain such a model with sufficient
accuracy. Therefore, a different approach is pursued in this thesis, which leads to
the first contribution of this thesis.

Contribution I: A data-based method to compute closed-loop poles.
A data-based method is developed to compute the closed-loop poles of a system
for a given controller without the need for a parametric model of the system to
be controlled. This enables incorporating the closed-loop pole locations into the
frequency response data-based control design methods. The first contribution
consists of the following parts.
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Contribution I.A: A method to compute Transfer Function Data.
The key concept in the method is the computation of Transfer Function Data
(TFD). A computational method is developed to compute TFD from FRD using
a Cauchy contour integral. The computational aspects and estimation errors are
analysed in detail.

Contribution I.B: Data-based computation of a root-locus.
It is shown that the availability of TFD enables the computation of closed-loop
poles without a parametric model of the system to be controlled. Moreover, for
SISO systems a root-locus can be computed from the TFD. The closed-loop pole
locations can be visualized as a function of a controller parameter. This allows
the selection of the optimal value of this parameter with respect to the closed-loop
pole locations, for example to maximize the damping of flexible modes.

Contribution I.C: Data-based computation of closed-loop poles of MIMO sys-
tems.
By extending the computation of TFD to MIMO systems the computation of the
closed-loop poles of MIMO systems is enabled. This requires the computation of
the determinant of the return difference matrix. TFD allows for data-based com-
putation of this determinant, from which the locations and multiplicities of the
closed-loop poles can be computed.

1.4.2 Towards incorporating directionality in the control design

It is clear that the first research contribution enables a data-based analysis of
closed-loop poles of MIMO systems. In this way, the closed-loop poles of the
flexible modes of high-precision motion systems can be analysed. However, this
does not yet provide a control design method to control the flexible modes. One
of the main challenges in the control of the flexible modes of MIMO systems is
the directionality of these modes. Modal decoupling can be used to decouple the
flexible modes, but this often requires extra actuator and sensor pairs. As high-
precision motion systems typically have a large number of modes it is infeasible to
decouple all modes. This gives the second research contribution of this thesis.

Contribution II: Incorporating the directions of flexible modes in the feedback
control design.
It is shown that the directions of the flexible modes can be incorporated in the
feedback control design without the use of extra actuators and sensors. The second
contribution consists of the following parts.

Contribution II.A: A numerical method to compute the directions of the flexible
modes.
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The directions of the flexible modes are determined by their mode shapes. That
is, the mode shapes are required in order to use the directionality in the control
design. It is shown that the mode shapes can be computed from the frequency
response data, without the need for a parametric model of the system.

Contribution II.B: A design method for notch filters that accounts for direction-
ality.
A design method is developed to design notch filters for flexible modes of MIMO
systems. The method takes the directionality of these modes into account by using
the mode shapes computed in Contribution II.A. This method leads to a low-order
controller that facilitates the tuning process.

1.5 Outline of the thesis

This thesis contains three research chapters. Each of the research chapters is based
on a journal publication. In this way, each research chapter is self-containing and
can be read independently.

Chapter 2
This chapter addresses Contributions I.A and I.B and is based on the paper

Hoogendijk, R., van de Molengraft, M. J. G., den Hamer, A. J., Angelis, G.
Z., Steinbuch, M., Computation of Transfer Function Data from Frequency
Response Data with Application to Data-Based Root-Locus. Under review
for journal publication.

In this chapter, the computation of TFD for SISO systems is described. It is
explained that a root-locus can be computed from the TFD for a given controller.
The results are validated on a benchmark experimental setup, where the approach
is utilized to minimize the settling times encountered.

Chapter 3
This chapter addresses Contributions I.A and I.C and is based on the paper

Hoogendijk, R., Heertjes, M. F., van de Molengraft, M. J. G., Steinbuch, M.,
Estimation of Closed-Loop Poles of MIMO Systems using Transfer Function
Data. In preparation for journal publication.

MIMO TFD enables the computation of the determinant of the return difference
in a data-based way. This enables computation of the closed-loop pole locations,
including their multiplicity. The results are applied on an industrial prototype
wafer stage. Firstly, the computed closed-loop pole locations are validated by
making a comparison with time-domain data. Secondly, an example is included
that shows how to incorporate the computed closed-loop poles in a control design
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for the setup.

Chapter 4
This chapter addresses Contributions II.A and II.B and is based on the paper

Hoogendijk, R., Heertjes, M.F., van de Molengraft, M. J. G., Steinbuch, M.,
Directional notch filters for motion control of flexible structures. Mechatron-
ics, article in press, http://dx.doi.org/10.1016/j.mechatronics.2014.01.011

A new method to design notch filters for MIMO motion control systems with
flexible mechanical structures is proposed in this chapter. The so-called directional
notch filters take the directions of the targeted flexible modes into account using
their mode shapes. The mode shapes are obtained from frequency response data
using a new numerical optimization method. Experiments on a flexible beam setup
demonstrate the feasibility of the proposed method in practice.

Chapter 5
In this chapter the conclusions are drawn and recommendations for future research
are given.
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Chapter 2

Data-based computation
of closed-loop poles

for SISO systems

T his chapter describes the computation and use of transfer function
data (TFD) computed from frequency response data of a SISO sys-

tem. TFD can be regarded as a sampled, data-based representation of the
transfer function, which can be used to compute closed-loop poles without
a parametric model of the system to be controlled. Computational accu-
racy and complexity are extensively discussed. As a use-case of TFD it is
shown that a root-locus can be computed in a data-based way, using only
frequency response data of a system. Experiments on a benchmark motion
system demonstrate the use of TFD in minimizing settling times.

2.1 Introduction

Frequency-domain data-based control design methods have proven to be, and still
are very successful in the analysis and design of controllers, especially for motion
systems, see, e.g., Steinbuch and Norg (1998), Levine (2011). Accurate and fast
tuning of high bandwidth controllers can be achieved using manual loop-shaping on
frequency response data (FRD). Even today, many high-end industrial machines,
for example wafer scanners, are controlled using PID controllers in combination
with notch, low-pass and other filters as described in Butler (2011). In van de Wal
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et al. (2001), it is stated that conventional (multiloop SISO) control is preferred
because it is well understood, easy to tune, does not require a model, is easy to
implement and gives satisfactory performance.

Due to the increasing performance requirements for high-precision motion systems,
the internal dynamics are becoming increasingly important for the performance of
these systems. The internal dynamics typically exhibit lightly damped resonances,
that are conventionally suppressed using notch filters. To achieve a better perfor-
mance, it is important to actively damp the resonances to improve the settling
times. The damping of the resonances is determined by the time-constants of
the closed-loop poles. However, currently used data-based control design methods
cannot be used to analyse the damping of the closed-loop poles.

Model-based control design methods can be used to compute or even specify closed-
loop poles. It is well known that classical techniques such as pole-placement or
optimal control can be used for this purpose. In den Hamer et al. (2005), a
control design method is presented in which information from a parametric model
is used to enhance the loop-shaping process by incorporating information on the
closed-loop pole locations. Also, results on robust control with constraints on pole
locations have been reported, see for example Anderson and Moore (1969), Haddad
and Bernstein (1992). Yet, application of model-based control on high-precision
motion systems is not straightforward, because the synthesized controllers can be
unstable and are typically of high order, as discussed in van de Wal et al. (2002).
Furthermore, deriving an accurate low order parametric model for the control
design of high-precision motion systems is not a straightforward task, which is
why frequency-domain techniques are largely used in practice (Karimi and Galdos,
2010).

Recent advances in FRD-based control provide improved controller design tools
compared to classic loop-shaping. Optimization-based computation of QFT con-
trollers is often reported, see for example recent contributions by Molins and
Garcia-Sanz (2009) or Halikias et al. (2007). Furthermore, Keel and Bhattacharyya
(2008) show how to compute the set of all stabilizing PID controllers that achieve
a certain performance, specified by the phase or gain margin or by the H∞ norm.
Also, FRD based fixed-orderH∞ control design is described in Karimi et al. (2007);
Karimi and Galdos (2010). Performance specifications for these methods are given
in the frequency-domain, which is good for stability and disturbance rejection
properties. However, it is not clear how to specify damping of the resonant poles.

Time-domain data-based methods, such as data-based LQG (Skelton and Shi,
1994), Virtual Reference Feedback Tuning (Campi et al., 2000; Formentin et al.,
2012) or Iterative Feedback Tuning (Hjalmarsson and Gevers, 1998) specify cost
functions in the time- domain. Although these methods can be used to specify
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the damping of the closed-loop poles in an indirect way, they do not combine well
with the well established frequency-domain methods that are currently used for
high-precision motion systems.

This chapter describes the computation and application of a data-based equivalent
of the transfer function named transfer function data (TFD). Using TFD, con-
troller design and analysis techniques that are formulated in terms of the transfer
function of a system can be applied in a fully data-based way. TFD gives infor-
mation on the value of the transfer function at every point in the complex plane.
Therefore, it can be used to compute closed-loop pole locations. For SISO systems
it is even possible to compute a root-locus completely data-based. In this way,
closed-loop pole locations can be visualized in the control design without using a
parametric model of the system to be controlled. TFD is computed from FRD,
which makes the method a natural extension of manual loop-shaping. Moreover,
TFD contains all dynamics of the system that are contained in the FRD, since the
information about the system is not reduced to a small number of parameters as
it is in the case of parametric modelling.

TFD can be computed from FRD if the system to be controlled is a stable and
lightly damped resonant system. The method is well-suited for high-precision
motion systems that are lightly damped as a result of the choice of materials that
are used such as metals and ceramics, and the design principles applied that focus
on lightweight and stiff construction. But also space structures and satellites,
which have typical damping ratios in the range of 0.001 − 0.005, satisfy these
conditions, see Preumont (2011).

The computation of TFD from FRD uses the Cauchy integral theorem from com-
plex function theory. Rahman (1997) gives a comprehensive overview of this field of
research. The Bode sensitivity integral, described in Bode (1945) and the Hilbert
transform as used in Tesche (1992) are two examples of the application of Cauchy’s
theorem in the field of control theory. More recently, in den Hamer et al. (2008);
den Hamer (2010) this integral is used to prove stability and causality of a system
from its frequency response function. A first exploration of the use of TFD can
be found in Hoogendijk et al. (2010), where TFD is used for frequency-domain
optimal control.

In this chapter, the method to compute TFD for SISO systems is thoroughly
investigated and experiments on a benchmark motion system are included. As a
use-case, a root-locus is computed completely data-based using TFD. This allows
prediction of the closed-loop pole locations and therewith minimization of the
settling time of the system.

Summarizing, the main contributions of this chapter are:
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• extensive discussion on the accuracy and computational aspects of transfer
function data,

• data-based root-locus as a use-case for TFD,

• evaluation of the method on a benchmark motion system.

First, the computation of TFD will be explained in Section 2.2. Section 2.3 explains
how to obtain accurate TFD and elaborates on the aspects in the computation that
influence the accuracy of the method. Next, computational aspects are discussed
in Section 2.4. Section 2.5 contains the theory on data-based root-locus plots.
Finally, the experiments on a benchmark motion system are discussed in Section
2.6.

2.2 Computing TFD from FRD

2.2.1 Definition of TFD

Frequency response data (FRD) is defined to be a set of samples H(jωk) of a
transfer function H(s) at the points s = jωk, ω ∈ R. The subscript k = 1, 2, ..N is
an index in the set of N data points, which can be obtained via available frequency
response measurement techniques (Pintelon and Schoukens, 2001). FRD gives
only partial information about H(s), since the transfer function is only evaluated
at points s = jωk that lie on the imaginary axis of the s-plane. Therefore, the
concept transfer function data (TFD) is introduced. TFD contains the response
H(si) at complex frequencies si = σi + jωi, where the subscript i = 1, 2, ..Ntfd
is an index in the set of Ntfd data points. In si, ωi ∈ R is the imaginary part
of si, while σi ∈ R is the real part of si, which is the distance of the point si
to the imaginary axis. In this way, TFD provides information about the system
for a grid of points si in the complex plane and not only for the imaginary axis.
As a result, TFD H(si) can be regarded as the data-based version of the transfer
function H(s) of the system.

2.2.2 Use of TFD

TFD enables the use of data-based control design and analysis methods that can-
not be applied to FRD directly. A clear example is the data-based computation
of the closed-loop pole locations of a single-input-single-output system H(s) with
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controller C(s). It is well known that all transfer functions share the same denom-
inator, consider for example the closed-loop transfer function T (s) and sensitivity
S(s), given by

T (s) =
H(s)C(s)

1 +H(s)C(s)
, S(s) =

1

1 +H(s)C(s)
. (2.1)

From the denominators of (2.1) it is clear that closed-loop pole locations pcl can
be found by searching for points s in the complex plane that satisfy (Evans, 1950;
Den Hamer et al., 2005)

pcl = {s ∈ C | H(s)C(s) = −1}. (2.2)

FRD H(jωk) is not sufficient to compute the closed-loop poles, since it only gives
information about the value of H(s) on the imaginary axis. In general, the closed-
loop poles will not lie on the imaginary axis. TFD on the other hand, gives
information about H(s) for the whole complex plane, thereby enabling the data-
based evaluation of (2.2).

2.2.3 Computation of TFD

The Cauchy integral formula (Rahman, 1997), described in the following theorem,
is the basis for the proposed approach to computate the TFD.

Theorem 2.1 (Cauchy integral formula) Let g(s) be an analytic function in a
region G, C a simple closed curve in G in anticlockwise direction and let α denote
a point in C. Then

g(α) =
1

2πj

∫
C

g(s)

s− αds. (2.3)

Proof: For the proof, see Rahman (1997).

Theorem 2.1 states that the value of a complex function at an arbitrary point in
the complex plane that lies within a closed contour can be computed from the
values of the function on the contour, provided that the function is analytic in this
region.

Cauchy’s theorem can be used to compute TFD from FRD in the right half-plane
(RHP) as follows. Let H(s) be a stable, strictly proper system, such that H(s)
has no poles in the RHP, which makes H(s) analytic in the RHP. This means that
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it is possible to compute the value of the transfer function H(si) at any point si
in the RHP by drawing a contour C around the point si using

H(si) =
1

2πj

∫
C

H(sC)
(sC − si)

dsC , si ∈ C+, (2.4)

where

C+ = {s ∈ C | Re(s) > 0}, (2.5)

and where sC are the points in the complex plane that lie on the contour C.
However, this requires the value of the transfer function at every point sC on the
contour to be known. Since a frequency response data-based approach is pursued,
it is assumed that the value of the transfer function is only known on the imaginary
axis. Therefore, a suitable choice for the contour C is the D-contour CD depicted
in Figure 2.1, which consists of the imaginary axis and a semicircle at infinity.
For a strictly proper system, the response goes to zero when |s| goes to infinity.
Moreover, the integrand of (2.4), has a relative degree of at least 2, such that the
semicircle at infinity does not contribute to the integral. This reduces the contour
integral to

H(si) =
1

2πj

∫ −∞
∞

H(jω)

(jω − si)
djω, si ∈ C+, (2.6)

which is an integral over the imaginary axis. This can be rewritten as

H(si) =
1

2π

∫ ∞
−∞

H(jω)

(si − jω)
dω, si ∈ C+, (2.7)

such that a real valued integration variable is obtained. Furthermore, the integra-
tion direction is reversed, which is accounted for by adding a minus sign to the
denominator of the integrand (jω and si change place).

Equation (2.7) shows how TFD for the RHP can be computed from FRD using a
Cauchy integral. This is not possible for the left half-plane (LHP), which is not
an analytic region because it contains the poles of the system. However, lightly
damped resonant systems, for which this method is developed, have poles and
zeros that lie close to the imaginary axis, see Figure 2.1. This gives the TFD a
certain symmetry that can be used to compute LHP TFD from RHP TFD. The
specific symmetry condition that can be used depends on the system at hand. For
systems with force actuators and position sensors, as is usually the case for motion
systems, the transfer function can be written as a summation of Nm modes n with
modal participation factor Ψn, frequency ωn and damping ζn as in

H(s) =

Nm∑
n

Ψn

s2 + 2ζnωns+ ω2
n

. (2.8)
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Im

∞jω

−si

Figure 2.1: Contour in the s-plane used to compute TFD from FRD. The contour
consists of the imaginary axis and a semi-circle at infinity.

When the system is lightly damped, ζn → 0 such that

H(−s) = H(s), (2.9)

since (−s)2 = s2. This makes it possible to approximate LHP TFD from RHP
TFD.

Note that similar symmetry conditions could be derived for other classes of sys-
tems. For example, if it is known that all poles pn lie at the same distance d from
the imaginary axis, pn = (−d+ jwn). Then,

H(−s− 2d) = H(s) (2.10)

would hold. Another example is a system that has velocity sensors instead of
position sensors. In that case the transfer function can be written as

H(s) =

Nm∑
n

Ψns

s2 + 2ζnωns+ ω2
n

, (2.11)

such that

H(−s) = −H(s), (2.12)

could be used.
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Since TFD is computed from FRD, it cannot contain more information than the
original FRD. However, the computation of TFD puts the data in a different format
which makes the data more usable, as shown in the example of Section 2.2.2.

In this section, it has become clear that the computation of TFD is only possible if
the system satisfies a number of constraints. These conditions can be summarized
as follows. The system should be

1. stable, such that the contour integral around the RHP does not encircle any
poles,

2. strictly proper, such that the response of the semi-circle at infinity does not
contribute to the contour integral,

3. lightly damped, such that symmetry can be used to compute LHP TFD from
RHP TFD.

2.3 Accuracy of TFD

In practice, the FRD of a system to be controlled will be measured at N frequencies
ωk. Since knowledge of H(jω) is restricted to the points H(jωk), a numerical ap-
proximation of the integral (2.7) is required in the computation of the TFD. Several
aspects of this numerical computation give approximation errors. The influence
of these sources of inaccuracy will be discussed in the subsequent subsections, to
explain how to accurately compute TFD.

Simulations have been performed to illustrate the influence of the various sources
of inaccuracy that will be derived in the subsequent subsections. For this purpose,
TFD will be computed for a known transfer function of a resonant system

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

, (2.13)

where ωn = 10 rad/s is the natural frequency and ζ = 0.005 is the damping ratio.
FRD H(jωk) for this model is obtained by evaluating this transfer function at a
set of frequencies between 0.1 and 1000 rad/s, with a resolution of 0.1 rad/s. The
FRD will be used in the computation of TFD using (2.7). The computed TFD
H(si) will be compared to the transfer function H(s) from (2.13). The 3D-Bode
magnitude plot of the transfer function is depicted in Figure 2.2. In a 3D-Bode
magnitude plot, the magnitude of the TFD is plotted as a function of both the
real and the imaginary part of the complex frequency si (Tsiotras, 2005).
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Figure 2.2: 3D-Bode magnitude diagram of the model. The bold solid line rep-
resents the FRD, while the lines indicated by Lσ and Lω are lines on which the
TFD will be computed to assess the accuracy.

The accuracy of the TFD estimation depends on the point si at which the TFD
is computed. Therefore, to assess the quality of the TFD, multiple points si
have to be evaluated in the subsequent analysis. To be able to plot the result
in a two dimensional graph, TFD is computed on different lines of points in the
complex plane, as indicated by the lines Lσ and Lω in Figure 2.2. All points on
the line Lσ have the same real part σ while points on the line Lω have the same
imaginary part ω. In the remainder of this section, the following error causes
will be addressed: finite integral (Section 3.1), integration method and resolution
(Section 3.2), influence of measurement noise (Section 3.3) and LHP TFD from
RHP TFD (Section 3.4).

2.3.1 Finite integral

In practice, the infinite integral (2.7) cannot be computed, since the FRD can
only be measured up till a certain maximum frequency ωmax. Therefore (2.7) is
rewritten as

H(si) =
1

2π

∫ ωmax

−ωmax

H(jω)

(si − jω)
dω + Ef (si), si ∈ C+, (2.14)
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where the first term in this expression is the approximation of (2.7) that can be
computed from TFD. Ef (si) is the error which is given by

Ef (si) =
1

2π

∫ −ωmax

−∞

H(jω)

(si − jω)
dω +

1

2π

∫ ∞
ωmax

H(jω)

(si − jω)
dω, si ∈ C+. (2.15)

Figure 2.3 shows TFD of the example system (2.13) computed for different values
of ωmax to illustrate how the computation of TFD is affected when the FRD would
be measured over a limited frequency range. The figure shows TFD computed at
the line Lσ with σ = 10. This means that this Bode plot does not show the
response of the system on the imaginary axis, but the response at si = σ + jωi
for a fixed σ = 10 as a function of the frequency. From the figure it is clear that
a higher value for ωmax gives more accurate TFD, because a smaller part of the
infinite integral is omitted. It can also be observed that the error increases when
Im(si) is close to and above ωmax. This is caused by the si − jω term in the
denominator of (2.15) that acts as a weighting for each frequency point; points
jω that lie close to the point si at which the TFD is computed, contribute more
to the integral. Therefore, the higher the value of Im(si), the more important the
omitted part of the FRD is for the TFD as si lies closer to ωmax. This analysis
shows that ωmax should be chosen as high as possible.

