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Summary

Recently, graph data from domains such as social networks, biological systems,
sensor networks, and linked data have become major sources for analysis and
decision making. Many new platforms have been developed to store and digest
such graphs, which are typically massive in size. Traditional algorithms often fail
to perform well on these systems (and data), due to their lack of features such as
batch processing, low main memory consumption, scalability, robustness against
data skew, and even ease of implementation.

In this thesis, over the course of the SeeQR project, we study the design of graph
algorithms that fulfill these practical requirements. We first summarize connections
between computation models for massive data, and propose an algorithm transfor-
mation framework, that can automatically transform an algorithm from one model
to another. By using this framework, in the first part, we design algorithms for
the problem of localized bisimulation partitioning of graphs, which is an essential
step for many graph-based applications. Bisimulation partitioning can significantly
reduce the graph size, while still preserving useful structural information. In RDF
data management for example, bisimulation partitioning is used to create struc-
tural indexes and accelerate query processing. In bisimulation computation, and
many other graph algorithms, one common operation is set comparison, which is
to compare entities (e.g., nodes) that are associated with certain sets. Therefore in
the second part, we study a fundamental set comparison operator, set-containment
join, which computes the containment relation between massive collections of sets.
We propose efficient algorithms for both of these problems under main-memory,
external-memory, and distributed settings. We demonstrate that these algorithms
are efficient and practical to use for big graphs. For example, computing localized
bisimulation for big graphs with millions of nodes and billions of edges can be effi-
ciently achieved with even a single machine. Set containment join between millions
of sets can be computed within minutes instead of hours. These results also prove
the effectiveness of the algorithm transformation framework.



We conclude with indications for how our design process and the insights we
obtained in our investigations provide value for the design and study of other
algorithms over big graphs.
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1. Introduction

Graphs have long been a fundamental data model in mathematics and computer
science. Graph structures are used to model pairwise relations (called edges) between
entities (called nodes). Figure 1.1 shows an example of a small social network graph.
Recently, massive graph-structured datasets are becoming increasingly common in
a wide range of applications. Graphs of interest, such as social networks [Sco12],
internet graphs [FFF99] and linked open data [HB11], are on the order of millions
or billions of nodes and edges. As technologies for generating and capturing data
continue to improve and proliferate, the size of graphs will only continue to grow
rapidly in the near future.

1
M

2
M

4
P

3
P

5
P

6
P

w

l

w

ll

l

l

Figure 1.1.: Example graph of a social network, where nodes 1 and 2 have label
M (short for “manager”), and the other nodes have label P (short for
“people”). The edge label l is short for “likes”, while w is short for “works
for”.

Graph data is being used among varied disciplines for different tasks. Social
networks, for example, can be used to discover potential business customers, social
friends, or even criminals. The analysis of protein networks, on the other hand, can
help scientists to develop new drugs. At the basis of these applications, however, are
some fundamental graph problems, which require the help from graph algorithms.
Subgraph matching and graph traversal problems, for instance, are the central
problems of many social network analysis and bioinformatics applications (e.g.,
[ZLY09, CWY09, OR02]).
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1. Introduction

Classic graph algorithms are designed for the Random Access Machine (RAM)
model, i.e., a single-processor abstract machine with unified memory-access cost
and infinite main memory. These algorithms work pretty well when data can fit into
the main memory of a single machine. If that’s not the case, graph data (or at least
a part of the data) will either (i) be stored on slower secondary memory devices
with more space (e.g., disks), or (ii) be distributed and in transit among a cluster
of machines while the program is running. In such cases the RAM model cannot
represent the behavior of the system correctly, and algorithms designed for the RAM
model will not run as expected. In other words, the RAM model is not sufficient for
big graph algorithms. To cope with this need, many other models were investigated
and implemented. The External Memory (EM) model was created for scenario (i),
while the Bulk Synchronous Parallel (BSP) and MapReduce models were designed
for scenario (ii) (more details in Section 2.1). These models among others have been
widely used in academia and industries. So the ultimate question is:

Q0: Is there a paradigm for designing algorithms for massive graph data
under various computation models?

In this thesis, we do not intend to give a complete answer to this huge and
extensive question. Instead we would like to show, using a case study, the course
through the design of some concrete algorithms for big graphs. While the problems
are specific, the rationale behind the approaches is general. We hope that one can
get some inspiration while reading the thesis. Specifically, in this thesis we would
like to answer the following questions:

Algorithm transformation Based on different computation models and running
environments, algorithms can roughly be categorized into in-memory algorithms,
external-memory algorithms, and parallel/distributed algorithms. In practice, many
graphs of interest are too large to be processed in main memory for a single machine,
therefore, we must necessarily turn to either external memory or distributed/parallel
solutions. While there is a lot of research on building these models and designing
algorithms for specific models, it is unclear how these algorithms are connected, or
how the experience of designing one algorithm can be transferred to another model,
or when a new problem comes out, what model should we use first? So here comes
our first research question:

Q1: What is the workflow to design algorithm for different computation
models?
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In the thesis we present a universal way, namely the algorithm transformation
framework, that can automatically transform one algorithm among different com-
putation models. By using this framework, we start our algorithm design with one
model, then we could have algorithms transformed to all platforms. In Chapter 2
and Part I, we present this framework and demonstrate its usage via several concrete
examples.

Graph reduction When working with big graphs, the algorithm is only part of
the story, the other part is the data. If we can make the graph smaller, naturally
algorithms will run faster on them. Such technique is called graph reduction. It is a
way to shrink the size of the graphs, while still maintaining certain characteristics
(e.g., topological structure) of them. Graph bisimulation partitioning (and its many
variants) is such a reduction operation. Intuitively, bisimulation partitioning groups
nodes together as disjoint sets based on the local topology of each node. These
partition “blocks” and the relationships between them form an abstracted graph where
the graph size is reduced but the structural information (e.g., path information)
is preserved. With the help of such abstracted graph, many graph queries can be
answered or filtered out without probing the real graph, therefore the performance
of the whole process is greatly enhanced.

Bisimulation is a ubiquitous notion across many fields [San11]. In the context of
graph reduction, graph bisimulation finds its applications in various data man-
agement problems, such as constructing structural indexes for XML and RDF
databases [FVW+09, MS99, PLF+12a], graph compression [BGK03, FLWW12], and
subgraph matching [Fan12]. Despite these many applications, we find little work on
computing bisimulation reductions for big graphs. Our second question is:

Q2: Can we design a practical bisimulation reduction algorithm for big
graphs?

In Part I of the thesis, we study how to design such algorithms in detail. We
make use of the algorithm transformation framework and develop bisimulation
reduction algorithms under different models. The disk-based construction and
update algorithms, for example, can handle graphs with millions of nodes and
billions of edges on a single machine.

Set comparison In graph computation and data analysis, a commonly found task
is to compare sets. In social network analysis, for example, by comparing a set of
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1. Introduction

features (e.g., friends, hobbies) of people, we can derive a lot of other information
(e.g., clustering) from the graph. One key task of set comparisons is to discover the
containment relations between sets, which is called set-containment join in literature.

Set-containment join has been a well-studied problem for over a decade. Many
in-memory and disk-based solutions have been proposed. These solutions, however,
share some common in-memory processing strategies, whose performance is critical
and will become a bottleneck if we want the algorithms to cope with the massive
volume of sets from big graphs. Therefore, our third question is:

Q3: How can we accelerate state-of-the-art set-containment join algo-
rithms?

In Part II, we revisit the in-memory processing strategies and carefully analyze the
existing solutions, using advanced data structures to design more efficient (in many
cases 10× faster) set-containment join algorithms.

By answering Q1 to Q3, we also partly answer Q0. Using the algorithm transforma-
tion framework, a large collection of existing graph algorithms can be transformed
to different models. It also suggests that to design new algorithms for big graphs,
the BSP model is a good starting point. However this does not mean that in-memory
processing strategies in distributed algorithms are not important. On the contrary,
especially for computationally intensive tasks, in-memory processing strategies can
make a huge difference on algorithm performance.

1.1. Thesis outline

The thesis is organized as follows:

Chapter 2 We introduce several computational models and our algorithm trans-
formation framework. Here we use the PageRank problem and triangle counting
problem as examples to illustrate the transformation mechanism.

Part I studies the problem of localized bisimulation (referred as k-bisimulation)
partitioning for big graphs. This part is an extension of papers [LFH+13b] and
[LFH+13a]:

Yongming Luo, George H. L. Fletcher, Jan Hidders, Yuqing Wu, and Paul
De Bra. External memory k-bisimulation reduction of big graphs. In
CIKM, pages 919–928, San Francisco, CA, USA, 2013.
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Yongming Luo, George H. L. Fletcher, Jan Hidders, Paul De Bra, and
Yuqing Wu. Regularities and dynamics in bisimulation reductions of big
graphs. In GRADES, pages 13:1–13:6, New York, NY, USA, 2013.

Chapter 3 We introduce the k-bisimulation problem and discuss its properties.
Based on the algorithm transformation framework, we propose several efficient
algorithms for various computational models. We prove the I/O complexity and
space complexity of the I/O-efficient k-bisimulation construction algorithm and edge
update algorithm.

Chapter 4 We conduct extensive empirical analysis on a variety of massive real-
world and synthetic graph datasets for the I/O-efficient algorithms. Results show
that our algorithms perform efficiently in practice, scaling gracefully as graphs grow
in size.

Chapter 5 We take a closer look into various aspects of bisimulation results on big
graphs, from both real-world scenarios and synthetic graph generators. We draw
the following observations: (1) A certain degree of regularity exists in real-world
graphs’ bisimulation results. Specifically, power-law distributions appear in many
of the results’ properties. (2) Synthetic graphs fail to fulfill one or more of these
regularities that are revealed in the real-world graphs.

Chapter 6 We discuss more properties of k-bisimulation, and take a look at a
related problem, k-simulation. We discuss the connections between k-simulation and
k-bisimulation, and propose ideas to efficiently compute k-simulation.

Inspired by k-simulation computation and many other real-world applications, in
Part II we study the set-containment join problem. This part is an extension of
paper [LFHDar]:

Yongming Luo, George H. L. Fletcher, Jan Hidders, and Paul De Bra. Ef-
ficient and scalable trie-based algorithms for computing set containment
relations. In ICDE, Seoul, Korea, 2015, to appear.

Chapter 7 We formally introduce the problem of set-containment join. We survey
the state-of-the-art approaches and discuss related research problems.
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Chapter 8 We introduce the problem of subset enumeration within limited sets.
We propose several new algorithms for this problem. The result of this chapter is
used in a later chapter to develop new set-containment join algorithms. Readers can
jump to Chapter 9 first and then go back to Chapter 8 if necessary.

Chapter 9 We present two novel trie-based set-containment join algorithms: the
Patricia Trie-based Signature Join (PTSJ) and PRETTI+, a Patricia trie enhanced
extension of the state-of-the-art PRETTI join. The compact trie structure not only
enables efficient use of main-memory, but also significantly boosts the performance
of both approaches. By carefully analyzing the algorithms and conducting extensive
experiments with various synthetic and real-world datasets, we show that, in many
practical cases, our algorithms are an order of magnitude faster than the previous
state-of-the-art.

Chapter 10 We conclude the thesis with a discussion of future work based on the
proposed techniques and results.
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2. Connections between
computation models and
programming frameworks

Classic in-memory algorithms are designed and analyzed under the Von Neumann
(RAM) model, while other models are created for algorithms running in various
environments. Lots of efforts have been devoted to design algorithms for specific
models, yet the connections between algorithms of different models have not been
well-studied. In this chapter, we are curious about the possibility of designing a
single algorithm for different models. In Section 2.1 we introduce several widely-
used computation models and programming frameworks. Then we study ways to
automatically translate an algorithm from one model (BSP) to other models. In the
end, we use the PageRank problem and triangle counting problem as examples to
show how the translation strategy works in practice.

2.1. Practical computation models and frameworks

Computation models and programming frameworks not only serve as tools for ana-
lyzing algorithm performance, but also are guidance or restrictions for designing real
programs. In this section we introduce several well-known computation models and
frameworks that we will use later, namely the RAM model, EM model, BSP model,
Pregel-like framework, and MapReduce framework (a more detailed discussion of
computation models can be found in [AM10]). We further discuss the connections
between these models and show how they influence the algorithm design.

Random-access machine (RAM) model The most commonly-used model for an-
alyzing algorithm performance is the random-access machine (RAM) model. It
assumes a one-CPU machine with infinite main memory. Read and write accesses
to any memory cell take unit cost and instructions roughly take the same amount
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2. Connections between computation models and programming frameworks

of time to finish. While the RAM model is simple to reason about and gives a
good estimation of algorithm performance when data can fit into main memory, it
becomes less accurate when data volume exceeds the main memory. This leads to
the External Memory (EM) model.

External Memory (EM) model When some data is too big to be held in the main
memory, algorithms need to transfer data (called I/O cost) between main memory
and secondary storage devices (e.g., magnetic disk). Due to the nature of external
memory, this communication process is usually more time consuming than the
in-memory processing part. A special kind of algorithms (called external memory
algorithms) are designed to minimize the I/O cost, while preserving the perfor-
mance of algorithms themselves. The External Memory (EM) model [AV88, Vit08]
is designed to model the behavior of such algorithms. EM considers a single pro-
cessor, single I/O computing device where data is organized by blocks (for ease
of discussion, we do not consider machines with parallel disks, i.e., Parallel Disk
Model [Vit08]). The algorithm performance is measured by the number of I/O
operations. Secondary storage space is considered to be infinite, while in-memory
computation is considered free.

Suppose we have table X (file sequentially filled with records) with size |X|, a
machine with the main memory capacity of M and data transfer block size B (page
size). Therefore X occupies |X|B pages on disk. In what follows, we will use the
following notation [Vit08] to estimate I/O cost:

• sort(|X|) denotes the number of I/Os when sorting table X on some given col-
umn(s). This will take Θ( |X|B log M

B
( |X|B )) I/Os for a standard external memory

based merge sort.

• scan(|X|) denotes the number of I/Os when scanning over table X. This will
take |X|B I/Os.

The Bulk Synchronous Parallel (BSP) model The Bulk Synchronous Parallel (BSP)
model is proposed by Leslie Valiant [Val90], intended to be used as a bridging model
between parallel computing infrastructure (hardware) and programming paradigm
(software). BSP consists of three components: (1) a set of computation nodes; (2) a
global end-to-end network that connects all nodes; and (3) some synchronization
facility. One BSP program consists of supersteps. Inside each superstep, computation
nodes do their own work in parallel. At the end of each superstep, there is a syn-
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2.1. Practical computation models and frameworks

chronization barrier at which nodes communicate with each other and synchronize
their states. This decomposition of computation and communication makes the BSP
program easy to understand and implement. Some difficulties of programming in
distributed systems, such as deadlock handling, are alleviated by the BSP model.

BSP can serve as a programming model. Various tools have been developed to
help programmers build distributed applications upon such model. Platforms like
MulticoreBSP [YBRM14] and Apache Hama [Ham14] are examples of such efforts.

The performance of a BSP computer is determined by three parameters: (p, g, l),
where p is the number of processors, g is a parameter relating to the network
throughput, and l is the cost of barrier synchronization. These flexible parameters
can be adapted according to different computer architectures. Then the performance
of a superstep of a BSP algorithm can be estimated as

Tsuperstep = w + h · g + l, (2.1)

where w is the maximum local computation in a superstep, h · g is the maximum
communication time in a superstep (h is the maximum number of messages sent or
received by any processing unit) [McC96].

Vertex-centric programming frameworks, Pregel-like systems Recently, with the
increasing interests of graph database and graph computation, various companies
and research groups propose the idea of vertex-centric graph computing, and some
release programming frameworks with them. These platforms are essentially the
realization of BSP in the context of graph computation. Here we briefly introduce
the Pregel framework [MAB+10], which is one of the first among these. Pregel-like
systems are those such as GraphLab [Low13], GPS [SW13], Apache Giraph [Gir14],
and Mizan [KAA+13].

One the model level, the main difference between BSP and Pregel is that Pregel
treats each node in a graph as a computing machine, meaning that conceptually each
node works on its own computation problem in parallel, and nodes communicate
with each other at the synchronization barrier. The key point, when designing
algorithms for Pregel, is the ability to “think like a vertex”, to decompose the
problem to small pieces at vertex level.

During our discussion, we use BSP and Pregel-like model interchangeably. In
graph algorithms, indeed in many cases, nodes (vertexes) are the central of attention,
however we sometimes also treat other entities as computing units when necessary,
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2. Connections between computation models and programming frameworks

which makes our model more similar to the original BSP model. Such modification
can be easily handled by Pregel-like systems.

MapReduce framework The MapReduce programming model [DG08, LD10] is de-
signed to process large datasets in parallel. A MapReduce job takes a set of key/value
pairs as input and outputs another set of key/value pairs. A MapReduce program
consists of a series of MapReduce jobs, where each MapReduce job implements a
map and a reduce function (“[ ]” means a list of elements)1:

map (k1, v1) → [(k2, v2)]

reduce (k2, [v2]) → [(k3, v3)].

The map function takes key/value pair (k1, v1) as the input, and emits a list of
key/value pairs (k2, v2). In the reduce function, all values with the same key are
grouped together as a list of values v2 (this is achieved via the shuffling stage) and
are processed to emit another list of key/value pairs (k3, v3). Users define the map
and reduce functions, letting the framework take care of all other aspects of the
computation (synchronization, I/O, fault tolerance, etc.).

The open source Hadoop implementation of the MapReduce framework is a
mature system and is widely used in industry and research [Had14]. Hadoop is
often used together with the Hadoop Distributed File System (HDFS), which is
designed to provide high-throughput access to application data. Besides map and
reduce functions, in Hadoop a user can also write a custom partition function, which
is applied after the map function to specify to which reducer each key/value pair
should go.

2.2. Connections

After introducing the models, one natural question to ask is, what is the connection
between these models? For instance, if we design some algorithm for one model, can
we easily adapt the algorithm to another model? We try to answer these questions
in this section and summarize some research efforts in this area. The short answer is
that the BSP model connects all models together.

We write model1 → model2 if the algorithm of model1 can be transformed to the
algorithm of model2. For a BSP program, we use compute(i) to denote the amount

1Here we use the model description from [LD10] instead of the original paper, which is easier to
understand and closer to implementations such as Hadoop.
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of local computation of node i in one superstep. We assume that the synchronization
happens at the end of each superstep.

BSP → EM [SK97] BSP programs can be translated into external memory pro-
grams. The main idea of this approach is to mimic the BSP platform behavior using
one machine by creating several virtual machines. At each superstep, we create two
tables: virtual machine (vm, Table 2.2a) and message (msg, Table 2.2b). We store
information of computation nodes in vm and the communication between nodes in
msg.

Table 2.1.: Tables for each superstep, BSP→ EM

(a) table vm

node_id node_state

(b) table msg

from_node to_node message_content

//node
id of the
source

//node
id of the
target

Since each virtual machine state is stored in one row of vm, every local computation
on some virtual machine is about reading and changing its state. Then at the
communication stage, all we need to do is to fill in the msg table, and perform a join
of it with vm table of the next superstep on msg.to_node and vm.node_id. The join
process can be implemented via various join algorithms (such as sort-merge join)
from database research (e.g., [Gra93]). Pseudo code can be found in Algorithm 1.

Algorithm 1: EM simulates BSP, one superstep
Input: table vm
Output: table vm

1 create table msg
2 for each (node_id, node_state) ∈ vm do
3 node_state← compute(node_id, node_state)
4 update (node_id, node_state) to vm
5 append (node_id,. . . ) to msg

6 Join msg with vm on msg.to_node and vm.node_id
7 return vm

The transformed EM algorithm involves I/O of table vm and msg. Therefore to
estimate the cost of the algorithm, the most interesting values are the sizes of these
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2. Connections between computation models and programming frameworks

two tables (referred as |vm| and |msg|). If we estimate the performance of a BSP
algorithm by Equation 2.1, we get that |vm| is bounded by p× w, |msg| by p× h.
The I/O cost of Algorithm 1 is bounded by 3 × Scan(|vm|) + 2 × Scan(|msg|) +
Sort(|msg|), which consists of (1) load and write back to vm (2× Scan(|vm|)), (2)
sort msg (Sort|msg|), and (3) merge join on vm and msg (Scan(|vm|) + Scan(|msg|)).
This of course assumes that we use a simple sort-merge join for message passing.

Tighter bounds are obtained in paper [SK97], e.g., what is the EM algorithm’s I/O
complexity compared to the original BSP algorithm. But such result relies on the
assumption that each message size is at most m

p , where m is the virtual machine
memory size, and p is the number of nodes (virtual machines). In many graph
problems, each message size can potentially be p, which makes m ≥ p2, so the
assumption does not hold anymore.

BSP → MapReduce [GSZ11,Pac12] Due to the similarity of BSP and MapReduce,
there is a straightforward way to run BSP algorithm on MapReduce platforms. It
works as follows [GSZ11]:

• Each superstep corresponds to one MapReduce task;

• Mappers are of no use, only the reducers are used as processors in a BSP
computer;

• The shuffling stage (grouping the output of map function by keys) is used for
message passing;

• Data are stored on the filesystem (global memory) after every MapReduce task
finishes.

The above approach only makes use of the reduce function of the framework,
while we can do more on the map side. Alternatively, same as BSP → EM, we
can use the virtual machines to mimic BSP framework using MapReduce. Again
considering tables from Table 2.1, the most tricky part of this translation would be
the joining of two tables, which can be easily handled by the shuffling step within
MapReduce. Then one superstep corresponds to one MapReduce task. The sketch of
the simulation is described in Algorithm 2. We note that the local computation (line
2) can also be done in the reduce procedure, this translation is then the same as in
paper [GSZ11]. Also note that the table concept in the algorithm is used for the ease
of discussion, a MapReduce system does not hold the tables in its global memory
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but stores them in the distributed file system. Essentially, tables are just a collection
of key-value pairs distributed among machines.

Algorithm 2: MapReduce simulates BSP, one superstep
Input: table vm
Output: output vm for the next iteration

1 Procedure Map((node_id, node_state))
// compute() can be moved to reduce procedure

2 node_state← compute(node_id, node_state)
3 emit(node_id, node_state)
4 for each receiver of node_id do

// msg contains the sender information
5 emit(receiver, msg)

6 Procedure Reduce((node_id, [node_id infos]))
// compute() can be done here as well

7 save the input to table vm

EM (Streaming) → MapReduce [FMS+10] It is also worth mentioning the con-
nection from EM to MapReduce. For a general EM model, a machine can essentially
perform random access at the disk-block level. This indicates that EM algorithms,
making use of this property, are not suitable for distributed models. If we restrict the
EM model’s I/O access pattern to sequential scans on one disk (allowing multiple
passes), the model essentially becomes a streaming model [HRR98]. It has been
shown that any algorithm under the streaming model that computes symmetric
(order-invariant) functions is guaranteed to have a corresponding MapReduce Al-
gorithm [FMS+10]. However, if we allow the EM model to have more than one
disk, even with only sequential scan enabled, the model becomes strictly more
powerful than the streaming model and other models [ADRR04], e.g., there exists
some problem that can be solved with two passes on the latter model, but needs at
least polynomial number of passes on the streaming model.

Other types of algorithm transformations are possible as well, such as MapReduce
→ BSP [Pac12] and Relational Algebra→ BSP [Suj96].

As we have seen so far, connections between models are discussed in various
contexts. But there is not much work that puts these efforts together and shows
the big picture. In this section, we find that BSP is a model that can connect all
models together. BSP algorithms, using the transformation techniques in this section,
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can be adapted to algorithms for other models. We call this strategy an algorithm
transformation framework and will illustrate it with two concrete examples in Section
2.3 and 2.4.