2.3.2 Integration method and resolution

Limitations in data storage and available measurement time make that the number
of data points H(jωk) to approximate (2.7) are limited. Hence, a numeric integra-
tion method has to be applied to compute (2.14). In this research the trapezoidal
rule is used to approximate the integral in (2.14). The trapezoidal rule, given by

∫ b

a

f(x)dx =

Nk−1∑
k=1

1
2 [f(xk) + f(xk+1)] ∆x+ Ei, (2.16)

approximates the integral of a function f on an interval (a, b) by Nk trapezoids
of width ∆x. An upper bound for the integration error Ei can be obtained from
(Adams, 1999)

Ei ≤
K(b− a)3

12N2
k

, (2.17)
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Figure 2.3: TFD from FRD with ∆ω = 0.1 rad/s computed for the line Lσ with
σ = 10 for ωmax = 100 rad/s (solid), 50 rad/s (dash), 10 rad/s (dash-dot) and the
model (grey).

where K is the maximum value of the second-order derivative of f with respect to
x. As the error decreases with 1

N2
k

, it is beneficial to take as many data points as

possible. Applying the trapezoidal rule to the integral expression of (2.14) gives

H(si) =
1

2π

∫ ωmax

−ωmax

H(jω)

(si − jω)
dω + Ef (si)

=
1

4π

N−1∑
k=−N

(
H(jωk)

(si − jωk)
+

H(jωk+1)

(si − jωk+1)

)
∆ω + Ei(si) + Ef (si). (2.18)

In practice, the FRD is measured at a discrete grid of N positive frequencies wk.
However, the integral of (2.14) contains both the positive and negative frequency
axis. The value of the FRD on the negative frequency axis is easily obtained
though, since it holds that

H(−jw) = H(jw)∗, (2.19)

where ∗ denotes the complex conjugate. Therefore the index k in (2.18) runs from
−N until N−1, where a negative index of k as in ω−k denotes −ωk to incorporate
both positive and negative frequencies.

To illustrate the influence of the resolution of the FRD, TFD is computed at line
Lσ with σ = 10, for different resolutions of the FRD, see Figure 2.4. It can be seen
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Figure 2.4: TFD computed at line L1 using FRD with ωmax = 1000 rad/s, for
different resolutions; ∆ω = 0.1 rad/s (solid), ∆ω = 1 rad/s (dash), ∆ω = 10 rad/s
(dash-dot) and the model (grey, mostly covered by the solid curve).

that in this case, only the FRD points computed with resolution ∆ω = 0.1 rad/s
lie very close to the true values of the TFD points obtained from the model. The
required resolution depends on the damping in the system. The lower the damping
is, the sharper the peaks of the FRD of the system will be. Sharp peaks in the
FRD result in a high second-order derivative of H(jω), which will result in a large
error according to (2.17). A rule of thumb that was found during simulations, is
that ∆ω should satisfy

|∆ω| < |σn|, (2.20)

where σn is the real part of the pole pn of the system that is the closest to the
imaginary axis. σn can be estimated from the damping ratio ζ and the natural
frequency of the pole ωn according to (Franklin et al., 2002)

|σn| = |ζωn|, (2.21)

where the damping ratio will lie between 0.001− 0.005 (Preumont, 2011) and the
frequency of the pole can be estimated from the resonance peaks of the FRD. The
frequency of the peak in the FRD is actually the damped natural frequency ωnd
given by

ωnd = ωn
√

1− ζ2. (2.22)
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However, ωnd ≈ ωn, due to the low damping ratio. With a damping ratio that is
in the order of 10−3, the difference between ωnd and ωn is in the order of 10−6 due
to the square in (2.22). Thus, as a rule of thumb

|∆ω| < |ζωnd|, (2.23)

can be used in practice. To obtain FRD with sufficient resolution will thus require
a two-step procedure. First, an initial measurement has to be conducted to have
a rough idea of the value of ωnd and ζ. Next, the FRD is measured with the
appropriate frequency resolution determined using (2.23).

Note that the results of Figure 2.3 were also obtained using the numeric integration
method described in this paragraph, with a resolution ∆ω = 0.1 rad/s.

2.3.3 Influence of measurement noise

The FRD that is measured will contain a certain level of measurement noise,
which will influence the computation of TFD. However, a point H(si) of the TFD
is computed using a Cauchy integral over all FRD points, which reduces the effect
of the noise, especially for points si that lie far from the imaginary axis. This can
be seen as follows. Suppose the frequency response measurement Ĥ(jω) contains
zero mean circular complex noise ν(jω) according to

H(jω) = Ĥ(jω) + ν(jω), (2.24)

whereH(jω) is the true frequency response. This means that (2.7) can be rewritten
as

H(si) =
1

2π

∫ ∞
−∞

H(jω)

(si − jω)
dω

=
1

2π

∫ ∞
−∞

Ĥ(jω)

(si − jω)
dω +

1

2π

∫ ∞
−∞

ν(jω)

(si − jω)
dω (2.25)

=
1

2π

∫ ∞
−∞

Ĥ(jω)

(si − jω)
dω + En(si).

It can be observed that the error En(si) due to noise is an integral over ν(jω),
filtered with (si − jω)−1. For si values that are close to the imaginary axis, the
filter is very sharp. This means that in that case the noise is less filtered, or even
amplified. The farther the points si are located from the imaginary axis, the more
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the noise is filtered. This implies that (2.18) becomes

H(si) =
1

4π

N−1∑
k=−N

(
Ĥ(jωk)

(si − jωk)
+

Ĥ(jωk+1)

(si − jωk+1)

)
∆ω + Ef (si) + Ei(si) + En(si)

= Ĥ(si) + Ef (si) + Ei(si) + En(si), (2.26)

where Ĥ(si) denotes estimate of the TFD that can be computed numerically, i.e.,

Ĥ(si) =
1

4π

N−1∑
k=−N

(
Ĥ(jωk)

(si − jωk)
+

Ĥ(jωk+1)

(si − jωk+1)

)
∆ω. (2.27)

From the variance of the FRD Var[Ĥ(jωk)] it is possible to compute the variance
Var[Ĥ(si)] of the estimated TFD Ĥ(si). From the standard properties of variance
(Taboga, 2013), it is derived that

Var[Ĥ(si)] =
2

16π2

N−1∑
k=−N

(
Var[Ĥ(jωk)]

|si − jωk|2
+

Var[Ĥ(jωk+1)]

|si − jωk+1|2

)
∆ω2. (2.28)

Since the FRD on the negative frequency axis is computed from (2.19), Ĥ(−jωk)
and Ĥ(jωk) are correlated, which explains the factor 2 in (2.28). Assuming that
Ĥ(si) has a circular complex normal distribution, a confidence circle for En(si)
can be given. The probability P that the magnitude of En(si) is smaller than the
radius of this circle is given by

P = Prob [|En(si)| < rPσH(si)] , (2.29)

where

σ2
H(si) = Var[Ĥ(si)]. (2.30)

rP can be computed for a given P according to

rP =
√
−ln(1− P ). (2.31)

For example, to ensure that the probability that the error lies within this bound
is 99%, rP = 2.15 is chosen.

To illustrate this effect, TFD has been computed from a noisy FRD on two Lσ
lines, one with σ = 0.1 and one with σ = 10, see Figure 2.5. Circular complex noise
from a normal distribution with zero mean and a standard deviation of 0.1 was
used. The noisy FRD and computed TFD are plotted in grey. The FRD without
noise and the value of H(s) at σ = 0.1 and σ = 10 obtained from the model are
plotted in black. It can be observed that for σ = 0.1 the noise is amplified, because
the TFD is computed close to the imaginary axis. For σ = 10, however, the noise
is filtered significantly.
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Figure 2.5: TFD computed from noisy FRD (top) at lines si = 0.1 + jω (middle)
and si = 10 + jω (bottom) are shown in grey. Model-based results in black.
Magnitudes for σ = 0.1 and σ = 10 are scaled with a factor 1E-2 and 1E-4
respectively to distinguish lines.

2.3.4 LHP TFD from RHP TFD

As mentioned previously, TFD in the LHP has to be obtained from RHP TFD
using the symmetry condition (2.9). Since the poles of a real system will always
have a certain amount of damping, an error will be made due to this approximation.
The error Es that is made in this approximation is equal to

Es(si) = H(si)−H(−si). (2.32)

Fortunately, the systems for which this method is developed, are very lightly
damped (ζ = 0.001 − 0.005). To demonstrate that this is sufficiently small and
to show what goes wrong for larger damping values, simulations have been per-
formed. Figure 2.6 shows TFD on the line Lω, which is the line s = σ + 9.5j, for
two models described by (2.13); one has damping ratio ζ = 0.005 (black) and the
other ζ = 0.5 (grey). The line Lω of Figure 2.2 is now evaluated. Because it runs
through both the LHP and the RHP, it shows the difference between RHP and
LHP TFD. The true value of H(si) is plotted in dashed lines. It can be observed
that the low-damped model is almost symmetric with respect to the imaginary
axis, while the more damped model is not. The solid lines show the TFD that will
be computed for the two models, which is the RHP TFD mirrored to the LHP
according to (2.9). While for the lightly damped model the TFD lies close to H(s)
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obtained from the model, this is clearly not the case for the damped model. This
illustrates that computing LHP TFD from RHP TFD is only possible for lightly
damped systems.
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Figure 2.6: TFD computed at the line Lω for ω = 9.5 rad/s for ζ = 0.005 (black)
and ζ = 0.5 (grey). Model-based results are indicated with a dashed line, while
the computed TFD is plotted with a solid line.

2.3.5 Error bounds on TFD

The analysis presented in Section 2.3.1-Section 2.3.4 can be combined to compute
the total error bound ∆Ĥ(si) on the computed TFD Ĥ(si). This error is defined
to be

∆Ĥ(si) = H(si)− Ĥ(si). (2.33)

where H(si) is the unknown, true value of the transfer function at si. An upper
bound for ∆Ĥ(si) can be obtained by summation of the magnitude of the error
terms discussed in the previous sections yielding

∆Ĥ(si) ≤ |En(si)|+ |Ef (si)|+ |Ei(si)|+ |Es(si)|. (2.34)

Note that Es(si) is zero in the RHP, since the symmetry condition is only used to
compute TFD for the LHP. The computation of this error bound can be done in
practice, but this requires the following approximations:
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• An estimation if En(si) requires an estimation of the noise on the FRD, which
can be done using standard frequency-domain identification techniques, see
for example, Pintelon and Schoukens (2001).

• To estimate the error Ef (si) of the finite integration interval from (2.15)
requires an estimation of the behaviour of the system for frequencies beyond
ωmax. As it is required that the system is strictly proper, the FRD has at
least a minus-one slope at high frequencies. Assuming that all resonances lie
below ωmax, the FRD can be approximated by

H(jω) =
c

(jω)n
for ω < −ωmax and ω > ωmax, (2.35)

where c is a constant that can be computed from the FRD and n < −1 is
an approximation of the slope of the FRD at high frequencies. With this
assumption, (2.15) can be computed analytically.

• The error due to the integration method Ei(si) can be obtained by estimation
of the second-order derivative of the FRD with respect to ω, such that (2.17)
can be computed. This derivative could be obtained by locally fitting a
smooth function on the FRD and computing the derivative thereof (Heath,
2005).

• Finally, in the LHP an estimate of the error due to the symmetry condition
Es(si) is required. This could be achieved by computing TFD H(si) in the
LHP using the alternative symmetry condition (2.10), that assumes symme-
try in the line Re(si) = −d. In this way, the TFD is computed as if all poles
would lie at a distance d from the imaginary axis. This gives

|Es(si)| = |Ĥ(si)− Ĥ(si − 2d)| (2.36)

where d should be an estimate for the distance of the pole that has the largest
distance to the imaginary axis. This is a valid approximation as taking the
symmetry with respect to the imaginary axis underestimates the damping,
while the alternative symmetry condition overestimates the damping. In
reality, the damping will lie somewhere in between. Hence, taking the dif-
ference between these two extreme cases yields a good approximation of the
error.
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2.4 Computational aspects

2.4.1 Coping with undamped poles

Many systems contain undamped poles, i.e., poles that lie on the imaginary axis.
For example, a motion system with rigid-body modes will have a transfer function
that contains a double integrator. For systems with undamped poles, (2.7) cannot
be used directly to compute H(si) from H(jωk) because the contour does not lie in
an analytic region due to the poles on the imaginary axis. Numerically, the compu-
tation goes wrong because the FRD will have a very high second-order derivative
at the pole location which gives large errors in the computation according to (2.17).

A straightforward way to deal with this problem is to add a known weighting filter
W (s) to the FRD in the computation step that cancels these undamped poles.
After computing the TFD of the filtered FRD, the inverse filter can be applied to
obtain TFD of the original system. The procedure is as follows. The FRD H(jωk)
is multiplied with the FRD of the filter W (jωk) thereby cancelling the undamped
poles, giving the filtered FRD

Hf (jωk) = H(jωk)W (jωk). (2.37)

Next, TFD Hf (si) is computed from the filtered FRD Hf (jωk) using (2.7). Since
the filter W (si) is known for all points si, it can be removed from Hf (si) according
to

H(si) =
Hf (si)

W (si)
, (2.38)

to obtain TFD H(si) of the original system. The filter W (s) consists of notch
filters that are placed at the (estimated) frequencies of the undamped poles. The
notches cancel the sharp peaks in the FRD thereby reducing the second-order
derivative. The exact frequency at which the notches are placed is not important,
since the effect of these filters is cancelled by (2.38). Figure 2.7 shows an example
of this idea for the transfer function H(s) = 1000/s2. A Bode plot with a linear
frequency scale is used to show the infinite slope of the FRD at zero frequency
(grey). A filter W (s) = s2/(s− 20π)2 (grey dash) is used to cancel the undamped
poles at s = 0, resulting in the filtered FRD (black). This filtered FRD can be
used in (2.7), while the original FRD could not.
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Figure 2.7: FRD of a system containing undamped poles at s = 0 (grey), weighting
filter (grey,dashed), weighted FRD (black).

2.4.2 Computation time

For each TFD point Ĥ(si) that is computed, a summation over all FRD points is
performed. As mentioned before, it is beneficial to take as many points as possible.
This gives rise to the question whether the computations can be performed in a
reasonable amount of time with sufficient accuracy. To assess this, the value of the
transfer function data of the resonant system (2.13) is computed at an arbitrarily
chosen point si = 8 + 16jπ using a varying number of FRD points N . Figure 2.8
shows a graph of computation time in seconds and relative error Er defined by

Er(si) =
|H(si)− Ĥ(si)|
|H(si)|

, (2.39)

where H(si) is the TFD and H(s) is the value of the transfer function obtained
from the model. Simulations were performed on a standard pc with a 2.5 GHz
dual-core processor and 4GB of RAM memory. For N < 104 both the computation
time and accuracy do not show a clear trend. For such a small number of points,
the accuracy depends on how well the data is represented by the chosen frequency
grid. For example, by the choice of the grid, the resonance peak of (2.13) could lie
exactly between two data points resulting in low accuracy. The short computation
times will be influenced largely by the overhead of the computer and not the actual
computation time of the algorithm. For N > 104, however, the trend is clearly
visible. It can be observed that the computation time tcomp is proportional to the
number of data points, thus

tcomp ∝ Nk. (2.40)
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Figure 2.8: Computation time (4) and relative error (+×) to compute one TFD
point at si = 8 + 16jπ.

The relative error on the other hand shows that

Er ∝ N−2k , (2.41)

which agrees with (2.17). It can be observed that an accuracy of 10−6 can be
obtained with ∼104 points. In that case, the computation of one TFD point only
takes approximately 9 milliseconds. One TFD point, however, is not very useful,
normally a grid of points is required to analyse a system in the s-plane. The short
computation times show that it is feasible to compute TFD for a whole grid of
points in a few seconds with reasonable accuracy.

2.4.3 Amount of human interaction

A data-based method is only attractive if it is more accurate or easier to apply
than model-based methods. In this case, the simplicity of the method is one of the
major advantages. The required amount of human interaction for this method is
limited. Provided that the system satisfies the requirements; lightly damped and
zero response at infinite frequency, and that sufficiently accurate FRD is available,
the only freedom is the selection of the points si at which the TFD is computed.
As the goal of TFD is to compute closed-loop pole locations in a data-based way,
the range for the points si is chosen properly if all closed-loop poles that are
relevant for the control design lie within the range. For the imaginary part of si,
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corresponding to the frequency axis, the interesting values of the s-plane can be
observed from the FRD. Since the closed-loop poles travel from their open-loop
pole locations to the zeros of the system, the frequencies at which the open-loop
poles and zeros of the system are located indicate the interesting range for si. The
range for the real part of si has to be determined experimentally, as it is unknown
how far the poles will travel into the LHP. However, since the method is fast,
iterating over possible interesting ranges is not very time-consuming.

As the TFD is computed on a discrete grid of points si, the accuracy of the com-
puted closed-loop pole location is, in theory, limited by the grid density. However,
the grid density itself can be taken arbitrarily high, provided that sufficient com-
putation time and memory is available. Moreover, in practice it was found that
the inaccuracy of the computation of TFD at each point si, as discussed in Section
2.3 is of more influence on the final result than the discretization of the s-plane.

Note that systems with undamped poles also require the selection of an appropriate
filter W (s) as discussed in Section 2.4.1.

Summarizing, the following aspects require some human interaction in the method:

1. estimation of the damping of the poles, see (2.23), to determine the correct
resolution for the FRD,

2. determination of the relevant range of the s-plane,

3. design of a weighting filter W (s) in case undamped poles are present.

2.5 Use-case: Data-based Root-locus

As mentioned in Section 2.2.2, TFD can be used to compute the closed-loop poles
of a system under feedback control. In this section it will be shown that it is not
only possible to compute the closed-loop poles for a given controller, but that it is
also possible to draw the root-locus for this controller in a fully data-based way,
using TFD. In this section, the parameter in the root-locus is chosen to be the gain
k of the controller C(s) from (2.2). By taking k out of the controller according to

C(s) = kC(s), (2.42)

where k ∈ R, (2.2) becomes

pcl(k) = {s ∈ C | kH(s)C(s) = −1}

= {s ∈ C | H(s)C(s) = −1

k
}, (2.43)
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where the closed-loop poles pcl(k) now depend on the gain of the controller k.
From (2.43) it is clear that points in H(s)C(s) that have zero imaginary part
and a negative real part belong to the root-locus. However, a discrete grid of
points si is used, which means that (2.43) is only evaluated at s = si. In general,
Im(Ĥ(si)C(si)) will not exactly be equal to zero for any point si. Im(Ĥ(s)C(s))
will be zero somewhere between the data points si. Figure 2.9 illustrates this.
In the figure, the point si has two neighbouring points where Im(Ĥ(si)C(si))
changes sign (for the algorithm only the four closest neighbours are considered).
Since the underlying transfer function is analytic on the whole s-plane (exept for
a few isolated points; the poles of H(s)C(s)), Im(Ĥ(si)C(si)) must be equal to
zero somewhere between these points. An estimation of this point is made using
linear interpolation. Considering point si and its neighbour sj as indicated in the
figure, the zero crossing p̂cl, which is an estimate of the closed-loop pole location,
is given by

p̂cl = si + α(sj − si), (2.44)

where

α =
Im(Ĥ(si)C(si))

Im(Ĥ(sj)C(sj))− Im(Ĥ(si)C(si))
. (2.45)

However, according to (2.43), the corresponding gain is not only real, but also
negative, therefore it is checked whether

H(p̂cl)C(pcl) < 0, (2.46)

where linear interpolation is used again to compute

H(p̂cl)C(p̂cl) = Ĥ(si)C(si) + α(Ĥ(sj)C(sj)− Ĥ(si)C(si)). (2.47)

The complete root-locus is constructed by performing a search over all data points
si. For the root-locus points that are found, the corresponding gain k can be
computed from

k =
−1

H(p̂cl)C(p̂cl)
. (2.48)

In this way it is possible to use the data-based root-locus to compute the gain that
is required to obtain the desired closed-loop pole locations.

2.6 Results on a benchmark motion system

The proposed method is applied to a benchmark motion setup, see Figure 2.10.
The system consists of two inertias connected via a rotational spring. A schematic
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Im(H(si)C(si))

Im(s)

Re(s)

0

si

sj

pcl

Figure 2.9: The root-locus points (×××) are found from linear interpolation between
the data-points Im(Ĥ(si)C(si)) (•) to compute where the data crosses the zero
plane.

drawing of the setup is shown in Figure 2.11. The input u to the system is supplied
by a DC motor and the output y of the system is the position of the inertia on the
motor side measured by the motor encoder.

Figure 2.10: Experiment setup: 1: load encoder, 2: inertia at load side, 3: rota-
tional spring, 4: inertia at motor side, 5: motor, 6: motor encoder.