2.3. Example: PageRank

In this section we take the well-known PageRank problem as an example to show
how algorithm design is transformed between different computation platforms.

2.3.1. Problem definition and algorithm under the RAM model

PageRank, proposed by Brin et al. [BP98], is a measurement of importance of nodes in
a graph. It has been extensively studied in various contexts. For a graph G = 〈N, E〉
(N for node set and E for edge set), a simple version of PageRank of some node x is
defined recursively in Equation 2.22.

pageRank(x) =
0.15
|N| + 0.85× ∑

p∈pred(x)

pageRank(p)
|succ(p)| . (2.2)

Here pred(x) is the set of direct predecessors of x ({y|(y, x) ∈ E}), succ(x) is the
set of direct successors of x ({y|(x, y) ∈ E}), and |M| is the size of set M. The
initial value of pageRank(x) is set to 1

|N| for every node. Naturally, one algorithm to
compute PageRank is to iteratively compute the numbers of each node until they
are stable enough.

pageRanki+1(x) =
0.15
|N| + 0.85× ∑

p∈pred(x)

pageRanki(p)
|succ(p)| . (2.3)

After all values of pageRanki are computed, the pageRanki+1 computation can
start.

For example, we want to apply Equation 2.3 to a simple graph in Figure 2.1.
First we set the PageRank value of each node to be 1

3 . Then in the first iter-
ation, pageRank1(1) = 0.15 × 1

3 + 0.85 × ( 1
3 + 1

3 ) = 0.617, and pageRank1(2) =

pageRank1(3) = 0.15× 1
3 + 0.85× ( 1

3 ×
1
2 ) = 0.1917. Because node 1 has two direct

predecessors, its PageRank value is higher than the others, even in the very first
iteration.

2The weight 0.15 and 0.85 are decided based on good practices and can be arbitrary positive numbers as
long as they add up to 1. Such assignment has no effect on our algorithm discussion.
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1

2

3

Figure 2.1.: Example graph for PageRank

2.3.2. BSP algorithm (Pregel)

The Pregel version of the PageRank algorithm was introduced in the original Pregel
paper [MAB+10]. We describe the algorithm in Algorithm 3. Here for simplicity,
we omit the strategy for checking stop conditions. We can see that the algorithm is
quite simple, only includes the computation on each node and sends its rank value
to its children (direct successor).

Algorithm 3: PageRank in BSP, ith iteration, [MAB+10]
Input: graph structure, pageRanki for all nodes
Output: pageRanki+1 for all nodes

1 for each n ∈ N do
2 compute pageRanki+1(n) by Equation 2.3
3 send pageRanki+1(n) to children of n

4 synchronize

2.3.3. EM algorithm

A series of EM algorithms for PageRank can be found in Chen et al. [CGS02]. We
present one of them in Algorithm 4. The algorithm has the same structure as in
Algorithm 1. All we need to do is to replace the compute(node_id) function with
Equation 2.3. For the message passing part, both sort merge join and hash join are
discussed and experimented in [CGS02].

2.3.4. MapReduce algorithm

It is well-known that the MapReduce framework is not the ideal platform for
iterative algorithms such as PageRank. Nonetheless, PageRank is a common task
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Algorithm 4: PageRank in EM, ith iteration, [CGS02]
Input: table vm
Output: table vm

1 create table msg
2 for each (nid, nstate) ∈ vm do

// information to compute pageRanki+1(nid) is in nstate
3 nstate← compute pageRanki+1(nid) by Equation 2.3
4 update (nid, nstate) to vm
5 for each s ∈ succ(nid) do

// to send pageRanki+1(nid) to nid’s direct successors
6 append (nid, s, pageRanki+1(nid)) to msg

7 join msg with vm on msg.to_node and vm.node_id
8 return vm

to be performed in MapReduce. Algorithm 5 from Lin et al. [LD10, Chapter 5]
describes the PageRank algorithm in MapReduce framework, which essentially uses
the same framework of Algorithm 2.

Algorithm 5: PageRank in MapReduce, ith iteration, [LD10]
Input: table vm
Output: output vm for the next iteration

1 Procedure Map((nid, node info))
// pageRanki(nid) is in node info

2 emit (nid, node info)
3 for each successor of nid do
4 emit(successor, pageRanki(nid))

5 Procedure Reduce((nid, [nid info]))
// [node info] also holds pageRanki values of predecessor nodes

6 compute pageRanki+1(nid) by Equation 2.3
7 update pageRanki+1(nid) in table vm

2.4. Example: triangle counting

Triangle counting is another important graph problem. It has been extensively
studied due to its applications in network analysis and graph mining (e.g., [TKMF09]).
In this section we take this problem as another example to illustrate the algorithm
transformation framework.
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2.4.1. Problem definition and algorithm under the RAM model

As the name suggested, in the triangle counting problem, we want to get the number
of triangles in a graph. Assume an undirected graph G = 〈N, E〉 without self-loop,
we would like to get |T| where T = {{u, v, w}|{u, v}, {v, w}, {w, u} ∈ E}.

One classic and straightforward algorithm for triangle counting is called the node-
iterator algorithm [Sch07]. The algorithm iterates over the neighbor set of each node,
and tries to find out if there exists an edge between any two nodes in the neighbor
set. Pseudo code of node-iterator is in Algorithm 6.

Algorithm 6: Algorithm node-iterator for triangle counting in the RAM
model, [Sch07]
Input: G = 〈N, E〉
Output: Number of triangles in G

1 count← 0
2 for each n ∈ N do
3 for each u, v ∈ n.neighbors() do // count both (u, v) and (v, u)
4 if (u, v) ∈ E then
5 count← count + 1

6 return count/6

Note that here we consider all pairs of nodes in a neighbor set (line 3 of Algorithm
6) where further optimizations may apply (e.g., node-iterator++ in [Sch07]). For
instance, only consider (u, v) such that u < v. For illustration purpose we omit such
techniques and show a simpler version of the algorithm.

2.4.2. BSP algorithm

To design a distributed version of the node-iterator, one difficult part is the edge
existence check (line 4 in Algorithm 6). The BSP algorithm (Algorithm 7) achieves
this by enumerating all pairs (u, v) from n’s neighboring set, and sending this pair
and the possible edge (u, v) to the same machine for checking. Essentially, it creates
all paths of length two in the graph and tries to determine if the path can be closed
by a third edge.

2.4.3. EM algorithm

We can easily derive the EM algorithm from Algorithm 7. We notice that there
is basically no computation in each superstep in the BSP algorithm, but merely
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Algorithm 7: Algorithm node-iterator in BSP

1 for each n ∈ N do
2 for each u, v ∈ n.neighbors() do
3 send [(u, v), n] to (u, v)

4 for each (u, v) ∈ E do
5 send [(u, v), true] to (u, v)

6 synchronize
7 for each (u, v) do
8 if [(u, v), true] exist then
9 count u, v, n as a triangle

10 synchronize
// omit the superstep for gathering counts

message passing. And we already know that the algorithm is about materializing
paths of length two and three in a graph. So the algorithm mainly consists of joins on
the edge table. In fact, node-iterator can be implemented using a relational database
and SQL [Wal].

Algorithm 8: Algorithm node-iterator in EM

Input: Edge table Et of G, with schema (source, target)
Output: Number of triangles in G

1 F ← Et onφ E′t // E′t is another reference to Et

// φ : Et.target = E′t.source
// F is with schema (source, source′, target)

2 H ← F onθ Et
// θ : F.target = Et.source ∧ F.source = Et.target

3 return |H|/6

Note that Dementiev’s approach [Dem], which makes use of many EM-specific
techniques, is more similar to the original node-iterator algorithm.

2.4.4. MapReduce algorithm

The MapReduce version of node-iterator [SV11] is a direct translation of Algorithm
7. We describe it in Algorithm 9. Note that the edge existence check (line 4 to line 5
of Algorithm 7) can be a separated task, or can be merged together with other tasks
like we do here, since it only uses the map function.
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Algorithm 9: Algorithm node-iterator in MapReduce, [SV11]

Input: Edge file with schema (source, target)
Output: Number of triangles in G

1 Procedure Map((u, v) in edge file)
2 emit(u, v)

// neighbor set of nodes are grouped together
3 Procedure Reduce(n, n.neighbors())
4 for each u, v ∈ n.neighbors() do
5 emit((u, v), n)

6 Procedure Map()
7 if input is from last job then
8 emit((u, v), n)

9 if input is from edge file then
10 emit((u, v), true)

11 Procedure Reduce((u, v), [value])
12 if true ∈ [value] then
13 for n ∈ [value] do
14 count (u, v, n) as a triangle

// omit the task for gathering counts

2.5. Conclusion

To sum up, one effective way to design algorithms for massive graphs is to start
with the BSP model or Pregel-like platform, then we can translate the algorithm to
corresponding external memory and MapReduce algorithms or at least get inspi-
ration. The mechanism of this algorithm transformation framework is described
in Section 2.2. Section 2.3 and 2.4 discuss two real-world graph problems. Using
the algorithm transformation framework, we start with BSP algorithms and find
efficient algorithms for each model, many of which appear in scientific publications
as research results. This proves the effectiveness of the framework.

Of course things can get tricky during the design process. Then we take a step
back and apply more specific techniques (e.g., model-specific techniques). In Part I
we will explain in detail how to apply the framework and the techniques to another
fundamental graph problem, namely k-bisimulation partitioning.
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Part I.

Localized bisimulation
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3. Scalable k-bisimulation reduction
of big graphs

3.1. Introduction

In reasoning over graphs, a fundamental and ubiquitous notion is that of bisimula-
tion, which is a characterization of when two nodes in a graph share basic structural
properties such as neighborhood connectivity. Bisimulation arises and is widely
adopted in a surprisingly large range of research fields [SR11]. In data manage-
ment, bisimulation partitioning (i.e., grouping together bisimilar nodes in order to
reduce graph size) is often a basic step in indexing semi-structured datasets [MS99],
and also finds fundamental applications in RDF [PLF+12a] and general graph
data (e.g., compression [BGK03,FLWW12], query processing [KSBG02a], and data
analytics [Fan12, THP08]).

It is often the case that bisimulation reductions of real graphs result in partitions
which are too refined for effective use. Hence, a notion of localized bisimulation, or k-
bisimulation has proven to be quite successful in data management applications (e.g.,
[FVW+09, KSBG02a, QLO03, YHSY04]). k-bisimulation is the variant of bisimulation
where topological features of nodes are only considered within a local neighborhood
of radius k > 0. With a pay-as-you-go nature, k-bisimulation is cheaper to compute
and maintain, cost adjustable, and faithfully representative of the bisimulation
partition within the local neighborhood.

State of the art

Algorithms for bisimulation partitioning have been studied for decades, with well-
known algorithms such as those of Paige and Tarjan [PT87] and more recent work
(e.g., [DPP04]), having theoretically effective behavior.

In practice, however, state-of-the-art solutions face a critical challenge: all known
approaches for computing bisimulation on a compute node are internal-memory
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3. Scalable k-bisimulation reduction of big graphs

based solutions1. In these solutions, operations such as directly changing other
node’s state and the lack of efficient ordering inherently lead to random memory
access patterns. Therefore, these algorithms do not translate to efficient I/O-bound
solutions in the EM model. Consequently, when processing graphs which do not fit
entirely in main memory the performance of these algorithms decreases drastically.

The reality is that, in practice, many graphs of interest are too large to be processed
in main memory. Indeed, massive graphs are now ubiquitous [Fan12, HB11]. To
process real graphs, therefore we must necessarily turn to either external memory,
distributed, or parallel solutions. There has been some work on parallel (e.g.,
[RL98,SSZ95]) and distributed (e.g., [BO05]) approaches to bisimulation computation,
and recently, external memory solutions on restricted acyclic and tree-structured
graphs [HFH12]. However, to our knowledge there is no known effective solution for
computing bisimulation and k-bisimulation partitions on arbitrary graph structures
in external memory. Such an algorithm would not only enable us to process big
graphs on single machines, but also provide an essential step for parallel and
distributed solutions (e.g., MapReduce [LdLF+13]) to further scale their performance
on real graphs. As noted in paper [LdLF+13] and many other researches (e.g.,
[KBG12]), in many cases, single machine external memory algorithms are more
competitive than distributed algorithms due to their lack of communication overhead
and their effective use of available infrastructure. Therefore, the study of external
memory solutions is clearly warranted.

Our contributions

Given these motivations, we have studied external memory solutions for reasoning
about k-bisimulation on arbitrary graphs. In this chapter, we present the results of
our study, which makes the following high-level contributions.

• We present k-bisimulation partitioning algorithms for BSP and MapReduce.

• Following the algorithm transformation framework from Chapter 2, we design
the first known I/O efficient external memory based algorithm for constructing
the k-bisimulation partition of a disk-resident graph. The I/O cost of this
algorithm is bounded by O(k · sort(|Et|)+ k · scan(|Nt|)+ sort(|Nt|)), with space
complexity O(|Nt|+ |Et|), where Et and Nt are the the input graph’s edge set
and node set.

1With the single exception of Hellings et al. [HFH12] which we discuss below in Section 3.5.2.
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• We present the first known I/O efficient external memory based algorithms
for performing maintenance on a disk-resident k-bisimulation graph partition,
with I/O cost bounded by O(k · sort(|Et|)+ k · sort(|Nt|)), and space complexity
O(k · |Nt|+ k · |Et|).

The rest of the chapter is organized as follows. In the next section we give our
basic definitions and foundations for our solution. In Section 3.3 we describe the
k-bisimulation partitioning algorithms under BSP and MapReduce. We introduce
the data structures used and the cost model in Section 3.4. We then describe in
Section 3.5 our solution for constructing k-bisimulation partitioning. Next, Section
3.6 presents algorithms for keeping an existing partition up to date, in the face of
updates to the underlying graph.

3.2. Data model and definitions

Our data model is that of finite directed node- and edge-labeled graphs 〈N, E, λN ,
λE〉, where N is a finite set of nodes, E ⊆ N × N is a set of edges, λN is a function
from N to a set of node labels LN , and λE is a function from E to a set of edge labels
LE.

Definition 3.1 (k-bisimilar). Let k be a non-negative integer and G = 〈N, E, λN , λE〉 be
a graph1. Nodes u, v ∈ N are called k-bisimilar [KSBG02b] (denoted as u ≈k v) iff the
following holds:

1. λN(u) = λN(v),

2. if k > 0, then ∀u′ ∈ N[(u, u′) ∈ E ⇒ ∃v′ ∈ N[(v, v′) ∈ E, u′ ≈k−1 v′ and
λE(u, u′) = λE(v, v′)2]], and

3. if k > 0, then ∀v′ ∈ N[(v, v′) ∈ E ⇒ ∃u′ ∈ N[(u, u′) ∈ E, v′ ≈k−1 u′ and
λE(v, v′) = λE(u, u′)]].

It can be easily shown that the k-bisimilar relation is an equivalence relation.
We illustrate Definition 3.1 with an example. Consider the graph given in Figure

1.1. In this graph, nodes 1 and 2 are 0- and 1- bisimilar but not 2-bisimilar.
It is attempting to reason about the bisimilarity of the nodes by their pathes, e.g.,

to think that nodes u and v are k-bisimilar iff for any path of length at most k starting

1We assign a default label for all nodes and edges if they are not labeled.
2Note that we use λE(u, u′), instead of λE((u, u′)), for ease of readability.
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at u there is an equivalent path starting at v. Such intuition however, is not correct.
One counter example is to consider a graph as follows:

n1
a−→ n2

b−→ n3, n4
a−→ n5

b−→ n6, n4
a−→ n7.

Here n1 and n4 have the same path of length 2, but are not 2-bisimilar. Another
counter example (Figure 6.3) and more discussions can be found in Chapter 6.

Our interest in this part is in computing the k-bisimulation partition of a massive
graph, and performing maintenance on the result under updates to the original
graph. By massive, we mean that both the set of nodes and the set of edges of the
graph are too big to fit into main memory. By a partition of the graph, we mean
an assignment of each node u of the graph to a partition block, which is the unique
subset of nodes in the graph of which the members are k-bisimilar to u.

In particular, we are interested in constructing partition “identifiers.”

Definition 3.2 (k-partition identifier). A k-partition identifier for graph G = 〈N, E,
λN , λE〉 and k ≥ 0 is a set of k + 1 functions P = {pId0, . . . , pIdk} such that, for each
0 ≤ i ≤ k, pIdi is a function from N to the integers, and, for all nodes u, v ∈ N, it holds
that pIdi(u) = pIdi(v) iff u ≈i v.

A fundamental tool in our reasoning about k-bisimulation is the notion of node
signatures. Intuitively, a node’s signature is an encoding of its neighborhood infor-
mation up to a certain radius, by which we can determine the node’s partitioning
information.

Definition 3.3 (k-bisimulation signature). Let G = 〈N, E, λN , λE〉 be a graph, k ≥ 0, and
P = {pId0, . . . , pIdk} be a k-partition identifier for G. The k-bisimulation signature of
node u ∈ N is the pair sigk(u) = (pId0(u), L) where:

L =

∅ if k = 0,

{(λE(u, u′), pIdk−1(u
′)) | (u, u′) ∈ E} if k > 0.

We then have the following fact.

Proposition 3.1. pIdk(u) = pIdk(v) iff sigk(u) = sigk(v) (k ≥ 0) [KS90].

To prove proposition 3.1 we first need to prove the following proposition.

Proposition 3.2. u ≈k v⇒ u ≈k−1 v (k > 0).
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Proof. By induction on k.

(1) k = 1. This is obvious, as 0-bisimilarity just enforces equality of node labels.

(2) k > 1. Assume that this holds for j− 1 (≈j−1⇒≈j−2, 0 < j− 1 < k), we want
to show that this also holds for j (u ≈j v⇒ u ≈j−1 v). Let u ≈j v. According to the
definition, for all outgoing edges (u, u′) ∈ E, there exists some edge (v, v′) ∈ E, such
that u′ ≈j−1 v′ and λE(u, u′) = λE(v, v′), and vice versa. Since ≈j−1⇒≈j−2, we have
u′ ≈j−2 v′, then we have u ≈j−1 v. So u ≈j v⇒ u ≈j−1 v.

Now we prove Proposition 3.1:

Proof for Proposition 3.1. ⇒:

(1) For k = 0, this is trivial, since pId0(u) = pId0(v).
(2) For k > 0, (which also means u ≈k v), we want to show that sigk(u) = sigk(v).

According to Proposition 3.2, u ≈k v ⇒ u ≈0 v, so that pId0(u) = pId0(v). And for
each outgoing edge (u, u′) of u, there exists some outgoing edge (v, v′) of v, such
that u′ ≈k−1 v′, then pIdk−1(u

′) = pIdk−1(v
′), and λE(u, u′) = λE(v, v′). Therefore

each pair in sigk(u) equals to some pair in sigk(v), and vice versa. Then we have
sigk(u) = sigk(v).
⇐:

(1) For k = 0, this is obvious.

(2) For k > 0. Let sigk(u) = sigk(v), we want to show that pIdk(u) = pIdk(v)
(or u ≈k v). Since sigk(u) = sigk(v), we know that for every outgoing edge (u, u′)
of u, we have a pair (λE(u, u′), pIdk−1(u

′)) in sigk(u), we can find an equal pair
(λE(v, v′), pIdk−1(v

′)) in sigk(v), such that pIdk−1(u
′) = pIdk−1(v

′) and λE(u, u′) =

λE(v, v′). By definition, this means u ≈k v. Then we have pIdk(u) = pIdk(v).

Proposition 3.1 is the basis of all algorithms in this chapter. The core idea is
that a node’s k-bisimulation partition block can be determined by its k-bisimulation
signature, which in turn is determined by the (k− 1)-bisimulation partition of the
graph. Intuitively, in order to compute the k-bisimulation partition, we compute the
graph’s j-bisimulation (0 ≤ j ≤ k) partitions bottom-up, starting from j = 0. We call
each such intermediate computation the iteration j computation.

It is straightforward to show that the k-bisimulation partition of a graph is unique.
Hence, in the sequel, we can safely talk about k-partition identifiers as unique objects.
Also, note that we will use integer node identifier values to designate nodes in N.
Therefore, in the following discussions the functions sigk and pIdk both could take
node identifiers (i.e., integers) as input.

27



3. Scalable k-bisimulation reduction of big graphs

Table 3.1.: k-bisimulation for the example graph in Figure 1.1 (k = 0, 1, 2)

nId pId0(nId) sig1(nId) pId1(nId) sig2(nId) pId2(nId)

1 A A, {(w, A), (l, B)} C A, {(w, C), (l, E)} G
2 A A, {(w, A), (l, B)} C A, {(w, C), (l, F)} H
3 B B, {(l, A)} D B, {(l, C)} I
4 B B, {(l, B)} E B, {(l, D)} J
5 B B, {(l, A)} D B, {(l, C)} I
6 B B, {} F B, {} K

Table 3.1 shows one way of assigning k-bisimulation (k = 0, 1, 2) partition iden-
tifiers and signatures for the example graph in Figure 1.1, where the nId denotes
the unique identifier for each node, and pIdi(nId) and sigj(nId) (0 ≤ i ≤ 2 and
0 < j ≤ 2) are presented accordingly. For k = 0, nodes are grouped into two
partitions by node labels (given identifiers A and B). Then for k = 1, 2, signatures are
constructed according to Definition 3.3 and distinct partition identifiers are assigned
to distinct signatures, following Proposition 3.1.

3.3. k-bisimulation under RAM, BSP and

MapReduce

Proposition 3.1 defines an iterative algorithm for computing k-bisimulation. The
algorithm is not so different from the PageRank algorithm we’ve seen in Section 2.3.
Essentially, for computing k-bisimulation of graph G = 〈N, E, λN , λE〉, we need to
get pIdk(v) for all v ∈ N. pIdk(v) can be created by looking into sigk(v), which in
turn depends on pIdk−1(v). Pseudo code of this algorithm is in Algorithm 10.

Algorithm 10: Signature-based k-bisimulation algorithm for iteration k
Input: (k− 1)-bisimulation partitioning of G = 〈N, E, λN , λE〉
Output: k-bisimulation of G

1 for each v ∈ N do
2 construct sigk(v)

3 create one-to-one mapping between sigk and pIdk // e.g., use a dictionary
4 for each v ∈ N do
5 save pIdk(v) according to sigk(v)

Following the algorithm transformation framework, we should first design the
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algorithm under the BSP model. From a vertex-centric point of view, for some
node v, we need to send pIdk−1(v) to v’s direct predecessors in order for them to
construct sigk(v). Furthermore, we need to assign for each different signature a
distinct pIdk value. We achieve this by creating a new graph Gs = 〈Ns, Es〉, where
Ns = N ∪ {sigk(v)|v ∈ N}, and Es = {(v, sigk(v))|v ∈ N}. In Gs, if we follow the
edge directions, we can send nodes in N to their corresponding signatures. Then we
can assign pIdk distributively on each processor. Then we follow the reverse edge
direction of Gs, to send back the pIdk assignment to nodes. Pseudo code is described
in Algorithm 11, with three supersteps.

Algorithm 11: k-bisimulation algorithm for iteration k under BSP model

Input: (k− 1)-bisimulation partitioning of G = 〈N, E, λN , λE〉
Output: k-bisimulation of G

1 for each v ∈ N do
2 send pIdk−1(v) to its parent

3 synchronize
4 for each v ∈ N do
5 construct sigk(v), send v to sigk(v) // following edges in graph Gs

6 synchronize
7 for each sigk do

// following reverse edges in graph Gs

8 assign pIdk, and send pIdk back to all its related nodes

9 synchronize

Now we can design the corresponding MapReduce algorithm. Recall from Section
2.2 that one superstep in BSP corresponds to one MapReduce task. Such trans-
formation is similar to that of PageRank and the pseudo code can be found in
paper [LdLF+13]. It is worth mentioning that line 5 to line 9 of Algorithm 11 can be
heavily skewed, meaning that many nodes could have the same signature, therefore
should be sent to the same processor. The same problem happens in the MapReduce
algorithm as well. In [LdLF+13], several skew elimination techniques are proposed
to tackle this problem.