The control objective is to perform a point-to-point motion. A third-order set-
point is designed for this purpose and mass feedforward is added. Because the
system is lightly damped, oscillations will occur during the motion that have to
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Figure 2.11: Schematic representation of the experimental setup with collocated
controller.

be damped by the feedback controller C(s). This controller is designed using
loopshaping techniques and consists of a gain, lead filter and low-pass filter. The
goal of the controller is to damp the oscillations that will occur, but tuning of
the controller for this purpose is not straightforward. The time-constant of the
oscillations is determined by the real part of the closed-loop poles. The amplitude
of the oscillation due to a closed-loop pole with real part σp will be governed by
eσpt, (σp < 0). However, the closed-loop pole locations cannot be determined di-
rectly from the commonly used control design plots such as open-loop/sensitivity
Bode diagrams or Nyquist plots. In these experiments it will be shown that TFD
can give a quick and easy-to-compute estimation of the closed-loop pole locations,
without computation of a parametric model of the system. A root-locus will be
computed in a fully data-based way, which will be used to tune the gain of the
controller such that the closed-loop poles lie as far as possible in the LHP, thereby
giving the fastest decay rate of the oscillations. The method is validated in two
ways. Firstly, the TFD is compared to a parametric model that is computed for
the system. Secondly, the response in the time-domain is measured to validate
the predicted closed-loop poles from the data-based root-locus. Summarizing, the
following steps will be performed:

1. obtaining FRD of the system,

2. computation of TFD Ĥ(si) from FRD using (2.27),

3. computation of the data-based root-locus using (2.44),

4. time-domain evaluation of the performance of the controller.
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Step 1: Obtaining FRD of the system

The FRD of the system is obtained from a closed-loop identification experiment. A
multisine excitation signal ofNp = 60 periods with Schroeder phase was supplied to
the system according to the theory described in (Pintelon and Schoukens, 2001). A
three-point measurement method is used where the sensitivity and complementary
sensitivity are estimated by exciting at w and measuring e and u, as indicated in
Figure 2.11. The FRD is measured at frequencies between 0.63 and 6283 rad/s
with a resolution of 0.63 rad/s, see Figure 2.12. The total variance of the FRD,
plotted in grey in the figure, is computed from

Var[Ĥ(jω)] =
1

Np(Np − 1)

Np∑
k=1

|Ĥ(jω)− Ĥk(jω)|2, (2.49)

where Ĥk(jω) is the FRD computed per period and Ĥ(jω) is the sample mean over
all periods. Note that due to the choice for a Schroeder phase, it is not possible
to distinguish between noise variance and total (noise plus nonlinear distortions)
variance. In the application at hand, only the total variance is of interest as the
non-linearity of the system is outside the scope of our work. For other applications,
however, a random multisine approach could be pursued to discriminate between
noise variance and total variance, see Pintelon and Schoukens (2001). To com-
pensate for the delay in the measurement system, a delay compensation ejωτ with
τ = 5.5 · 10−4 seconds is added to the FRD. If this delay is not be compensated
for, the damping of the closed-poles is generally be estimated too low as the delay
increases the phase lag.

To verify that the FRD is measured with sufficient resolution, (2.23) can be used,
if an estimate of the damping ratio ζ is available. For this setup it is estimated
that ζ ≈ 0.002 (the value found for the parametric model described in the last
part of this section). The poles appear in the FRD at a frequency of 368 rad/s.
Thus ζωd = 0.002 · 364 = 0.73, which shows that (2.23) is satisfied.

For verification purposes, a parametric model Hmod(s) is fitted on the FRD manu-
ally. From the FRD it is observed that the main dynamics are caused by a double
integrator, a complex pair of zeros and a complex pair of poles. This gives the
following model structure

Hmod(s) = c
s2 + 2ζmωzms+ ω2

zm

s2(s2 + 2ζmωpms+ ω2
pm)

. (2.50)

The value for the frequency of the zero ωzm = 275 rad/s and the pole ωpm = 368
rad/s were obtained by reading these values from the measured FRD. Next, the
gain c = 6.7 · 103 was tuned manually such that the gain of the model matches the
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Figure 2.12: Measured FRD of the experimental setup (black), variance of FRD
(grey) and parametric model (grey dashed).

gain of the FRD at frequencies between 20−100 rad/s. Finally, the damping ratio
ζm = 0.002 was adjusted such that the peak value of the resonance of the model
is equal to the peak value of the resonance of the FRD. This model, plotted with
a grey dashed line in Figure 2.12, will be used to verify the data-based root-locus
that will be computed in the third step. It must be emphasized that this model
is used only for validation of the method, it is not used in any of the steps in the
computation of TFD. For this benchmark system, fitting a parametric model is an
easy task. Creating an accurate low-order parametric model for a more complex
system will be much more cumbersome. The TFD-based approach on the other
hand can be applied to complex systems with the same effort as for this benchmark
system.

Step 2: Computing TFD from FRD

The next step is to compute TFD from the measured FRD. Since the system has
pure integrators, the approach of Section 2.4.1 is used to compute TFD for the
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RHP. The weighting filter W (s) that was used is

W (s) =
s2

s2 + 2βWωW s+ ω2
W

, (2.51)

where βW = 0.6 and ωW = 60 rad/s. The s2 term in (2.51) cancels the pure
integrator of the plant exactly, while the denominator ensures that the influence
of the filter is limited to the low frequency range to prevent amplification of noise at
high frequencies. Systems that have undamped poles that are not exactly known
can potentially pose a problem. When the undamped poles are not cancelled
exactly, large 2nd derivatives may still exist, which lead to large errors according
to (2.17). However, in the mechanical motion systems that we have encountered so
far only the pure integrators have to be cancelled with this method. As the specific
values of βW and ωW do not influence the removal of the pure integrators, this
freedom is utilized to reduce the amplitude of the filtered FRD at low frequencies,
where the accuracy of the FRD is less due to the limited measurement time.
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Figure 2.13: 3D-Bode magnitude diagram of the TFD of the experiment setup.
The grey line represents the measured FRD.

TFD for the LHP is obtained from the RHP TFD by applying (2.9). Figure
2.13 shows the 3D-Bode diagram of the computed TFD. The conventional Bode
magnitude plot is the part of the response on the positive imaginary axis (si = jω),
indicated by a grey line on the positive imaginary axis in the figure. The range
of values of si for which the TFD is computed is −500 < Re(si) < 500, −2000 <
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Im(si) < 2000. This range is selected since it is expected that the closed-loop
poles lie in this area. For increasing controller gains, the closed-loop poles will
travel from the open-loop pole locations to the zeros of the plant, or to infinity.
Therefore, the imaginary part of si is chosen such that the frequencies of the open-
loop poles lie within this range. Selection of the range for the real part si is done
in an iterative way. The range was adjusted such that the root-locus, computed in
Step 3, shows the asymptotic behaviour of both the poles at s = 0 and the poles of
the resonance of the system. The adjustment of the range is done as follows. If no
root-locus points are visible, the range is decreased as the zero crossings probably
lie in between grid points. If on the other hand some root-locus points are visible,
but the asymptotic behaviour cannot be observed, the range is increased.

The error bounds on the TFD ∆Ĥ(si) are computed using the methods described
in Section 2.3. The details of the computation of the four contributions to this
error as given in (2.34) are as follows:

• The variance on the TFD Var[Ĥ(si)] is computed from the variance of the
FRD as computed using (2.49). To estimate the error bounds, rP = 2.14
is used in equation (2.29), corresponding to a 99% confidence that the error
lies within these bounds.

• The error Ef (si) due to the finite integral (2.14) that is used instead of the
infinite integral (2.7) is computed using (2.35), taking n = 2, ωmax = 6283
rad/s.

• The error due to numeric integration Ei(si) is computed from (2.17), where
a = −ωmax, b = ωmax, Nk = 104 and K is computed using straightforward
numeric differentiation. Denoting the integrand of (2.18) by

I(ωk) =
H(jωk)

si − jωk
, (2.52)

the second-order derivative is computed using

d2I(ωk)

dω2
k

=
I(ωk−1)− 2I(ωk) + I(ωk+1)

(∆ω)2
. (2.53)

• The extra error contribution Em(si) in the LHP is estimated using (2.36)
where d = ζmaxωnd = 0.01 · 364 = 3.64 is used to estimate the worst case
damping of the resonant pole.
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Step 3: Computation of the data-based root-locus

For the system under consideration it is known that high damping of the resonance
is obtained when the open-loop transfer function crosses the 0 dB line somewhere
between the zero and the pole. To achieve this, phase lead is required in a broad
frequency range because the open-loop will cross the 0 dB line three times. Fur-
thermore, a low-pass filter is added to suppress high frequency disturbances and
sensor noise. The controller that is used is given by

C(s) = k
s
ω1

+ 1
s
ω2

+ 1

1
s2

ω2
lp

+
2βlps
ωlp

+ 1,
(2.54)

with ω1 = 125 rad/s, ω2 = 2500 rad/s, ωlp = 4400 rad/s and βlp = 0.3. The gain
k is initially set to 1 to compute the root-locus, but this initial value is arbitrary.
The root-locus will be used to compute the optimal gain for this controller.

TFD C(si) is generated for the controller by evaluating (2.54) at the TFD points
si. Next, the approach of Section 2.5 is used to search for points that belong to
the root-locus. Recall that these are the points at which Ĥ(si)C(si) is negative
and real. These points are plotted in Figure 2.14 (black), along with the root-
locus obtained from the parametric model (2.13) (grey). The grey ‘×’ and ‘◦’
markers indicate the open-loop poles and zeros of H(s)C(s) obtained from the
system model and controller.

Each point on the root-locus is a possible closed-loop pole location that is achieved
when the gain k of the controller is set to the corresponding value. Stated the other
way around, when the gain of the controller is increased from zero to infinity, the
poles will travel from the open-loop pole locations along the plotted lines. It can
be observed that the two system poles in the origin go to the zeros of the system
for increasing gains. The two poles at 380 rad/s travel to the real axis where one
goes towards infinity, while the other goes to the zero of the lead filter at −125.

The root-locus will be investigated in more detail for three choices of k. For
k = 4.29, the closed-loop poles lie at the points marked with ‘a’, for k = 8.58 they
are at ‘b’ and for k = 17.16 the closed-loop poles lie at locations marked with a
‘c’. The closed-loop poles from the model are marked with a grey ‘+’. The closed-
loop poles computed using the TFD-based approach are plotted with a black ‘+’,
where the size of the marker indicates the uncertainty of the pole location. The
uncertainty on the pole location is computed from the uncertainty of Ĥ(si) by
computing the pole location for 100 random realizations Ĥr(si) that lie within the
error bound E(si). Thus

Ĥr(si) = Ĥ(si) + reiφ|∆Ĥ(si)|, (2.55)
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Figure 2.14: Data-based root-locus computed from TFD (black). Model-based
root-locus (grey). Corresponding poles indicated with ‘+’ at root-locus gains are
a: k=4.29, b: k=8.58 and c: k=17.16. The size of the black ‘+’ indicates the
uncertainty of the TFD poles.

where 0 < r < 1 and 0 ≤ φ < 2π. It can be observed that the closed-loop poles
obtained from the model lie within the uncertainty bounds of the poles computed
from TFD.

It can be observed that the poles that start at the origin lie the farthest in the
LHP at ‘b’. At ‘b’, where the controller gain k = 8.58, the real part of these poles
is equal to −124. For k = 8.58, the closed-loop poles that start the root-locus
at 380 rad/s, are shifted even farther into the LHP. This means that ‘b’ is an
optimal choice for the controller gain in terms of decay rate of the oscillations.
Choosing the controller gain half as high results in closed-loop poles that lie at
‘a’, which are closer to the imaginary axis and which will therefore have a larger
time-constant. Similarly, doubling the controller gain results in closed-loop poles
that lie at ‘c’ which also have a larger time-constant. The open-loop bode diagram
is plotted for these three choices for the gain, see Figure 2.15. In the figure it can
be observed that the lead filter increases the phase in the cross-over regions of the
three controllers. This shows that all three systems are stable. In manual loop-
shaping, the open-loop plot is conventionally used to tune the controller. It can be
observed that the cross-over frequency increases as the gain increases. However,
no conclusions can be drawn from this plot about how this affects the damping
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of the system. It will become clear that the data-based root-locus computed with
TFD does provide this information.

The predicted closed-loop poles from the model and from TFD are given in Table
2.1 for the three choices of the gain. Since the TFD is only computed in the range
of interest, which lies around the resonant poles of the system, not all closed-
loop poles are obtained from the data-based root-locus. There are poles in the
controller that give closed-loop poles at high frequencies or at locations far in the
left half-plane, which are not obtained from the TFD. However, for the analysis
of the time-constant of the system poles, these poles are irrelevant. The model, of
course, gives all the closed-loop poles, which explains why Table 2.1 contains are
more poles in the column of the model-based approach. The uncertainty of the
TFD poles, as indicated by the size of the black ‘+’ markers in Figure 2.14, is also
given in the table. The closed-loop poles computed from the model lie within the
uncertainty of the closed-loop poles computed from TFD.

Point Gain Closed-loop Closed-loop
poles (model) poles (TFD)

a 4.29 −2266
−55± 119j −52+18

−23 ± 111+25
−26j

−65± 377j −62+15
−12 ± 384+23

−19j
−1324± 4122j

b 8.58 −1920
−120± 220j −124+43

−76 ± 206+82
−52j

−168± 264j −153+42
−76 ± 332+40

−82j
−1329± 4046j

c 17.16 −172 −184+20
−22 ± 0+35

−38j
−33± 258j −52+25

−30 ± 252+25
−24j

−1113± 949j
−1345± 3864j

Table 2.1: Predicted closed-loop pole locations from TFD and from the model for
three choices of the controller gain.

Step 4: Time-domain performance

Since both TFD and the model can only give an estimation of the actual closed-
loop pole locations, time-domain measurements have been conducted for the three
choices of the gain of the controller. A third order trajectory is designed to drive
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Figure 2.15: Open-loop Bode diagram for three values for the controller gain;
k=4.29 (grey), k=8.58 (black) and k=17.16 (dashed).

the system to one full revolution in 0.06 seconds. The responses for the three
chosen gains are shown in Figure 2.16. As predicted with the root-locus, the black
line, corresponding to k = 8.58 associates with the fastest settling time.

Figure 2.17 shows the power spectral density function of the response for t > 0.06.
The spectrum for the first 0.06 seconds is omitted because it is dominated by the
frequency contents of the reference. From 0.06 seconds, the reference is constant,
such that the response shows the settling dynamics of the closed-loop. It can
be observed that the response for the low-gain case (in grey) has peaks at 119
and 386 rad/s. From Table 2.1 it can be observed that these values are close to
the frequencies that were predicted by the root-locus (119 and 383 rad/s). The
peak is the highest at 119 rad/s, since that pole is the least damped one of the
two. For the ideal gain (black), the dominant frequency is 201 rad/s, where the
root-locus predicted 195 rad/s. The root-locus also predicted a pole at 295 rad/s,
but that pole is much more damped, such that it is not visible in the spectrum
of the response. For the high-gain case (dashed), the dominant frequency is 254
rad/s, which also corresponds to the root-locus (251 rad/s). The closed-loop poles
predicted at the real axis are also too damped and cannot be observed in the figure.

While the frequency of the closed-loop poles is easily obtained from the power
spectrum, the damping value of the closed-loop poles cannot be easily obtained
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from the time-domain response. In some cases, the damping of a closed-loop pole
can be estimated by fitting an exponential function on the peaks of a response.
This method works well for closed-loop responses that are not very damped, since
in that case many oscillations of the response can be used in the fit. In the case
at hand, this method would be inaccurate since all three responses are fast, which
makes the fit very inaccurate. Nevertheless, from the figure it is clear that the
black line is associated with the fastest settling time, which indicates that the
closed-loop poles lie the farthest in the LHP.
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Figure 2.16: Measured response on reference trajectory (dotted) for k=4.29 (grey),
k=8.58 (black) and k=17.16 (dashed).

2.7 Conclusions

Transfer function data (TFD) can be interpreted as a data-based version of the
transfer function of a system. It bridges the gap between model-based and data-
based approaches by enabling the application of model-based controller synthesis
and analysis tools in a data-based way.

TFD can be computed for lightly damped, stable, strictly proper systems by com-
puting a Cauchy integral over its frequency response data (FRD). TFD gives the
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Figure 2.17: Power spectrum of the measured response for t > 0.06 of k=4.29
(grey), k=8.58 (black) and k=17.16 (dashed).

value of the transfer function for a grid of points in the complex plane. For an ac-
curate computation the FRD that is used to compute the TFD must be measured
with high resolution. Furthermore the highest frequency of the FRD must be well
above the highest frequency at which the TFD is computed. Since the Cauchy
integral can only be used to compute RHP TFD, the damping of the system under
consideration must be low enough such that the TFD is approximately symmet-
ric in the imaginary axis. This enables the computation of TFD for the whole
complex plane by mirroring the RHP TFD to the LHP. The method attenuates
measurement noise that is present in the FRD, especially for TFD computed at
points in the complex plane that lie far from the imaginary axis. This is caused
by the noise filtering properties of the Cauchy integral. The computation time of
TFD at one point in the complex plane is in the order of milliseconds, such that
it is feasible to compute a grid of points in the complex plane in a few seconds on
a normal pc.

As a use-case a data-based root-locus is computed for a bench-mark motion system
using TFD. It was found that the controller gain and corresponding closed-loop
pole frequencies can be computed accurately. It is shown that it is possible to
optimize the gain such that the time-constant of the closed-loop poles is minimal.
This was achieved by selecting the controller gain for which the closed-loop pole
locations lie the farthest in the LHP.

In the next chapter, the method will be extended to multi-input multi-output
systems. For multi-input multi-output systems the approach is even more fruitful,
since the modelling of these systems is more difficult such that this approach can
be an attractive alternative to parametric modelling of the system.
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Chapter 3

Data-based computation
of closed-loop poles
for MIMO systems

T his chapter describes the use of TFD in the computation of closed-
loop poles of lightly damped MIMO systems. MIMO TFD enables

data-based evaluation of the determinant of the return difference matrix.
It is explained that this enables the computation of closed-loop poles from
TFD including their multiplicity. Experiments on a proto-type wafer stage
are presented to demonstrate the practical applicability of the proposed ap-
proach. Moreover, a loop-shaping design example is included where the
damping of a number of flexible modes is improved by incorporating the
obtained closed-loop poles in the control design.

3.1 Introduction

The trend that the number of transistors on a chip increases while the cost of a
chip decreases leads to increasing performance requirements for wafer scanners in
the chip manufacturing industry. To satisfy the specifications on throughput and
resolution, increased speed and accuracy of the motion systems in these machines is
required. Next generation positioning systems are often designed to be lightweight
to enable high accelerations at limited actuator forces, which improves through-
put. At the same time lightweight systems are typically less stiff causing flexible
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dynamics to shift to lower frequencies, which can lead to a decrease in machine
performance. Typical performance measures for these machines are overlay and
imaging performance (Wagner et al., 2011). It is expected that the semiconductor
industry will switch from the current 300 mm to 450 mm substrates as to increase
throughput (Pettinato and Pillai, 2005). For larger substrates, flexible dynamics
of the motion stages will become even more pronounced.

Conventionally, high-precision motion systems are designed to exhibit rigid-body
dynamics for frequencies below the desired bandwidths of the system. The systems
are equipped with multiple actuators and sensors, making them multi-input-multi-
output (MIMO) systems. Geometric decoupling is used to decouple these inputs
and outputs such that all six rigid-body degrees-of-freedom can be controlled in-
dependently (Butler, 2011). Manual loop-shaping based on measured frequency
response data is used in industry to tune the controllers. The flexible dynamics
of these systems tend to have low damping due to the undamped materials used
to construct these systems, such as ceramics and metals. As a result, the systems
will exhibit lightly damped resonances beyond the target bandwidths due to the
flexible modes of the system. In case these flexibilities limit the performance or en-
danger closed-loop stability, these resonances need to be suppressed in the control
design, which is generally done by using notch filters.

By increasing bandwidth specifications or due to the decrease in stiffness of the
mechanical structure of these systems, the resonance frequencies will shift towards
(or even drop below) the target bandwidths. Conventional notch filters only pre-
vent excitation of the flexible dynamics by the control system. This is done by
decreasing the loop-gain at the resonance frequencies. However, this also prevents
the control system to control the flexible modes in case they are excited by ex-
ternal disturbances. Due to the low damping of these flexible modes, this often
induces too long settling times, which limits performance. This illustrates that
active control of the flexible modes is key to high-precision motion control.

One solution is to use more actuators and sensors to increase control authority
over the flexible modes. This is sometimes referred to as over-sensing and over-
actuation (Schneiders et al., 2004). Using more actuators and sensors than needed
for rigid-body control enables modal decoupling (Inman, 1984) where besides the
rigid-body modes a number of flexible modes can be decoupled. In this way, each
decoupled mode can be addressed by the control system in a separate control
loop. However, as high-precision motion systems typically have a large number of
relevant modes, it is infeasible to decouple all these flexible modes as this would
require a large number of actuators and sensors.

It is evident that the control system should add damping to the flexible modes
to improve performance. However, classical loop-shaping design using measured
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FRD cannot incorporate damping of closed-loop poles as one of the design criteria.
The reason for this is that the closed-loop poles cannot be computed from the data
directly. To do so, a parametric model of the system to be controlled is required.
Unfortunately, deriving an accurate low-order parametric model for control design
is no easy task for the considered class of systems. Compared to first principles
modelling techniques or finite element modelling, the non-parametric FRD can be
measured at low cost with high accuracy. Therefore, the a more feasible approach
is to fit a parametric transfer function on the measured FRD. This, however is
hampered by the choice of the model-order for such a fit. In van de Wal et al.
(2002) it is described how a MIMO model can be obtained from FRD by combining
single-input single-output (SISO) fits for each of the input-output combinations. It
is shown that redundant state variables may remain in the MIMO model despite
the use of model reduction techniques. The controllers synthesised with these
models can be unstable and are typically of too high order, which still is considered
an open problem (Oomen and Bosgra, 2012).

An alternative approach would be to pursue a data-based control design. Active
vibration control methods using FRD are proposed in Preumont and Seto (2008).
However, the analysis tools for such methods are very limited if no model of the
system is available. For example, there is no way to precisely determine how much
damping will be added by feedback control. The same limitation is encountered
in other recent advances in FRD-based control. For example, optimization-based
computation of QFT controllers is described in Molins and Garcia-Sanz (2009) and
Halikias et al. (2007). Another recent contribution by Keel and Bhattacharyya
(2008) shows the computation of the set of all stabilizing PID controllers that
satisfies a certain performance criterion, specified by the phase or gain margin
or by the H∞ norm. FRD based fixed-order H∞ control design is described in
Karimi et al. (2007); Karimi and Galdos (2010). Performance specifications for
these methods are given in the frequency-domain, which is well-suited to guarantee
stability and disturbance rejection properties. However, it is not clear at all how
to specify damping of the resonant poles.