3.4. Data structures for EM model

We assume that graphs are saved on disk in the form of fixed column tables (node
set as table Nt and edge set as table Et). We also assume that these tables can have
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several copies sorted on different columns. In later discussions, we will use the
notation X.y to refer to column y of table X.

We have the following possible attributes for Nt (some attributes are iteration-
specific):

nId node identifier (note that this is the same as row identifier in the
table; we leave this attribute here for clarity of the discussion).

nLabel node label
pIdold_nId bisimulation partition identifier for the given nId from last com-

putation iteration
pIdnew_nId bisimulation partition identifier for the given nId from the cur-

rent computation iteration
pIdj_nId j bisimulation partition identifier for the given nId (j = 0, 1, . . . , k)

and for Et:

sId source node identifier
tId target node identifier
eLabel edge label
pIdold_tId bisimulation partition identifier for the given tId from last com-

putation iteration

We further assume that we have a signature storage facility S, which stores the
mapping between signatures and their corresponding partition identifiers. S is
a data structure having only one idempotent function called S.insert(). For node
u ∈ N, S.insert() takes sigj(u) (0 ≤ j ≤ k) as input, and provides pIdj(u) as output.
Essentially S.insert() implements the one to one mapping function from sigj to pIdj.
The implementation details of S will be discussed in Section 3.5.2.

For ease of discussion and investigation, we assume in what follows that the Nt

and Et are each just one file sequentially filled with fixed length records. Moreover,
in this chapter we make use of sort merge join to the extent possible, since it is a
very basic way to achieve I/O efficient results. However, many possibilities could be
explored for implementing these data structures (e.g., indexing techniques) and join
algorithms to further optimize our presented results. We leave such investigations
open for future research.

Finally, we also assume that we have a (possibly external memory based) priority
queue available. In our empirical study below, we use the off-the-shelf I/O efficient
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priority queue implementation provided by the open source STXXL library [DKS08].
We use standard I/O complexity notions to analyze our algorithms [AV88] (EM
model in Section 2.1).

3.5. Constructing k-bisimulation partitions in EM

model

Algorithm 12: Build_Bisim(), compute the k-bisimulation equivalence classes of a
graph

1 Input: Nt, Et, k
Output: Nt, Et

2 if k = 0 then
3 fill in the pId0_nId and pIdnew_nId columns of Nt // O(sort(|Nt|)) + O(scan(|Nt|))
4 return Nt, Et

5 else
6 (Nt,Et)← Build_Bisim(Nt, Et, k− 1) // k > 0, recursive call
7 if k = 1 then
8 Nt ← sort(Nt) by nId // O(sort(|Nt|))
9 Et ← sort(Et) by tId // O(sort(|Et|))

10 scan Nt, move content of column pIdnew_nId to pIdold_nId // O(scan(|Nt|))
11 fill in the pIdold_tId column of Et // O(scan(|Et|)) + O(scan(|Nt|))
12 initialize S
13 F← πα(Et), where α = (sId, eLabel, pIdold_tId)
14 F← sort(F) by sId, eLabel, pIdold_tId, removing duplicates // O(sort(|Et|))
15 for each uId ∈ πnId(Nt) do

// overall O(scan(|Et|)) + O(scan(|Nt|)) + cost o f S
16 construct sigk(uId) from F // merge join with F
17 pIdk(uId) ← S.insert(sigk(uId))
18 record pIdk(uId) in Nt.pIdnew_nId where nId = uId

19 fill in the pIdk[nId] column of Nt
20 return Nt, Et

We present our algorithm for k-bisimulation partition computation in Algorithm
12. The algorithm is inspired by Proposition 3.1, meaning for each node in the input
graph, to construct its signature and find a one-to-one mapping number (partition
identifier) for that signature.

In iteration j = 0, we assign distinct partition identifiers to nodes based on their
nLabels. For other iterations j > 0, our algorithm mainly performs two things for
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each node ID uId ∈ πnId(Nt) (line 15 to 18): (1) construct sigj(uId); and (2) insert
sigj(uId) to S, record the returning pIdj(uId) in the corresponding row in Nt. To
prepare the necessary information for constructing sigj(uId), we need to fill in the
missing columns of Et (line 6 to 11). Several scans and sorts on tables are involved
for each iteration. Note that some operations in the algorithm can be merged as
one in practice. We present them separately just to make the presentation clearer. A
detailed description is given in Section 3.5.1.

3.5.1. Details of Algorithm 12 (Build_Bisim())

Input and output The input variables of Algorithm 12 are node table Nt, edge
table Et and k, which is the degree of local bisimilarity from Definition 3.1. The
output variables are Nt and Et. The schema of Nt is (nId, nLabel, pId0_nId, pIdold_nId,
pIdnew_nId); the schema of Et is (sId, eLabel, tId, pIdold_tId).

k = 0, line 2 to 4 According to Definition 3.1, k = 0 means nodes having the same
labels should be assigned the same partition identifier. We achieve this by sorting Nt

on nLabel column. When scanning Nt, for each new nLabel we encounter, we assign
a new integer (e.g., a predefined counter) to the corresponding nId, filling it in the
pId0_nId and pIdnew_nId columns. This will take O(sort(|Nt|)) + O(scan(|Nt|)) I/Os.
Using a hash map could achieve the same goal as well, with the same I/O upper
bound.

Details of line 3 of Algorithm 12

1 sort Nt by nLabel // O(sort(|Nt|))
2 create variable current_pId
3 for each (nId, nLabel, pId0_nId, pIdold_nId, pIdnew_nId) ∈ Nt do // O(scan(|Nt|))
4 if nLabel is new then
5 current_pId← request a new pId

6 save current_pId to pId0_nId and pIdnew_nId

k > 0, line 6 to 18 For k > 0, we first perform a recursive call to the algorithm,
ensuring we work in a bottom-up manner. For iteration 1 (k = 1), we sort Nt and Et

on nId and tId, preparing them for later merge join operations. The algorithm’s idea
is to construct the signature of each node in order to distinguish it from other nodes
according to the k-bisimilar relation. If we can properly fill in the pIdold_tId column
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of Et, and join it with Nt on nId=sId, the information combined from columns
{pId0_nId, eLabel, pIdold_tId} is enough for constructing the signature. The column
eLabel is already filled in before algorithm starts. The column pId0_nId is filled in
during iteration 0 (line 2 to 4). The column pIdold_tId is filled in during each iteration
j > 0 (line 11). Then for each node ID uId ∈ Nt, we get its sigk(uId), insert it to S in
an I/O efficient way, getting pIdk(uId) in return, and then placing this value in the
pIdnew_nId column of Nt.

At line 11 of Algorithm 12, to fill in the pIdold_tId column of Et, we conduct a
sort merge join of Et and Nt (since both tables are sorted properly in iteration 1),
replacing the content of pIdold_tId in Et with pIdold_nId in Nt.

Details of line 11 of Algorithm 12

1 Et← πα(Et onφ Nt) // merge join of Et and Nt

// α : (Et.sId, Et.eLabel, Et.tId, Nt.pIdold_nId), φ : Et.tId = Nt.nId

At line 16 of Algorithm 12, we sequentially construct the signature sigk(uId) for
each uId ∈ πnId(Nt) according to Definition 3.3, and get the corresponding pIdk(uId)
(using S.insert()). All pIdk(uId) will be written back to the pIdnew_nId column of Nt

(where nId=uId) right after, so that there is no random access to Nt. Note that
although by definition sigk is a set, we construct sigk(uId) as a string, maintaining
elements of the set in sorted order. It is both an easy way for storing a set and handy
for implementing S later on (e.g., using a trie).

Details of line 16 of Algorithm 12

1 create string sigk(uId) ← pId0(uId) // overall scan Nt

2 if uId ∈ πsId(F) then
3 for each (uId, eLabel, pIdold_tId) ∈ F do // sequentially scan F
4 sigk(uId) ← sigk(uId)+(eLabel, pIdold_tId)

5 Get pIdk(sId) from S.insert(s), and save it to nodeTable.pIdk(nId) column
// sId = nId

3.5.2. Further discussion of Algorithm 12

Example run If we assume the numbering scheme for S is a self-increased counter
across iterations, Table 3.1 (p. 28) would have the intermediate results for running
Algorithm 12 on the example graph in Figure 1.1 (p. 1, k = 2), and Table 3.2 gives
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the final output of the algorithm.

Table 3.2.: Output of Algorithm 12 on example graph in Figure 1.1 (k = 2)

(a) Nt

nId nLabel pId0_nId pIdold_nId pIdnew_nId

1 M A C G
2 M A C H
3 P B D I
4 P B E J
5 P B D I
6 P B F K

(b) Et

sId eLabel tId pIdold_tId

3 l 1 C
1 w 2 C
2 w 2 C
5 l 2 C
4 l 3 D
1 l 4 E
2 l 6 F

Early stopping condition It is not always necessary to let the algorithm run k
iterations. Indeed, it can be shown (Proposition 6.2) that after a bounded number of
computation iterations, the partitioning result of Algorithm 12 will stop changing (i.e.,
achieve classical full bisimulation partitioning, Section 6.1). By simply checking if
two consecutive iterations produce the same number of partition blocks (Proposition
6.1), we could decide whether the computation can stop.

Numbering schemes of partition identifier and S In the algorithm, the correctness
of the partition identifiers’ assignment is guaranteed level by level, meaning that the
partition block numbering scheme from iteration j has nothing to do with that of
iteration j + 1, for example. This means that we could use one counter for the whole
computation, or could use different counters for each computation iteration.

The same idea also applies for implementing S. As long as S returns distinct
pIds for different signatures for each computation iteration, it is immaterial to the
work performed by Algorithm 12 if S is a new one for each iteration or not. So, we
could use one S for all iterations (when we have a global counter), to reuse some
signature pId across iterations. Furthermore, in practice there could potentially be
benefits from warm caching (get a better hit ratio) for this approach. Moreover, for
the maintenance algorithms presented in Section 3.6, we would only need to store
one S instead of k of them. Essentially if the same signature appears many times in
different iterations, we only save it once in S. The drawback of this method is that
the size of S will keep increasing as the algorithm runs. This issue will become acute
when the number of partitions becomes large and the signatures are long.
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3.5. Constructing k-bisimulation partitions in EM model

Data structures for S The signature storage facility S clearly plays an important
role in Algorithm 12. In principle, any data structure that permits an efficient set-
equality check will be sufficient. Trie and dictionary are such data structures, for
instance. During our experiments, we see that in many of the cases, partition sizes
are small and the signatures are short, for which a main memory based data structure
is enough. In other cases, signature length could reach several million and partition
size into tens of millions, then we need some external memory based solution for S.
We could, for example, sort all signatures from F in an I/O efficient way [AFGV97],
then when scanning these signatures, partition identifiers are assigned. In this case,
the overall cost of the S.insert() operation could still be bounded by O(sort(|Et|)).
Other disk based solutions, such as disk-based tries (e.g., String B-Tree [FG99]
or [GO12]) or inverted files (e.g., [Mam03]) could also be considered.

In our experiments we use BerkeleyDB (B-Tree or Hash index) to mimic a trie,
which, as we show in the experimental results, has acceptable empirical behavior.

Complexity and correctness We have the following characterization of Algorithm
12.

Theorem 3.1. Let k ≥ 0 and G = 〈N, E, λN , λE〉 be a graph. Algorithm 12 computes
the k-bisimulation partition of G with I/O complexity of O(k · sort(|Et|) + k · scan(|Nt|) +
sort(|Nt|)), and space complexity of O(|Nt|+ |Et|).

Proof. After all the I/O cost of one iteration of k-bisimulation computation is bounded
by O(sort(|Et|)) + O(scan(|Nt|)), k is a given input, and there is one extra sort on
Nt in iteration 1. Hence Algorithm 12 has the I/O complexity of O(k · sort(|Et|) + k ·
scan(|Nt|) + sort(|Nt|)).

During computation, only one Nt and Et are used, and S is used. The space upper
bound for S is the same as the space upper bound for all signatures. Since in the
algorithm, we construct all signatures by joining the information from Nt and F
(which is a projection of Et), the space upper bound of S is O(|Nt|+ |Et|). Therefore,
the overall space complexity upper bound of Algorithm 12 is O(|Nt|+ |Et|).

We prove correctness inductively.

(1) k = 0. Since we are following the definition, this is obvious.

(2) k > 0. Assume we get the correct (k− 1) bisimulation partitioning results. In
iteration k, for each node u in Nt, we construct sigk(u) and insert it in S to get pIdk(u).
According to Proposition 3.1 and the definition of S, we are sure that pIdk(u) is
correct.
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3. Scalable k-bisimulation reduction of big graphs

Differences and connections with Hellings et al. As indicated in Section 3.1, the
only known solutions for computing bisimulation on graphs in external memory
are those of Hellings et al. [HFH12], with I/O complexity of O(sort(|Nt|+ |Et|)).
There are two critical differences between their work and ours. (1) Targeting different
problems. The solutions of Hellings et al. are designed specifically for computing the
full bisimulation of acyclic graphs. Our approach does not rely on such structure,
computing k-bisimulation regardless of the presence or absence of cycles in the
graph. (2) Using different techniques. Hellings et al. compute partition blocks level by
level, starting from the leaf nodes of the graph. Our approach constructs all partition
blocks at each iteration, using data structures and processing strategies which are
not tied to any (a)cyclic structure in the graph.

It is also worth mentioning the connections between these two methods. As
pointed out by prof. dr. M.T. de Berg, there is a way to transform an arbitrary graph
to an acyclic graph, and applying the method of Hellings et al. to it will produce the
same result as ours. The graph transformation works as follows.

For some graph G = 〈N, E〉, build graph GT = 〈NT , ET〉, such that for each
n ∈ N, there are k copies of n in NT : n1, n2, . . . , nk. For each edge (u, v) ∈ E,
we put (ui+1, vi) in ET (1 ≤ i < k). Then GT is guaranteed to be acyclic. This
approach essentially materializes the message passing routes between iterations of
Algorithm 12. And it is easy to show that we can in the end get the k-bisimulation
partitioning results of G from GT . The construction of GT however, needs k times
of sort merge join of Nt and Et, which is exactly the same as in Algorithm 12.
Furthermore, the size of GT is k · |Nt|+ k · |Et|, which makes the overall I/O cost of
this approach O(sort(k · |Nt|+ k · |Et|)), a bit more than Algorithm 12.

3.6. Maintenance of k-bisimulation partitions in EM

model

It is easy to show that any edge and node updates on a graph can potentially change
the complete k-bisimulation partition of the graph. Therefore, in the worst case, the
upper bound of such maintenance cost is the cost of recomputing the k-bisimulation
partition from scratch. However, when dealing with real graphs, as we shall see in
Chapter 4, in many cases there is still hope to use data structures such as dictionary
(S) and priority queue to maintain the correct partition result instead of recomputing
everything. In this section we propose several algorithms for this purpose.
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For maintenance algorithms we assume that we have constructed the k-bisimulation
partition of graph G = 〈N, E, λN , λE〉, where, as before, G’s Nt and Et are stored on
disk, containing the historical information kept in Nt (Table 3.4); Et is the same as
in Algorithm 12, but has two copies with sort orders (sId,tId) and (tId,sId) to boost
performance. We use Etst and Etts to refer to each of these copies.

Table 3.4.: Nt for maintenance algorithms

nId nLabel pId0_nId pId1_nId . . . pIdk_nId

We further assume that we save the signature storage facility S on disk, which we
use and update throughout the maintenance process.

The maintenance problem includes the following subproblems.

Change k If k increases, we carry out another iteration of computation. If k
decreases, the result can be returned directly since we keep the history information
in Nt.

Add a set of new nodes (Add_Nodes()) When adding a set of new nodes, we
assume the new nodes are isolated, stored in the newNodes table, which has the same
schema as Nt, and that |newNodes| = O(|Nt|). We first sort Nt and newNodes by
nLabel, then perform a merge join on the nLabel column to fill in the pId0_nId column
of newNodes for all the existing nLabel. For the missing ones, we request a new pId for
each of the new nLabel. Then we get the pId1, . . . , pIdk of the newNodes by inserting
its pId0 to S. At the end we append the whole newNodes to Nt. The I/O complexity
of Add_Nodes() is bounded by O(sort(|Nt|)). Pseudo code is in Algorithm 16.

Add a set of new edges (Add_Edges()) For adding a set of edges, we assume
that the edges are added between existing nodes. If this is not the case, we first call
procedure Add_Nodes(). The new edges are stored in the newEdges table, having
the same schema as Et. For inserting one edge (s, l, t) to G, the potential changes
are to sigj(s) (1 ≤ j ≤ k), as well as those signatures of all ancestors of s within k
steps. So the main work is to detect whether there is some change in sigj(s) and
propagate those change(s) to its parent nodes’ signatures in later iterations. We use a
priority queue pQueue to record and process such changes in a systematic, level-wise
manner. For some node ID uId and iteration j, pQueue stores the pair (j,uId) as
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3. Scalable k-bisimulation reduction of big graphs

Algorithm 16: Add_Nodes(), add a set of new nodes to existing k-bisimulation
partition

Input: Nt, S, table of new nodes newNodes, k
Output: Nt, S

1 Nt← sort(Nt) by nLabel // O(sort(|Nt|))
2 newNodes← sort(newNodes) by nLabel // O(sort(|Nt|))
3 newNodes← πα(newNodes ./φ (Nt)), remove duplicates // O(scan(|Nt|))

// α : (newNodes.nId, newNodes.nLabel, Nt.pId0_nId, . . . )
// φ : newNodes.nLabel = Nt.nLabel, β : (nLabel, pId0_nId)

4 request a new pId for each new nLabel in newNodes, fill in all the NULL fields in
newNodes.pId0_nId

5 for each uId ∈ πnId(newNodes) do // overall O(scan(|Nt|)) + cost of S
6 get value of S.insert(pId0(uId)), use it for pId1_nId, . . . , pIdk_nId of uId

7 append newNodes to Nt
8 return Nt, S

priority reference. Then whenever we dequeue one element from pQueue, we get
the smallest node ID from the lowest iteration (lowest priority reference). Therefore
pQueue indicates those nodes whose signatures could change in each iteration level
(from 1 up to k).

At the beginning of the algorithm, we enqueue (j, s) to pQueue (∀(s, l, t) ∈ Et, 0 <

j ≤ k). Then, while pQueue is not empty, we dequeue the list of (j, uId) pairs with
the same j out of the queue, construct the new signature of each such uId, insert it
to S, and compare the returning pIdj(uId) with the old pIdj_nId value of uId. If the
pId remains the same as the old one, we continue; if it changes, we record pIdj(uId)
in Nt, and enqueue all (j + 1, vId) pairs to pQueue where vId ∈ πsId(σtId=uId(Et)).
Pseudo code is given in Algorithm 17, and a detailed discussion is in Section 3.6.1.

Deletions Deletions follow a similar idea to insertions. For example, when re-
moving an edge (s, l, t), it is the same idea as adding one. We also (potentially)
modify the signature of s, propagating changes to its ancestors via pQueue, then the
reasoning is the same. When removing a node, we first remove each incoming edge
and each outgoing edge for that node. Then we remove the node from Nt.

3.6.1. Details of Algorithm 17 (Add_Edges())

Input and output The input variables of Algorithm 17 are node table Nt, edge
tables Etst and Etts, the signature storage facility S, the new edge set newEdges and k.
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3.6. Maintenance of k-bisimulation partitions in EM model

Algorithm 17: Add_Edges(), add a set of new edges to existing k-bisimulation
partition

Input: Nt, Etst, Etts, S, a table of new edges newEdges, k
Output: Nt, Etst, Etts, S

1 if k = 0 then
2 merge newEdges into Etst and Etts // O(sort(|Et|))

3 else // k > 0
4 Nt← sort(Nt) by nId // O(sort(|Nt|))
5 create empty priority queue pQueue // overall O(sort(|Nt|))
6 for j ∈ {1, . . . , k} and (s, l, t) ∈ newEdges do
7 enqueue (j, s) to pQueue

8 merge newEdges into Etst and Etts, fill in the pIdold_tId column // O(sort(|Et|))
9 while pQueue is not empty do

10 dequeue all pairs (j, uId) from pQueue with the same (i.e., smallest) j
value, save all distinct uId to M // remove duplicates

11 F← σsId∈M(Etst) // merge join, O(scan(|Nt|) + scan(|Et|))
12 fill in the pIdold_tId column of F // O(scan(|Nt|) + O(sort(|Et|)) + O(scan(|Et|)))
13 H← πα(F), where α=(sId, eLabel, pIdold_tId)
14 H ← sort H on sId, eLabel, pIdold_tId, and remove duplicates

// scan M, Nt and H, overall O(scan(|Nt|)) + O(scan(|Et|)) + cost of S
15 for each uId ∈ M do
16 construct sigj(uId) from H
17 pIdj(uId) ← S.insert(sigj(uId))
18 if pIdj(uId) is not the same as the corresponding value in Nt.pIdj_nId

then
19 propagate changes to Nt and pQueue // O(scan(|Nt|)) + O(scan(|Et|))

20 return Nt, Etst, Etts, S

The output variables of Algorithm 17 are Nt, Etst, Etts and S. Nt’s schema is given in
Table 3.4, while Etst, Etts and newEdges’s schema is the same as Et in Algorithm 12.

k = 0, line 1 to 2 of Algorithm 17 For k = 0, since all nodes’ information is
properly filled (including the pId0_nId column in Nt), we only need to add new rows
to Etst and Etts according to newEdges.

k > 0, line 3 to 19 of Algorithm 17 For k > 0, for each iteration, which is indicated
by j in the algorithm, we need to (1) find out the potential nodes whose signatures
could have changed; (2) check whether these signatures have been changed or not;
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3. Scalable k-bisimulation reduction of big graphs

and, (3) propagate any such changes to the parents of these nodes. To record the
potential nodes and to perform the propagation, we use a priority queue pQueue. To
check signature changes, we reuse the signature storage facility S.

When adding a new edge (s, l, t) ∈ newEdges to the graph, all sigj(s) (j > 0)
have the potential to change, and hence we add all pairs (j, s), for j ∈ {1, . . . , k}, to
pQueue, indicating that we need to check the signature of s in every iteration (line 6
to 7). For each iteration j > 0, we dequeue from pQueue all node IDs in the smallest
iteration j, remove duplicates, and save them to a temporary table M, so that M
contains in sorted order all node IDs whose signatures would change in iteration
j. Then we create an extra table F, preparing for signature constructions. This is
achieved by performing a merge join of Etst and M (where Etst.sId ∈ M). Then we
fill in F.pIdold_tId column, as in Algorithm 12.

After projection on the (sId, eLabel, pIdold_tId) of F and removing duplicates, we
get H (line 14), and are ready to construct the signatures. For each uId ∈ M, we
construct sigj(uId) according to the signature definition. The idea of constructing
the nodes’ signatures is the same as line 16 of Algorithm 12, only in this case we are
not considering every node but only those appearing in pQueue (and later in M).

We then call S.insert(sigj(uId)) for all such uId. If S returns the same pIdj(uId) as
recorded in Nt.pIdj_nId, nothing will happen; otherwise we change the Nt.pIdj_nId

entry of uId accordingly, and propagate the changes to pQueue. If j < k, we add all
parents of uId to pQueue to indicate that we will check these nodes’ signatures in the
j + 1 iteration.