Besides these frequency-domain methods, time-domain data-based methods, such
as data-based LQG (Skelton and Shi, 1994), Virtual Reference Feedback Tuning
(Campi et al., 2000), (Formentin et al., 2012) or Iterative Feedback Tuning (Hjal-
marsson and Gevers, 1998) have been developed. Although these methods can
be used to specify the damping of the closed-loop poles indirectly by posing con-
straints on the time-domain response, they do not easily combine with the well
established frequency-domain design methods that are currently used for high-
precision motion systems. A different approach is therefore required.

The approach pursued in this chapter is to compute the closed-loop poles of a
MIMO system from transfer function data (TFD). TFD can be regarded as a
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data-based or sampled version of the transfer function. Where FRD only gives
information on the response of the system on the imaginary axis, TFD gives infor-
mation on the response of the system in the complex plane. TFD can be computed
from FRD, which is shown in the previous work (Hoogendijk et al., 2010) and in
the previous chapter. Key in the computation is the usage of a Cauchy contour
integral. The Cauchy contour integral is a concept from complex function theory
(see, e.g., (Rahman, 1997)) that is often used in control theory. The well-known
Bode sensitivity integral (Bode, 1945) and Hilbert transform (Tesche, 1992) are
two examples of its application. More recently, it was shown that stability and
causality of systems can be proven using Cauchy integrals (Den Hamer et al.,
2008).

Different from Hoogendijk et al. (2010) and the previous chapter, this chapter
considers the computation of TFD and its uncertainty bounds for MIMO systems.
For a given controller, the closed-loop poles of the MIMO system can be computed
in a completely data-based way, without the need for a parametric model of the
system to be controlled. The computation of the closed-loop poles is done via
data-based computation of the determinant of the return difference matrix. In
the 80’s, this determinant attracted a lot of attention in attempts to generalize
classical SISO control theory to MIMO systems. For example, see the MIMO
variants of the Nyquist criterion, root-locus and pole-placement given in Brockett
and Byrnes (1981); Mayne (1973); Postlethwaite and MacFarlane (1979); Owens
(1978), which are all based on parametric models. With the shift towards H∞
control design (Maciejowski, 1989), most of the earlier techniques lost attention.

MIMO TFD allows for evaluation of the determinant of the return difference matrix
in the complex plane without the need for a parametric model. Thus, the (complex)
value of the determinant can be computed for all points in the complex plane. To
analyse the TFD, techniques are used that are closely related to the classical SISO
root-locus techniques (Evans, 1950). In Ash and Ash (1968) it is described that
the imaginary part of the open-loop is zero along the root-locus. Comparable
properties are derived in this chapter for the determinant of the return difference
matrix. So-called u- and v-contours will be computed; contours where either the
real part or the imaginary part of the determinant equals zero. Intersections of
these contours not only reveal the closed-loop pole locations, but also the open-
loop pole locations. Moreover, the multiplicity of the poles can be derived from
these contours. It must be emphasized that these contours are computed directly
from the TFD, thus no parametric model is needed.

The main contributions of this chapter can be summarized as follows:

• a method to compute TFD and its uncertainty bounds for MIMO systems,

• numerically reliable computation of the closed-loop poles of MIMO systems
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from TFD,

• validation of the closed-loop poles by experiments on a prototype wafer stage,

• controller design example for a prototype wafer stage.

The chapter is organized as follows. First, the computation of TFD from FRD
is described in Section 3.2. The section explains the underlying assumptions and
approximations of the computation. Next, the estimation errors of the computa-
tion are treated in Section 3.3. Section 3.4 explains how the computed TFD can
be used to compute the closed-loop poles for a given controller. The proposed
methods are validated on a prototype wafer stage that exhibits dominant flexible
dynamics, which is the topic of Section 3.5. The computed closed-loop poles are
validated by making a comparison with time-domain responses of the closed-loop
system. Furthermore, a design example is included where a controller is tuned
using TFD. Experimental validation shows improved damping characteristics for
the targeted flexible modes.

3.2 Computation of TFD

This section describes the computation of transfer function data (TFD) for MIMO
systems and can be seen as an extension of the computation of TFD for SISO
systems as described in the previous chapter.

3.2.1 Definition of TFD

Let a MIMO system H(s) consist of the entries Hyu(s), where y = 1, 2, ..., ny are
the ny outputs and u = 1, 2, ..., nu are the nu inputs, or

H(s) =


H11(s) H12(s) . . . H1nu

(s)
H21(s) H22(s) . . . H2nu

(s)
...

...
. . .

...
Hny1(s) Hny2(s) . . . Hnynu

(s)

 . (3.1)

An accurate, low-order parametric model of H(s) is generally not available for
high-precision motion systems. Therefore, controllers for this class of systems are
typically designed using loop-shaping based on frequency response data (FRD).
FRD is defined to be a set of samples H(jωk) of a transfer function H(s) at the
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points s = jωk, ω ∈ R, or

H(jωk) =


H11(jωk) H12(jωk) . . . H1nu

(jωk)
H21(jωk) H22(jωk) . . . H2nu

(jωk)
...

...
. . .

...
Hny1(jωk) Hny2(jωk) . . . Hnynu

(jωk)

 . (3.2)

The subscript k = 1, 2, ..N is an index in the set of N data points, which can
be obtained via available frequency response identification techniques (Pintelon
and Schoukens, 2001). FRD gives only partial information about H(s), since the
transfer function is only evaluated at points s = jωk that lie on the imaginary axis
of the s-plane. Therefore, the concept transfer function data (TFD) is introduced.
TFD contains the response H(si) at complex frequencies si = σi + jωi, where the
subscript i = 1, 2, ..Ntfd is an index in the set of Ntfd data points, or

H(si) =


H11(si) H12(si) . . . H1nu

(si)
H21(si) H22(si) . . . H2nu(si)

...
...

. . .
...

Hny1(si) Hny2(si) . . . Hnynu(si)

 . (3.3)

In si, σi ∈ R represents the real part of si whereas ωi ∈ R represents the imaginary
part or frequency of si. The former can be regarded as the absolute damping or
time constant. In this way, TFD provides information about the system for a
grid of points si in the complex plane and not only for the imaginary axis. As a
result, TFD H(si) can be regarded as the data-based representation of the transfer
function H(s) of the system.

3.2.2 Computation of TFD in the RHP

The concept of TFD is straightforward. It is a sampled version of the transfer
function. However the concept will only be useful if TFD can be obtained from
measured FRD, without the use of a parametric model. In this section, it will be
explained that in the right half-plane (RHP) TFD can be computed from FRD
using a Cauchy integral. The Cauchy integral formula (Rahman, 1997) states the
following.

Theorem 3.1 (Cauchy integral formula) Let g(s) be an analytic function in a
region G, C a simple closed curve in G in anticlockwise direction and let si denote
a point in C. Then

g(si) =
1

2πj

∫
C

g(s)

s− si
ds. (3.4)
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Proof: For the proof, see Rahman (1997).

Transfer functions are complex functions that are analytic, except at the pole loca-
tions. Therefore, Theorem 3.1 implies that the value H(si) of a transfer function
at the point si can be computed if the transfer function is analytic in the contour
surrounding si and if the value of the transfer function is known on this contour.
For stable systems, the RHP is an analytic region. Because the value of the trans-
fer function on the imaginary axis, i.e., the FRD, can be obtained by frequency
domain identification techniques, a good choice for the contour is a D-contour CD
as shown in Figure 3.1. CD consists of the imaginary axis plus a semicircle at
infinity to close the contour.

Since each entry Hyu(s) of the MIMO transfer function H(s) in (3.1) is a complex
function itself, the computation of MIMO TFD can be performed for each SISO
TFD entry of the transfer function matrix separately. The TFD in a particular
entry can be computed from the FRD of the corresponding entry. That is, the
results from the previous chapter can be used to compute TFD for each entry
Hyu(s) of the MIMO system. Applying (3.4) to this contour gives

Hyu(si) =
1

2πj

∫
CD

Hyu(sCD )

(sCD − si)
dsCD , si ∈ C+, (3.5)

where sCD denotes the points that lie on CD. The element-wise integration of all
elements is denoted by

H(si) =
1

2πj

∫
CD

H(sCD )

(sCD − si)
dsCD , si ∈ C+. (3.6)

Furthermore, for strictly proper systems like the electromechanical motion systems
considered in this work it holds that

lim
s→∞

H(s) = 0, (3.7)

which means that the value of the transfer function on the semicircle at infinity is
zero. This reduces (3.6) to

H(si) =
1

2π

∫ ∞
−∞

H(jω)

(si − jω)
dω, si ∈ C+. (3.8)

Note that the integration bounds are interchanged. This gives a minus sign that
is accounted for in the denominator of the integrand. Furthermore, a factor j is
taken outside of the integral to make the integration variable real-valued.

In practice, the integral (3.8) cannot be computed, since the frequency response
can only be measured up till a certain maximum frequency ωmax, i.e.,

H(si) =
1

2π

∫ ωmax

−ωmax

H(jω)

(si − jω)
dω + Ef (si), si ∈ C+, (3.9)
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CD

si
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∞

−si − 2d

d

−ωnd
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Figure 3.1: Contour CD in the s-plane used to compute TFD at the point si.
Symmetry of the poles × and zeros ◦ is used to estimate the TFD at the point
−si − 2d.

where Ef (si) is the error that is made due to computing a definite integral. Further
analysis and estimation of the error terms of the TFD will be considered in Section
3.3.

As the measured FRD, denoted by Ĥ(jωk), is only available at discrete points
ωk, it is necessary to approximate (3.9) numerically. By using for example the

trapezium method, an estimate Ĥ(si) is obtained that yields

Ĥ(si) =
1

4π

N−1∑
k=−N

(
Ĥ(jωk)

(si − jωk)
+

Ĥ(jωk+1)

(si − jωk+1)

)
∆ω, (3.10)

where ∆ω = ωk+1−wk. The index k runs from −N to incorporate negative FRD,
which is required as the integral runs over the negative frequencies as well. The
response at negative frequencies is easily obtained as it holds that

H(−jw) = H∗(jw), (3.11)
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where * denotes the complex conjugate. The estimation Ĥ(si) can be related to
the actual value H(si) by

H(si) =Ĥ(si) + En(si) + Ei(si) + Ef (si). (3.12)

Here the already mentioned error Ef (si) due to the definite integral appears, as
well as two additional error terms. The FRD itself will contain noise, which leads
to the error En(si). Furthermore, the integration method gives an error Ei(si).
For example, the trapezium method used in (3.10) is only exact if the second-order
derivative of the FRD with respect to the frequency is zero.

Note that it is sufficient to compute TFD for the upper quadrant of the RHP as
for the lower quadrant of the RHP it holds true that

H(s∗) = H∗(s), (3.13)

i.e., TFD for the lower quadrant of the RHP is obtained by taking the complex
conjugate.

3.2.3 TFD for systems with integrators

Many mechanical systems contain double integrators, i.e., a set of poles that lies
in the origin of the s-plane. For systems with undamped poles, (3.10) cannot be

used directly to compute Ĥ(si) from Ĥ(jωk) because the contour does not lie
in an analytic region due to the poles on the imaginary axis. Numerically, the
computation is hampered by the fact that the FRD will have a very high second-
order derivative at the pole location, which induces large errors by numerical
integration.

As explained in Chapter 2 for SISO systems a straightforward way to deal with this
problem is to add a known weighting filter W(s) to the FRD in the computation
step. This method can be generalized for MIMO systems as follows. Let W(s) be
a high-pass filter of which the entries Wyu(s) are given by

Wyu(s) =
s2

s2 + 2βW 2πfW s+ ω2
W

. (3.14)

This filter exactly cancels the integrators of the plant by the s2 term in the nu-
merator. The denominator ensures that the influence of the filter is limited to
the low-frequency range to prevent amplification of noise at high frequencies, and
to ensure that the filtered system is strictly proper. As the specific values of the
damping βW and corner frequency fW of W(s) do not influence the removal of
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the pure integrators, this freedom is utilized to reduce the amplitude of the fil-
tered FRD at low frequencies, where the FRD is often less accurate due to the
limited measurement time used to obtain the data. However, fW should be chosen
smaller than the lowest resonance of the system as to minimize the influence of
this method on the computed result of the TFD in the relevant frequency range.

The FRD Ĥ(jωk) is multiplied with the FRD of the filter W(jωk) thereby can-

celling the undamped poles giving the filtered FRD Ĥf (jωk), or

Ĥf (jωk) = Ĥ(jωk)�W(jωk), (3.15)

where � denotes element-wise multiplication. Using (3.10), TFD Ĥf (si) is com-

puted from the filtered FRD Ĥf (jωk). Since the filter W(si) is known for all

points si, it can be removed from Ĥf (si) giving

Ĥ(si) = Ĥf (si)�W(si), (3.16)

where � denotes element-wise division. It is required that W(si) does not have
any right half-plane zeros in its entries, as this would make the division in (3.16)
indeterminate at the zero locations.

3.2.4 Computation of TFD in the LHP

So far, computation of TFD in the RHP using a Cauchy integral method has been
discussed. However, the Cauchy integral method cannot be used to compute TFD
in the left half-plane (LHP). The LHP contains the poles of the system, which
renders it a non-analytic region of the transfer function. However, lightly damped
resonant systems, for which this method is primarily developed, have poles and
zeros that lie close to the imaginary axis, see Figure 3.1. This gives the TFD a
certain symmetry that can be exploited in computing TFD in the LHP.

The specific symmetry condition that can be used depends on the system at hand.
For systems with force actuators and position sensors, as is usually the case for
motion systems, the transfer function can be written as a summation of Nm modes
n with modal participation matrix Ψn, frequency ωn and damping ζn as in

H(s) =

Nm∑
n=1

Ψn

s2 + 2ζnωns+ ω2
n

. (3.17)

For undamped systems, i.e., ζn = 0, it can be concluded from (3.17) that

H(−si) = H(si). (3.18)
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Thus the TFD of undamped systems is symmetric with respect to the origin of
the complex plane. However, this may give a too rough approximation for real
systems where the poles and zeros of the modal system do have a certain amount
of damping ζn > 0.

It is therefore desirable to have a more accurate symmetry condition than (3.18),
which is the MIMO equivalent to the symmetry condition in 2.9. As the goal of
the method is to analyse closed-loop pole locations, it makes sense to focus on
specific modes in the analysis. Around the resonance frequency ωn of mode n the
transfer function is dominated by the complex pole pair of this mode, i.e., around
ωn it holds that

H(s) ≈ Ψn

s2 + 2ζnωns+ ω2
n

≈ Ψn

(s− jωnd + σn)(s+ jωnd + σn)
, (3.19)

where ωnd = ωn
√

1− ζ2n denotes the imaginary part of the pole pair, which is the
damped eigenfrequency of mode n. σn = −ζn|ωn| denotes the real part of the pole
pair. From (3.19) it is derived that

H(−si − 2σn) ≈ Ψn

(−si − 2σn − jωnd + σn)(−si − 2d+ jωnd + σn)

≈ Ψn

(−si − jωnd − σn)(−si + jωnd − σn)

≈ Ψn

(si + jωnd + σn)(si − jωnd + σn)

≈ H(si). (3.20)

Thus, around the pole of interest the TFD is approximately symmetric in the point
s = −σn. Denoting the distance of this point to the imaginary axis by d := |σn|,
this results in the symmetry condition

H(−si − 2d) = H(si) + Em(si), (3.21)

where Em(si) is the error term of the TFD in the LHP introduced by the symmetry
approximation. This adds an additional error term to (3.12). The symmetry
condition is depicted in Figure 3.1, where the poles at ±ωnd are the poles of
interest. As the RHP TFD is mirrored in the point s = −d, there will be a region
where no TFD is computed. This region

−2d ≤ Re(s) ≤ 0, (3.22)

is indicated in the figure as the grey zone left to the imaginary axis. This zone is
typically small for lightly damped systems.



68 Chapter 3 Computation of closed-loop poles for MIMO systems

Using the symmetry condition in (3.21) gives more accurate LHP TFD around the
mode of interest, as the TFD is also dominated by the contribution of this pole.
This can be observed from the denominator (si − jω) of the integrand in (3.9).
This denominator weights the contribution of the FRD Hyu(jω) with the inverse
of the distance of si to jω. As the FRD around the pole of interest is dominated
by the pole of mode n, and the FRD of the other modes is weighted less due to
the weighting with the inverse of (si− jω), the TFD around the pole of mode n is
dominated by this pole.

Estimating the absolute damping σn of the pole of mode n to determine d is a
straightforward operation that does not require a parametric model of the system.
An estimate of the damped eigenfrequency ω̂nd can easily be obtained by taking
the frequency of the resonance peak in the FRD. For lightly damped mechanical
systems it is fairly common to use a damping ratio between ζ ≈ 0.001 − 0.005
(Preumont, 2011). Using an estimate ζ̂ from this range, it follows that

σn ≈ ζ̂ω̂nd. (3.23)

Summarizing, TFD can be computed in the entire complex plane as follows. Com-
pute TFD in the upper quadrant of the RHP using (3.10). Then, the lower quad-
rant of the RHP is obtained using (3.13), where the LHP TFD is obtained using
the symmetry condition in (3.21).

3.3 Uncertainty estimation

In the computation of TFD, four error terms have been identified, see (3.12) and
(3.21). In practice, the value of these error terms cannot be computed, as the true
H(s) is unknown. However, in order to compute error bounds on the closed-loop
poles that will be computed using TFD, it is useful to estimate error bounds on
the TFD. Therefore, error bounds on these terms will be given. In Sections 3.3.1
to 3.3.4 error bounds for the individual error terms are presented. The total error
bound is discussed in Section 3.3.5.
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3.3.1 Error bounds due to a finite integral

The error term Ef (si) in (3.9) is equal to

Ef (si) =
1

2π

∫ −ωmax

−∞

H(jω)

(si − jω)
dω +

1

2π

∫ ∞
ωmax

H(jω)

(si − jω)
dω, (3.24)

which follows from comparison with (3.8). Since H(jω) is assumed to be strictly
proper, the magnitude of H(jω) has a minus-one slope or steeper at high frequen-
cies. Therefore, the magnitudes of the entries Hyu(jω) are bounded by

|Hyu(jω)| ≤ cyu
|ωn| for |ω| > ωmax, n ≥ 1, (3.25)

assuming that all flexible modes lie below ωmax. For each entry, a reasonable
estimation of the constant cyu is to take the value of the FRD at ωmax. Thus,
substituting ωmax in (3.25) gives

cyu ≥ |Hyu(jωmax)||ωnmax|. (3.26)

This leads to the following error expression

|Ef,yu(si)| ≤
cyu
2π

∣∣∣∣∫ −ωmax

−∞

1

ωn(si − jω)
dω

∣∣∣∣+
cyu
2π

∣∣∣∣ ∫ ∞
ωmax

1

ωn(si − jω)
dω

∣∣∣∣. (3.27)

ωmax is typically chosen 20-50 times the desired bandwidth and the system will
have a minus-one slope or steeper at high frequencies. Consequently, Hyu(jωmax)
will typically be small compared to the value of Hyu(jω) around the bandwidth of
the system. Furthermore, the (si−jω) term in the denominator of (3.27) decreases
the error even further as typically |si − jω| >> 1 for ω > ωmax.

3.3.2 Error bounds on the integration method

Approximation of the integral (3.9) by the summation (3.10) also gives an error
contribution. It is well known that the trapezium method gives an error when it is
used to compute the integral of a function that has a non-zero second-order (and
possibly higher) derivative. An upper bound of the error can be computed for
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each component from the second-order derivative of the integrand (Adams, 1999),
giving

|Êi,yu(si)| ≤ Kyu(si)
2ωmax ∆ω3

12
, (3.28)

where

Kyu(si) = max
ω

∣∣∣∣ d2dω2

Hyu(jω)

(si − jω)

∣∣∣∣ . (3.29)

This bound is likely to be very conservative. First, the FRD of lightly damped
motion systems will exhibit sharp peaks at the resonances of the system, which
causes high second-order derivatives at these frequencies. Fortunately, these peaks
only occur at a discrete number of locations in the FRD. Second, at some frequen-
cies the second-order derivative is positive while it is negative at other frequencies.
As (3.28) does not take the sign of the second-order derivative into account, it is
likely to be a rather conservative error estimation. A more practical approach is
to use the average value of the second-order derivative of the integrand, i.e.,

Myu(si) = mean
ω

d2

dω2

Hyu

(si − jω)
, (3.30)

to compute the error bound

|Êi,yu(si)| ≈ |Myu|
2ωmax ∆ω3

12
. (3.31)

Taking the average value causes the positive and negative error contributions to
cancel out, which is a more natural approach towards estimating the error bound.
However, the disadvantage of this approach is that no guarantee on the size of the
error can be given.

Besides, estimating the second-order derivative of H(jω) itself is not a straightfor-
ward task due to the sharp peaks in the FRD, in combination with the noise on the
FRD. To cope with the noise, it would be desirable to estimate the second-order
derivative using local smooth fits through the given FRD points. However, this
causes the resonance peaks to be smoothed as well, thereby underestimating the
second-order derivative around the pole locations. A solution that was found to
give reasonable estimations of the error in practice is to simply take the numeric
second-order derivative of the integrand and using (3.31).