3.6.2. Further discussion of Algorithm 17

Example run We present different behaviors of Algorithm 17 using two examples.
Here we will extend the graph from Figure 1.1 as in Figure 3.1. The dashed lines in
this figure indicate the two edges which we will add in our examples.

First suppose we add edge (2, l, 7) to the original graph of Figure 1.1, where node 7
is a new node with label P. Table 3.5 shows the resulting partition after this insertion.
The new/changed part of the table is indicated in gray. When the algorithm starts, (1,
2) and (2, 2) are added to pQueue. Then after checking each of these, the algorithm
finds no change in node 2’s signature, therefore no change propagates, and the
algorithm stops. We see that comparing with Table 3.1, the only thing that changes
is to add one more row (node 7) to the table. Since node 7 does not have outgoing
edges, adding one edge that points into node 7 will not change any existing nodes’s
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Figure 3.1.: Updates on the example graph

signature. Node 7 belongs to the group of node 6, and no other node changes group
membership.

Table 3.5.: 2-bisimulation for the example graph after edge insertion (2, l, 7)

nId pId0(nId) sig1(nId) pId1(nId) sig2(nId) pId2(nId)

1 A A, {(w, A), (l, B)} C A, {(w, C), (l, E)} G
2 A A, {(w, A), (l, B)} C A, {(w, C), (l, F)} H
3 B B, {(l, A)} D B, {(l, C)} I
4 B B, {(l, B)} E B, {(l, D)} J
5 B B, {(l, A)} D B, {(l, C)} I
6 B B, {} F B, {} K
7 B B, {} F B, {} K

In the second case, suppose we add edge (6, l, 5) to the original graph of Figure 1.1.
The algorithm first add (1, 6) and (2, 6) to pQueue. Then in iteration 1, the algorithm
detects that the signature of node 6 does change, and therefore adds one new pair
(2, 2) to pQueue. In iteration 2, both node 2 and node 6’s signatures are checked, and
they are both changed. We see that in Table 3.6 pId2(1) and pId2(2) become the same,
while pId2(6) changes from K to I.

Complexity and correctness We have the following characterization of Algorithm
17.

Theorem 3.2. Let G = 〈N, E, λN , λE〉 be a graph and k ≥ 0. After adding a set of
new edges to G, Algorithm 17 correctly updates the k-bisimulation partition of G with I/O
complexity of O(k · sort(|Et|) + k · sort(|Nt|)), and space complexity of O(k · |Nt| + k ·
|Et|).
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Table 3.6.: 2-bisimulation for the example graph after edge insertion (6, l, 5)

nId pId0(nId) sig1(nId) pId1(nId) sig2(nId) pId2(nId)

1 A A, {(w, A), (l, B)} C A, {(w, C), (l, E)} G
2 A A, {(w, A), (l, B)} C A, {(w, C), (l, E)} G
3 B B, {(l, A)} D B, {(l, C)} I
4 B B, {(l, B)} E B, {(l, D)} J
5 B B, {(l, A)} D B, {(l, C)} I
6 B B, {(l, B)} E B, {(l, D)} J

Proof. After all the I/O cost of one iteration of Algorithm 17 is bounded by O(sort(|Et|))
+ O(sort(|Nt|)), and the upper bound of the number of iterations is k. In the worst
case, pQueue will sort all edges for all iterations, which gives us O(sort(k · |Et|)).
Hence Algorithm 17 has the given I/O complexity.

During computation, only one Nt and Et are used, and S is used. Here the node
table contains historical information from iteration 0 to k, so comparing with the
original Nt, the space upper bound is O(k · |Nt|). Also according to the algorithm,
every iteration would have to save its signature mapping to S, so the space upper
bound of S is O(k · |Et|). Therefore, the overall space complexity upper bound of
Algorithm 17 is O(k · |Nt|+ k · |Et|).

Let (s, l, t) be the new edge. After we insert s, t to N, pId0(u) will not change for
any u ∈ N. So, according to Definition 3.3, there are only two ways that sigj(u)
(0 < j ≤ k) could be affected:

(1) a new pair (λE(v), pIdj−1(v)) appears, or
(2) changes of pIdj−1(v) in some existing pair (λE(v), pIdj−1(v)), where v is some

child of u.
Case (1) can only be caused by adding a new edge to u, so that in our case this

can only happen to sigj(s) (0 < j ≤ k), and we capture these changes in line 7 of
Algorithm 17. The second case can only happen when the pIdj−1 for the children
of u changes. We capture (and propagate) these changes in line 19 of Algorithm
17. Therefore, we capture all changes in the signatures of u ∈ N, and recompute
the signatures accordingly. Hence Algorithm 17 produces the correct k-bisimulation
partitioning result.

When to switch back to Algorithm 12 As we will see in our empirical study
(Section 4.4.4), it is not always beneficial to use Algorithm 17, since it performs extra
work in each iteration. Heuristics could be adopted to decide when to switch back
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to Algorithm 12. For example, if at a certain iteration, most of the nodes are placed
into pQueue, it is more beneficial to switch back to Algorithm 12. This could be done
by simply checking the size of pQueue at the beginning of each iteration.

3.7. Conclusion

In this chapter, with the help of the algorithm transformation framework from
Chapter 2, we have presented signature-based k-bisimulation partitioning algorithms
under the RAM model and BSP model, and to our knowledge, the first I/O-efficient
general-purpose algorithms for constructing and maintaining k-bisimulation parti-
tions on massive disk-resident graphs. The I/O cost of the construction algorithm
is bounded by O(k · sort(|Et|) + k · scan(|Nt|) + sort(|Nt|)), and the maintenance
algorithms are bounded by O(k · sort(|Et|) + k · sort(|Nt|)). It is clear that the worst
case I/O-bound of the maintenance algorithms is slightly more than that of the
construction algorithm, also with a bigger storage requirement. Comparisons of
both methods are presented in the next chapter.
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4. Empirical analysis of
k-bisimulation algorithms

4.1. Introduction

In Chapter 3, we learned the rich history of bisimulation and studied efficient
algorithms for computing k-bisimulation in various settings. In this chapter, we
present the results of an in-depth experimental study of the algorithms on both
synthetic and real datasets. After introducing the experiment setup, we show
the performance of the construction algorithm (Build_Bisim()) and edge update
algorithm (Add_Edges()) under the EM model in Section 4.3 and 4.4 respectively.

4.2. Experiment setting

Environment The following experiments are run on a machine with 2.27 GHz Intel
Xeon (L5520, 8192KB cache) processor, 12GB main memory, running Fedora 14
(64-bit) Linux. We use C++ to implement all the algorithms, using GCC 4.4.4 as the
compiler. We use the open-source STXXL library [DKS08] to construct the tables and
perform the external memory sorting, and use Berkeley DB to implement S. One S is
used for all computation iterations (as discussed in Section 3.5.2). In the experiments
we do not exploit any parallelism and restrain ourselves with predefined buffer sizes.
We record the running time as well as the I/O volume between the buffer and the
disk system. Therefore, the performance (time) of the experiments is comparable
to a commodity PC, and the I/O volume can be repeated on other systems. In the
following experiments, we set both the STXXL buffer and Berkeley DB buffer to
be 128MB, if not otherwise indicated. Please note that we run experiments for the
Twitter dataset on a different machine (Intel Xeon E5520, 2.27 GHz, 8192KB cache,
70G main memory, same OS) for limited disk space reason, using a 512MB/512MB
buffer setting.
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Datasets To prove the practicability of the algorithms, we experiment with various
graph datasets. The datasets are collected from public repositories, ranging from
synthetic data to real-world data, from several million of edges to more than 1.4
billion edges. In Table 4.1 we give a description of the datasets, as well as some
simple statistics of them. All datasets are accessed on 15 May 2012. Note that in
the following we show the experiment results on a subset of the datasets when the
result is representative enough, which is consistent as in paper [LFH+13b].

Table 4.1.: Description and statistics of the real and synthetic graph datasets

Data Name Description |N| |E| |E|
|N|

Jamendo
(RE)

A repository of music metadata
in RDF format [RSM08]

0.49M 1.05M 2.16

LinkedMDB
(RE)

A repository of movie metadata
in RDF format [HC09]

2.33M 6.15M 2.64

DBLP (RE) An RDF format DBLP dump1 23M 50.2M 2.18

WikiLinks
(R)

A page-to-page linking graph of
Wikipedia2

5.71M 130.16M 22.79

DBPedia
(RE)

An early RDF dump of DBPe-
dia3

38.62M 115.3M 2.99

Twitter (R) A following relationship graph
of Twitter [KLPM10]

41.65M 1468.4M 35.25

Flickr-Grow
(R)

A following relationship graph
of Flickr [MKG+08]

1.5M to
2.3M

17.7M to
33.1M

11.68 to
14.39

SP2B (SE) A RDF data generator for
arbitrarily large DBLP-like
data [SHLP09]

280.91M 500M 1.78

BSBM (SE) A RDF data generator for e-
commerce use case [BS09]

8.89M 34.87M 3.92

Random (SE) Uniform distribution graph gen-
erated by GTgraph [BM]

10M 200M 20

Power (SE) Power-law distribution graph
generated by GTgraph [BM]

8.39M 200M 23.85

* R and S indicate whether the graph is from real data or synthetic data. E and N indicate if the graph is labeled on

edge and/or node.
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4.3. Experiments on the construction algorithm

(Build_Bisim())

In Figure 4.1 we show the experiment results for Algorithm 12 on all datasets. We
compute the 10-bisimulation (i.e., k = 10) of these datasets and measure many
aspects of the running behavior for each iteration. Concerning time measurement,
we run every experiment 5 times and take the average number. We notice that
the standard deviation over the average is less than 10% for all datasets. S uses
BerkeleyDB’s B-Tree index in this experiment.

Partition blocks count In Figure 4.1a, we show the number of partition blocks every
iteration produces for all datasets. We see that the numbers vary from one dataset
to another, where the difference is sometimes more than an order of magnitude,
and interestingly, does not directly relate to the size of the dataset. In certain cases
(e.g., Twitter) the partition size is quite large. Moreover, many of the datasets (e.g.,
Jamendo, LinkedMDB, DBLP, etc.) reach full bisimulation after 5 iterations. In fact,
all datasets (including Twitter) get sufficient partitioning resultd after 5 iterations of
computation. Here we can reasonably argue that even for the Twitter dataset, the
partition results after 5 iterations are too refined (the reduced graph is almost as big
as the original graph, e.g., (partition count)/(node count) > 0.8).

Maximum signature length Figure 4.1b shows the maximum length of signatures
for each iteration. We observe that the signature length is usually quite short,
especially comparing with the size of the graph. But there are still cases (e.g.,
Twitter) for which the signature becomes very long (more than 1 million integers),
which stresses the need for an I/O efficient solution for S. Note that the synthetic
datasets, such as BSBM and SP2B, reach their full bisimulation partition after 3
iterations of computations, and have rather short signatures, indicating that they are
highly structured.

I/O measure Figures 4.1c and 4.1d show the I/O volume spent on sorting/scanning
(STXXL) and on interacting with S (Berkeley DB). We see for most of the datasets,
there is no dramatic change across different iterations. But for Wikilinks and Twitter,

1http://thedatahub.org/dataset/l3s-dblp
2http://haselgrove.id.au/wikipedia.htm
3http://www.cs.vu.nl/~pmika/swc/btc.html
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Figure 4.1.: Experiment results for Algorithm 12 for real and synthetic datasets for
each iteration (k = 10)
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the two datasets which have very few partition blocks at the beginning and many at
the end, there is a noticeable difference on S for different iterations. In this case I/O
on S becomes a comparable factor with sort and scan (I/O on STXXL).

Time measure Figure 4.1e shows the time spent on preparing the signature (line 6
to 14 in Algorithm 12) for each iteration, which is quite stable for all datasets. Figure
4.1f shows the time on constructing the signature and insert into S (line 15 to 18
in Algorithm 12). In this case datasets with higher degrees tend to cost more time
in later iterations, which correlate with their longer signatures and larger number
of partition blocks. For all datasets, however, the operations on constructing and
looking for signatures are the dominant factor for each iteration. This brings us to
think about further optimization tasks on the construction of signatures and the
implementation of S.

We can conclude that the algorithm is practical to use. For graphs with 100 million
edges (e.g., WikiLinks and DBPedia), the algorithm can process them in under
700 seconds for one iteration, or 1 hour for them to achieve full bisimulation. For
use cases such as building structural indexes for graph database, time-consuming
index construction is expected. 1 hour of index creation on a hundred-million-edge
graph is quite efficient. Furthermore, the operation is bounded by machine’s I/O
performance, and scales (almost) linearly with the number of nodes and edges. If we
switch to higher throughput devices (e.g., SSD/SCSI), the result will be even better.

4.3.1. Different implementations of S

As we mentioned in Section 3.5.2, S could be implemented in several ways. In
Figure 4.2 we compare the overall I/O performance of Build_Bisim() using B-Tree
and Hash indexes for S on several datasets. We notice that the B-Tree implementation
slightly outperforms Hash Index for all datasets. This is most likely due to small
caching effects and locality of references during construction of the signatures.

4.3.2. The effect of different buffer sizes

We allocate two buffers, one for scan and sort (STXXL buffer in our case), one for
S (BerkeleyDB buffer in our case), in order to analyze the impact of buffer size on
our algorithms. To illustrate, we take the DBPedia dataset since it is large enough to
show buffer effects. For the sort/scan setting, we set the buffer size ranging from
16MB to 512MB, while keeping the S buffer to 128MB, recording the I/O between
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Figure 4.2.: I/O comparison for B-Tree and Hash index of S (k = 10)

the buffer and the disk system. From Figure 4.3a we see that a bigger buffer does
improve the performance. But since we only gain in the external memory sorting
part, a certain amount of I/Os is inevitable for each iteration. Note that the reason
why iteration 1 has higher I/O cost is that in iteration 1 extra sorts on Nt and Et are
performed.
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Figure 4.3.: I/O for different buffer size setting for sort/scan and S (k = 10)

For the setting on S, we set the buffer size ranging from 16MB to 512MB, while
keeping the sort/scan buffer to be 128MB, recording the I/O of the buffer to the
disk system. From Figure 4.3b we also see that more buffer brings less I/O, as
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expected. However, in this case the buffer size change has a bigger impact on the
I/O performance. This indicates that if we have a certain amount of memory space,
it is more beneficial to allocate more memory to the S buffer than to the sort/scan
buffer. Note that the S buffer also shows a quite high hit ratio during execution
(more than 0.98 for DBPedia in all settings).

4.3.3. Scalability

In order to measure how well the algorithm scales, we generate different size of SP2B
datasets (edge count 1M, 5M, 10M, 50M, 100M, 500M), and measure the I/O and
elapsed time for each dataset. In Figure 4.4 we see that the time spent on each edge
is on the order of 10−5 seconds, and the I/O spent on each edge is under 4000 bytes
(which is one typical disk page size). The algorithm’s performance scales (almost)
linearly with the data size.
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Figure 4.4.: Time and I/O spent on each edge on average (k = 10)

4.4. Experiments on the edge update algorithm

(Add_Edges())

Edge updates are common operations for graph data. For our datasets, adding
one edge means to add a link between two wiki pages (WikiLinks), to add more
information to one publication or author (DBLP), to follow one more person (Twitter)
and so on. Sometimes we would like to also add several edges together at once.
So in this subsection we test the performance of Algorithm 17 (Add_Edges()), first

51



4. Empirical analysis of k-bisimulation algorithms

adding a single edge and then adding a set of edges.

4.4.1. Observations on single edge update

To create the dataset for testing, we randomly take one edge from the edge set,
perform Build_Bisim() on the rest of the dataset, and apply Add_Edges() on this
edge. We believe the edge selection is more natural this way, since it takes into
account the distribution of edges among nodes. We repeat the experiment 10 times
and take the average of the measured numbers. In Figure 4.5a we show how many
nodes are checked for adding one edge to the graph in each iteration. In Figure 4.5b
we show how many nodes actually change their partition IDs in each iteration. From
the figures we see that the behavior varies for different datasets; graphs that have
larger degrees tend to propagate more changes to later iterations, which complies
with our intuition.
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Figure 4.5.: Experiment on Add_Edges() when k = 10

Since there is a chance that many nodes are changed, but may all belong to a
certain set of partitions, we also examine how many partitions change their members
in each iteration. We see that the behavior is closely related to that of Figure 4.5b.
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4.4.2. Single edge update (Build_Bisim() vs. Add_Edges())

After edge insertion, if there is no update algorithm available, the only choice to
get the k-bisimulation partition is to execute the Build_Bisim() from scratch on
the new dataset. So this would be the baseline for the Add_Edges() algorithm to
compare. In the following we compare the overall I/O and time (Figure 4.6) of the
two algorithms. We see that indeed the Add_Edges() algorithm always achieves
a better performance than using Build_Bisim() to recompute the k-bisimulation
partition result from scratch, with up to an order of magnitude improvement.
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Figure 4.6.: I/O and time comparison for Build_Bisim() and Add_Edges() after
inserting one edge to the dataset (k = 10)

4.4.3. Single edge update in extreme cases

From the previous experiments, we see that the performance of the algorithms is
highly related to the datasets they process. For some datasets the edge update algo-
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rithm is very much favorable compared to the construction algorithm, while in other
cases not so much. In the following we would like to gain a better understanding of
this phenomenon.

We achieve this with two synthetic datasets, triggering both the extreme cases:
one where the construction algorithm benefits the most and one where the update
algorithm benefits the most. The first dataset, Dbest, shows a best-case scenario
that the update algorithm can achieve relative to the construction algorithm. In this
case we create a full k-ary tree, with edges pointing from parents to their children.
When adding one edge to the tree, we add one edge to the leaf node, so that no
node’s signature would change after the insertion. In this case the update algorithm
does the least amount of work, without propagating any change to further iterations
during execution. Figure 4.7a shows an example of Dbest, which is a binary tree
with height 3. The dashed edge is the newly added edge.
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Figure 4.7.: Examples for Dbest (4.7a) and Dworst (4.7b) datasets

The second dataset, Dworst, exhibits a worst-case scenario for the update algo-
rithm, relative to construction. In this case we create a complete graph, with edges
all labeled with x. Then when adding one more edge (labeled y) to one of the nodes,
every other node in each iteration is affected and therefore all the nodes’ signatures
are changed. The update algorithm has to check all nodes in every iteration. Figure
4.7b shows an example of Dworst, a complete graph with 5 nodes. The dashed edge
is the newly added edge.

We generate Dbest and Dworst on the scale of 100 million edges, and measure the
elapsed time and I/O costs (Figure 4.8) for both the construction (Build_Bisim())
and edge update (Add_Edges()) algorithms in each iteration. We see that indeed for
Dbest, the update algorithm shows a 4 times speed-up in time compared with the
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Figure 4.8.: Time and I/O comparison for Db(est) and Dw(orst) by applying Build_-
Bisim() and Add_Edges() algorithms on both (k = 10)

construction algorithm. For Dworst, the update algorithm is 2 times slower in time
than the construction algorithm.

4.4.4. Experiment on multiple edges update

To test the performance of multiple edges update, we randomly split a set of
edges from the datasets (edge count 1, 10, 100, . . . , 1M), construct k-bisimulation
partitioning on the rest of the graphs, and apply the algorithm Add_Edges() upon
the set of edges, recording the I/O and elapsed time of the experiments. In Figure 4.9
we show the I/O improvement ratio and time speed up ratio (both construct/update)
for all cases (taking the average). A gray line is drawn at y = 1 for both figures to
split the space, to indicate whether Add_Edges() performs better than Build_Bisim()
or not. From the figure we see that, for many of the datasets, it is beneficial to do
batch update (Add_Edges()) up until 104 edges. An order of magnitude time speed
up is observed for Jamendo, LinkedMDB and DBLP. In fact, if we consider the time
cost for Jamendo and DBLP, it is always favorable to use Add_Edges() in all cases.
For dataset DBPedia, however, changes propagate rapidly in the first few iterations,
therefore the construction algorithm (Build_Bisim()) becomes a better choice when
there are more than ten edges to be updated.
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Figure 4.9.: I/O (left) and time (right) improvement ratio cost(Build_Bisim())
cost(Add_Edges()) for batch

edge updates (k = 10)

4.5. Conclusion

In this chapter we conducted an extensive empirical study on the k-bisimulation
partitioning algorithms for disk-resident graphs. In both Chapter 3 and Chapter 4,
we showed that our algorithms are not only efficient and practical to use, but also
scale well with the size of the data.
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5. Regularities and dynamics in
k-bisimulation results

5.1. Introduction

While a lot of effort has been focused on computing (k-)bisimulation, little work
has been carried out to take a deep look into the bisimulation result itself, which
is essential for applications (e.g., indexing, query optimization, compression, load
balancing) to take into consideration. Indeed, it is well known that graph properties,
or data properties in general, such as skewness (e.g., power-law distribution [CSN09])
can hugely influence the performance of data-intensive processing. This applies
to both single-machine algorithms (e.g., caching effects [Dem02]) and distributed
algorithms (e.g., [ALPH01, HL91]). Therefore characteristics of the input data must
be examined and reflected at the stage of algorithm design.

Motivated by these observations, in this chapter we analyze the k-bisimulation
partitioning results of many real and synthetic big graphs. We compare the graph
properties of the abstracted bisimulation graph (defined as k-BPR graph in Def. 5.1)
both with each other and with the original underlying graph. We also analyze
a dynamic social network graph (Flickr-Grow), and examines the behavior of the
k-BPR graph as the original graph grows.

We make the followings observations:

• Regularities exist in the bisimulation results of real-world graphs. Power-
law distributions hold for partition block size distribution, signature length
distribution, degree distributions for the k-BPR graph. The k-BPR graphs are
usually denser than their original graphs.

• In the context of bisimulation results, the synthetic graph generators that we
examined fail to fulfill one or more of the regularities that are observed in
real-world graphs.
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5. Regularities and dynamics in k-bisimulation results

• For the dynamic social network that we examined, its k-BPR graph also grows,
but the growth is stable (related by a constant factor) with respect to the
original graph.

To the best of our knowledge, we are the first to make these observations.

5.1.1. Definition and experiment setup

We define the k-bisimulation partition relation graph from the ≈k relation (Definition
3.1).

Definition 5.1. Let G = 〈N, E, λN , λE〉be a graph and k ≥ 0. The k-bisimulation
partition relation graph for G (denoted as k-BPR graph [PLF+12b]) is the directed graph
Gk = 〈Nk, Ek〉, such that

• Nk consists of the equivalence classes of ≈k, i.e., if for node v ∈ N, we let [v]≈k =

{u ∈ N | v ≈k u}, then Nk = {[v]≈k | v ∈ N}.

• Ek ⊆ Nk × Nk, and (X, Y) ∈ Ek iff ∃x ∈ X, y ∈ Y s.t. (x, y) ∈ E.

For example, consider the social network graph in Figure 1.1 (p. 1) and its k-
bisimulation results in Table 3.1 (p. 28). For k = 1, nodes in G are grouped into
partitions C, D, E, F, which form Nk in Gk. Edges are merged together as well, and
the k-BPR graph is drawn in Figure 5.1.
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3, 5
P

4
P

6
P

w

l

l

l l

Figure 5.1.: k-BPR graph of Figure 1.1 (k = 1)

Since both G and Gk are directed graphs, we define for each node in G and Gk the
in-degree (out-degree) as the number of incoming (outgoing) edges of that node.