The nature of the data, containing sharp peaks in combination with noise, is also
the reason why higher-order numeric integration methods generally become less
accurate. As the order of the integration method increases, so do the coefficients
that are multiplied with the data points, rendering these methods overly sensitive
to noise.
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3.3.3 Error bounds due to noise

The measured FRD will contain noise contributions, which can be quantified by
the variance on the FRD. This variance is given by

Var[Ĥ(jω)] =
1

Np(Np − 1)

Np∑
k=1

|Ĥ(jω)− Ĥk(jω)|2, (3.32)

where Ĥk(jω) is the FRD computed per experiment and Ĥ(jω) is the sample
mean over Np experiments. From (3.32) it is possible to compute the variance of
the computed TFD. Using the properties of variance it can be derived from (3.10)
that

Var[Ĥ(si)] =
2

16π2

N−1∑
k=−N

(
Var[Ĥ(jωk)]

|si − jωk|2
+

Var[Ĥ(jωk+1)]

|si − jωk+1|2

)
∆ω2. (3.33)

Since the FRD on the negative frequency axis is computed from (3.11), Ĥ(−jωk)

and Ĥ(jωk) are correlated, which explains the factor 2 in (3.33).

As it is desired to give error bounds on the computed pole locations, error bounds
on the TFD are required. The variance (3.33) is a measure on the extent to which

the TFD are distributed. Assuming that Ĥ(si) has a circular complex normal
distribution, a confidence circle for each element En,yu(si) can be given. The
probability P that the magnitude of En,yu(si) is smaller than the radius of this
circle is then given by

P = Prob [|En,yu(si)| < rPσH,yu(si)] , (3.34)

where

σ2
H,yu(si) = Var[Ĥyu(si)]. (3.35)

rP can be computed for a given P according to

rP =
√
−ln(1− P ). (3.36)

For example, to ensure the probability that the error lies within this bound is
99%, rP = 2.15 is chosen. High-precision motion systems are designed to exhibit
predominantly linear behaviour and are usually equipped with sensors that have a
high signal-to-noise ratio. Furthermore, (3.33) shows that the variance of the FRD
is weighted with |si − jωk|−2 terms. Hence, the variance on the TFD decreases
quadratically as si lies farther from the imaginary axis. On the other hand, the
variance is amplified for points si that lie close to the imaginary axis, i.e., |si −
jωk| < 1. Therefore, the variance of the TFD due to the variance of the FRD
in general leads to a small error contribution, especially at points that do not lie
close to the imaginary axis.
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3.3.4 Error bounds in the LHP due to asymmetry

There are two main reasons why the symmetry method underlying (3.21) gives rise
to errors in the LHP TFD. First, the symmetry point −d is computed from the
estimated σ̂n in (3.23) as it is assumed that no parametric model of the system is
available. Second, the remaining poles of the system are likely to have a real part
that is not equal to −d. Recall from Figure 3.1 that it is clear that not all poles
lie on the dashed line Re(s) = −d.

Error bounds due to the symmetry assumption underlying (3.21) are obtained
from computing the LHP TFD for extreme values of d. As the system is stable, a
reasonable estimate for dmin, the minimum value of d, is obtained with dmin = 0.
An estimate of dmax, the maximum value of d, is obtained from the pole in the
FRD that associates with the highest resonance frequency, i.e., ω̂nd,max. Assuming

that this pole has a damping ratio ζ̂, (3.23) gives dmax = ζ̂ω̂nd,max. In this way,
two limits can be defined:

Ĥmin(−si) = Ĥ(si − 2dmin), (3.37)

Ĥmax(−si) = Ĥ(si − 2dmax). (3.38)

An error estimate now follows from the difference between the LHP TFD computed
with (3.21) and these limits. So for each entry of the MIMO system it holds that

|Êm,yu(−si)| ≤
max(|Ĥmin,yu(−si)− Ĥyu(−si)|, |Ĥmax,yu(−si)− Ĥyu(−si)|). (3.39)

3.3.5 Total error bound

Using the error bounds derived in the preceding sections, the total error bound
can be given as follows. A worst case approximation of the bound on the error
Êtot(si) of the computed TFD in the right half-plane is to assume that none of
the error terms cancel with each other, or

|∆Ĥ(si)| ≤ |Ên(si)|+ |Êi(si)|+ |Êf (si)|, Re(si) > 0. (3.40)

In the LHP the extra error caused by the symmetry condition causes the error
bound to be estimated by

|∆Ĥ(si)| ≤|Ên(si)|+ |Êi(si)|+ |Êf (si)|+ |Êm(si)|, Re(si) < 0. (3.41)
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The true value of the TFD point H(si) lies within a circle with a radius |∆Ĥ(si)|
about the estimated TFD Ĥ(si). That is, H(si) satisfies

H(si) ∈ Ĥ(si) + R� |∆Ĥ(si)| � eiΦ. (3.42)

Here, R and Φ are matrices with the same size as Ĥ(si), whose entries satisfy

0 ≤ Ryu ≤ 1, (3.43)

0 ≤ Φyu ≤ 2π. (3.44)

In this way, a set of points is computed that encapsulates the true value H(si)
at si. Ryu and Φyu will be considered to be independent for each entry in the
computation of this set of points. This obviously gives a conservative uncertainty
bound as not all parameters are independent. For example, the error in the esti-
mation of the symmetry point d in (3.39) will be the same for each entry of the
MIMO system. However, this assumption facilitates the uncertainty computation
and ensures that (3.42) will hold. This uncertainty description of the MIMO TFD
will be used in the subsequent sections to estimate error bounds on the computed
closed-loop poles.

3.4 Computation of closed-loop poles using TFD

The MIMO TFD enables the estimation of the closed-loop poles of the system to
be controlled with a given controller C(s). The closed-loop pole locations provide
important information on the damping and frequency contents of the closed-loop
response of the system that can aid the control design engineer in his tuning tasks.

3.4.1 Theory

Key in the computation of the closed-loop poles pcl is the determinant of the return
difference I + H(s)C(s), which is given by

D(s) := det(I + H(s)C(s)). (3.45)
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D(s) can be related to the open-loop φol(s) and closed-loop characteristic polyno-
mial φcl(s) of the system, which are defined by

φol =

Nol∏
k=1

(s− pol,k)nol,k , (3.46)

φcl =

Ncl∏
l=1

(s− pcl,l)ncl,l , (3.47)

where pol are the open-loop poles of the system. Nol and Ncl denote the num-
ber of open- and closed-loop poles respectively, while nol,k and ncl,l denote the
multiplicity of each pole. For D(s) in (3.45) it holds that

D(s) = c
φcl(s)

φol(s)
, (3.48)

where c is a constant (Skogestad and Postlethwaite, 2005). Therefore, the closed-
loop poles pcl satisfy

pcl = {s ∈ C | D(s) = 0}. (3.49)

Consider the estimate of D, given by

D̂(si) = det(I + Ĥ(si)C(si)), (3.50)

which is obtained from the TFD estimate Ĥ(si) and substitution of si in the
controller C(s). TFD is computed for a grid of points si, but pcl will in general
lie somewhere in between the grid points si. A solution to this problem could be
to search for points si where the magnitude |D̂(si)| has a (local) minimum. But,
there is no guarantee that this local minimum will actually be a pole location.
Furthermore, this approach would be sensitive to noise as the detection of the
pole would be based on a single data point. Therefore, a more robust solution is
proposed. First, splitting the determinant in a real part u(s) and an imaginary
part v(s) gives

D(s) = u(s) + jv(s). (3.51)

It is obvious that (3.49) can be split up too, giving

pcl = {s ∈ C | u(s) = 0 ∧ v(s) = 0}. (3.52)

The determinant is a complex function that is analytic on its entire domain except
for a discrete number of points. These points correspond to the pole locations of the
function, which are the open-loop poles according to (3.48). This means that D(s)
is continuously differentiable, and consequently, u(s) and v(s) are continuously



3.4 Computation of closed-loop poles using TFD 75

differentiable, except at the open-loop pole locations. As a result u(s) = 0 and
v(s) = 0 form continuous contours in the s-plane. According to (3.52) the closed-
loop poles will lie at the intersection points of these contours. Finding the contours
is a robust procedure since generally a set of points is used to determine these
contours. For convenience of notation, the u(s) = 0 contours will be referred
to as u-contours, and the v(s) = 0 contours as v-contours. Figure 3.2 shows
an illustration of a u-contour and a v-contour. It can be seen that the contours
intersect at the closed-loop (and open-loop) pole location.

u(s) = 0

v(s) = 0
Re(s)

Im(s)

cl ol

Figure 3.2: The u-contour and v-contour in the s-plane intersect at the closed-loop
and open-loop pole locations.

The u- and v-contours have several interesting properties. For example, it will be
shown that these contours intersect each other at predefined angles. Furthermore,
it will become clear that besides the closed-loop poles, also the open-loop poles
lie on intersections of the u- and v-contours. An analysis of the phase of D(s) is
required to derive these properties.

The phase of D(s) at s is determined by summation of all the angles of the open-
and closed-loop poles with respect to the point s (Franklin et al., 2002; Ash and
Ash, 1968). This follows from

∠D(s) =

Nol∑
k

nol,k∠(s− pol,k)−
Ncl∑
l

ncl,l∠(s− pcl,l). (3.53)

In the vicinity of one of the poles, e.g., pcl,l, the phase is completely determined
by the location of s with respect to this pole. This can be seen from Figure 3.3.
Taking

sc(φ) = pcl,l + reiφ, (3.54)
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i.e., a small circle with radius r and φ ∈ [0, 2π] around pcl,l, it is clear that for
r → 0 the angles of all other poles φ1, φ2 and φ3 with respect to sc are constant
on this circle. Therefore it holds that for r → 0,

∠D(sc(φ)) = −ncl,l∠(sc − pcl,l) + c

= −ncl,l∠(pcl,l + reiφ − pcl,l) + c

= −ncl,l∠(reiφ) + c

= −ncl,lφ+ c, (3.55)

where c is the total contribution of all other poles. Thus, the phase of D(s)
around the pole changes with −ncl,lφ while encircling the pole, where ncl,l is the
multiplicity of the closed-loop pole. The derivation is completely analogous for an
open-loop pole, apart from the change of sign of the phase according to (3.53).

φ

cl,l

ol,1

cl,1

ol,2

r

Re(s)

Im(s)

φ3
φ2

φ1

Figure 3.3: In the vicinity of pole pcl,l, the change in phase of D(si) is completely
determined by this pole.

The phase of D(si) can be related to the u- and v-contours as follows. At u-
contours, D(s) is purely imaginary giving

∠D(s) = π
2 + nπ, (3.56)

where n ∈ N, while for v-contours

∠D(s) = 0 + nπ. (3.57)

For a pole with multiplicity equal to one, the phase of D(s) around the pole changes
2π according to (3.55), which means that there will be one u- and one v-contour
intersecting at this point having a 90◦ angle at the intersection point, see Figure
3.4. In general, the angles between the u- and v-contours at a closed-loop pole
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with multiplicity ncl,l will be equal to

∠(u, v) =
90◦

ncl,l
. (3.58)

Of course, the same relation holds in case of an open-loop pole (replacing ncl,k with
nol,l in (3.58)). The pattern for a pole with multiplicity equal to three is shown in
Figure 3.4 as well. These properties of the u- and v-contours are of course closely
related to the well known root-locus sketching rules (Franklin et al., 2002).

Re(s)

Im(s)

90◦
30◦

multiplicity=1 multiplicity=3

u(s)=0

v(s)=0

Figure 3.4: Patterns of the u- and v-contours depending on the multiplicity of the
poles.

It might seem strange at first that also the open-loop poles pol lie at intersections
of the u- and v-contours, as |D(s)| = ∞ at these locations. The explanation lies
in the fact that pol are singular points of the complex function D(s). At pol the
value is indeed indefinite, see Figure 3.5 for an example of the behaviour around
pol. In the figure, u(s) and v(s) are plotted along the u-contour that goes through
an open-loop pole pol. It can be observed that u(s) = 0 except for the singular
point, while v(s) shows asymptotic behaviour. The plot along the v-contour would
look exactly opposite; v(s) = 0 except for the singular point, while u(s) shows
asymptotic behaviour. This explains how the magnitude |D(s)| can go to infinity
while at the same point the u- and v-contours intersect. This also indicates the
possibility to distinguish between open-loop and closed-loop poles, namely, by
inspecting |D(s)| near the pole location. Low amplitudes near an intersection
point are an indication for a closed-loop pole, while high amplitudes indicate the
presence of an open-loop pole.
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{s|u(s) = 0}

u(s)

v(s)

u(s), v(s)

pol

Figure 3.5: Value of u(s) and v(s) along a u-contour that passes through an open-
loop pole pol.

3.4.2 Computational aspects

Using the TFD estimates of u(s) and v(s), which are denoted by û(si) and v̂(si),
D̂(si) is defined by

D̂(si) = det(I + Ĥ(si)C(si)) (3.59)

=û(si) + jv̂(si). (3.60)

A computationally cheap and reliable method to estimate the points where u(s)
and v(s) are zero is to search for zero crossings in û(si) and v̂(si). The idea is
illustrated in Figure 3.6, where the value of û(si) is plotted in the s-plane. For
each point si it is checked whether

sign[û(si)] 6= sign[û(sj)], (3.61)

where sj is a neighboring point of si. As u(s) is a continuously differentiable
function, it must have a zero crossing somewhere between si and sj . Linear inter-
polation is used to estimate this zero crossing

ŝcross,u =
|û(si)|sj + |û(sj)|si
|û(si)|+ |u(sj)|

. (3.62)

In Figure 3.6, the points ŝcross,u are indicated by the grey ◦ markers. These
points can be connected to each other to form the estimated û-contour, which is
a continuous contour in the s-plane. The derivation for the estimated v̂-contours
is completely analogous. Figure 3.7 gives an illustration of estimated û- and v̂-
contours and the resulting pole locations at the intersection points.
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û(si)

Im(s)

Re(s)
0

û(sj)

û(si)

ŝcross,u

Figure 3.6: The zero crossings (grey ◦) in û(si) provide an estimate of the u-
contours (grey line).

To estimate the pole locations, it is detected whether the estimated û- and v̂-
contours intersect within a square formed by four grid points. This is illustrated
in Figure 3.8, which shows a detailed inset of the area around the closed-loop pole
of Figure 3.7. An approximation of the pole location is made by connecting the
points ŝcross,u and ŝcross,v by the straight lines

ω = auσ + bu (3.63)

ω = avσ + bv, (3.64)

where σ = Re(s) and ω = Im(s). Here, au and av are the slopes of the lines
and bu and bv the intersection points of the lines with the imaginary axis. These
coefficients are computed from ŝcross,u and ŝcross,v. The intersection point of these
lines is given by

σp =
bu − bv
av − au

(3.65)

ωp = auσp + bu. (3.66)

If the intersection point exists (i.e., av 6= au) and if the point lies within the four
grid points, the estimated pole location is considered valid. The estimated pole is
then equal to

p̂cl = σp + jωp. (3.67)

To distinguish an open-loop pole from a closed-loop pole, the magnitude |D̂(si)| is
evaluated at one of the four points si that surround the estimated pole location.
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olcl

v(s) = 0

u(s) = 0

Re(s)

Im(s)

Figure 3.7: The û-contour (grey ◦) and v̂-contour (◦) in the s-plane intersect at
the closed-loop and open-loop pole locations (×). The grey dots indicate the grid
points at which the TFD is computed.

One might even think to use the computation of the open-loop pole locations to
construct a parametric model of the system to be controlled. However, accurate
estimation of the open-loop pole locations is hampered by two issues. Firstly, close
to the imaginary axis, the TFD strongly depends on the chosen symmetry point
σn. Secondly, the variance on the TFD near the imaginary axis is usually larger,
recall Section 3.3.3. Moreover, the pole locations alone do not provide sufficient
information to construct a parametric model. This would also requires the residue
matrices of the poles.

3.4.3 Uncertainty in pole locations

Using the uncertainty estimation |∆Ĥ(si)| of the TFD, given in (3.42), enables the
computation of an estimate of the uncertainty ∆p̂cl of the estimated pole location
p̂cl. Due to the determinant in (3.59), computing ∆p̂cl from |∆Ĥ(si)| cannot be
done analytically. Therefore, a numerical solution is used to estimate ∆p̂cl. The
idea is to generate Nr realizations Ĥr(si) of uncertain TFD, or

Ĥr(si) = Ĥ(si) + Rr � |∆Ĥ(si)| � eiΦr , (3.68)
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cl

ω = avσ + bv

σ = Re(s)

ω
=
I
m
(s
) ω = auσ + bu

Figure 3.8: The estimated pole location lies at the estimated intersection point of
the û- and v̂-contour.

where r = 1..Nr, and in which Rr and Φr are matrices with the same size as
∆Ĥ(si). Their entries

Rrout,in ∈ [0, 1], (3.69)

Φrout,in
∈ [0, 2π], (3.70)

are chosen from a uniform random distribution. For each input-output entry,
Rout,in and Φout,in are chosen independent of the other entries. Each realization,
gives a realization of the determinant according to

D̂r(si) = det(I + Ĥr(si)C(si)), (3.71)

which is used to compute the perturbed closed-loop pole locations from (3.67).
This approach will give a set of poles p̂cl,r that lie around the estimated pole
location p̂cl. Subsequently, the uncertainty bounds ∆p̂cl are chosen such that
every p̂cl,r lies within these bounds.

3.4.4 Grid selection

The selection of the number and location of the grid points si at which the TFD
is computed largely influences the successful application of the proposed method.
As si = σi + jωi is complex, the ranges of both the real part σi and the imaginary
part ωi have to be selected. Selection of the range for ωi is straightforward. The
relevant frequency range can be obtained from the FRD since the lightly damped
resonances will be clearly visible. The analysis often focusses on a specific mode,
which makes it convenient to choose a frequency range around this mode. The
range of σi has to be determined in an iterative way, as initially the closed-loop
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pole locations are unknown. In general, a reasonable initial guess is to take a range
that contains all open-loop poles of the plant and controller.

The resolution of the points in both the real and imaginary range have to be
determined in an iterative way as well. It is not necessary to use the same frequency
points ωk as in the measured FRD, the resolution can be higher or lower depending
on the required accuracy and the constraints on computation time. The û- and v̂-
contours can be inspected to see whether the ranges and resolutions are properly
chosen. A properly chosen range and resolution gives continuous contours that
run from one pole location to another. The controller poles are known and the
open-loop poles of the plant can be estimated from the FRD by inspection of the
peaks in the Bode magnitude plot. As the number of closed-loop poles equals
the number of open-loop poles, the range and resolution can be adjusted until all
closed-loop poles become visible.

The resolution also influences the discrimination between an open-loop and a
closed-loop pole. The magnitude of D̂(si) is only a good indicator if the (checked)
point si lies close to the actual pole location. Another issue that can occur is
that a closed-loop pole location coincides with an open-loop pole location. In that
case it is clear from (3.48) that the open-loop pole cancels the closed-loop pole in
D(s). This occurs, for example, when the controller gain is low. However, as the
open-loop poles of the plant can be observed in the FRD this is not a problem in
practice.

Iterating over different grids is not very time-consuming, even though both the
TFD, the û- and v̂-contours, and the pole locations have to be recomputed. For
example to recompute a grid of 50× 50 si points for a 4× 4 MIMO system using
FRD with 5000 frequency points takes less than 45 seconds. In Chapter 2 it was
derived that the computation of the TFD at one point si from 5000 FRD points
takes approximately 1 millisecond using a standard pc (2.4GHz dual-core, 4GB

RAM). Thus for the MIMO system 50× 50× 4× 4 = 40000 TFD points Ĥ(si) are

computed, which takes approximately 40 seconds. From Ĥ(si) and the controller
TFD C(si) the 2500 points of the determinant D̂(si) are computed. Subsequently,
the zero crossings of D̂(si) are computed to estimate the û- and v̂-contours and
the pole locations, which takes less than 5 seconds.

3.5 Experiments and design

So far is has been discussed how to compute TFD from FRD and how to compute
closed-loop poles using TFD without having a parametric model of the system to be
controlled. This section presents experiments that validate the computed closed-
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loop pole locations. Furthermore a design example is included that demonstrates
the use of TFD in a control design to increase the damping of a number of resonant
modes.

3.5.1 The setup: a prototype wafer stage

The experiments presented in this section have been conducted on an industrial
prototype wafer stage, see Figure 3.9. To enable large accelerations, the chuck is
designed to have a low mass, its weight is only 13.5 kg. The large size of the chuck,
600 × 600 mm, in combination with the low weight, causes structural deformations
to become important within the control design.

Figure 3.9: Industrial prototype wafer stage. The wafer stage (left) has been
removed from the metrology frame (right) to disclose its rectangular wafer chuck.

As the wafer stage is magnetically levitated, all six rigid-body degrees-of-freedom
(x, y, Rz, z, Rx, Ry) have to be controlled. The stage is relatively stiff in the in-
plane directions x, y and Rz. The out-of-plane directions z, Rx and Ry on the other
hand, associate with relatively low stiffness, hence the flexible modes manifest
themselves predominantly in the out-of-plane dynamics of the wafer stage. The
flexible mode associated with the lowest resonance frequency is a torsion mode at
142 Hz. The stage has eight actuators (4 in-plane,4-out-of-plane) and seven sensors
(3 in-plane,4-out-of-plane). This makes it possible to decouple the system H(s)
in its six rigid-body degrees-of-freedom plus in an extra direction, for example
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direction given by the torsion mode T , according to

Hdec(s) = TyH(s)Tu, (3.72)

where Ty is the 7× 7 sensor transformation matrix and Tu is the 7× 8 actuator
transformation matrix. To keep the analysis transparent only the out-of-plane
directions of Hdec(s) are considered, which are z, Rx, Ry and T .

Two examples of the application of TFD will be presented in this chapter. The first
example shows the computation of a root-locus for the torsion mode of the setup.
This example deals with the validation of the closed-loop poles by comparing
them to time domain data. The second example presents a loop-shaping control
design that incorporates TFD in the design to increase the damping of the modes
around 500 Hz. But prior to these examples, the identification, control design and
computation of TFD is discussed.

3.5.2 Identification

A non-parametric identification experiment has been conduced using a closed-
loop multisine approach (Pintelon and Schoukens, 2001). Controllers with a 50
Hz bandwidth were used during identification. The four decoupled out-of-plane
inputs were excited by multisine excitation signals (50 periods, 4 realizations).
The plant outputs and controller outputs were measured at a sampling rate of 10
kHz, from which FRD at wk = [1, 2, ..., 4999] Hz was computed, see Figure 3.10.
In this figure, rigid-body dynamics can be observed in z, Rx and Ry directions,
characterized by −2-slopes at low frequencies. Furthermore, flexible modes around
500 and 700 Hz can be observed in these entries. The torsion direction shows a
typical flexible mode transfer function; a stiffness line at low frequencies followed
by a resonance and a minus-two slope. The modes at 500 and 700 Hz are not
visible in this transfer function due to the decoupling.

3.5.3 Control Design

Loop-shaping is used to design controllers for the out-of-plane directions of the
wafer stage. For robustness, the decentralized controllers are designed with a
sensitivity |S| < 6 dB. The achieved bandwidths (cross-over frequencies) for z, Rx
and Ry are 75 Hz. For the z-direction the controller contains an integrator, a lead
filter, two notch filters and a second-order low-pass filter giving,

Cz(s) = kzCi(s)Cl(s)Cn1(s)Cn2(s)Clp2(s), (3.73)
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Figure 3.10: Measured FRD of the out-of-plane directions of the wafer stage.

where

Ci(s) =
s+ 2πfi

s
, (3.74)

Cl(s) =

s
2πfl,z

+ 1
s

2πfl,p
+ 1

, (3.75)

Clp2(s) =
1

( s
2πflp2

)2 +
2βlp2s
2πflp2

+ 1
. (3.76)

Cni(s) =
( s
2πfni,z

)2 +
2βni,zs
2πfni,z

+ 1

( s
2πfni,p

)2 +
2βni,ps
2πfni,p

+ 1
. (3.77)
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The parameters are kz = 1.18 · 106 N/m, fi = 10 Hz, fl,z = 25, fl,p = 252 Hz,
fn1,z = fn1,p = 507 Hz, βn1,z = 0.01, βn1,p = 0.4, fn2,z = fn2,p = 748 Hz,
βn1,z = 0.005 βn1,p = 0.5, flp2 = 1000 Hz and βlp2 = 0.5. The controllers for the
Rx and Ry direction are given by

CRx(s) = CRy (s) = kRCi(s)Cl(s)Cn(s)Clp2(s), (3.78)

where kR = 3.7 ·104 N/rad, fi = 10 Hz, fl,z = 25, fl,p = 375 Hz, fn,z = fn,p = 502
Hz, βn,z = 0.01, βn,p = 0.6, flp2 = 1000 Hz and βlp2 = 0.5. The controller for the
torsion direction T is given by

CT (s) = kTCi(s)Cl(s)Clp1(s), (3.79)

where a first-order low-pass filter

Clp1(s) =
1

s
2πflp1

+ 1
, (3.80)

was used. The parameters are kT=1216 N/m, flp1 = fi = 1 Hz, fl,z = 49,
fl,p = 444 Hz.

3.5.4 TFD of the setup

From the measured FRD Ĥ(jωk), TFD Ĥ(si) is computed using (3.10). As ex-
plained, the computation of TFD is performed separately for each entry in the
MIMO system. A 3D-Bode diagram of the (1,1) entry of the TFD is shown in
Figure 3.11 as an example. Note that for Re(s) = 0, the TFD is equal to the FRD
obtained from measurement. This can be observed by comparing the (1,1) entry
of the FRD in Figure 3.10 with Figure 3.11.

From Section 3.2 it is clear that in the computation of TFD, the choice of pa-
rameters plays a crucial role. Firstly, the choices made during the identification
of the FRD determine that ωmax = 4999 Hz and ∆ω = 1 Hz. Secondly, the z,
Rx and Ry directions contain pure integrators, such that (3.16) has to be used
in order to compute the TFD for these entries. The parameters of the W filter
are chosen to be fW = 100 Hz and βW = 0.8. Thirdly, the computation of LHP
TFD is done using the symmetry condition in (3.21) with the aid of (3.23) to

compute the symmetry point d; ζ̂ = 0.003 is used as being the mean value of the
range ζ ≈ 0.001 − 0.005 that is proposed in Preumont (2011). For the frequency
ωnd, two values are used in the subsequent sections. In Section 3.5.5 wnd = 142
Hz because it corresponds to the torsion mode that will be analysed. In Section
3.5.6 wnd = 517 Hz, i.e., the mean value of the resonance frequencies of the modes
around 500 Hz. This results in d = 2.7 and d = 9.7, respectively.
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Figure 3.11: 3D Bode diagram of the (1,1) entry of the TFD of the OAT setup.

The error bound ∆Ĥ(si) in (3.40) is computed according to the results presented
in Section 3.3. Firstly, the error due to the definite integral includes the fact
that ωmax = 4999. Secondly, the variance on the TFD is computed using (3.33),
where the variance on the FRD is computed from (3.32). Thirdly, the error due
to the integration method is computed using (3.31). Finally, the error due to the
symmetry condition is estimated from (3.39) where dmin = 0 and dmax = 13.2.
The latter is taken from the most dominant high-frequency mode, which is found
at 700 Hz, thus choosing ωnd = 2π700 in (3.23).

3.5.5 Example 1: Root-locus torsion mode

To validate the computation of the closed-loop pole locations a data-based root-
locus will be computed for the torsion mode of the setup. This is achieved by
computing the closed-loop poles for a number of different gains kT of the tor-
sion controller. The closed-loop poles are estimated from time-domain responses
measured on the setup as to validate the closed-loop poles obtained from TFD.

The torsion controller contains a lead filter as to increase the phase around the
torsion mode to increase the damping of this mode. The torsion controller gives
a stable closed-loop for a large range of values for 0 ≤ kT ≤ 64 · 104. However,
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it is not clear which value for kT will give the best amount of damping. This
information cannot be obtained using loop-shaping techniques, as information on
the closed-loop pole locations is required. TFD enables the computation of the
closed-loop poles of the setup using the method discussed in Section 3.4 and as
such does provide the required information.

The estimated determinant D̂(si) is computed for different values of the gain kT =
4, 8, ..., 64 · 104 using (3.59). Next, the û- and v̂-contours and closed-loop pole
locations are estimated for each gain. For kT = 20·104, these contours are depicted
in Figure 3.12. The thick black × indicates the location of the closed-loop pole
p̂cl, whereas the grey ellipse indicates the uncertainty bound on the pole location.
This bound is computed by generating 50 realizations according to (3.71) and
computing the pole locations for each realization p̂cl,r. The ellipse is drawn in
such a way that all p̂cl,r lie within the ellipse. From the computed uncertainty on
the TFD, the uncertainty of the closed-loop pole locations is visualized.
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Figure 3.12: û-contours (grey ◦) and v̂-contours (black ◦) of the setup for k =
20 · 104. The closed-loop pole location × and its uncertainty (grey ellipse) lie at
the intersection of these contours. The pole location obtained from time-domain
experiments is shown by +.

To validate the pole locations computed from TFD, an impulse response mea-
surement has been conducted for each value of kT . A block-pulse of 2 N with a
duration of 2 milliseconds is applied to the torsion input of the system, and the



3.5 Experiments and design 89

response yt at the torsion output is measured. Figure 3.13 shows the response for
kT = 20 · 104. The measured response is plotted in the bottom left part of the
figure in black. As the response is dominated by the torsion mode, the response
can be approximated by

yt(t) ≈ c ep̂clt = c eσpt+jωpt = c eσpt ejωpt. (3.81)

The damping and the dominant frequency of the response are computed to estimate
the pole location from this time-domain data. To estimate the damping of the
response, a line is fitted through the peaks (◦) of |log(y)| as shown in the top part
of Figure 3.13. The slope of the line immediately gives the damping coefficient
σ̂p,time of the closed-loop pole, which can be used to validate the real part of
the closed-loop pole computed from TFD. To estimate the frequency ωp of the
oscillation, the Fourier transform of the response is computed, see the right plot.
The peak in the spectrum is taken to be the frequency ω̂p,time of the closed-loop
pole, which can be used to validate the imaginary part of the closed-loop pole that
is computed from TFD. The estimate of the closed-loop pole location, or

p̂time = σp,time + jωp,time, (3.82)

is plotted in Figure 3.12 as a black +. It can be observed that the closed-loop
pole estimated from the time-domain data lies within the uncertainty ellipse of
the closed-loop pole estimated from TFD.

Figure 3.14 shows the computed pole locations for all values of kT = 4, 8, ..., 64·104.
The pole locations computed from TFD are again plotted with × and a grey ellipse
which indicates the uncertainty. All poles estimated from the impulse responses
(+) lie within the uncertainty bounds of the poles estimated from TFD. The closed-
loop poles form the root-locus of the system for the parameter kT . It is well known
that a root-locus starts at an open-loop pole location. For the torsion mode, the
open-loop pole is located at 142 Hz, which follows from the FRD, and close to
the imaginary axis, due to the low damping. For increasing gains, the closed-loop
pole shifts into the LHP until the gain reaches kT = 32 · 104. Increasing the gain
further results in a less damped response and eventually destabilizes the system
at kT > 64 · 104.

These results show that it is possible to accurately estimate the closed-loop poles
from TFD. Along the process the controller gain that maximizes the damping of
the torsion mode is found to be kT = 32 · 104. It must be emphasized that this
method neither requires a parametric model to compute the closed-loop poles, nor
is it necessary to perform impulse response measurements to estimate the closed-
loop poles. By extrapolation of the FRD to the entire s-plane, it is possible to
study the closed-loop poles in a completely data-based way.
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Figure 3.13: Measured impulse response (black) in time (left) and frequency do-
main (right) and estimation of the closed-loop pole (grey) for k = 20 · 104.

3.5.6 Example 2: Damping 500 Hz modes

The second example of the application of TFD is a design example where a con-
troller is designed using loop-shaping, while incorporating the closed-loop pole
locations obtained from TFD in the design. The design focusses on the damping
of the modes of the wafer stage that lie around 500 Hz.

From a finite element model of the system, it is found that the system has three
modes around 500 Hz, namely two bending modes at 501 Hz, and an umbrella
mode at 517 Hz. Due to symmetry, the two bending modes have an identical
resonance frequency, but one mode shape bends across the x-axis, while the other
bends across the y-axis. The modes are not decoupled, and appear in most of the
entries of the MIMO system, see Figure 3.10. The controllers for the z, Rx and Ry
direction contain notch filters around 500 Hz, the parameters of which are given
in Table 3.1. These notch filters prevent excitation of the modes around 500 Hz
by reducing the controller gain at these frequencies. This stabilizes the system,
but the modes can no longer be actively controlled. It is desirable to actively
damp these modes to improve performance, which is otherwise deteriorated by
oscillations induced by the excitation of these modes. One approach to achieve
this is to use skew-notch filters. In these filters, the frequency of the zeros is not
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Figure 3.14: Root-locus of the torsion mode of OAT for kT = {4, 8, ..., 64} · 104.
The estimated closed-loop pole locations × and uncertainty ellipses (grey) are
depicted. The pole locations obtained from time-domain experiments are marked
by a +.
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axis fn,z βn,z fn,p βn,p
z 507 0.01 507 0.4
Rx 502 0.01 502 0.6
Ry 502 0.01 502 0.6

Table 3.1: Conventional notch filters around 500 Hz.

equal to frequency of the poles of the filter, which creates a phase lead (or lag)
between these frequencies that can be used to increase damping of the closed-loop
system. However, using conventional loop-shaping techniques it is not possible to
tune these filters towards optimal damping. This is due to the fact that the Bode
and Nyquist plots do not provide information on the closed-loop pole locations.

Using the method described in this chapter, the closed-loop pole locations can be
computed, however. This means that the damping of the closed-loop poles can
be incorporated in the control design. This is done for the notch filters around
500 Hz. The procedure is to tune one parameter of a notch filter at a time,
until optimal damping for this parameter is achieved, and then continue with the
next parameter. This procedure is repeated for every parameter that results in
a more damped closed-loop system. Note that this procedure will result in a
local minimum for the damping of the system and that other (probably) better
approaches could be adopted. The key point is that the closed-loop poles are
computed in a data-based way. Finding the best control design method to utilize
this information is beyond the scope of this chapter.

The closed-loop pole locations are obtained from inspecting the û- and v̂-contour
plot. Each parameter change requires the computation of a new contour plot
from which the updated pole locations are computed. This does not require re-
computation of the TFD Ĥ(si) as the system to be controlled is not changed.
However, because the controller C(s) changes, C(si) has to be evaluated on the
grid points si to compute (3.59). Next, the û- and v̂-contour and closed-loop pole
locations are computed using (3.62) and (3.67), respectively. For the system under
study, these steps are completed within a few seconds on a conventional pc (2.4
GHz dual-core, 4GB RAM).

The û- and v̂-contour plot for the controller that gives optimal damping is shown
in Figure 3.15. Table 3.2 gives the parameters of the skew-notch filters that were
used. Six closed-loop poles × along with the grey uncertainty ellipses can be
observed at the intersections of the û- and v̂-contours. The number of closed-loop
poles in this region is six, because the system itself has three open-loop poles,
and the controller has three notch filters, which also contain one pole each. Note
that we are not counting the complex conjugates of the poles as the analysis is
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Figure 3.15: û-contours (grey ◦) and v̂-contours (black ◦) of the setup for optimal
damping of the modes around 500 Hz. The closed-loop pole locations × and its
uncertainties (grey ellipses) lie at the intersection of these contours. Open loop
poles are plotted by / for single multiplicity and ./ for multiplicity equal to two.
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limited to the positive imaginary axis. At the closed-loop pole locations, the û-
and v̂-contours intersect with 90◦ angles, which follows from (3.58).

axis fn,z βn,z fn,p βn,p fnd,p σn,p
z 437 0.001 604 0.2 592 759
Rx 410 0.001 545 0.35 511 1199
Ry 410 0.001 545 0.35 511 1199

Table 3.2: Skew notch filters around 500 Hz, tuned with TFD.

The open-loop poles, marked with / and ./ can also be observed in the figure at
the intersections points. In the algorithm, the open-loop are distinguished from
the closed-loop poles by inspection of the magnitude of D̂(si), see also (3.71). The
open-loop poles that lie close to the imaginary axis, are the poles of the plant. One
pole is observed at 517 Hz. At 500 Hz, there are two open-loop poles, which can
be seen from the fact that two û- and two v̂-contours intersect at this point. This
is marked with the ./ symbol. The poles of the notch filters can also be observed in
the figure. The imaginary part of the pole location, the damped eigen-frequency is

fnd,p =
√

1− β2
n,p, and the real part is σn,p = 2πβn,pfn,p. These values are listed

in Table 3.2 as well. The multiplicity that is created by placing the notches for Rx
and Ry at the same frequency is clearly visible. Observe that, according to (3.58)
the angles between the contours at the point of intersection equal 45◦.

To verify that the damping has indeed improved for the new tunings of the notch
filters, time-domain experiments have been conducted. A 510 Hz sinusoidal force
disturbance of 1 N with a length of 0.5 seconds is injected in the torsion direction
whereas the response is measured at one of the corners of the wafer stage. The
top part of Figure 3.16 shows the response for both the initial tunings of the notch
filters (grey) and for the notch filters tuned with the information obtained from
the TFD approach (black). It can be observed that the amplitude of the response
during excitation (t < 0.5 seconds) is reduced by more than a factor two using
the TFD approach. Furthermore, the decay rate after the response is much faster
for the TFD-based approach. The bottom part of Figure 3.16 shows the power
spectrum of both responses for the free response, i.e., 0.5 < t < 0.7 seconds. The
response obtained with the initial tuning of the notch filters clearly shows peaks at
500 and 517 Hz, which coincide with the resonance frequencies of the plant around
500 Hz. The spectrum of the response obtained with the TFD-based approach does
not show sharp peaks, as the closed-loop poles are heavily damped. The frequency
content is increased between 500 and 600 Hz as this is where the closed-loop poles
are located. As such, the results show that the TFD-based approach indeed leads
to a very effective damping of the modes of this setup around 500 Hz.
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Figure 3.16: Time-domain response of the wafer stage and its frequency contents
after injection of a 500 Hz sinusoidal disturbance. The tuning of the notch filters
performed with TFD (black) results in a more damped response compared to the
initial tuning (grey).

3.6 Conclusions

This chapter has presented a method to compute the closed-loop poles of multi-
input multi-output systems from frequency response data, without the use of a
parametric model of the system to be controlled. The method uses transfer func-
tion data (TFD), which is computed on a grid of points in the complex plane from
the frequency response data using a Cauchy contour integral. The computation of
TFD and its uncertainty bounds in the right half-plane is possible if the system
is stable and strictly proper. TFD in the left half-plane can be computed as well,
provided that the poles and zeros of the system possess a certain symmetry with
respect to the imaginary axis.

TFD enables numeric evaluation of the determinant of the return difference ma-
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trix from which the closed-loop poles can be computed. A numerically reliable
method to estimate the closed-loop pole locations in between the grid points at
which the TFD is computed is presented. The method is based on the estimation
of the so-called u- and v-contours in the complex plane. It is shown that these
contours intersect at certain angles at the pole locations depending on the mul-
tiplicity of the closed-loop poles. The open-loop poles and their multiplicity can
also be estimated as the u- and v-contours also intersect at the open-loop pole
locations. Discrimination between the open- and closed-loop poles is done based
on the magnitude of the determinant.

Experiments that were conducted on a prototype wafer stage validate the results
of the proposed method. Firstly, a root-locus for the torsion mode of the setup
was drawn. The root-locus was validated by comparing the closed-loop poles
obtained from TFD with the estimation of closed-loop poles from time-domain
data. Secondly, it was shown that TFD can be used as a design tool that can aid
the control engineer in the design of controllers by loop-shaping. The experiments
show that TFD can be used to tune skew notch filters towards optimal damping
factors of the closed-loop poles.
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Chapter 4

Directionality of flexible modes

A new method to design notch filters for MIMO motion control sys-
tems with flexible mechanical structures is proposed in this chapter.

The method involves so-called directional notch filters that act only in the
direction of the targeted resonant mode. As a result, only one SISO notch
filter is required per mode to suppress a resonance throughout the MIMO
system. Compared to the conventional approach where a notch filter is
placed and tuned in each of the separate control loops, the new approach
reduces the order of the controller significantly. The directional notch filter
is computed using either the input or output mode shapes of the system.
A new numerical optimization method to obtain these mode shapes from
frequency response data is described. Experiments on a flexible beam setup
are included to demonstrate the feasibility of the proposed method in prac-
tice.

4.1 Introduction

Dealing with flexible dynamics of high-precision motion systems has become in-
creasingly important due to increasing performance requirements for these sys-
tems. A clear example is given by wafer scanners in the semi-conductor industry.
To achieve high accelerations in these scanners, a trend is towards lightweight
mechanical designs. However, in general this results in a decrease in stiffness of
these systems and causes the resonances of these systems to shift towards lower
frequencies, thereby potentially affecting the stability of the system. This com-
plex interaction between the mechanical design, the dynamics of the system, the
actuation and sensor systems and the control design poses a challenging problem.
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In industrial practice, high-precision multi-input-multi-output (MIMO) motion
systems are generally controlled in a decentralized way (Butler, 2011; Van de Wal
et al., 2002). To this end, MIMO motion systems are decomposed in single-input-
single-output (SISO) systems by pre- and post-multiplying the plant with static
decoupling matrices. As accurate frequency response data can be obtained at low
costs for such systems, loop-shaping is used to design the SISO controllers (Stein-
buch and Norg, 1998). The controllers usually contain notch filters to suppress
high-frequency resonances that cause instability of the closed-loop system. How-
ever, at high frequencies the system is usually not decoupled. The reason for this is
the interaction caused by the flexible dynamics of these systems. This means that
the notch filters that are designed in each SISO loop separately to suppress the
resonances that appear in that loop, do not guarantee that the complete MIMO
system is stable. This is because the system is not decoupled at these frequencies.

Ideally, it is possible to decouple all modes and address each of them in sepa-
rate SISO control loops by modal decoupling, as described in Inman (1984), and
applied by, e.g., Schneiders et al. (2004); Friswell (2001); Anthonis and Ramon
(1999). Modal decoupling exploits the mode shapes to compute static transfor-
mation matrices to decouple the modes. However, the number of modes that can
be decoupled is limited by the number of actuators and sensors. Flexible struc-
tures have infinitely many modes such that perfect decoupling of all modes would
require an infinite number of actuators and sensors.