Experiment setup for this investigation is the same as in Section 4.2. Figure 5.2
presents the in-degree and out-degree distributions for the real graphs and synthetic
graphs respectively. We see that all the real graphs and some synthetic graphs (i.e.
BSBM, SP2B, Power) show a certain power-law distribution. For Flickr-Grow we plot
the grown graph.
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(b) in-degree distribution for synthetic
graphs

100 102 104 106

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

x (out-degree)cu
m

ul
at

iv
e

%
of

no
de

s
w

it
h
≥

x

(c) out-degree distribution for real graphs
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Figure 5.2.: In-degree and out-degree distributions for graphs

5.2. Static properties of k-BPR graphs

In this section we examine the properties of the static graphs (we treat the grown
Flickr-Grow as a static graph in this section). Specifically, we are interested in the
comparison of basic structural properties of the k-BPR graph Gk and its original
graph G.
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5. Regularities and dynamics in k-bisimulation results

5.2.1. Comparison of Gk and G

In Figure 5.3a and 5.3b we show |Nk |
|N| and |Ek |

|E| for k ∈ {1, . . . , 10} for all graphs,
where |X| denotes the size of set X. The figures indicate the reduction (compression)
rate we can get. In general, we see that localized bisimulation reduction provides
good compression on the original graphs, with a reduction rate between 10−4 and
10−1, and the rate becomes stable around k = 5. We also see that, compared with
the real graphs, the partition results from synthetic datasets {BSBM, Power, Random}
are either too coarse or too refined. However, this also happens for the real graphs
without labels (i.e., WikiLinks, Twitter, Flickr-Grow).

In Figure 5.3c, we plot the average degree of the partition graph for each dataset
for k ∈ {1, . . . , 10}. Comparing with the original graph degree in Table 4.1, we see
that the partition block graphs usually have higher degrees and at the beginning of
the computation, the average degree tends to drop. In the case of graphs without
labels, the degrees first rise until k is 4 or 5 and then drop.

Overall, for the purpose of compression or structural indexing, we observe that
choosing k = 5 is usually sufficient. A larger k value would lead to a too refined
partitioning. k-BPR graphs are usually denser than their original graphs.

5.2.2. Power-law distribution in Gk

In Figure 5.2 we see that many of the original graphs follow a power-law distribution
in their structure. We are curious about whether this is also true for their k-BPR
graphs.

We first study some graph properties of the k-BPR graphs. In Figure 5.4 we plot
the in-degree and out-degree of the k-BPR graphs for real graphs and synthetic
graphs, respectively.

Figure 5.5a and 5.5b show the distribution of the partition block size for each graph.
Note here that for the Random dataset, each node belongs to its own partition.

In Chapter 3 we defined a notion of signature for each node, which is essentially
an encoding of the bisimulation equivalence class of the node. The length of a node’s
signature gives us insight into the complexity of the local topology of the node.
Figure 5.5c and 5.5d show the distribution of signature lengths.

In general, we observe that all examined properties show certain power-law
distribution nature for real graphs. This gives us some insights when we want to
build applications of k-BPR graphs. Furthermore, we note that not a single synthetic
dataset fulfils all power-law distribution graph properties as shown in real data.
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Figure 5.3.: Comparison of k-BPR graph to its original graph
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(a) in-degree distribution for k-BPR graphs
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(b) in-degree distribution for k-BPR
graphs (synthetic)
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(c) out-degree distribution for k-BPR
graphs (real)
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(d) out-degree distribution for k-BPR
graphs (synthetic)
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Figure 5.4.: In-degree and out-degree distributions for k-BPR graphs

From the bisimulation partition perspective, the most real synthetic graph is SP2B,
which still lacks of the power-law distribution on signature length. This indicates
that benchmark graph generators still need to be improved in this direction to reflect
the structure of real graphs.

5.3. Dynamic properties of k-BPR graphs

While Section 5.2 studies the properties for static graphs and their k-BPR graphs, in
this section we want to look into growing graphs. Note that for our growing graph
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(a) PB (partition block) size distribution
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(b) PB (partition block) size distribution
for synthetic graphs
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(c) signature length distribution for real
graphs
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(d) signature length distribution for syn-
thetic graphs
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Figure 5.5.: Partition block size and signature distributions in k-bisimulation results

(Flickr-Grow), the findings in Section 5.2 still hold.

It is easy to design synthetic graphs such that their corresponding k-BPR graph
either shrinks or grows, as the original graph grows. For real-world social graphs
however, we are interested to know: (P1) is the k-BPR graph growing when the
original graph grows? and (P2) is the k-BPR graph growing faster than the original
graph? We use the Flickr-Grow graph for this investigation. The original Flickr-Grow
graph includes a time stamp for each edge. We separate the edge set into 14 subsets
based on the time stamp, grouping edges together for every 10 days. In this way we
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5. Regularities and dynamics in k-bisimulation results

can examine graph growth in a coarse granularity.
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Figure 5.6.: k-BPR graph growth trend in |N|, |E|, |Nk|, and |Ek|

To answer P1, we plot in Figure 5.6 the trend of |N| and |E| of G, |Nk| and |Ek|
of Gk with time, where k = 5. Other k values show the same behavior as well.
Essentially, we examine the k-BPR graph growth in terms of nodes and edges. We
see that during the whole period, |Nk| increased by 1.5× and |Ek| by 2×, while the
original graph grows with the same ratios.
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|N
k|

|E|

|E
k|

Figure 5.7.: k-BPR graph growth trend in |Nk| w.r.t. |N| and |Ek| to |E|, all axes are
in linear scale

To answer P2, we plot Figure 5.7, showing the growth of |Nk| (y-axis) w.r.t. |N|
(x-axis) and |Ek| to |E|. We see that there is clearly a constant factor between |Nk|
and |N| (|Ek| and |E|). So we conclude that (1) the k-BPR graph grows with the
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original graph, but (2) the growth is stable with respect to the original graph.

5.4. Conclusion

In this chapter we have examined many aspects of the k-bisimulation partitioning
results for massive real-world and synthetic graphs. Extensive experiments have
shown basic regularities in the k-BPR graphs for both static and dynamic real graphs,
while the synthetic graphs fail to mimic real graphs in this respect. This indicates
that synthetic graph generators aiming to generate “real graphs” should take the
k-bisimulation properties into account during development. To our knowledge, we
are the first to make these observations.
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6. Further discussion of
k-(bi)simulation

From Chapter 3 to 5, we study many aspects of k-bisimulation, from properties to
efficient algorithms. In this chapter, we would like to discuss two related notions:
full bisimulation, which considers global structural information, and k-simulation,
which is a more relaxed partitioning method (i.e., leads to bigger partitions). Not
only because these two concepts are also fundamentally important to study, but
also by studying the connections between these problems, we will gain a better
understanding of all problems, and may develop better solutions for all. We first
introduce the notions of full bisimulation and k-simulation, and examine the relations
of them with k-bisimulation. Then we propose an algorithm for computing k-
simulation, within which we identify a core operation, that we further study in the
second part of the thesis.

6.1. Connection between k-bisimulation and full

bisimulation

First we give the definition of full bisimulation.

Definition 6.1 (full bisimulation). Let k ≥ 0 and G = 〈N, E, λN , λE〉 be a graph. Nodes
u, v ∈ N are called bisimilar (denoted as u ≈ v), iff the following holds:

1. λN(u) = λN(v),

2. ∀u′ ∈ N[(u, u′) ∈ E⇒ ∃v′ ∈ N[(v, v′) ∈ E, u′ ≈ v′ and λE(u, u′) = λE(v, v′)]],
and

3. ∀v′ ∈ N[(v, v′) ∈ E⇒ ∃u′ ∈ N[(u, u′) ∈ E, v′ ≈ u′ and λE(v, v′) = λE(u, u′)]].

As we mentioned earlier, there is an upper bound for the number of computation
rounds for k-bisimulation. And this upper bound is no larger than the number of
nodes in the graph.
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Proposition 6.1. If ≈j=≈j+1, then ≈j=≈j′ (∀j′ ≥ j).

Proof. Since ≈j=≈j+1, ∀u ∈ N, we could assign pIdj(u) = pIdj+1(u). Then, ac-
cording to Definition 3.3 (signature) and Proposition 3.1, it holds that pIdj+2(u) =
pIdj+1(u), and the same applies for any further j′ ≥ j.

Proposition 6.2. The j in Proposition 6.1 always exists, and its upper bound is |N| (num-
ber of nodes).

Proof. From Proposition 3.2 we know that ∀u, v ∈ N, if u ≈j+1 v, then u ≈j v, which
is equivalent of saying partitions will either split or stay the same. If they stay for
one time, they will stay forever (Proposition 6.1). Otherwise, G has to at least split
one of its partition blocks for each ≈i where i ≤ j , in which case j reach the upper
bound |N|.

Then we observe the following useful connection between k-bisimulation and full
bisimulation.

Proposition 6.3. Let G = 〈N, E, λN , λE〉 be a graph. There exists a k ≥ 0 such that for
any u, v ∈ N it holds that u ≈k v iff u ≈ v.

Proof. First we want to show u ≈k v⇒ u ≈ v. From Proposition 6.2 we know that k
has an upper bound |N|. Here we set k to |N|, which means that ≈k=≈k+1. Then
according to the definition, in iteration k + 1, for u ≈k+1 v, we have:

1. λN(u) = λN(v),

2. ∀u′ ∈ N[(u, u′) ∈ E ⇒ ∃v′ ∈ N[(v, v′) ∈ E, u′ ≈k v′ and λE(u, u′) =

λE(v, v′)]], and

3. ∀v′ ∈ N[(v, v′) ∈ E ⇒ ∃u′ ∈ N[(u, u′) ∈ E, v′ ≈k u′ and λE(v, v′) =

λE(u, u′)]].

Since ≈k=≈k+1, we can replace ≈k with ≈k+1, then the relationship ≈k+1 has the
same definition as ≈. So that ≈k+1=≈.

Then we want to show that u ≈ v⇒ u ≈k v. We will do it inductively.

1. k = 0. This is obvious.

2. k > 0. Assume that this holds for j− 1, we want to show that this also holds for
j. Let u ≈ v, we want to show that u ≈j v. According to the definition, we want
to have for all outgoing edges (u, u′) ∈ E, there exists some edge (v, v′) ∈ E,
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6.2. Connection between k-bisimulation and k-simulation

such that u′ ≈j−1 v′ and λE(u, u′) = λE(v, v′), and vice versa. Because of u ≈ v,
we already have u′ ≈ v′; and because of u ≈ v⇒ u ≈j−1 v, we have u′ ≈j−1 v′.
Then all the requirements for u ≈j v are fulfilled. So ≈⇒≈k.

6.2. Connection between k-bisimulation and

k-simulation

Similar to k-bisimulation, the notion of (k-)simulation also plays an important role
in a wide range of applications (e.g., [PLF+12a, PFHV14, FGL+14]). In this section
we briefly discuss some properties of k-simulation and the relation of it with k-
bisimulation.

We first introduce the k-simulate relation between nodes.

Definition 6.2 (k-simulate). Let k be a non-negative integer and G = 〈N, E, λN , λE〉 be a
graph. For nodes u, v ∈ N, we say v k-simulates u (denoted as u �k v), iff the following
holds:

• λN(u) = λN(v), and

• if k > 0, then ∀u′ ∈ N[(u, u′) ∈ E ⇒ ∃v′ ∈ N[(v, v′) ∈ E, u′ �k−1 v′ and
λE(u, u′) = λE(v, v′)]].

Using �k, we can build the equivalence relation k-similar.

Definition 6.3 (k-similar). Let k be a non-negative integer and G = 〈N, E, λN , λE〉 be a
graph. Nodes u, v ∈ N are called k-similar (denoted as u ∼k v) iff u �k v and v �k u.

We illustrate the concept of �k and ∼k using the same example graph in Figure
1.1. It is easy to show that, for k = 0, 1, ∼k=≈k, so we start with the situation when
k = 2. For k = 2, to construct ∼2, we need to first construct �2. We show �2 using
a matrix in Figure 6.1. Then by checking with the matrix, we can easily get the ∼2

relation: among six nodes, only node 3 ∼2 node 5.

Both �k and ∼k relations can be built in a bottom-up manner.

Proposition 6.4. Let k be a non-negative integer and G = 〈N, E, λN , λE〉 be a graph. For
all u, v ∈ N it holds that u �k v⇒ u �k−1 v.
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1 2 3 4 5 6
1
2 �2
3 �2
4
5 �2
6 �2 �2 �2

Figure 6.1.: 2-simulate matrix example for Figure 1.1, omit self-simulate

Proof. By induction on k.

(1) k = 1. This is obvious, since λN(u) = λN(v).

(2) k > 1. Assume that this holds for j (�j⇒�j−1, 0 < j < k), we also want to
show that this holds for j + 1. Let u �j+1 v. According to Definition 6.2, for all
outgoing edges (u, u′) ∈ E, there exists some edge (v, v′) ∈ E, such that u′ �j v′ and
λE(u, u′) = λE(v, v′). Since �j⇒�j−1, we have u′ �j−1 v′, then we have u �j v. So
u �j+1 v⇒ u �j v.

Corollary 6.1. Let k be a non-negative integer and G = 〈N, E, λN , λE〉 be a graph. For all
u, v ∈ N it holds that u ∼k v⇒ u ∼k−1 v.

Definition 6.4. Let k be a non-negative integer and G = 〈N, E, λN , λE〉 be a graph. The
k-simulation partition relation graph for G (denoted as k-SPR graph [FHV+11]) is the
directed graph Gk = 〈Nk, Ek〉, such that

• Nk consists of the equivalence classes of ∼k, i.e., if for node v ∈ N, we let [v]∼k =

{u ∈ N | v ∼k u}, then Nk = {[v]∼k | v ∈ N}.

• Ek ⊆ Nk × Nk, and (X, Y) ∈ Ek iff x �k y holds for all x ∈ X and y ∈ Y.

Similar to ≈k, here we also define k-partition identifier for ∼k, i.e., pIdi(u) = pIdi(v)
iff u ∼i v. pIdk(u) could be used to denote the node set Nk in the k-SPR graph Gk.
We write pIdi(u) �i pIdi(v) iff (pIdk(u), pIdk(v)) ∈ Ek, and write pIdi(u) ≺i pIdi(v) iff
pIdi(u) �i pIdi(v) and pIdi(u) 6= pIdi(v). Then k-SPR graph could be expressed by
pIdk(u) and the ≺k relations.

Consider again the example graph in Figure 1.1. Though its ∼1=≈1, i.e., nodes are
partitioned to {1, 2}, {3, 5}, {4}, {6}, its 1-SPR graph (Figure 6.2) is totally different
from its 1-BPR graph (Figure 5.1).
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1, 2
M

3, 5
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Figure 6.2.: k-SPR graph of Figure 1.1 (k = 1)

6.3. Signature-based k-simulation algorithm

It is easy to show that k-simulation is a more relaxed relation than k-bisimulation,
i.e., ≈k⇒∼k, but ∼k 6⇒≈k. In graph of Figure 6.3 for example, n1 ∼2 n5 but n1 6≈2 n5.
Computing simulation equivalence however is more difficult. Even the state-of-the-
art in-memory algorithms have at least the time complexity of O(|N|3) (e.g., [Ran14]).
Inspired by studies we have done to k-bisimulation, we are curious if it is possible to
reuse the concept of signature for k-simulation.

n1 n5

n2 n6 n7

n3 n4 n8 n9 n10

a

b

c

a
a

b
b

c

Figure 6.3.: Example graph where n1 ∼2 n5 but n1 6≈2 n5

We define the k-simulation signature as follows:

Definition 6.5. Let k be a non-negative integer, G = 〈N, E, λN , λE〉 be a graph, and
P = {pId0, . . . , pIdk} be a k-partition identifier for G. The k simulation signature of node
u ∈ N is the pair sigk(u) = (pId0(u), L) where:

L =

∅ if k = 0,

{(λE(u, u′), pIdk−1(u
′)) | (u, u′) ∈ E} if k > 0.

Definition 6.5 is essentially the same as Definition 3.3 (p. 26). Only in this case, we
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6. Further discussion of k-(bi)simulation

need to do some processing to the signatures.

Definition 6.6 (reduced signature). Let k > 0, G = 〈N, E, λN , λE〉 be a graph, and for
some node u ∈ N, sigk(u) = (pId0(u), L) be its k-simulation signature. For any two pairs
(`1, p1), (`2, p2) in L, if `1 = `2, and p1 �k−1 p2, we delete the pair (`1, p1) from L. After
we delete all such pairs, we call the signature a reduced signature, denoted as rsigk(u).

Proposition 6.5. Let k be a non-negative integer, G = 〈N, E, λN , λE〉 be a graph. For any
node u ∈ N, if there exists two nodes u′, u′′ such that (u, u′), (u, u′′) ∈ E, λE(u, u′) =

λE(u, u′′) and u′′ �k−1 u′, then removing edge (u, u′′) from E will not change the ∼k

partition for G.

Proof. At the very least, the removal of edge (u, u′′) will potentially affect the
partition result of node u. If u’s partition block is not affected, then clearly ∼k will
not change. Assume there is a node v such that u ∼k v. From Definition 6.3 we
have u �k v and v �k u. It is obvious that u �k v will not be affected, since v has
fewer edges to simulate with. For v �k u, every edge (v, v′) that has to be simulated
by (u, u′′) can be replaced with (u, u′) (transitive relation). Then the proposition
holds.

Proposition 6.6. pIdk(u) = pIdk(v) iff rsigk(u) = rsigk(v) (k ≥ 0).

Proof. ⇒.

Assume that pIdk(u) = pIdk(v). According to Proposition 6.5, we remove all edges
(u, u′′) and (v, v′′) ∈ E if there exists u′ and v′, where u′′ �k−1 u′, v′′ �k−1 v′, and
(u, u′), (v, v′) ∈ E. After the edge removal, pIdk(u) = pIdk(v) still holds. We refer
to this reduced graph in later discussion. Then we have u �k v and v �k u. Then
the set U = {(λE(u, u′), pIdk−1(u

′)) | (u, u′) ∈ E} and V = {(λE(v, v′), pIdk−1(v
′)) |

(v, v′) ∈ E} must be equal. In the following we prove that.

(1) U ⊆ V. According to Definition 6.3, we have for any pair (λE(u, u′), pIdk−1(u
′))

∈ U, there exists a pair (λE(v, v′), pIdk−1(v
′)) ∈ V, such that pIdk−1(u

′) �k−1

pIdk−1(v
′); and for any pair in V, there exists a pair in U, such that any pair in V can

be simulated by a pair in U. If there exists one pIdk−1(u
′) ≺k−1 pIdk−1(v

′), since we
refer to a reduced graph, there is no pair in U that can simulate the pair (λE(v, v′),
pIdk−1(v

′)), otherwise (λE(u, u′) will be removed. Then pIdk−1(u
′) = pIdk−1(v

′). So
U ⊆ V.

(2) V ⊆ U. Ditto.
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6.3. Signature-based k-simulation algorithm

⇐. It is obvious that in the reduced graph, rsigk(u) = rsigk(v)⇒ pIdk(u) = pIdk(v),
then according to Proposition 6.5, in the original graph pIdk(u) = pIdk(v) still
holds.

Based on Proposition 6.6 we could directly design an algorithm to compute
localized simulation partitioning for graphs. The sketch of the algorithm can be
found in Algorithm 18. The idea is to create reduced signatures for all nodes and
assign partition identifiers according to the signatures. In every iteration i, the i-SPR
graph is created and used for maintaining the ≺i−1 relation between nodes. Here
we reuse the same signature storage facility S as described in Section 3.4 (p. 30).

Algorithm 18: k-simulation partition construction algorithm based on k-SPR

1 build 1-(bi)simulation partition as we did before
2 for iteration i ∈ {2, . . . , k} do
3 create i-SPR graph Gi−1 based on ∼i−1

4 create signatures for all nodes
5 create reduced signatures based on graph Gi−1
6 use S to assign new partition identifiers for iteration i

An example may illustrate the algorithm better. Considering the graph in Figure
6.3, Table 6.1 shows the intermediate result comparison of localized simulation
(rsig2(nId)) and bisimulation (sig2(nId)) computation for the example graph. Note
that the 1-similar and 1-bisimilar relations are the same. Here for sig2 of n5, because
p5 �1 p3, we delete pair (a, p5), therefore rsig2(n5)=rsig2(n1), so n1 ∼2 n5.

Table 6.1.: Intermediate results for example graph in Figure 6.3 (k = 1, 2)

nId sig1(nId) pId1(nId) sig2(nId) rsig2(nId)

n1 p1, {(a, p1)} p2 p1, {(a, p3)} p1, {(a, p3)}
n2 p1, {(b, p1), (c, p1)} p3 p1, {(b, p4), (c, p4)} p1, {(b, p4), (c, p4)}
n3 p1, {} p4 p1, {} p1, {}
n4 p1, {} p4 p1, {} p1, {}
n5 p1, {(a, p1)} p2 p1, {(a, p3), (a, p5)} p1, {(a, p3)}
n6 p1, {(b, p1)} p5 p1, {(b, p4)} p1, {(b, p4)}
n7 p1, {(b, p1), (c, p1)} p3 p1, {(b, p4), (c, p4)} p1, {(b, p4), (c, p4)}
n8 p1, {} p4 p1, {} p1, {}
n9 p1, {} p4 p1, {} p1, {}
n10 p1, {} p4 p1, {} p1, {}
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Many optimization techniques (e.g., sort merge join, limited search space, partition
ID encoding) can be applied to Algorithm 18, just as we did for k-bisimulation
(Algorithm 12 in Chapter 3). The new part where we need to create the i-SPR graph
(line 5 of Algorithm 18) is the most difficult part of the algorithm. To determine
whether two partitions have the simulate relation, essentially we need to compute
containment relation between sets. Since we need to perform the computation for all
partitions (at most |N| partitions), the number of set containment checks is massive.
This leads to the problem of set-containment join, which we will study in more detail
in Part II.

6.4. Conclusion

In this chapter we discussed two important concepts that relate to k-bisimulation:
full bisimulation and k-simulation. We proposed an algorithm sketch for computing
k-simulation partitions. Inside the computation we identified that a certain set
computation is the core of the problem, which will be carefully studied in the second
part of the thesis.
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Part II.

Set-containment join
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7. Algorithms for computing
set-containment relations

7.1. Introduction

Sets are ubiquitous in data processing and analytics. A fundamental operation
on massive collections of sets is computing containment relations. Indeed, bulk
comparison of sets finds many practical applications in domains ranging from graph
analytical tasks (e.g., [SZZ13, PLF+12a, ZÖC+14]) and query optimization [CB07] to
OLAP (e.g., [LHYS14, BW14]) and data mining systems [Ran03]. In Chapter 6 for
example, in the problem of computing k-simulation, the most complex operation is
to check the containment relations between sets of partition IDs, where the number
of sets is the number of nodes in graph. In order to design k-simulation algorithms
for big graphs, it is therefore essential to first develop efficient algorithms that can
work with such massive number of sets.

Table 7.1.: Example of set-containment join. If we perform a set-containment join
(on⊇) between user profiles and user preferences, we retrieve matching pairs
{(u1, p1), (u1, p2), (u2, p3)}.

(a) user profiles

id set signature

u1 {b, d, f, g} 0111
u2 {a, c, h} 1011
u3 {a, c, d} 1011

(b) user preferences

id set signature

p1 {b, d} 0101
p2 {b, f, g} 0110
p3 {a, c, h} 1011

As a simple example, consider an online dating website where each user has an
associated profile set listing their characteristics such as hobbies, interests, and so
forth. User dating preferences are also indicated by a set of such characteristics. By
executing a set-containment join of the set of user preferences with the set of user profiles,
the dating website can determine all potential dating matches for users, pairing each

77



7. Algorithms for computing set-containment relations

preference set with all users whose profiles contain all desired characteristics. A
concrete illustration can be found in Table 7.1.