The step towards dynamic decoupling matrices has been made to overcome this
limitation, but with limited success only (Vaes, 2005; Chughtai et al., 2005). Using
observers to estimate the modal states has also been studied extensively. In this
field, independent modal space control (Meirovitch and Baruh, 1983) is the best
known example. However, it is well known that these observers suffer from control
and observation spillover of unmodelled modes, see Balas (1978). Despite this
disadvantage, independent modal space control remains a topic of active research,
especially in those cases where a sufficient number of sensors is available, see Inman
(2001); Cazzulani et al. (2011); Resta et al. (2010) and the references therein.

Another disadvantage of dynamic decoupling and observer-based strategies is that
they often require a MIMO model of the system to be controlled. Accurate MIMO
models for high-precision motion systems are not readily available, see van de Wal
et al. (2001, 2002).

In this chapter, an alternative method to deal with the resonances in flexible
MIMO motion systems is described. The dynamics of a flexible structure can be
described by its modal representation, see Gawronski (2004); Preumont (2011). In
this representation, it is assumed that the transfer function of the system can be
written as a summation of modes, each with a specific frequency, damping, and
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mode shape. These mode shapes give the modes a strong directionality in the
MIMO system. Since each mode has a specific input and output direction, the
control of these modes should take this directionality into account.

Directionality is the main difference between SISO and MIMO systems (Skogestad
and Postlethwaite, 2005). While it is often recognized that directions in MIMO
systems are important, there are not many methods to design controllers that
cope with this directionality, without resorting to full model-based control design
methods. Boerlage et al. (2010) describe a method to design a controller that
counteracts disturbances in the appropriate directions. Contrary to Boerlage et al.
(2010), who focus on disturbance rejection, our method aim at using the directions
of the flexible modes in the control design.

The directionality of the modes is utilized to design notch filters that have the
correct directionality within the MIMO system. For this purpose, a SISO notch
filter is distributed over the channels of the MIMO system according to the mode
shape of the targeted resonant mode, creating a so-called directional notch filter.
Conventionally, for each mode one notch filter per SISO loop is required to suppress
the resonance in all channels of the system. A directional notch filter requires only
one SISO notch filter such that the order of the controller is reduced and the
design process is facilitated. Note that contrary to the available feedback, e.g.,
Hjalmarsson and Birkeland (1998); Hara et al. (1988) and feedforward methods,
e.g., Bien and Xu (1998) that rely on the repetitive nature of the motion task,
our approach is completely independent of the setpoint. The proposed approach
aims at enhancement of the dynamics of the system rather than the suppression
of (repetitive) disturbances.

In the conventional way of designing notch filters, i.e., independent design of a
controller for each SISO loop, merely the stability of the SISO loops is considered.
After the loop-shaping of the SISO loops, the stability of the MIMO system should
be checked in view of the interaction between the loops. If the MIMO stability
analysis shows that the system is unstable, it is in general not clear which SISO loop
should be adjusted to stabilize the system. Adaptive notch filters as described in
(Levin, 2011), are used for the automatic tuning of SISO notch filters. However, the
multivariable nature of these systems is not taken into account. Another approach
that is often used is sequential loop-closing, see Hovd and Skogestad (1994); Mayne
(1973). Although this technique does consider the interaction between the loops,
the order in which the loops are closed is arbitrary, and again it is not obvious which
loop should be adjusted in case the performance of the system is unsatisfactory.

Design of the directional notch filters is done in view of MIMO stability, which
guarantees the stability of the overall system. In this chapter, the characteristic
loci (Maciejowski, 1989) are used to design the directional notch filters. Other
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MIMO stability analysis methods could be used as well.

The transformation matrices are computed from the mode shapes of the modes that
need to be suppressed. The mode shapes may be obtained from a parametric model
of the system to be controlled, if such a model is available. However, as mentioned
before, an accurate parametric model is often not available. Therefore we will
reside to a data-based method to obtain the mode shapes. Many methods are
known in modal analysis literature, see Reynders (2012) for an overview. However,
these methods require that the number of inputs and outputs exceed the number
of modes. Therefore, this chapter also describes a new method to obtain the mode
shapes from the frequency response data directly.

In addition, experiments have been conducted on a prototype flexible motion sys-
tem to validate the proposed concepts. Summarizing, the main contributions of
this chapter are:

• a new method to design notch filters for MIMO systems,

• an algorithm to compute mode shapes from frequency response data,

• validation of the method by experiments.

This chapter is organized as follows. First, the necessary concepts of the modal
description are discussed in Section 4.2. Next, conventional notch filter design is
discussed in Section 4.3. Section 4.4 explains the concept of directional notch fil-
tering and elaborates on the computation of directional notch filters. Experiments
are presented in Section 4.5, followed by conclusions in Section 4.6.

4.2 Modal description

Flexible structures are characterized by internal deformations of a structure. The
dynamics of these internal deformations can be described in nodal or modal co-
ordinates. Nodal coordinates typically represent the position and velocity of each
node in the structure. A large number of nodes is required to obtain an accurate
description of the structure, which implies that accurate nodal models are gener-
ally of high order. To limit the model-order, the dynamics of flexible structures
are often described using the modal representation, see e.g., Preumont (2011);
Gawronski (2004). In this description, the deformation of a flexible structure is
described in terms of a limited number of modes and mode shapes. These modes
are mutually independent (assuming proportional damping), contrary to the nodal
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coordinates, which simplifies the analysis. Several modal forms are possible, see
Gawronski (2004). A modal description with state vector

x =

[
qm
q̇m

]
, (4.1)

is chosen, where qm represent the modal displacements and q̇m the modal veloci-
ties. Both qm and q̇m are vectors of length nm, where nm is the number of modes
in the model. The 2nm equations of motion are given by

ẋ = Ax + Bu

y = Cx + Du, (4.2)

with

A =

[
0 In

Ω2 −2ZΩ2

]
, B =

[
0

Bm

]
,

C =
[
Cm 0

]
, D = 0, (4.3)

where

Ω = diag(ω1, . . . , ωnm
), (4.4)

is the matrix that contains the eigenfrequencies ωi of the modes and where

Z = diag(ζ1, . . . , ζnm
), (4.5)

is the matrix that contains the modal damping ratios ζi of the modes. Conse-
quently, the A matrix is of dimension 2nm × 2nm. B is 2nm × nu, with nu the
number of actuators. Since only force actuators are considered, the first nm rows
of B are zero. The lower, non-zero part of B is denoted with Bm and is given by

Bm =


bTm1

bTm2
...

bTmnm

 . (4.6)

Each row bTmi contains the mode shape of mode i ∈ {1, 2, . . . , nm} as being con-
trolled at the nu actuator locations, i.e., the input mode shape of mode i. C has
dimensions ny × 2nm, with ny the number of sensors. The last nm columns of C
are equal to zero since only position sensors are considered. The first nm non-zero
columns are denoted with Cm and are given by

Cm =
[
cm1 cm2 · · · cmnm

]
. (4.7)
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Each column cmi contains the mode shape of mode i as observed at the ny sensor
locations. cmi will further be referred to as the output mode shape of mode i.

The state space system (4.2) contains nm independent second-order differential
equations, one for each mode. This can be seen by substitution of (4.3) in (4.2),
which gives

y(s) = H(s)u(s), (4.8)

where

H(s) = C(sI2nm −A)−1B

= Cm(Ω2 + s2Inm
+ 2sZΩ)−1Bm

=

nm∑
i=1

cmib
T
mi

s2 + 2sζiωi + ω2
i

, (4.9)

where the special structure of the B and C matrices and the fact that Ω and Z
are diagonal is used. Equation (4.9) shows that the modes are independent, the
transfer from inputs u to outputs y is a summation of individual modal contri-
butions. Furthermore, it can be observed from (4.9) that each mode has a very
specific directionality in the MIMO system, which is completely determined by
the numerator terms in (4.9). For each mode, the denominator is a scalar valued
function. This means that the directionality is determined by the constant matrix
cmib

T
mi in the numerator. Note that this matrix has rank one as it is build up

from a multiplication of a column vector with a row vector. These vectors, the
input and output mode shape, determine the directionality of each mode. This
directionality will be utilized in the method proposed in the remainder of this
chapter.

4.3 Conventional notch filters

Multi-input-multi-output (MIMO) motion systems are often controlled in a decen-
tralized way. Conventionally, static decoupling matrices Ty and Tu are used to
transform the inputs and outputs of the system H(s) to a new set of coordinates
according to

Hdec(s) = TyH(s)Tu, (4.10)

where Hdec(s) represents the decoupled system. There are several advantages
to this approach. Firstly, the transformation matrices are chosen in such a way
that they minimize the coupling between the subsequent channels, which makes
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it possible to apply single-input-single-output (SISO) control design techniques to
control the MIMO system. This simplifies the control design significantly. Sec-
ondly, the new coordinates can be chosen in such a way that they are aligned with
the performance variables. This simplifies the setpoint design and performance
assessment.

Motion systems are often decoupled in their rigid-body modes, since these modes
enable the system to perform the motion tasks for which it is designed. For
example, a 6 degrees-of-freedom (DOF) motion system will have six rigid-body
modes for which ωi = 0 for i ≤ 6, see (4.9). The system will be decoupled in these
modes such that a controller can be designed for each DOF separately. However,
every motion system has a finite stiffness, which means that internal deformations
will occur during the motion task due to the non-rigid-body, or flexible, modes of
the system. In the example of the 6-DOF motion system this means that in (4.9)
ωi 6= 0 for i > 6.

Lightweight motion systems are often equipped with more sensors and actuators
than rigid-body modes, to increase control authority over the internal deformations
of the system. This is sometimes referred to as overactuation and gives more
freedom in the selection of the decoupling matrices. Moreover, it enables modal
decoupling where besides the rigid-body modes a limited number of flexible modes
are decoupled as well. However, the number of modes that can be controlled
explicitly is limited by the number of actuators and sensors in the system. A
flexible structure is an infinite dimensional system having infinitely many modes
such that in principle it is not possible to decouple all modes.

The remaining modes, which are not decoupled, will be visible to some extent in the
transfer functions contained in Hdec(s) in (4.10) depending on their mode shapes.
The modes that affect closed-loop stability are suppressed using loop-shaping notch
filters in the SISO loops. This, however, poses the following problem. Firstly, there
is no guarantee that the MIMO system is stable when all SISO loops are designed
to be stable, since the system is generally not decoupled at the frequencies of the
resonances. Therefore, MIMO stability has to be checked afterwards. Secondly,
should the MIMO system no longer satisfy the required stability properties, it is no
straightforward task to determine in which loop a notch filter should be adjusted
as to ensure MIMO stability altogether. Therefore, a different approach is needed.

4.4 Directional notch filters

The directionality of the modes can be utilized to design notch filters that have
the correct directionality in the MIMO system. We call this directional notch
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filtering. The idea is depicted in Figure 4.1 for mode i. The MIMO system H(s) is
controlled in a decentralized way by diagonal controller C(s), where the decoupling
is achieved by the input decoupling matrix Tu and output decoupling matrix Ty.
To this standard decentralized control loop, a directional notch is added at the
plant input to target mode i of the system. The directional notch filter consists
of two static transformation matrices Tin,i and T−1in,i and a matrix Ni(s) that
contains a notch filter at one of its entries.

+ TuC(s) TyT−1
in,i Tin,iNi(s) H(s)

directional notch

−

Figure 4.1: Feedback loop with directional notch filter.

4.4.1 Directional notch filtering concept

The transformation matrix Tin,i in Figure 4.1 transforms the input directions of
the plant such that the input direction of mode i is isolated from the other input
directions. This is achieved by the nu × nu matrix

Tin,i =
[
bmi Ker(bTmi)

]
, (4.11)

which consists of the input mode shape bmi of mode i and its kernel. The kernel
of bTmi contains the nu − 1 vectors that are perpendicular to the input mode
shape of mode i. In this way, Tin,i always has full rank, such that the inverse
transformation matrix T−1in,i exists. The transformation matrix Tin,i combined
with the input matrix Bm of (4.3), yields

BmTin,i =



bTm1
...

bTmi
...

bTmn


[
bmi Ker(bTmi)

]
=



∗ ∗ · · · ∗
...

...
...

∗ ∗ · · · ∗
∗ 0 · · · 0
∗ ∗ · · · ∗
...

...
...

∗ ∗ · · · ∗


. (4.12)

Since the ith row is zero, except for the first element, mode i can only be transferred
through the first channel of the transfer function H(s)Tin,i. Thus, the transfor-
mation makes the ith mode uncontrollable for all inputs except for the first input.
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In this way, the resonance associated with this mode can be suppressed with one
SISO notch filter in the first input channel. The diagonal notch filter for the
transformed system is therefore given by

Ni(s) =

[
Ni(s) 0

0 Inu−1

]
, (4.13)

where

Ni(s) =
s2 + 2sβNi,nωNi,n + ω2

Ni,n

s2 + 2sβNi,dωNi,d + ω2
Ni,d

, (4.14)

with βNi,n, βNi,d and ωNi,n, ωNi,d respectively the damping ratios and frequencies
of the notch filter that are tuned for mode i as will be described in the next section.
The other channels are unchanged, hence the identity matrix in (4.13). In order
to control the system in the original directions, the inverse of the transformation
matrix, i.e., T−1in,i, is added after notch filtering. The open-loop L(s) with the
directional notch filter is thus given by

L(s) = Ty H(s) Tin,iNi(s)T
−1
in,i TuC(s). (4.15)

The directional notch performs a local adjustment of the frequency response of
the system. Just as a conventional notch, it is local in terms of frequency interval
because the notch is only affecting a narrow frequency band. However, the direc-
tional notch is also local in terms of direction; it only acts in the direction of the
mode shape of the targeted resonance. Note that the approach can be applied to
multiple modes by adding multiple directional notches in series. In that case the
open-loop becomes

L(s) = Ty H(s)
∏
i

(
Tin,iNi(s)T

−1
in,i

)
TuC(s), (4.16)

where i runs over all targeted modes.

Motion systems often require a non-constant decoupling, for example when the
performance location of the system changes over time. In that case the decoupling
will also be required to change over time, i.e., to become position dependent. As
a result, conventional notch filters either have to be chosen robustly, at the cost
of performance, or different notch filters have to be used at different points of
interest on the structure, which comes at the cost of controller complexity. Since
the directional notch is placed directly before the plant, it is independent of the
decoupling of the system. This means that it is neither necessary to design the
notches very robustly, nor to reside to different notches at different performance
locations. Directional notch filtering can be seen as an enhancement of the plant,
independent of the controllers for the decoupled degrees-of-freedom. The plant
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with directional notch filters can be controlled at a higher bandwidth compared to
the plant without directional notch filters. However, the achievable performance of
the overall system still depends on the limitations of this enhanced system. These
limitations are the quality of the decoupling, fundamental performance limits such
as right-half-plane zeros, available phase lead, to name but a few.

In the previous analysis, the directional notches were applied to the inputs of the
plant. They can also be applied to the output of the plant, however. In that case
the ny × ny transformation matrix

Tout,i =
[
cmi Ker(cTmi)

]T
, (4.17)

has to be used, which is determined by the output mode shape cmi of mode i.
In terms of the outputs of (4.3), the transformation at the output combines the
output matrix Cm, giving

Tout,iCm =

[
cTmi

Ker(cTmi)
T

] [
cm1 · · · cmi · · · cmn

]

=


∗ · · · ∗ ∗ ∗ · · · ∗
∗ · · · ∗ 0 ∗ · · · ∗
...

...
...

...
...

∗ · · · ∗ 0 ∗ · · · ∗

 . (4.18)

That is, the ith mode becomes unobservable in all output channels except for the
first one. Again it is possible to suppress this resonance with a single SISO notch
in the first output channel. The open-loop with directional notch filter for mode i
at the output is defined as

L(s) = Ty T−1out,iNi(s)Tout,i H(s) TuC(s). (4.19)

Addressing multiple modes is done by adding extra directional notch filters in
series to obtain

L(s) = Ty

∏
i

(
T−1out,iNi(s)Tout,i

)
H(s) TuC(s). (4.20)

4.4.2 Design of the directional notch filter

As discussed in Section 4.3, the conventional loop-shaping approach is to place
SISO notch filters in each decentralized SISO control loop. However, the non-
decoupled modes will appear in all transfer functions of the MIMO system, so
several SISO loops will generally contain notch filters for one and the same resonant
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mode. This unnecessarily increases the order of the controller. Furthermore, the
SISO design gives no guarantees regarding MIMO stability.

Design of the directional notch filter will be shown to be straightforward. The
transformation matrices Tin,i from (4.11) (or Tout,i from (4.17) in the case that
the directional notch is used at the plant output) ensures that the directional notch
filter acts in the proper direction of the MIMO system. Not only is the order of the
controller reduced, but also the design process is facilitated in this way. Namely,
per mode only a single SISO notch filter (4.14) has to be tuned. This can be done
in combination with a MIMO stability analysis method such as the characteristic
loci or the MIMO Nyquist plot. The characteristic loci will be used in this chapter.
The overall control design procedure can be described as follows:

1. decouple the system with static decoupling matrices Tu and Ty,

2. design SISO controllers for the decoupled system Hdec(s) while disregarding
the high-frequency resonances,

3. draw the characteristic loci and assess which resonances need notch filtering,

4. compute directional notch filters for these resonances,

5. design the SISO notch filters Ni(s) using characteristic loci.

In this chapter, the need for notch filters (step 3) is determined on the basis of
the characteristic loci plot. The SISO notch filters are tuned (step 5) such that
the characteristic loci lie outside a circle with radius 0.5 around the -1 point, thus
ensuring a design with sufficient robustness margins. Of course, other stability
measures, design methods, and/or robustness criteria can be chosen.

4.4.3 Obtaining the mode shapes

One aspect that has not been discussed so far is how to obtain the mode shapes
that are used to construct the Tin,i or Tout,i matrices in (4.11) and (4.17). One
approach is to derive a modal model using Finite Element Modeling (FEM). For
motion control purposes, however, FEM models are either expensive or not ac-
curate enough. Alternatively, (modal) identification techniques can be used, see
Brown et al. (2011) for a recent overview of this extensively studied field of re-
search. The disadvantage of modal identification techniques is that they require
that the number of sensors exceeds the number of modes, which is generally not
the case in our field of application.
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In this chapter, an alternative, data-based approach is used to find the input or
output mode shapes needed to construct Tin,i or Tout,i in (4.11) and (4.17) respec-
tively. Since only the mode shape and not a complete modal model is required,
a relatively straightforward approach can be used. The idea will be explained for
the case that the directional notch is placed at the input side of the system. The
derivation is similar for the case when the directional notch is placed at the output
side of the system.

The idea is to find the input mode shape bmi. A way to do so is by inspecting
whether the corresponding matrix Tin,i causes mode i to be affected by the first
input only, recall the definition in (4.12). The frequency response can be used to
verify this. If Tin,i is in the desired direction, the resonance peak of that mode
will only appear in the first column of HTin,i. For this purpose, the value of the
transformed system at the resonance frequency ωi of mode i will be used. This is
denoted with

M(jωi) = H(jωi)Tin,i, (4.21)

while each of the entries of M(jωi) with dimension ny times nu are denoted with
mkl. The cost function J for this optimization can then be formulated as

J = min
bmi

ny∑
k=1

nu∑
l=2

|mkl| . (4.22)

The cost function J represents a summation of all elements in M(jωi), except for
the first column. In this way the cost function is minimal if the resonance peak of
mode i is only visible in the first column of H(jω)Tin,i.

Stating the problem of finding the mode shape in this way calls for numeric
optimization techniques to find the minimum of (4.22). This requires a proper
parametrization of bmi. Since only the direction and not the magnitude of bmi is
important, bmi can parametrized using nu − 1 angles (Vaes, 2005) giving

bmi =



∏nu−1
k=1 cos(θk)

sin(θnu−1)
∏nu−2
k=1 cos(θk)

sin(θnu−2)
∏nu−3
k=1 cos(θk)

...
sin(θ2) cos(θ1)

sin(θ1)


, (4.23)

which saves one optimization parameter, but more important, yields the optimiza-
tion bounded as all angles range between −π and π. With this parametrization,
(4.22) represents a cheap optimization problem, since the number of parameters is
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only nu − 1. The cost function is also relatively simple and numerically not com-
putationally demanding because it does not contain very large matrices. However,
the optimization is non-linear and convexity properties are likely to be lost, which
is why we reside to genetic algorithms to solve the optimization problem.

Whether the computation of the mode shapes is based on a parametric model
of the system or on optimization routines, the stability analysis will always be
performed completely data-based. Computation of the characteristic loci or the
MIMO Nyquist plot require only frequency response data of the system. This
means that errors in the approximation of the mode shapes, will be visible in the
MIMO stability analysis.

4.5 Results

4.5.1 Flexible beam setup

To validate the approach, experiments have been conducted on a prototype lightweight
motion system. The system, shown in Figure 4.2, consists of a flexible beam with a
collocated set of three actuators and three sensors. This beam setup approximates
the dynamics such as found in flexible lightweight motion systems like lithographic
machines. The dynamics of these systems are characterized by a combination of
rigid-body modes, which are the required degrees-of-freedom, and unwanted flex-
ible modes that can affect the stability and limit performance of the closed-loop
system. The beam in Figure 4.2 can only move in y-direction and rotate about the
z-axis, the other rigid-body degrees-of-freedom are fixed. Internal deformations of
the beam are mainly in the y-direction since this is the direction of the beam that
has the lowest stiffness.

For the experiments, only the outer two actuators (A1, A3) and sensors (S1, S3)
of the setup are used. Due to symmetry, all mode shapes are either symmetric or
antisymmetric with respect to the center of the beam. This means that decou-
pling towards the center would decouple all flexible modes as well. As this is an
exceptional situation, the decoupling is chosen towards a more challenging point
between S1 and S2. Namely, the point where the coordinate system is drawn in
Figure 4.2. In this way, the non-rigid-body modes will be coupled in the (rigid-
body) decoupled system. The decoupling matrices are given by

Ty =

[
1 1
3 −1

]
, Tu = T−1y . (4.24)

The frequency response of the decoupled system is shown in Figure 4.3. The goal is
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Figure 4.2: Photo and schematic representation of the beam setup. The system
has three actuators A1-A3 and sensors S1-S3.

to control the rigid-body degrees-of-freedom with a bandwidth of 50 Hz. From the
relative gain array (RGA), plotted in Figure 4.4, it can be observed that around
the target bandwidth frequency, the decoupling is sufficiently good. The diagonal
terms are around 0 dB at 50 Hz, while the off-diagonal terms are much smaller
(−30 dB). This favors decentralized control.

4.5.2 Decentralized Control

Two SISO controllers are designed using conventional loop-shaping techniques on
the two SISO open-loops, see Figure 4.5. The controllers consist of a lead-filter, a
low-pass filter, and a limited set of notch filters. The controller for the first loop
has a notch filter at 179 Hz, while the second loop has notch filters at 99 Hz and
286.5 Hz. These notch filters are tuned such that the SISO Nyquist curves lie
outside a circle with radius 0.5 around the Nyquist stability point at (-1,0), see
Figure 4.6. This guarantees that magnification of the corresponding sensitivity
function ≤ 6 dB and the amplitude margins ≥ 6 dB. However, Figure 4.4 shows
that the system is not decoupled at high frequencies. This means that a MIMO
stability test is required to check stability of the MIMO system. For this purpose,
the characteristic loci are plotted in Figure 4.7.
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Figure 4.3: Measured frequency response of the decoupled beam setup.
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Figure 4.4: Relative gain array of the decoupled beam setup. Decoupling is suffi-
ciently obtained around the desired bandwidth ( 50 Hz), but lost at high frequen-
cies.
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Figure 4.5: Open-loops of the first (black) and second (grey) loop of the setup for
conventional decentralized control.
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Figure 4.6: Nyquist plots of the first (black) and second (grey) loop of the setup
for conventional decentralized control.
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Figure 4.7: Characteristic loci of the open-loop of the setup for conventional de-
centralized control.

The characteristic loci violate the previous circle constraint, showing that the
stability margins are not as good as they appeared from SISO analysis. It can be
concluded that the notch filter at 286.5 Hz is not applied in the proper direction
of the MIMO system. This could be expected, since the system is not decoupled
at this frequency. One solution might be to add a notch filter at 286.5 Hz in the
first loop as well. However, this increases the order of the controller because it
adds two states to the controller and it is not clear how to tune this notch filter.

4.5.3 Directional Notch filtering

As conventional loop-shaping control design cannot deal properly with the coupled
dynamics of the high-frequency resonances, the directional notch filtering concept
is applied next. Firstly, the SISO controllers are designed while disregarding high-
frequency resonances. For the beam setup, these SISO controllers consist of the
same lead filter and a low-pass filter as used in the conventional design approach,
yet without the notch filters. The characteristic loci of the open-loop are depicted
in Figure 4.8. Three resonances at 99, 179 and 286.5 Hz lie within the circle around
the Nyquist stability point. Directional notch filters, placed at the input of the
plant, will be applied to these three modes. The modes will be numbered mode 1,
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Figure 4.8: Characteristic loci of the open-loop of the setup with lead and low-pass
filter, without notches.

The input mode shapes bm1, bm2 and bm3 of each mode are determined first, using
the optimization method as described in Section 4.4.3. For this 2× 2 system, the
direction of each mode i can be parametrized with one angle only. Thus in this
case

bmi =

[
cos(θi)
sin(θi)

]
, (4.25)

where i ∈ {1, 2, 3}. The goal of the optimization is to find the value of θi for which
the resonance peak of mode i disappears from the second column of the frequency
response plot of H(jω)Tin,i. Three optimizations with a genetic algorithm are
conducted with an initial population of 100 over 20 generations, which take less
than a second to run on a normal pc. The result of the optimization is that

θ1 = −19.63◦

θ2 = 48.78◦

θ3 = −45.56◦. (4.26)

These angles are used to compute the transformation matrices Tin,1, Tin,2 and
Tin,3 for each of the three directional notches that are used for this system. For
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each mode, it is verified that the resonance peak indeed disappears from the second
column of H(jω)Tin,i. In Figure 4.9 this is shown for mode 2. While the resonance
at 298 Hz was visible in all transfers of the original system, the transformed system
H(jω)Tin,2 no longer has the resonance in the second column of the frequency
response matrix. This means that, at that point in the feedback loop, the system
is decoupled with respect to mode 2 such that a single SISO notch filter in the first
input channel is sufficient to remove this mode from the MIMO system entirely.
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Figure 4.9: The system H(jω)Tin,i (black) does not show the mode at 286.5 Hz
in the second column. The original plant H(jω) is shown in grey.

Now that the direction of each mode is known, the next step is to tune the three
SISO notch filters Ni in (4.13) and (4.14) such that the characteristic loci from
Figure 4.8 lie outside the circle around the Nyquist stability point. Figure 4.10
shows the characteristic loci of the system with the tuned directional notches.
The MIMO open-loop plots for the conventional case and the directional notch
filtering case are compared around the resonance frequencies of the modes, see
Figure 4.11. In the figure, it can be observed that the resonance peaks in the off-
diagonal terms are suppressed much better with the directional notches compared
to the conventionally tuned notches.
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Figure 4.10: Characteristic loci of the open-loop with lead and low-pass filter, with
directional notches.
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Figure 4.11: Open-loop for conventional decentralized control (grey) and direc-
tional notch filtering approach (black).
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4.5.4 Time-domain results

Time-domain results have been obtained from the beam setup for both the con-
ventional loop-shaping controller and the controller with directional notches. Mea-
sured MIMO impulse responses are displayed in Figure 4.12. Although both con-
trollers are stable, the conventional controller design clearly shows a more oscilla-
tory behaviour. The amplitude of the oscillations is a factor 2 to 3 larger. The
cumulative power spectral density plot of Figure 4.13 reveals that this is mainly
induced by the resonant mode at 286.5 Hz that is visible in the response of the
conventionally controlled system. This could have been expected as the character-
istic loci for the conventional controller lie too close to the Nyquist stability point,
recall Figure 4.7.
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Figure 4.12: Impulse response for conventional decentralized control (grey) and
directional notch filtering approach (black).

4.6 Conclusions

Directional notch filters provide a new way of loop-shaping notch filters for MIMO
motion systems with flexible structures. The mode shapes of the target resonant
modes can be used to compute directional notch filters that operate in the correct
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Figure 4.13: Cumulative power spectral density plot for conventional decentralized
control (grey) and directional notch filtering approach (black).

direction of the MIMO system. The mode shapes of the system are obtained in
a data-based way from the measured frequency responses of the system. Only
one SISO notch filter is required per mode to suppress a resonance in the MIMO
system. As a result, the new approach reduces the order of the controller compared
to conventional multiloop SISO control. The method allows for tuning of the
directional notch filters in view of MIMO stability, thereby accounting for the
coupling in the system.

Experiments on a prototype lightweight motion system show the feasibility of the
approach in practice. Three modes of the beam setup that affect the stability
of the closed-loop system are suppressed successfully using directional notches.
Compared to conventional multiloop SISO loop-shaping, the results show that
suppression of the flexible modes is improved when directional notch filters are
applied. This is because directional notch filters account for the directionality of
the resonances. Conventional SISO loop-shaping notch filters are not suitable for
this, as the system is not decoupled at the frequencies of the resonances.
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Chapter 5

Conclusions and recommendations

T he main conclusions of this thesis are discussed and suggestions for
further research based on the presented methods are given in this chap-

ter.

5.1 Conclusions

The frequency response data-based control design methods proposed in this thesis
may form a key contribution towards accurate and fast positioning in the next
generation of high-precision motion systems. Flexible dynamics will become in-
creasingly important due to the increased performance requirements in terms of
speed and accuracy. Conventional control design methods are not automatically
suited to control these flexible dynamics. Advanced model-based control design
techniques are available that could deal with flexible dynamics but these require a
parametric model, which is often not available or insufficiently accurate for high-
precision motion systems. This thesis describes methods to address the flexible
dynamics, without the need for a parametric model of the system to be controlled.
The conclusions are divided in two parts, which are discussed in the following two
sections.

5.1.1 Damping of flexible modes

It is concluded that the closed-loop pole locations can be incorporated in the con-
trol design, without the need for a parametric model of the system to be controlled.



120 Chapter 5 Conclusions and recommendations

Knowledge of the closed-loop pole locations is important in order to improve the
damping properties of the flexible modes. Conventionally, however, the closed-loop
poles can only be computed from a parametric model. Fortunately, highly accurate
frequency response measurements can be obtained at low cost for high-precision
motion systems. These can be used to design controllers with high bandwidths and
good disturbance rejection and noise filtering properties. However, the frequency-
domain does not provide direct information on the closed-loop transient response
and therefore the damping properties of the closed-loop poles remains unknown.
The proposed method bridges the gap between data-based and model-based con-
trol design methods in the sense that the closed-loop pole locations are obtained
without a parametric model of the system to be controlled.

It is shown that transfer function data (TFD) can be obtained accurately from
measured frequency response data. The computation of TFD enables the com-
putation of the closed-loop poles without the use of a parametric model. For
SISO systems, a root-locus can be drawn from the data, which enables selection
of the controller parameters that give the largest damping of the flexible modes.
By computing the determinant of the return difference matrix from the TFD, the
computation of closed-loop poles can also be performed for MIMO systems. Fur-
thermore, the multiplicity of the closed-loop poles can be obtained from the TFD
by analysing so-called u- and v-contours in the complex plane.

The proposed methods are readily applicable in practice, which is demonstrated
by means of experiments on two different setups. It is shown that the damping of
a benchmark two-mass motion system can be optimized using TFD by computing
a data-based root-locus. Furthermore, the approach is successfully applied to a
prototype wafer stage. A comparison between the closed-loop poles computed
from TFD and time domain experiments shows that the closed-loop poles are
accurately computed. It is also demonstrated that the closed-loop pole locations
obtained from TFD can be incorporated in a loop-shaping control design with the
aim to optimize the damping of a number of closely spaced flexible modes of the
wafer stage.

5.1.2 Directionality of flexible modes

It is concluded that the directionality of the flexible modes can be incorporated
in the control design, without the need for a parametric model of the system
to be controlled. The directionality of a flexible mode in a MIMO system is
determined solely by its mode shape. As high-precision motion systems typically
have a large number of modes, a large number of directions manifests itself in
these systems. Decoupling all flexible modes would require a large number of
actuators and sensors, which increases the costs and complexity of these systems
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and might be infeasible due to space limitations. Note that these systems are
typically decoupled in a limited number of directions, usually only the rigid-body
directions of motion. As a result, the flexible modes will appear in many of the
decoupled transfer functions. Conventionally, these flexible modes are suppressed
using SISO notch filters in each of the decoupled control loops.

In this thesis it is shown that a flexible mode can be suppressed by a so-called
directional notch filter. Directional notch filters provide a way to design a single
SISO notch filter that suppresses a targeted flexible mode throughout the MIMO
structure. In this way, the order of the controller is reduced compared to con-
ventional notch filter design, which requires a SISO notch filter in each of the
decoupled loops, while at the same time only a single notch filter has to be tuned.
The mode shape of the targeted mode is used to ensure that the directional notch
filter acts in the direction of the flexible mode. This approach neither requires
extra actuators nor sensors. Multiple flexible modes can be suppressed by plac-
ing multiple directional notch filters in series. Furthermore, it is shown that the
mode shape of the flexible mode can be obtained from the measured FRD via a
numerical optimization procedure.

Experiments on a flexible beam setup validate the practical applicability of the
proposed method. For this setup three flexible modes that affect the stability
of the closed-loop system can be suppressed successfully using directional notch
filters. Compared to a conventional notch filter design, the order of the controller
is reduced, the tuning process becomes more transparent, and MIMO stability
is directly accounted for. Moreover, the effect of the flexible modes is better
suppressed, especially in the off-diagonal entries.

5.2 Recommendations

From this thesis a number of recommendations for further research can be given.
The recommendations are divided in three parts. First, recommendations will
be given regarding the damping of the flexible modes. Second, suggestions for
research on incorporating directionality in the control design are given. Finally,
more general recommendations for research on control design for flexible motion
systems are suggested.
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5.2.1 Damping of flexible modes

It would be beneficial to improve the accuracy of the TFD computation, because
the accuracy of the computed closed-loop poles depends directly on the accuracy
of the computed TFD. The largest improvement in the accuracy of the computed
TFD is expected in the improvement of the symmetry condition used to compute
LHP from RHP TFD. The current method as applied in Chapter 3 uses the as-
sumption that the system poles lie on a line parallel to the imaginary axis, while in
reality the actual absolute damping increases for increasing frequency. By trans-
forming the complex plane by means of a linear fractional transformation, the
RHP TFD satisfies the symmetry condition better, see Appendix A. Additional
research is required on this topic, for example to compute the error bounds for
this method.

Also, the estimation of the uncertainty bounds can be improved. In particular, the
estimation of the error bound due to the symmetry condition can be conservative.
Furthermore, the error due to the integration method can be improved. The latter
is estimated on the basis of computing a second derivative of the FRD, which is
sensitive to noise. This can be improved by estimating the second derivative by
fitting a smooth curve on the FRD in a certain frequency range around the point at
which the derivative is computed. One option to be explored is to use the rational
polynomial method, see e.g., Geerardyn et al. (2014).

The computation of TFD is performed in the s-plane, corresponding to a continuous-
time description of the system. It would be interesting to investigate the possibility
of computing discrete-time transfer function data DTFD in the z-plane. The sym-
metry condition to compute DTFD inside the unit disk from DTFD outside the
unit disk can be performed using a linear fractional transformation, see Appendix
A. This could open a door towards direct synthesis of discrete-time controllers
using TFD.

In this thesis the pole locations are analysed using TFD. The control design is
performed by using manual loop-shaping. Future research on numerical optimiza-
tion methods that can compute controllers that satisfy both time- and frequency-
domain performance specifications is recommended. The frequency-domain spec-
ifications can be satisfied via constraints on the FRD, while constraints on the
closed-loop poles obtained from TFD account for the time-domain specifications.

It will also be interesting to study control design methods that directly exploit
TFD. Design methods where the controller C(s) is a function of H(s) provide
ideal candidates for this purpose, i.e., C(s) = f(H(s)). A first attempt towards
this direction was made in Hoogendijk et al. (2010), where an optimal controller
is computed from the TFD. However, only the FRD and not the TFD of the
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controller can be obtained in that paper. Further research in this direction is
highly recommended.

It is proposed to compute TFD from FRD, which in its turn is computed from
time-domain data. It might be possible to omit the intermediate step of computing
FRD. A Laplace transformation of the time-domain data will, in theory, give
TFD directly. Future research is required to assess the potential of this method.
Foreseen challenges for this approach are the design of suitable time domain signals
for the identification, coping with the initial conditions and non-stationary nature
of these signals, and the numerical properties of this approach.

5.2.2 Directionality of flexible modes

The design of directional notch filters suppresses flexible modes in a MIMO system
in the proper direction to improve stability properties. However, this does not ac-
tively control these modes. It is desirable to investigate the possibility of designing
filters that actively damp the flexible modes. This can for example be achieved by
using skew notch filters instead of conventional notch filters. A challenge in this
approach is that a skew notch affects a larger frequency interval. When multiple
directional notch filters are used, this will generally cause interaction among these
directional notch filters.

In the computation of the mode shapes from the FRD only the peaks of the
resonances in the FRD are used in the optimization algorithm. Using more FRD
points around the resonance frequency can make this procedure less sensitive to
noise.

In this thesis directional notch filters are designed by manually tuning the parame-
ters using the characteristic loci. More advanced control design techniques should
be developed in designing directional notch filters. To omit the manual tuning
step, the control design criteria should be formulated in terms of cost functionals,
which can be minimized using numerical optimization techniques.

5.2.3 General recommendations

Although a data-based control approach is pursued in this thesis, the results can
also be used for identification purposes. The TFD method can be used to com-
pute open-loop pole locations, while the mode shapes can be obtained from the
FRD with the optimization method that is described. A modal model could be
constructed by combining these two results. A first exploration in this direction
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is described in Venrooij and Peters (2013). However, this will require the analysis
and improvement of the estimation of open-loop poles from TFD, which are cur-
rently computed not very accurately. Alternatively, recent results by Soumelidis
et al. (2011, 2012) might be useful to compute the open-loop pole locations.

The results presented in this thesis provide new feedback control design methods
for flexible motion systems. However, for performance feedforward control is very
important, see the recent thesis by Ronde (2014) on this topic. Further research
is required to investigate how these two techniques interact and how these can
be combined to achieve fast and accurate positioning in high-precision motion
systems.

In this thesis, the system design is assumed to be given. However, the design of
these systems should be optimized to achieve the best performance. Knowledge of
the opportunities and limitations of the state-of-the-art control designs should be
taken into account while designing high-precision motion systems. The geometry,
stiffness and weight of the mechanical structure, but also the number and locations
of the actuators and sensors should be optimized in such a way that the control
system can achieve the best possible performance.
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Appendix A

Symmetry condition using a LFT

The symmetry condition 3.21 is used to compute LHP TFD from THP TFD. In
this method the LHP TFD is computed by mirroring in a point on the negative real
axis. Figure A.1 shows the TFD gridpoints si that result from this transformation.
This symmetry condition would be valid if all poles and zeros would have the same
absolute damping. Instead, in reality mechanical systems have a damping ratio ζ.
The poles will lie on a line at an angle θ = arcsin(ζ) with respect to the imaginary
axis, see the poles and zeros in Figure A.1.
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Figure A.1: Conventional symmetry condition. Symmetry in a point on the real
axis is used to compute LHP TFD from RHP TFD.
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A better symmetry condition can be obtained by using a linear fractional trans-
formation (LFT) defined by

s̄ =
as+ b

cs+ d
, (A.1)

to transform the s-plane to the transformed s̄-plane. The advantage of this trans-
formation is that it is a one-on-one transformation that preserves symmetry. A
linear fractional transformation maps circles and lines on circles and lines and
can be regarded as a composition of translations, rotations, magnifications, and
inversions. The inverse transformation is easily derived and is given by

s =
−ds̄+ b

cs̄− a . (A.2)

This transformation can be used to transform the s-plane, such that the poles and
zeros are approximately mapped on the imaginary axis. Consequently, the sym-
metry condition (2.9) can be used to compute the LHP TFD. Finally, the inverse
transformation is applied. The resulting TFD gridpoints si for this transformation
are shown in Figure A.2.
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Figure A.2: Symmetry condition that uses the linear fractional transformation.
Symmetry in a circle is used to compute LHP TFD from RHP TFD.



137

The procedure consists of four steps, which are depicted in Figure A.3.

1. Find the LFT that maps the pole locations to the imaginary axis
Finding the LFT implies finding the four constants a, b, c and d. Firstly,
a = 1 is chosen as this parameter acts as a scaling parameter. This way
three parameters remain, which can be found by imposing three constraints
on the parameters. Selecting three pairs of s and s̄ values enables an algebraic
solution for this problem. These are chosen to be

s1 = σp + jωp s̄1 = jωp

s2 = σp − jωp s̄2 = −jωp (A.3)

s3 = −d s̄3 = 0,

where σp and ωp are the (estimated) absolute damping and frequency of a
pole p = σp ± jωp of interest. In the example in the figure, the pole at
500 Hz is chosen to be the pole of interest. The circle of the LFT will go
through these pole-locations, ensuring that the transformation is accurate
around the pole of interest. The parameter d is chosen such that the tangent
of the circle is parallel to the line on which the poles lie, which makes an
angle θ = arcsin(ζ) with respect to the imaginary axis, see the top plot of
Figure A.3.

2. Transform the RHP grid points si using the LFT
Next, the transformation of the RHP TFD points is executed, see the second
plot of Figure A.3. In this figure the pole locations are transformed as well, to
demonstrate that these lie approximately on the imaginary axis. In practice
this last step is of course not conducted.

3. Compute the LHP TFD
The symmetry condition (2.9) is used to compute the LHP TFD from the
transformed RHP TFD, see the third plot in Figure A.3. The symmetry
condition will be accurate as the poles approximately lie on the imaginary
axis.

4. Transform the TFD using the inverse LFT
The inverse transformation (A.2) is applied to recover the TFD points in
the original s-plane, see the bottom plot of Figure A.3. This gives the result
that was shown in Figure A.2.

Although this gives a more accurate symmetry condition, additional research is
required to use this in practice. Firstly, uncertainty bounds for this computation
need to be derived. Furthermore, in the LHP the TFD grid becomes non-square,
which requires some adjustments in the algorithms to compute the pole locations.



138 Chapter A Symmetry condition using a LFT

−1000

−500

0

500

1000

Im
(s

) 
[H

z]

−1000

−500

0

500

1000

Im
(s

) 
[H

z]

−1000

−500

0

500

1000

Im
(s

) 
[H

z]

−150 −100 −50 0 50 100 150

−1000

−500

0

500

1000

Re(s) [1/sec.]

Im
(s

) 
[H

z]

Figure A.3: Process to obtain TFD in the LHP using the LFT.
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