In this part we study efficient and scalable solutions to the following formalization
of this common problem. Consider two relations R and S, each having a set-valued
attribute set. The set containment join of R and S (R on⊇ S) is defined as

R on⊇ S = {(r, s) | r ∈ R ∧ s ∈ S ∧ r.set ⊇ s.set}.

It is known that set-containment joins are expensive to compute [LV07, CCKN01].
Yet, due to its fundamental nature, the theory and engineering of set-containment
join have been intensively studied (e.g., [HM97, HM03, HANM07, RPNK00, MGM01,
MGM03, TBM02, Mam03, JP05, TPVS06, TBV+11, LV07, CCKN01]). In this chapter
we briefly survey many of the approaches. Existing solutions fall into two general
categories: signature-based and information-retrieval-based (IR) methods, which we’ll
cover in Section 7.2 and Section 7.3. We further summarize techniques to make
disk-based extensions for all the algorithms in Section 7.4. At the end of the chapter,
we discuss some research topics that are related to set-containment join.

7.2. Signature-based methods

Signature-based algorithms (e.g., [HM97,HM03,HANM07,RPNK00,TBM02,MGM01,
MGM03]) encode set information into fixed-length bit strings (called signatures), and
perform a containment check on the signatures, as an initial filter followed by a
validation of the resulting pairs using actual set comparisons. In this way, many set
comparisons can be avoided, and the whole process gets accelerated.

We first introduce the definition of signature [HM97]. A signature of tuple t (t.sig)
can be seen as the output of some hash function h (i.e., t.sig = h(t.set)) such that

t1.set ⊆ t2.set⇒ h(t1.set) v h(t2.set).

Here we define the containment relation v between two binary strings as str1 v
str2 ⇔ str1&¬str2 = 0, where & and ¬ are bitwise AND and NOT operations. We
will also refer to the v relation as “subset” containment when there is no possibility
of confusion.

A straightforward implementation of a signature hash function is as follows:
assume the signature length |t.sig| is b bits, all initially set to zero. If integer x is in
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t.set we set the (x mod b)th higher-order bit of t.sig to 1. The resulting signature is
essentially a compressed bitmap representation of t.set. In the signature column of
Table 7.1 we show the 4-bit signature for each set in our example relations. Alphabets
are mapped to integers starting from 1, in alphabetical order (i.e., ‘a’ is mapped to
1, ‘b’ to 2, and so forth). Note that tuples u2 and u3 have the same signature, but
different set values. These are called false drops in literature. More advanced hash
function implementations are discussed in papers such as [HM97, MGM03].

Signatures can be applied to nested-loop join algorithms. Algorithms loop over
signatures of both the inner relation and the outer relation, and perform pairwise
containment check on the signatures. Obviously, |R| × |S| comparisons are needed
to finish the signature check. This approach is usually considered as a baseline
solution in papers e.g., [HM97, HM03, RPNK00, MGM03].

Index structures can be used to reduce such comparisons. In Signature Tree [HM03,
TBM02], for example, a tree-shaped filter index is used to guide comparisons. Nodes
near the root hold signatures that are union of the children, so that filtering done at
the parents will prevent signature comparisons at the children.

To further avoid pairwise signature comparison, in the spirit of hash join, a series
of algorithms are proposed. In these algorithms, tuples are grouped together by
some hash values (may or may not relate to signature value), and the signature
comparisons only take place between certain groups instead of all. The Signature
Hash Join (SHJ) algorithm is the first approach of such idea, followed by Lattice
Set Join [MGM01] and Extendible Signature Hashing [HM03], which are disk-based
extensions of SHJ. We describe SHJ in more detail in Section 9.1.1.

7.3. IR-based methods

IR-based methods (e.g., [Mam03, JP05, TPVS06, TBV+11]) build inverted indexes
upon sets storing tuple IDs in the inverted lists. A merge join between inverted
lists will produce tuples that contain all such set elements. Typically auxiliary
indexes are created to accelerate inverted index entry look-ups and joins. Standard
optimization such as compression can be applied to inverted files to further boost
the performances.

When inverted files are stored on disk, one drawback of IR-based methods is that
they trigger random access on disk blocks. Many efforts are spent to tackle this
problem. In Mamoulis [Mam03], the author proposes a block-based nested-loop join
(BNL) to avoid such access pattern. Terrovitis et al. in [TPVS06, TBV+11] study ways
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to combine inverted files with other data structures such as B-Tree to further reduce
I/O cost.

In this category, to the best of our knowledge, PRETTI (PREfix Tree based seT
joIn) [JP05] is the most recent and efficient in-memory set-containment join algorithm.
It uses a prefix tree (trie) to organize set elements of one relation, and an inverted
file for the other relation. By only traversing the prefix tree once while joining on the
inverted lists, PRETTI can produce all join results. PRETTI will be further discussed
in Section 9.1.2.

7.4. Disk-based extensions

For a single machine, when data is too big for main memory, disk-based extensions
are needed for set-containment join algorithms to run. In this section we introduce
several commonly used strategies for this purpose. These works are inspired by the
study of (parallel) join algorithms in database research (e.g., [SKS10, Chapter 12 and
18]).

Nested-loop join on partitions is a widely used strategy. Given relations S and R,
we partition S into S1, . . . , Sm and R to R1, . . . , Rn, and process each pair (Si, Rj) (i ∈
{1, . . . , m} and j ∈ {1, . . . , n}) in memory. BNL [Mam03] and PRETTI [JP05] use this
strategy to scale.

Another strategy follows the grace hash join style, where two relations are par-
titioned by the same hash function, so that not all pairs of partitions need to be
examined to produce the join results. Only in our case, since it’s not an equijoin,
tuples of one relation need to be replicated to several partitions. In one of the first
approaches PSJ [RPNK00], tuple r ∈ R is partitioned by some random set element
of r and hash function h, then tuple s ∈ S is replicated to all partitions with hash
value {h(e)|∀e ∈ s}. APSJ and (A)DCJ from Melnik et al. [MGM03] develop this idea
further by using boolean hash functions to lower the relation replication factor, and
yield better results.

Last but not least, disk-based data structures also play an important role to build
disk-based extensions. Linear Hashing [TBM02], Extendible Hashing [HM03], tree
structures [HM03, TBM02, TPVS06], and sorted inverted files [TBV+11] are examples
of this kind.
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7.5. Related problems and research

Problems involving discovering relations between sets exist in many topics in
database research. Research problems such as relational division, set similarity
join, and nested relations (sets) are such examples. In the following we give a brief
summary of some of the efforts that have been carried out.

Relational division As an implementation for universal quantification, the division
operator (÷) from relational algebra is used to describe for-all semantics. Formally,
the operator is defined as:

R(A, B)÷ S(D) = {a|{b|R(a, b)} ⊇ {d|S(d)}}

Continuing our example from 7.1, user profiles ÷ {b,d} returns all users that contain
elements b and d, which is u1. Extensive research has been done to develop efficient
algorithms for implementing relational division operator (see [GC95, RSMW03] for
detailed surveys), and integrate the operator into query languages [BC13, BW14]
and real systems [LHYS14]. Relational division can be seen as a special case of
set-containment join [RM06], with the time complexity of O(n log n), where n is the
size of the bigger relation [LV07].

Set similarity join The Set Similarity Join (SSJ) returns pairs of sets that are similar
by some measurement. It can be viewed as a generalization of set-containment
join, where conditions on sets are similarity measures (Hamming distance, edit
distance, etc.) instead of containment check. Due to its applications in data inte-
gration, bioinformatics and data mining, SSJ receives plenty of attention in recent
years. Similar to set-containment join, SSJ algorithms also use techniques such
as signatures for filtering [AGK06], partitioning methods [AGK06, LDWF11], trie
structure [FWL12, QZWX13] and inverted index [SK04] for speeding up the pro-
cess. A detailed performance comparison of the state-of-the-art SSJ algorithms is
conducted in [WDG+14], with more complete references in it. In Section 9.2.3 we’ll
see that, certain set-containment join algorithm infrastructure can be easily adapted
to perform SSJ as well.

Nested relations, trees and nested sets Till now we only consider sets that are flat
(unnested). It is worth mentioning works that have been done to compute relations
on nested sets. Garani and Johnson [GJ00] surveyed varied join operations on nested
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relations, which are essentially nested sets with schema. Another line of research
on this matter is tree pattern matching on XML, where both the tree pattern query
and XML document are considered as labeled nested sets. A comprehensive survey
of this research can be found in [HD13]. Last but not least, there is some recent
work on set containment query processing for nested sets [IF13]. In this work the
authors assume no obligatory labeling on sets (schema free). IR-related techniques
are heavily used in many of these works.

7.6. Conclusion

In this chapter we briefly surveyed the state-of-the-art set-containment join algo-
rithms. We categorized these algorithms into signature-based algorithms and IR-
based algorithms. Disk-based extensions were discussed for both categories. Some
research topics that also involve set comparisons were mentioned at the end.
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8. Subset enumeration within
limited sets

8.1. Introduction

Suppose we represent sets over a finite domain as fixed-length binary strings (i.e.,
bitmaps). Generating all subsets of a given set r is a fundamental and well-studied
combinatorial problem (e.g., [NW78, Chapter 1]), i.e., to return K = {k|k v r}1.
Efficient algorithms and bitwise solutions are developed to make sure the procedure
is as fast as possible.

In many cases, it is not necessary to loop over all subsets of r. Limitations can be
introduced while generating subsets. The problem of k-subsets, for example, returns
subsets that have exactly k elements. In this chapter we focus on the limitation that
we can only return subsets that already exist in the system, i.e., given a binary string
r, and a set of binary strings S, we want to generate all subsets of r that also belong
to S, i.e., to return K = {k|k v r ∧ k ∈ S}. This problem is closely related to the
set containment query answering problem in database research [LHYS14, HM97]
and association rule discovery in data mining [TL02, LAN06, Sav13], finding its
applications in various data warehousing and OLAP systems.

One obvious solution of this problem is to reuse the subset generation algorithms
to first generate all possible subsets of r and then filter out the ones that are not
in S, but this approach could be computationally expensive (2b checks where b is
the number of 1s in r). In this chapter we study ways to avoid generating all such
subsets, but still output the correct results. We first introduce the baseline solution
that needs to generate all subsets. Then we present Algorithm JumpEnum, that
considers the constraint set while generating subsets. Last, we propose two trie-based
algorithms, TrieEnum and PTrieEnum, that can finish the task in linear time (w.r.t.
the output size), which is in general more efficient than the baseline solution. We
note that the trie-based algorithms are output-sensitive, i.e., in addition to the input,

1Here we reuse the notation v from Section 7.2 to represent containment relation between binary strings
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their performance depends on the output size. We conduct a series of experiments to
show the performance differences of these algorithms. In Chapter 9 we will integrate
algorithms developed in this chapter to set-containment join solutions, therefore
some discussions of the algorithms are presented there as well.

In the pseudo code, we often treat bit strings as integers in two’s complement
form. Hence we can apply standard “C” style operators on such binary strings,
including bitwise operators (e.g., AND &, OR |, XOR ˆ, NOT ∼, left shift <<, right
shift >>), arithmetic operators (e.g., −) and so on.

8.2. Generate-and-filter enumeration

In this subsection we introduce the baseline solution FilterEnum (Algorithm 19).
The algorithm uses existing algorithms to generate all subsets of r, then for each
subset, it checks with the constraint set S. It only outputs a subset if the subset exists
in S. A hashmap can be used for S to accelerate the existence checking.

Algorithm 19: FilterEnum() generate and filter, the baseline algorithm
Input: binary string r, candidates S
Output: list of subsets of r, that belong to S

1 create list m
2 l ← generate subsets of r, e.g., algorithm 20 or 21
3 for each t ∈ l do
4 if t ∈ S then
5 add t to m

6 return m

For example, suppose we have S = {1011, 0110, 0101, 0001} and r = 0111. Accord-
ing to Algorithm 19, we first generate all subsets of r, e.g., 0111, 0110, 0101, 0100,
. . . , 0000. Then for each subset, we check whether it belongs to S and we output
0110,0101,0001 as the result.

There are quite a few algorithms available for generating subsets of a given string
(e.g., [LvHS00]), all of which can be plugged into Algorithm 19. Here we present
Algorithm 20 and 21. The former generates subsets in ascending order, while the
latter in descending order, both using efficient bitwise operations.

Proposition 8.1. Algorithm 19 has the time complexity of O(2b × L), Algorithms 20 and
21 have the time complexity of O(2b), where b is the number of 1s in the input binary string
r, and L is the length of r.
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Algorithm 20: Generate subsets of a given binary string, counting up,
from [HM97]
Input: binary string r
Output: list of subsets of r

1 create list l
2 t← r&− r
3 add t to l
4 while t 6= 0 do
5 t← r&(t− r)
6 add t to l

7 return l

Algorithm 21: Generate subsets of a given binary string, counting down, adapted
from [Cod]
Input: binary string r
Output: list of subsets of r

1 create list l
2 t← r
3 while t 6= 0 do
4 add t to l
5 t← (t− 1)&r

6 add t to l
7 return l

Proof. Algorithm 20 and 21 are bounded by their output size (O(2b)). Algorithm 19
is bounded by its subset generation routine times the cost of each containment check
(O(L)).

Algorithm 19 is sufficient when the candidate space |l| (line 2 of Algorithm 19)
is small, but will become slow when the strings are long, due to the exponential
behavior of the generation algorithms. One quick fix is to solve the problem from
the other side, meaning to go through each element in S, and check whether it is a
subset of r. This will give us a solution with the complexity of O(|S| × L). In Section
8.3 we will combine both of the ideas above to design a new algorithm. After that
we propose a totally different trie-based algorithm in Section 8.4.
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8.3. Check-and-jump enumeration

Our new algorithm JumpEnum (Algorithm 22) is based on the idea to generate
subsets of r while checking with the given set S. Assume we have the candidate set S
sorted. While generating subsets in descending order (e.g., using Algorithm 21), we
also scan the candidate set. Whenever we find a match, we output such element; if
not, we then go to the next value in the candidate set, using that as a guidance to
jump in the subset space. To use this method, we need an auxiliary function that can
make the jump, which is described in Section 8.3.1.

Algorithm 22: JumpEnum() check-and-jump enumeration
Input: binary string r, candidates S
Output: list of subsets of r, that also belong to S

1 create list m
2 t← r
3 while t do
4 index← locate t in S

// If t ∈ S, index holds the index of t, otherwise it holds the index of the
most significant value that is smaller than t in S

5 u← S[index]
6 if t = u then // t ∈ S
7 add t to m
8 t← (t− 1)&r // simply get the next subset
9 continue

10 else
11 t← subsetSmallerThan(r, u) // e.g., Algorithm 23

12 if t ∈ S then // now t is 0
13 add t to m

14 return m

Table 8.1 shows a running example of Algorithm 22. The algorithm first checks
whether S contains r and moves the cursor on S accordingly. Then, after the check
of 1011, the subset generation of r jumps with the cursor on S. At the last row, the
subset generation does not continue with the sequence 0101, 0100, 0011, . . ., but skips
0100 to 0010 and directly jumps to 0001 based on the observation on S.

Proposition 8.2. Algorithm 22 has the time complexity of O(|S| × L), where S is the
constraint set, and L is the length of the input string.

Proof. In the worst case, the jump facility does not work with the input string.
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Table 8.1.: Running example for Algorithm 22, where S = {1011, 0110, 0101, 0001}
and r = 0111

generate subset of r check point on S

0111 1011
↑

, 0110, 0101, 0001

0110 1011, 0110
↑

, 0101, 0001

0101 1011, 0110, 0101
↑

, 0001

0001 1011, 0110, 0101, 0001
↑

Therefore all elements in S will be checked, where each comparison will cost
O(L).

8.3.1. Get the biggest subset that is smaller than some value

Given bit strings mask and value, we want the function to return some subset of mask
(called sub) such that (1) sub ≤ value and (2) sub is the biggest of all valid subsets.
For example, given mask 10110 and value 10001, we want the function to return
10000, since (1) 10000 v 10110 and (2)10000 < 10001. Algorithm 23 implements such
functionality.

Algorithm 23: subsetSmallerThan()
Input: binary string mask, boundary value
Output: greatest subset of mask that is smaller than value

1 len← length of mask
2 for i = 0, . . ., len-1 do
3 if (mask[i] = value[i]) or (mask[i] = 1 and value[i] = 0) then
4 output value[i]

5 else
6 output mask[i:] from this point
7 break

Proposition 8.3. Algorithm 23 is correct, i.e., the output of Algorithm 23 is (1) less than
or equal to value; (2) subset of mask; (3) biggest among all possible subsets.

Proof. (1) The output’s prefix is the same as value; then for the rest part of the output,
the most significant bit is zero instead of one, so the output is less than or equal to
value.
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(2) The output’s prefix is either mask[i] or 0, a subset of mask[i]; the rest part of
the output is from mask[i], so overall output is a subset of mask.

(3) Assume there is some other subset c that satisfies (1) and (2), and c > output.
Then in order for c to happen, c needs to flip some bits from 0 to 1 in the prefix of
the output. That can only happen when mask[i] = 1 and value[i] = 0. Then we get a
c that is strictly bigger than value, contradicting with (1).

Using the same reasoning, we know that the next subset right after the output of
Algorithm 23 is the smallest subset that is greater than value.

Algorithm 23 is correct, but may be considered not efficient enough, since we have
to call it many times in Algorithm 22. A better choice would be to carefully examine
the loop in the procedure, to see if that can be replaced with bitwise operations. The
answer is yes, and the procedure can be found in Algorithm 24.

Algorithm 24: subsetSmallerThanBitOp(), bitwise version
Input: binary string mask, boundary value
Output: greatest subset of mask that is smaller than value

1 temp← (value ˆ mask) & value
2 i← number of leading zeros in temp
3 if i = 0 then
4 return mask

5 prefix← (1 << 31) >> (i− 1)
6 return (prefix & value) | ((˜prefix) & mask)

Proposition 8.4. Algorithm 24 has the same output as Algorithm 23.

Proof. The core operation of Algorithm 23 is to find the splitting point, where we
use value for the prefix, and mask for the rest. Line 1 to 5 are designed for this
purpose: value XOR mask sets only the bits that are not the same to 1. Then an AND
operation with value eliminates the 1s that are caused by mask = 1. The leading 1
position points out the splitting point. Therefore everything before that 1 we use
value, afterwards we use mask. Two bitmasks and an OR operation are created to
output the correct parts.

8.4. Trie-based enumeration

Let’s reconsider the problem: for string r and set S, return K = {k|k v r ∧ k ∈ S}.
The performance of Algorithm 19 relates to 2b, where b is the number of 1s in r.
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8.4. Trie-based enumeration

Algorithm 22 on the other hand is bounded by |S|. The ideal case is to create an
algorithm, that is bounded by the output |K|. In this section we propose algorithms
fulfilling this idea. Here we totally ignore the exponential subset enumeration, but
build a trie for S and operate on it directly. Recall that a trie is a basic tree data
structure for storing strings. One property of tries is that strings within a subtree
share the same path (prefix) from the root to the subtree. Here we use a binary trie
to store binary strings of the same length. Strings themselves are stored at the leaves
of the trie. After we insert all strings into the trie, since strings have the same length,
we get a trie with the height of string length. From the root, each level of trie nodes
represents one position bit in binary strings. An example of a binary trie can be
found in Figure 8.1.

root

0

1

0

p1
1

1

p2
0

1

0

1

p3
1

Figure 8.1.: Trie example, after inserting strings 0101:p1, 0110:p2, 1011:p3 into an
initially empty trie. Here we let left branches store strings with prefix bit
0 and right branches store strings with prefix bit 1.

When performing a breadth-first search on a trie, in the end we enumerate all
existing strings by visiting the leaves. If we restrict our search at each level of the
trie using some given string as guidance, we get the subset enumeration algorithm
TrieEnum(), given in Algorithm 25. The basic idea is that, while traversing the trie
level by level, we are examining all strings bit by bit. Then if we take the input string
into consideration, the search space shrinks every time when a bit “0” is encountered.
We use a queue to hold nodes whose prefixes are subsets of the input string. When
Algorithm 25 finishes, all bits of the input string are examined, and all strings that
are a subset of the input string are in the queue.

For example, if we want to find subsets of a string 0111 for all strings in Figure 8.1,
we run Algorithm 25, then all nodes in the left branch of Figure 8.1 are visited and
placed on the queue. In the end, 0101 and 0110 at leaf nodes are returned.
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Algorithm 25: TrieEnum() subset enumeration using trie
Input: binary string r, candidates S
Output: list of subsets of r, that belong to S

1 create binary trie for S
2 create queue q
3 i← 0
4 current_bit← r[i++]
5 enqueue trie.root on q
6 while q.top has children do
7 node← dequeue from q
8 if current_bit = 0 then
9 enqueue node.left on q

10 else
11 enqueue node.left and node.right on q

12 current_bit← r[i++]

13 return q

Similar ideas to construct trie structure for constrained set exist in literature
[LAN06, Sav13]. In [LAN06] a trie is constructed for binary strings with delta-
encoding (i.e., string that records bit shifting positions). In [Sav13], for a collection
of sets, a trie is constructed in the set element space (i.e., on set values instead of
binary space). Querying subsets on these data structures are also similar to that of
Algorithm 25. A limitation of such approaches is that there are many unnecessary
nodes that only have one child in the trie (which we later refer to as single-branch
nodes). We also see this in Figure 8.1. For k strings (with b bits each), if there are
no single-branch nodes, ideally the trie should have around 2k nodes. But instead,
it will in the worst case need k(b− lg2k) + 2k nodes. The longer the string is, the
more single-branch nodes it has. Moreover, these nodes all need to be enqueued and
visited. In the empirical study, we witnessed that Algorithm 25 usually performs
slower than Algorithm 19.

8.4.1. Introduce Patricia Trie

Knowing what is the weakness, we can improve the design accordingly. To avoid
single-branch nodes, we adopt a data structure called Patricia trie [Mor68, Sed03],
which is specifically designed for this purpose. Essentially, a Patricia trie merges
single-branch nodes into one node in a trie, so it can guarantee that all nodes have
full branches (in our case two-way branches). Of course in the worst case a Patricia
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trie is not better than a regular trie, but as we’ll see in the experiments, that rarely
happens for randomly-generated and real-world datasets. Figure 8.2 shows what
a Patricia trie would look like if we insert the same strings as in Figure 8.1. First,
because there is bit difference on position 0, one node is created on this position.
Here, the right branch has no more splitting points, so it directly points to 1011. For
the left branch, there is another splitting point on position 2, so another node is
created accordingly, and each string belongs to one of the branches. Overall, 2 extra
nodes are created and there is no single-branch node in the trie.

root

01

01
p1

10
p2

1011
p3

Figure 8.2.: Patricia trie example, inserting the same strings as in Figure 8.1 into a
Patricia trie

In this chapter we apply a slight modification to the original Patricia trie. In our
version of a Patricia trie node, we store (1) pointers to the left and right nodes, (2)
the indexes at which point the prefix starts and splits, and (3) the common prefix
from the last split point to the current split point.

We define a subset generation procedure on Patricia tries in Algorithm 26. It is
similar to Algorithm 25 with the only difference being that, instead of comparing
one bit at a time, segments of bits (which come from merged single-branch nodes)
are compared at each node. In the end, strings that are subsets of s are stored in the
result list instead of queue q.

To continue our example, if we run the same string 0111 on Figure 8.2 using
Algorithm 26, we still need to visit the left branch of the trie. Only at this time,
three instead of six nodes need to be traversed. In practice, bit strings (in our case
signatures in Chapter 9) can be much longer and sparse, and therefore more node
visits are saved compared to Algorithm 25.

Proposition 8.5. If we have the trie built for S beforehand, the time complexity of Algorithm
25 and 26 are bounded by O(|K| × L), where |K| is the output size, and L is input string
length.
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Algorithm 26: PTrieEnum() subset enumeration using Patricia trie
Input: binary string r, candidates S
Output: list of subsets of r, that belong to S

1 create Patricia trie ptrie for S
2 create queue q
3 create list result
4 enqueue ptrie.root on q
5 while q 6= ∅ do
6 node← dequeue from q

// r.prefix moves forward when traverse deeper to the trie
7 if node.prefix v r.prefix then
8 if node.split = |r| then
9 add node to result

10 else
11 split_bit← r[node.split]
12 if split_bit = 0 then
13 enqueue node.left on q
14 else
15 enqueue node.left and node.right on q

16 return result

Proof. In the worst case, a Patricia trie will not change the trie structure. For
generating each subset element of the output, the algorithm needs to traverse at
most L nodes, therefore to output |K| elements cost |K| × L node visiting.

The above analysis gives a very rough upper bound for trie-based enumeration
algorithms, which does not consider the shared traverse path between outputs for
tries. Moreover, in practice a Patricia trie is much more compact than a regular trie,
therefore practically it is more efficient than the worst case scenario.

8.5. Experimental study

In this section we empirically compare the performance of the four enumeration al-
gorithms, namely FilterEnum (Algorithm 19), JumpEnum (Algorithm 22), TrieEnum
(Algorithm 25) and PTrieEnum (Algorithm 26). We evaluate the effect of (1) the
number of 1s in input bit string r (referred as b), (2) the size of the constraint set
(referred as |S|), and (3) the size of the result set (referred as |K|) one the performance
of the algorithms. We achieve this by fixing two parameters while varying on the
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third one. Data configurations of our investigation are in Table 8.2. All data are
generated under uniform distribution. While changing the parameters of b and |S|,
the possibility to get a certain result (to K) is very low, that is why |K| = 0 in both
cases, and that is why we test |K| for other values to complete the picture.

We implement all experiments in Java, and the source code can be found online2.
Experiments are executed on a single machine (Intel Xeon 2.27 GHz processor,

12GB main memory, Fedora 14 64-bit Linux). Every experiment is loaded and run
from cold cache for ten times. We take the average running time from them, and we
observe that the standard deviation is not significant comparing with the average
(less than 15% for JumpEnum and FilterEnum, less than 5% for TrieEnum and
PTrieEnum). Note that we will use FilterEnum and PTrieEnum in applications in
Chapter 9, so further comparison of these two algorithms is discussed there as well.

Table 8.2.: Dataset configurations

fixed parameters changing parameter

|S| = 218, |K| = 0 b ∈ {10, 15, 20, 25, 30}
b = 25, |K| = 0 |S| ∈ {215, 216, 217, 218, 219, 220}
|S| = 218, b = 25 |K| ∈ {214, 215, 216, 217}

Impact of number of 1s in r (b) In Figure 8.3 we show the impact of the number
of 1s in the input string on different algorithms. Algorithm names with suffix “B”
indicate the algorithms’ running time is taking into account the index building time
(e.g., build hash map, sorting, trie structure, etc.). If we take a look at the running
time without index building (left figure), we see that FilterEnum is indeed sensitive
to the number of ones in the input, while other algorithms are not. JumpEnum and
PTrieEnum have the best performance among all, since the result set size is zero. If
we consider the index building time (right figure), we see that when number of 1s
(b) is small, FilterEnum is actually a better choice over others, but that advantage
disappears when b goes larger. While TrieEnum is the slowest of all, PTrieEnum,
which is equipped with the Patricia trie structure, performs efficiently and stable
among all algorithms, even when we consider the index building time.

Impact of constraint set size |S| In Figure 8.4 we show the algorithms’ behavior
under different constraint result set sizes |S|. Again because the result set is empty,

2https://github.com/lgylym/subset_enum
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Figure 8.3.: Impact of number of ones in bit string r

JumpEnum and PTrieEnum perform very well when we do not consider index
building time. FilterEnum however needs to enumerate subsets in all cases, therefore
it is the slowest of all. But its performance is not sensitive to |S|. If we take into
account index building time, PTrieEnum is still the most efficient of all, but the
cost to build the index increases with the constraint set size. This suggests that
PTrieEnum may benefit more when it can reuse the trie structure over time.

215 217 219
10−2

100

102

104

constraint set size

el
ap

se
d

ti
m

e
(m

s)

FilterEnum JumpEnum
TrieEnum PTrieEnum

215 217 219
10−2

100

102

104

constraint set size

ti
m

e
in

cl
.i

dx
bu

ild
in

g
FilterEnumB
JumpEnumB
TrieEnumB

PTrieEnumB

Figure 8.4.: Impact of constraint set size |S|

Effect of result set size |K| It is interesting to see how algorithms react to different
result set sizes. We show the result in Figure 8.5. By taking a look at the algorithms,
we know that FilterEnum is not sensitive to this parameter, but the other three
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algorithms are. This is validated in the left figure of Figure 8.5. Index building time
however is not affected by this parameter. For TrieEnum and PTrieEnum, due to
caching effect of CPU, the index building time actually is slightly shorter when more
subsets of r are inserted to the tries.
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Figure 8.5.: Impact of result set size |K|

Summary In this experiment we evaluated four different subset enumeration al-
gorithms in various settings. We found that FilterEnum is efficient only when the
number of 1s in r is small. In other cases, whether considering the indexing building
time or not, the two new algorithms, JumpEnum and PTrieEnum perform more
efficiently, in many cases orders of magnitude better than the baseline solution.
PTrieEnum may benefit more if its index structure is reused.

8.6. Conclusion

In this chapter we presented several algorithms for enumerating subsets of a given
binary string within limited sets of strings. We first introduced the baseline solution
FilterEnum, which first generates subsets of a given string, and then filters with the
constraint set. We then proposed a novel algorithm JumpEnum, that can generate
the subsets while checking with the constraint set. At last, we proposed trie-based
algorithms (TrieEnum and PTrieEnum) for the enumeration, where a compact Patricia
trie plays an important role to make things fast. An empirical study showed that
JumpEnum and PTrieEnum are indeed much faster than the baseline solution in most
of the cases, whether we consider the index building time or not. One application
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of the above-mentioned algorithms is to integrate them into set-containment join
algorithms, which will be discussed in the next chapter.
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As we discussed in Chapter 7, most of the focus of the state-of-the-art set-containment
join algorithms has been on disk-based algorithms. Though these algorithms have
proven quite effective for joining massive set collections, the performance of these
solutions is bounded by their underlying in-memory processing strategies, where
less work has been done (see Section 9.1). To keep up with ever-increasing data
volumes and modern hardware trends we need to push the performance of set-
containment join to the next level. Therefore, it is essential to revisit (and develop
new) in-memory set-containment join algorithms. Such algorithms will serve both
as an essential component for main memory databases [LL13] as well as building
blocks and inspiration for external memory and other computation models and
platforms.

In this chapter we study in-memory algorithms for computing set-containment
joins between massive collections (relations) of sets, where we scale the relations
along three basic dimensions: set cardinality, domain cardinality, and relation size.
Here, set cardinality is the size of set values in the relations; domain cardinality is the
size of the underlying domain from which set elements are chosen; and relation size
is the number of tuples in each relation.

In particular, our contributions are as follows:

• We propose two novel algorithms for set-containment join. One is for the low
set cardinality, high domain cardinality setting (PRETTI+); the other is for the
remaining scenarios (PTSJ). Both algorithms make use of the compact Patricia
trie data structure.

• Our PTSJ proposal is a signature-based method. Hence, the length of the
signature is a critical parameter for the algorithm’s performance. Therefore,
we perform a detailed analysis on PTSJ for determining the proper signature
length. We also detail how PTSJ can (1) be easily extended to answer other
set-oriented queries, such as set-similarity joins, and (2) efficiently be adapted
to a disk-based environment.
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• We present the results of an extensive empirical study of our solutions on a
variety of massive real-world and synthetic datasets which demonstrate that
our algorithms in many cases perform an order of magnitude faster than the
previous state-of-the-art and scale well with relation size, set cardinality, and
domain cardinality.

• We propose several ideas to make distributed extensions for PTSJ.

The rest of the chapter is organized as follows. In the next section, we introduce
the state-of-the-art solutions for set-containment join. In Sections 9.2 and 9.3 we
propose PTSJ and PRETTI+, our two new algorithms. Section 9.4 presents the results
of our empirical study of all algorithms. We describe the ideas of making distributed
extensions of PTSJ in Section 9.5 and then conclude this chapter in Section 9.6.

9.1. State-of-the-art Algorithms

In this section we describe two efficient in-memory set-containment join algorithms,
SHJ and PRETTI. These solutions are representatives of the state-of-the-art, and
serve as baseline solutions in our later development and experiments. For simplicity
we assume in the following that domain values and tuple IDs are represented as
integers.

9.1.1. Signature Hash Join

The Signature Hash Join (SHJ) was proposed by Helmer and Moerkotte [HM97].
As we mentioned in Section 7.2, SHJ uses the signature structure as a concise
representation for sets, and uses signature comparisons as filtering operations before
performing real set comparisons. In the spirit of hash join, SHJ works as follows:
(1) for each tuple s in S, compute s.sig, and insert (s.sig, s) into a hash map (idx);
(2) for each tuple r in R, compute r.sig, enumerate all subsets of r.sig, examine all
tuples with such signatures in the hash map (hence in S), comparing them with r.
Pseudo code of this approach can be found in Algorithm 27 and Algorithm 19. Here
we split SHJ into two parts: a generalized signature join framework (Algorithm 27)
that can be reused for other algorithms, and an enumeration algorithm used in SHJ
(Algorithm 19) that can be replaced with more efficient algorithms as we discussed
in Chapter 8.

SHJ inspired other algorithms (e.g., PSJ [RPNK00] and APSJ [MGM03]). It is
one of the most efficient in-memory solutions for computing set-containment join.
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Algorithm 27: Signature_Join() signature join framework
Input: relations S and R
Output: pairs of tuple IDs that have the set containment relation

1 create index idx // e.g., in SHJ is a hashmap
2 for each s ∈ S do
3 insert (s.sig, s) into idx

4 for each r ∈ R do
5 subset← Call subset enumeration algorithm // e.g., Algorithm 19
6 for each s ∈ subset do
7 if r.set ⊇ s.set then
8 output (s, r)

One drawback of SHJ comes from line 2 of Algorithm 19, where all subsets of
a given signature are enumerated and validated in the hash map. Though the
authors provide a very efficient procedure (with bitwise operations) to perform
this enumeration, such a mechanism cannot scale with respect to signature length,
and therefore cannot scale with relation size and set cardinality. Consequently, all
algorithms using this mechanism suffer also from the same problem. In Section 9.2,
we provide a solution to this problem, with the introduction of an alternative data
structure.

9.1.2. PRETTI Join

Recall from Section 7.3, PRETTI is an IR-based approach. In contrast with SHJ,
PRETTI operates on the space of set elements instead of on the space of signatures.
In particular, PRETTI works as follows: given relations S and R, first build a prefix
tree (trie) based on the ordered set elements of tuples in S; then build an inverted
file based on set elements of tuples in R. In the same root-to-leaf path of the trie,
tuples of the descendants contain tuples of the ancestors. Then, when traversing the
trie from root to leaf, at each node a list of containment tuples can be generated by
joining the tuples in the node and in the inverted list. The list is passed down the trie
for further refinement. A sketch of the PRETTI join can be found in Algorithm 28.
The recursive call operates on each child of the root node and goes down the tree in
a depth-first-search manner. Figure 9.1 illustrates the trie structure after inserting
sets in user preferences from Table 7.1.

PRETTI is a very efficient algorithm. It only traverses the trie once to generate
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Figure 9.1.: Trie example for PRETTI, after inserting sets from user preferences (Ta-
ble 7.1)

Algorithm 28: Pretti_Join() recursively join and output
Input: subtree root node, current_list, inverted index idx
Output: pairs of tuple IDs that have signature containment relation
// Initially, current_list← idx[node.label]

1 for each s in node.tuples do
2 for each r in current_list do
3 output (s,r)

4 for each child c of node do
5 child_list = current_list ∩ idx[c.label]
6 Pretti_Join(c, child_list, idx)

all results. Set comparisons are naturally performed while traversing, and most
interestingly, early containment results are reused for further comparisons.

PRETTI has two main weak points. First, many auxiliary data structures such as
trie and inverted index are built for the algorithm, which can consume too much
space if set cardinality is high. Second, varied-length set comparisons can be time
consuming in comparison with fixed-length signature comparisons, especially when
set cardinality is high. In our later empirical evaluation we will see that PRETTI can
perform quite well for low set cardinality datasets. However, due to excessive main
memory consumption and element comparisons, it cannot scale with either larger
relations or higher set cardinalities. Later in this chapter, we develop extensions to
PRETTI to overcome this main-memory consumption problem.
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9.2. Patricia Trie-based Signature Join (PTSJ)

Let’s reconsider SHJ from Section 9.1.1. After all signatures are computed, given
one signature r.sig, SHJ needs two steps to get its subset results: (1) enumerate all
subsets of r.sig; (2) check whether some subset exists in the hash map entry and
perform set comparison afterwards. It is difficult for this mechanism to scale to
longer signatures, because the number of possible subsets of a given signature is
exponential (2b) to the signature length b. Therefore in real cases, only part of the
signature is used for enumeration purposes (and for creating hash map entries).
Based on our experience, this partial signature length cannot even reach 20 bits. This
mechanism essentially limits the possible performance gain of SHJ. However, it is not
necessary to enumerate all possible subsets, but rather only those that actually exist
in a relation. Hence, the space for enumeration is O(|S|). This is the core idea of our
first algorithm. We simply reuse the join framework of Algorithm 27, and replace
the enumeration algorithm with Algorithm 25 and more advanced Algorithm 26.
We call the latter approach Patricia Trie-based Signature Join (PTSJ).

9.2.1. Cost analysis of PTSJ

In this section we give some cost estimation of PTSJ under simple conditions. Some
notation we use are given in Table 9.1. The cost of PTSJ (CPTSJ) can be broken down
to

CPTSJ = Ccreate_PT + Cquery_PT + Ccompare_set,

where Ccreate_PT is the cost to build the Patricia trie on relation S, Cquery_PT is the
cost to compare signatures on the trie, and Ccompare_set is the cost to actually perform
set comparisons. We first identify that Ccreate_PT and Ccompare_set are not the major
costs of PTSJ. Then we dig deeper into Cquery_PT, giving an estimation of how many
integer comparisons will it cost. We find that under simple natural assumptions,
Cquery_PT is mostly influenced by set cardinality c and signature length b. In the end,
based on these analyses, we propose a strategy to choose a good signature length
for PTSJ.

Ccreate_PT and Ccompare_set

Ccreate_PT During Patricia trie creation, only 2|S| nodes are created in total. Even
in the worst case H nodes are visited during each signature insertion. Obviously,
Ccreate_PT does not take the major part of PTSJ’s running time.
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Table 9.1.: Notation for cost analysis

Notation Explanation

b Signature length in bits
c Average set cardinality
d Domain cardinality, set element domain

Int Integer size in bits
|X| Size of relation X
H Average height of Patricia trie
N Number of tuples in S that have the signature containment rela-

tion with some tuple in R
V Number of trie nodes one query has to visit

Ccompare_set Assume that on average N tuples remain for set comparison for each
tuple in R. Then Ccompare_set = N × c × |R|. It is easy to see that N decreases
when signature length grows, and increases when |R| increases. In general this is a
small value (from 10’s to 100’s), proportional to the result output size (see below).
Therefore Ccompare_set is also not the major cost of PTSJ.

Estimation of N To estimate N, we start with a rather simple situation. Consider
two signatures d and q, with set cardinalities (and hence number of bits set to 1 in
signature) cd and cq, resp., and with signature length b. We want to know what is
the probability that d v q. For each element in a set, the probability that it appears
on each bit is 1

b . For d v q to happen, d should have 1’s on only the positions that
q has 1’s. For each element in d, they have cq positions to choose from, so each
element has the probability cq

b to be a subset. In total, the probability is (
cq
b )

cd , and
N = |S| × (

cq
b )

cd .

We next consider a more complicated scenario. For example, if d’s set cardinality
is uniformly distributed between 1 and cd, then the estimated probability of d v q
would be p1+p2+...+pcd

cd
≈ p

cd×(1−p) , where p =
cq
b .

In general, N gets smaller when signature length (b) grows. High set cardinality
query (cq) tends to have more results, while low set cardinality data (cd) tend to
produce more results. All these intuitions are confirmed by our formula. The main
take-home message here is that N is a small value, so that set comparisons do not
take the significant part of the overall running time.
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Cquery_PT

Let’s assume that the number of trie nodes each tuple in R has to visit is V. Then
the number of comparisons to be done on the trie is

Cquery_PT = |R| ×V ×
⌈

b
H × Int

⌉
.

Here each node on average compares b
|H| bits, which costs

⌈
b

|H|×|Int|

⌉
actual integer

comparisons. We know that
⌈

x
y

⌉
≤ x

y + 1, so we get the upper bound

Cquery_PT ≤ |R| ×V ×
(

b
H × Int

+ 1
)

. (9.1)

For low cardinality settings, H can be as high as b
2 , so it is rare for a single node

to take more than two integer comparisons. For higher cardinalities, H is a smaller
value closer to log2(2|S|), but still grows with respect to b. Then we can expect a
small but slowly increasing value for comparisons per node. The more important
factor however is V.

Estimation of V There are (b
c) possible signatures with c bits set to 1. When set

cardinality is small (i.e., when (b
c) ≤ |S|), it is highly probable that all possible

signatures exist in the trie. For example, in the extreme case that set cardinality is 1,
there are only 2b possible nodes in the trie. Since 2b << 2|S|, the trie is likely to be
full. In such cases, V tends to reach the maximum possible, i.e., 2c × H. Here H is
approximately b

2 .

This becomes less obvious when c and b grow to larger values. In such cases,
the trie will not contain all possible cases, and the average height usually does
not reach b

2 . If we have an all-one signature as the query, all nodes (2|S|) will be
visited. Therefore 2H = |S|. If on the lowest level, only one branch is included, the
number of nodes to visit becomes 2H−1 + 1× 2H−1. Similarly, if single-branches
happen for the lowest x levels (which yields the most number of nodes), we get
2H−x + x× 2H−x = (1 + x)× 2H−x. Furthermore, if we assume that the number of
single-branch nodes in a result is proportional to the number of zeros in a signature
(1− c

b ), so x = (1− c
b )× H, then the number of visited nodes is estimated to be

V =
(

1 + H ×
(

1− c
b

))
× 2H× c

b ≤ (1 + H)× |S|
c
b (9.2)
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Here, we see that with the increase of |S|, the number of visited nodes increases.
Bigger set cardinality also indicates more visited nodes, while longer signatures
reduce the number of visited nodes. As we’ll see later, we usually select b between
c
2 × Int and c× Int, so (|S|) c

b is around 2 even for a million tuples. In such case we
say the V is bounded by O(H). And if we bring formula 9.2 into formula 9.1, we get
Cquery_PT is bounded by O(c× |R|).

Space complexity of PTSJ

Since to build a Patricia trie for some relation S, only 2|S| nodes are created, and
for each tuple the signature size is usually no more than its set values, the space
complexity of PTSJ is O(|S|).

9.2.2. Choosing the signature length for PTSJ

Because there is no need for exhaustive subset generation, in practice, signature
length can be set to thousands of bits in PTSJ without any problem. Generally, longer
signatures provide more effective filtering, but bring more signature comparisons
and higher main memory consumption. So there is a need for finding the balance
point for signature length.

First of all, there is an absolute upper bound for signature length, which is domain
cardinality d. Letting b = d essentially makes the signature a bitmap representation
of the sets. In many cases this number can be achieved. For example, for a domain
that has 1024 elements, the maximum signature length is 1024

Int integers.

It is obvious that there is a lower bound for b as well, which is c. If b < c, there is
a high chance that all bits in a signature are set to 1, which is not useful anymore.

Apart from these two bounds, we find that the “optimum” signature length
depends on many properties of input relations, such as set cardinality, domain
cardinality, relation size, and data distributions. Among these, we notice both from
formula (9.2) and empirical study that the set cardinality has a bigger impact on
signature length selection, and usually c

2 × Int ≤ b ≤ c × Int can yield a good
result. This also prevents the algorithm from using more signature comparisons than
set comparisons. If not specified otherwise, we use the lower bound of the range
( c

2 × Int).

Finally, we can set a maximum length in the algorithm, to prevent it from being
extremely long. In our experiments, this limit is set to 256 integers.
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Overall, our signature length is set to

minimum of
{

d,
c
2
× Int, 256× Int

}
.

9.2.3. Extensions to PTSJ

Merge identical sets

With the help of the trie, tuples of the same signature are naturally grouped together.
If we go one step further, maintaining a mapping list of tuples that have the same
set elements, taking them into consideration while outputing, we save the cost of
comparing duplicates over time. This strategy is applied in our PTSJ implementation.
It works well without introducing noticeable overhead while creating the trie, and
saves quite some comparisons while performing joins, especially for real-world
datasets.

Superset and set-equality joins

While our algorithms are designed for R on⊇ S, it can be easily modified to perform
R on⊆ S. Here we take Algorithm 25 as an example to illustrate; Algorithm 26 can
be changed in a similar manner. The only place that needs to be touched is the
if-else statements (lines 8 to 11). Two case handling statements should be switched,
as given in Algorithm 29. Furthermore, in Algorithm 27 the set value containment
check (line 7) will change accordingly, to “if r.set ⊆ s.set.”

Algorithm 29: Replace Algorithm 25 line 8 to 11 for superset join

7 if current_bit = 0 then
8 enqueue node.left and node.right on q
9 else

10 enqueue node.left on q

Set-equality joins (R on= S) can be answered efficiently as well. In this case,
a simple search on the trie will return a list of tuples with the same signature.
Further set comparisons are needed to validate the search results. Since we already
merge tuples with the same set values, as discussed above in Section 9.2.3, many set
comparisons are saved.
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Set similarity joins

Apart from being used for set containment computations, a Patricia trie can be
(re)used to answer set similarity join [AGK06] queries as well. Set similarity join has
been well-studied in the literature [WDG+14]. Solutions that make use of a trie have
been proposed as well (e.g., [FWL12, QZWX13]), but these do not operate on (and
cannot be easily adapted to) the signature space as PTSJ does. For instance, given
query signature q, we want to find signatures within hamming distance k. We can
use Algorithm 30 to achieve this goal, where we extend Algorithm 25 for illustration
purposes.

Algorithm 30: Trie_SSJ() hamming distance set similarity join using trie
Input: signature, trie, threshold k
Output: tuple IDs that have similar signature within hamming distance k

1 create queue q
2 i← 0
3 current_bit← signature[i++]
4 enqueue (trie.root, 0) on q
5 while q.top has children do
6 (node, i)← dequeue from q
7 if i ≤ k then
8 if current_bit = 0 then
9 enqueue (node.left, i) on q

10 enqueue (node.right, i+1) on q
11 else
12 enqueue (node.left, i+1) on q
13 enqueue (node.right, i) on q

14 current_bit← signature[i++]

15 return q

We use a counter to remember the hamming distance between some prefix and our
query. In the end, all signatures (therefore tuples) that are within the distance are in
the queue, waiting for other operations (validation, output) to take action. Systems
such as OLAP can benefit a lot from reusing one index for different purposes.

Disk-based algorithm

PTSJ can be easily extended to an external memory setting. A straightforward
implementation is to perform a nested-loop join over partitions of the data (same as
PRETTI), as we discussed in Section 7.4. Only in our case, PTSJ has a much smaller
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memory footprint than PRETTI, which makes it more suitable for this strategy.
Smarter partitioning techniques (e.g., [RPNK00, MGM03]) can be integrated into
PTSJ as well. Moreover, some advanced data structures such as a disk-based (Patricia)
trie (e.g., [AZ09]) will further boost the performance.

9.2.4. Discussion

SHJ can be viewed as a one-level, multi-way trie, where each branch starts with
a different prefix. PTSJ, on the other hand, is a multi-level, binary trie. The main
benefits of PTSJ over SHJ come from longer signatures, which can filter out more
unnecessary set comparisons. Furthermore, the trie structure guarantees that only
interesting subset prefixes are visited, instead of the whole exponential space.

PRETTI, on the other hand, does make use of a trie structure, but it operates on
the set element space instead of signature space. The benefit is that it does not need
to be validated twice. The downside, however, is that trie height is as high as the set
cardinality, making it only suitable for low set cardinality settings. This brings us to
an advanced version of PRETTI, using a Patricia trie.

9.3. PRETTI+

Since the Patricia trie is so useful for PTSJ, it is natural to ask if this data structure
can be used to enhance PRETTI. We have integrated a Patricia trie with PRETTI,
calling this new join algorithm PRETTI+. Modifications have to be done both on trie
construction and on the join procedures.

Inserting sets to the trie can be a bit trickier than with PTSJ, since sets are not
necessarily of the same size. In Algorithm 31, we show the trie construction function
for PRETTI+. Here we assume that each node maintains a prefix, a set of related
tuples, and a set of children nodes. The main idea is that, depending on the common
prefixes, the newly arrived tuple may be inserted to different positions with respect
to the given node.

The join operation is almost the same as for PRETTI, except that lists of tuples
from the inverted index have to be joined several times in each node, since each node
holds several set elements. By replacing a standard trie with a Patricia trie, PRETTI+
consumes much less main memory than PRETTI. However, set comparisons and
tuple list joins still take place, same as in PRETTI. As we’ll see in our empirical study,
PRETTI+ is always a better choice than PRETTI.
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Figure 9.2.: Trie example for PRETTI+, after inserting sets from user preferences
(Table 7.1)

Algorithm 31: Pretti+_Insert() trie construction for PRETTI+
Input: subtree root node, tuple s, cursor on s.set: from
Output: root for the subtree
// insert s.set[from:] to subtree node, here we treat s.set as a string

1 clen← |common prefix of node.prefix and s.set[from:]|
2 nlen← |node.prefix|
3 tlen← |s.set[from:]|
4 if clen = nlen then
5 if clen < tlen then
6 c← some child of node that matches s.set[(from+clen):]
7 call Pretti+_Insert(c, s, from + clen)
8 else // clen = tlen
9 put s into node

10 return node
11 else // clen < nlen
12 if clen = tlen then
13 create new_node for s, insert new_node between node and its parent
14 else
15 create new_node as parent for node and tuple

16 return new_node

9.4. Empirical Study

In this section we empirically compare the performance of SHJ, PRETTI, PTSJ, and
PRETTI+. We first introduce the experiment settings. Then we validate the signature
length selection strategy discussed above in Section 9.2.2. After that we conduct the
main comparison of the four algorithms on a variety of synthetic and real-world
datasets.
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9.4.1. Experiment setting

Synthetic datasets

We create a data generator to generate synthetic relations. The generator can generate
relations with varying sizes, set cardinalities, domain cardinalities and so on. The
distribution of data can vary on both set cardinality and elements. The distributions
are generated using Apache Commons Math1, a robust mathematics and statistics
package. We start with a simple setting, with uniform distribution on different set
cardinalities and set elements. Later we test the algorithms’ performance on relations
with Zipf and Poisson distributions, which are commonly found in real-world
scenarios.

Real-world datasets

We experiment with four representative real-world datasets, covering the scenarios
of low, medium and high set cardinalities. Some statistics of the datasets2 are shown
in Table 9.2.

Table 9.2.: Statistics for real-world datasets

data |R| c avg. c median d

flickr 3.55× 106 5.36 4 6.19× 105

orkut 1.85× 106 57.16 22 1.53× 107

twitter 3.7× 105 65.96 61 1318
webbase 1.69× 105 462.64 334 1.51× 107

Flickr-3.5M (flickr) The flickr dataset3 associates photos with tags [LSW10]. Nat-
urally, here we treat tags as sets, to perform a set-containment join on photo IDs.
In this way, we create the containment relation between photos. Further operations
such as recommendation can be investigated upon such relations. This is a low
set-cardinality scenario.

Orkut community (orkut) The Orkut dataset4 contains relations of people from an
online social network and the communities they belong to [YL12]. Here we treat

1http://commons.apache.org/proper/commons-math/
2Can be downloaded at http://goo.gl/EBaHbA
3http://staff.science.uva.nl/~xirong/index.php?n=DataSet.Flickr3m
4http://snap.stanford.edu/data/com-Orkut.html
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each person as a tuple and the communities they belong to as a set. Set-containment
join in this case, can help people discover new communities and new friends with
similar hobbies. Set cardinality for this dataset is higher than Flickr, and we further
keep tuples with c ≥ 10 to exhibit a low-to-medium set cardinality scenario.

Twitter k-bisimulation (twitter) We derive this dataset from paper [LFH+13b].
Bisimulation is a method to partition the nodes in a graph, based on the neighbor-
hood information of nodes. In this dataset, tuples are the partitions of the graph,
and sets are the encoded neighborhood information each partition represents. Here
we define the neighborhood of each node to be within 5 steps from the node. On
such dataset, set-containment join could be used for graph similarity detection and
graph query answering. For this dataset, we select tuples with c ≥ 30, to exhibit a
medium set-cardinality scenario.

WebBase Outlinks-200 (webbase) This dataset is a web graph from the Stanford
WebBase project [HRGMP00]. We extract the data5 using tools from the WebGraph
project [BV04]. We only keep pages that have more than 200 outlinks, following
Melnik et al. [MGM03], to exhibit a high set-cardinality scenario.

Implementation details

We implement all algorithms in Java. The signature length of SHJ is set to optimal
according to paper [HM97]. The signature length of PTSJ is set as suggested in
section 9.2.2. For PRETTI and PRETTI+ we maintain a hash map in each trie node to
enable fast access to children while traversing. This is costly but necessary for the
algorithm to reach its best performance. Note that here we tried various efficient
implementations of hash map (e.g., Fastutil6, CompactCollections7, Trove8), and we
found the HashMap implementation from JDK 7 itself has both the best performance
and lowest main memory consumption. The open-source code of all implemented
algorithms is available online9.

5http://law.di.unimi.it/datasets.php
6http://fastutil.di.unimi.it/
7https://github.com/gratianlup/CompactCollections
8http://trove.starlight-systems.com/
9https://github.com/lgylym/scj
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Test environment

All experiments are executed on a single machine (Intel Xeon 2.27 GHz processor,
12GB main memory, Fedora 14 64-bit Linux, JDK 7). The JVM maximum heap size
is set to 5GB, which we think is a decent setting even for today’s computers. In
the experiments we run each algorithm ten times, and record the average, standard
deviation and median of running times. We observe in our measurements that the
average gives a good estimate of the running time, and the standard deviation is not
significant when compared with the overall time (< 10%). Hence in the following we
only show the average running time. We tend to test with bigger relations if possible,
since larger relations and longer running times eliminates the random behavior
introduced by OS scheduling. We run programs with taskset command, to restrict
the execution on one CPU core. The running time we later present include the time
to build indexes (e.g., hash map for SHJ and trie structures for the rest algorithms).
We notice a trend here, that with the increase of set cardinality, the percentage of
index build time over running time decreases. This is due to the fact that bigger set
cardinality leads to more set element comparisons, which takes a larger portion of
running time accordingly. But in general, the index build time of SHJ and PTSJ are
less than 1% and 5% of the overall running time; PRETTI and PRETTI+ on the other
hand take more than 70% and 20% of the running time to build indexes.

For PRETTI and PRETTI+ certain datasets are too big to run in the given memory.
In such cases we switch the algorithms to the nested-loop on-disk versions. We
notice that PRETTI and PRETTI+ may gain some efficiency by this approach, since
the in-memory trie of a partition can be shallower than the global trie. This is more
noticeable for high set cardinality scenarios.

9.4.2. The optimal signature length of PTSJ

As we discussed, the signature length has a huge impact on PTSJ’s performance,
sometimes an order of magnitude difference. In Section 9.2.2 we gave some sug-
gestions on how to choose signature length. In this section, we want to empirically
validate these suggestions.

Given a dataset, there are three main properties: the relation size, the set cardinality,
and the domain cardinality, all of which are independent from others. We want
to know how these properties affect the behavior of PTSJ. The strategy of this
investigation is to change one property while keeping the other two fixed. By
examining the performance under different signature lengths, we can then clearly
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Figure 9.3.: Performance of PTSJ with different signature length settings
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see whether there is a correlation between a certain property and signature length.
Table 9.3 summarizes the settings for this investigation.

Table 9.3.: Dataset configurations

fixed parameters changing parameter

|R| = 217, c = 24 d ∈ {210, 211, 212, 213, 214}
|R| = 217, d = 214 c ∈ {22, 24, 26, 28, 210}
c = 24, d = 214 |R| ∈ {215, 216, 217, 218, 219}

Figure 9.3 shows the performance results of PTSJ, where the x-axis is the ratio
between signature length b and set cardinality c. The strategy given in Section 9.2.2
suggests that a ratio between 16 and 32 is sufficient. In Figure 9.3a, we see that
indeed, a ratio between 16 and 32 gives the best performance. Domain cardinality
does not have a big impact on the signature selection. In Figure 9.3b we show
how the algorithm performs under different set cardinality settings. Again PTSJ
finds its best performance point between 16 and 32. We notice that for some
high cardinality settings (c = 28, 210), comparing signatures themselves becomes
an expensive operation. In these cases shorter signatures are preferred in general.
Figure 9.3c shows the impact of relation size over signature length selection. We see
a slow trend that when relations grow in size, the optimal signature length tends
to move to larger values. This is indicated by formula 9.2, where |R| is part of the
factor. But as we observe, a ratio between 16 and 32 can already give a good result.

Overall, these experiments support our signature selection strategy of Section 9.2.2.
A signature of length between 16c and 32c is usually a good selection.

9.4.3. Comparison of algorithms

In this section we discuss the experimental results of the four algorithms on various
synthetic datasets. We test on different settings to show the scalability of all algo-
rithms. Figure 9.4 shows experiments on uniformly distributed datasets. Figure 9.5
further shows performance on Poisson and Zipf distributions. Dataset configuration
is the same as in Table 9.3.

Space efficiency for different algorithms

Main-memory consumption is an essential factor for evaluating main memory
algorithms. Low main-memory consumption indicates better scalability of the
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algorithm with respect to larger datasets. It is not difficult to get a rough estimation
of memory consumption for the algorithms mentioned in this paper. The main
differences come from the different data structures (indexes) each algorithm uses.
For instance, for SHJ, a hash table has to be built; for PRETTI and PRETTI+, a prefix
tree and an inverted index; for PTSJ, a Patricia trie.

In general, two factors influence memory consumption: (1) relation size |R| and
(2) set cardinality c. The influence of relation size is obvious: the number of hash
table entries grows linearly with relation size, and so does the size of the prefix tree
and inverted index, and the Patricia trie. Set cardinality, on the other hand, has a
larger impact on PRETTI and PRETTI+, while SHJ and PTSJ are not so sensitive to it.

We can clearly see this via our experiments. In Figure 9.4a, we plot, for each join
algorithm with different set cardinality settings, the main memory consumption per
tuple. Here we note that, though the experiment runs with 217 tuples, the result
stays the same for much larger relations. This means that we can estimate how much
memory we need, given information about relation size and set cardinality.

We see that the memory consumption basically has a linear relationship with set
cardinality. SHJ, PTSJ and PRETTI+ vary by a constant factor, which is basically the
cost of longer signatures (PTSJ), Patricia trie (PTSJ and PRETTI+) and inverted index
(PRETTI+). PRETTI on the other hand, needs around ten times more main-memory
than others. For a relation with set cardinality 26, it needs more than 10KB per tuple,
which means 10GB for just one million tuples. This empirically substantiates our
remarks on PRETTI.

Scalability with different domain cardinality settings

Figure 9.4b depicts performance with different domain cardinality settings. We see
that the signature-based solutions (SHJ and PTSJ) are not sensitive to changes in
domain cardinality, since they operate on the signature space instead of on the set
element space. PRETTI and PRETTI+, on the other hand, operate directly on the
set element space. Larger domain cardinality indicates more entries in the inverted
index, and shorter inverted lists (therefore faster merge joins on the lists). So PRETTI
and PRETTI+ perform better when domain cardinality is high.

Scalability with different set cardinality settings

In order to determine the scalability of the algorithms with respect to set cardinality,
we set the relation size to 217, with average set cardinality varying from 22 to 210.
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The very high set cardinality scenarios (210) are not uncommon, especially in the
context of graph analytics. We’ll see more data of this kind from experiments with
real data. In Figure 9.4c, we see that PRETTI and PRETTI+ are both more sensitive to
set cardinalities, compared to the signature-based solutions. When set cardinality is
lower (below 25), PRETTI+ is a better choice over the other alternatives; but beyond
that point, PTSJ is a better choice. In each case, one of our new algorithms will
achieve nearly an order of magnitude performance gain over the best of SHJ and
PRETTI.

Scalability with different relation sizes

Algorithm scalability with respect to relation size may be the most important factor
in practice. From Figure 9.4d to 9.4f, we show performance with difference set
cardinality scenarios (c = 24, 26, 28). Just as we saw earlier, for low cardinality
settings (Figure 9.4d), PRETTI+ is a clear winner, followed by PTSJ, PRETTI and
SHJ. When set cardinality grows, the advantages of signature-based solutions start
to show. PTSJ becomes a better choice over the others. The difference becomes
more significant with larger relation sizes. In Figure 9.4f we see that in many cases
in-memory PRETTI (and PRETTI+) cannot finish the experiments, so we switch the
algorithm to a disk-based nested-loop version.

Poisson distribution and Zipf distribution

Here we want to determine if different distributions on the set cardinality and set
elements have an impact on performance. We test datasets (|R| = 217) with two
distributions: Poisson distribution and Zipf distribution, which are widely found in
real-world datasets. Distributions are applied to either set cardinality or set elements.
We expect that the distribution on set cardinality will have a greater impact, as shown
previously. Unless specified otherwise, the x-axis shows the average set cardinalities.

In Figure 9.5a we show datasets with Poisson distribution on set cardinalities. This
setting is bad news for PRETTI and PRETTI+, because then the set cardinality can
be potentially large. We see that indeed, even when c = 23, PRETTI and PRETTI+
are not competitive with PTSJ. Indeed, PTSJ performs the best in all cases.

Figure 9.5b shows Poisson distribution on set elements. This distribution does not
make a significant difference for all algorithms, which behave as in Figure 9.4c.

Zipf distribution on set cardinality favors PRETTI and PRETTI+. As in Figure 9.5c,
we see that PRETTI+ becomes the best solution on all settings. Note that in this case
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Figure 9.5.: Comparison of different algorithms for skewed distributions

the x-axis is the maximum set cardinality instead of average. Since c follows a Zipf
distribution, many sets have small c and only a few have larger ones. In fact, the
median set cardinality for the dataset with max c = 29 is only 17. This explains why
PRETTI+ performs so well.

Zipf distribution on set elements, as in Figure 9.5b, does not have a huge impact
on performance differences. PRETTI and PRETTI+ perform slightly better than in
uniform distribution, since they could produce results earlier due to the nature of
Zipf distribution (frequent elements are placed near the trie root).
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Overall, our observation is that distributions on set cardinality have a big impact on
performance. In such cases, we need to not only examine the average set cardinality,
but also the median of set cardinality of data, for choosing the right algorithm.
Nonetheless, either PTSJ or PRETTI+ will be the best choice, with sometimes a
10-fold speedup compared with the previous state-of-the-art.

9.4.4. Experiments on real-world datasets

Figure 9.6 summarizes performance on various real-world datasets, where we plot
the ratio of a certain algorithm’s running time over the best algorithm for that dataset.
We see that the performance can vary in an order of magnitude for many algorithms.
In low-to-medium set cardinality settings (flickr, orkut), PRETTI+ is the clear winner,
where signature based methods, even PTSJ, are at least three times slower. SHJ
in these two cases runs longer than a day. When it comes to medium-to-high set
cardinality settings (twitter) however, the benefit of signatures starts to appear, PTSJ
can make the computation 3.6 times faster than the second best (SHJ). For webbase,
PTSJ again is at least 8 times faster than the state-of-the-art, and 2.6 times faster than
PRETTI+.
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Figure 9.6.: Algorithm performance comparison for different real-world datasets
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9.5. Set-containment join algorithms, the BSP

version

Since we now have efficient in-memory set-containment join algorithms, one natural
next step is to investigate on distributed and external memory solutions. As we’ve
seen in Chapter 7, many algorithms have been developed for external memory
setting. However, not much work has been done for distributed algorithms for
set-containment join. The closest works we are aware of are papers about join
algorithms on MapReduce framework (e.g., [MF12, LOÖW14]), which cannot be
easily adapted to the set-containment join problem. In this section, we propose some
ideas for developing set-containment join algorithms for the BSP model, that also
make use of a trie structure. Such algorithms are also suitable for adapting to the
algorithm transformation framework.

Can we simply create BSP versions of PTSJ/PRETTI+? As we observed, both algo-
rithms depend on their in-memory data structures, and are computation-bounded
instead of I/O-bounded. Learning from classic parallel join algorithms [SKS10, Chap-
ter 18], we know there are several ways to make an in-memory algorithm distributed,
all of which contain some data distribution (partitioning) strategy.

A straight forward strategy is to perform a nested-loop join on partitions of both
relations, and perform set-containment join on each pair of partitions on some
machine. Then we can plug in any set-containment join algorithm from this chapter
for the in-memory processing part.

A Fragment-and-Replicate Join can also be applied. We can send partitions of one
relation to machines, and replicate the other on all machines. Then on each machine,
we build a trie on the partitioned relation (in memory) and query over the other
relation on this partial trie (with a sequential scan over the relation).

It is not necessary to replicate the whole relation to all machines. The partitioning
strategy from PSJ, APSJ and ADCJ (see Section 7.4) can be applied in a distributed
environment as well. Only in this case, tuples are not saved to disk blocks, but sent
over to different machines.

Based on the available trie structure, we can do even more than the above ap-
proaches. The idea is to use the enumeration facility from Chapter 8 to distribute
tuples. The algorithm runs as follows:

1. Assume we have relations S and R, both with signatures created. We distribute
tuples in S to machines basing on the first several bits of their signature
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(referred as partial signature).

2. We collect partial signatures from all machines and build a trie.

3. We distribute the trie to all machines.

4. We distribute tuples in R randomly among machines. For each tuple of R on
some machine, by using the trie, we determine which machines will contain
potential subsets of the tuple, and send the tuple to these machines.

5. On each machine, we now have tuples that have the containment relation on
the partial signature (some prefix of the signature). We just need to compare
the rest part of the signatures and validate them on set elements (using for
example, PTSJ).

9.6. Conclusion

Motivated by recent hardware trends and practical applications from graph analytics,
query processing, OLAP systems, and data mining tasks, in this chapter we proposed
and studied two efficient and scalable set-containment join algorithms: PTSJ and
PRETTI+. The latter is suitable for low set cardinality, high domain cardinality
settings, while the former is a more common algorithm suitable for the other
scenarios. As shown in the experiments, these two new algorithms can be remarkably
faster in many cases than the existing state-of-the-art, and scale gracefully with set
cardinality, domain cardinality, and relation size. Detailed analysis has been carried
out for PTSJ, especially for finding the optimal value for the critical parameter
(signature length). Various extensions of PTSJ make it possible to reuse the index
structure to answer other types of join queries, such as set-similarity joins. Finally
we proposed several ideas to design trie-based set-containment join algorithm under
the BSP model.
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10. Conclusions

10.1. Research summary

In this thesis, we have demonstrated, through a series of concrete examples, ways to
design algorithms for big graphs. Along the way we also gave answers to the three
concrete research questions proposed in Chapter 1.

Q1: What is the workflow to design algorithm for different computation
models?

After investigating on various computational models, we answered Q1 by proposing
the algorithm transformation framework. Using this framework, it is possible to
first design BSP algorithms and then transform the algorithms to other models. We
used several real-world graph problems, namely PageRank, triangle counting and
k-bisimulation to demonstrate the practicality of the framework.

Q2: Can we design a practical bisimulation reduction algorithm for big
graphs?

We answered Q2 by developing a series of efficient k-bisimulation partitioning
algorithms. The design process followed the algorithm transformation framework.
The I/O-efficient algorithms, among all algorithms, are the first known I/O-efficient
solutions, that can easily handle big graphs on a single commodity PC.

Q3: How can we accelerate state-of-the-art set-containment join algo-
rithms?

Q3 is answered in Part II. By carefully analyzing the existing algorithms and applying
novel data structures and design choices, we showed that it is possible to improve
the performance of the previous state-of-the-art set-containment join algorithms to
an order of magnitude faster.
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10.2. Future work

In Chapter 1, we raised the overall research question:

Q0: Is there a paradigm for designing algorithms for massive graph data
under various computation models?

Lots of research problems will need to be studied to answer this huge question.
But based on the focus of this thesis, we discuss some interesting topics for further
investigation.

Algorithm transformation framework In Chapter 2, we used the algorithm trans-
formation framework as a conceptual tool for designing algorithms. We are curious
if this idea can turn into a real system, which serves as a middle layer, doing the
transformations automatically. This middle layer can then be integrated with many
big-data platforms as back-ends. In this case users can achieve the dream of “write
code once, run everywhere”.

Algorithm extensions First, it would be interesting to explore adaptations and
extensions of our algorithms for alternative hardware platforms (e.g., multicore,
SSD). Second, as we indicated at various points, many alternative data structures and
join algorithms can be investigated for optimizing various aspects of the proposed
algorithms (e.g., multi-way trie and trie-tire join for set-containment join). Third,
since we now have efficient set-containment join algorithms, integrating them into
the k-simulation computation is a natural next step. Last but not least, for set-
containment join, it would be interesting to study how our efficient solutions can be
adapted to other related data models such as uncertain sets [ZCS+12] and complex
sets [IF13].

K-(Bi)simulation result analysis First, other interesting measurements on the
k-BPR graphs can be performed; features such as diameter and clustering coef-
ficient may show different properties when compared with the original graphs.
Second, it would be interesting to analyze the different behaviors of labeled and
unlabeled graphs (as in Sec. 5.2), and determining the causes. Third, as we have
seen throughout the chapter, synthetic graph generators fail to deliver power-law
distribution bisimulation results as observed in real graphs. Studying ways to solve
this problem on existing graph generation models or with new models is an impor-
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tant research direction. Last but not least, similar research could be carried out on
other related reductions, such as simulation partition graphs [HHK95].

The bigger picture It is becoming clearer that in the near future, the line between
analytical systems and transaction systems will blur [Pla09]. Moreover, the line
between database systems, batch processing systems, and stream processing systems
will also blur (e.g., [Zah13, SGL13, MSZ12, Rus13]). Essentially, we will have one
system that stores all data, that will not only accept well-defined queries, but also
can execute code/script based on certain programming paradigm (e.g., MapReduce,
Pregel-like), and the system’s response is expected to be real-time or near real-time.
Our algorithm transformation framework can certainly be the middle layer between
the user-interaction functionality (query engine and algorithm interpreter) and back-
end storage systems (distributed or single machine, in memory or on disk). The
k-BPR graphs, as a result of the k-bisimulation preprocessing step, can serve as a
structural index for many graph related query answering and computation tasks.
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