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Abstract

When a beer company replaces its returnable packaging materials, for exam-
ple when updating the design of a bottle, it needs to know in advance how much
new material will be needed. Dutch beer brewer Heineken submitted the question
of estimating the returnable packaging materials to the 2013 Studygroup Mathe-
matics with Industry. In this report, we present both stochastic flow models and a
queueing model to estimate the amount of returnable packaging material present
in the market. Furthermore, we give recommendations on what data to collect, and
how to sample this data in an unbiased way in order to increase accuracy of the
estimation.

KEYWORDS: Modelling, Markov Chain, Stochastic Differential Equation, Queue-
ing Theory

1 Introduction
Beer companies, like Heineken, use returnable packaging materials (i.e., bottles, cases
and kegs) multiple times. To simplify our terminology, we will throughout refer to
returnable packaging materials as bottles, keeping in mind that all results apply to other
types of materials as well. In some markets, for example in the Netherlands, customers
pay a deposit on bottles, which is returned to them when the bottles are returned. In
other markets, for example in many African countries, a full-for-empty system is used
instead. In this system, customers return empty bottles only when purchasing full
ones. Unlike in the deposit system, in the full-for-empty system any purchase of new
bottles is limited by the number of empty bottles available to the customers. Therefore,
customers tend to keep a much larger stock of empty bottles in a full-for-empty system
than in a deposit system.
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Occasionally, the returnable packaging material is changed, for example because of
a new bottle design, and then the beer company needs to know how many new bottles
will be needed. This is an intrinsically difficult question, because bottles might be bro-
ken or stored away and reappear only many years after they are sold. At the moment,
the companies miss an efficient model for estimating the number of bottles in the mar-
ket, especially in the case of a full-for-empty system. In some packaging change oper-
ations, significantly more new bottles were needed than expected. Heineken requested
the 2013 Study Group Mathematics with Industry to develop a model for estimating
the number of bottles in the market more accurately, and asked for recommendations
on what data to collect for use in such a model.

The structure of this report is as follows. First, in Section 2 we introduce terminol-
ogy and notation, and explain what data is currently available. Moreover, we present an
easy way of estimating the so-called break rate, which will be an important parameter
in what follows. Then we develop two different models for the number of bottles in
the market: in Section 3, Markov Chains and stochastic differential equations are used,
while in Section 4 a queueing model is discussed. The difference of the two approaches
is discussed in Section 4. Next, in Section 5, we elaborate on how to use the sample
data to get reliable parameter estimates. Finally, we summarize our findings in Section
6.

2 Problem description

2.1 Modelling and notation
In a very simplified market model, bottles are sold at the distribution center, and arrive
at the market. After remaining there for some time, the empty bottles are returned to
the beer company. If the number of returned bottles is not sufficient to satisfy the beer
demand, new bottles have to be produced (see Figure 1).

Distribution center

The market

new production

sold (σ)

returned (µ)

Figure 1: The flow of bottles

We aim at estimating the number of bottles currently in the market. In particular,
we are interested in the number of bottles that are expected to be returned. To this end,
we differentiate between different categories of bottles:

• The returning bottles R(t)
The number of bottles at time t that will be returned even in the absence of a
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packaging change. Typically, these bottles are in the market for a relatively short
period of time before they return to the distribution center.

• The sleeping bottles S(t)
The number of bottles at time t that will only be returned after a packaging
change. These materials are temporarily stored away or used for other purposes
and will turn up after a change of bottle.

• The broken bottles B(t)
The number of bottles at time t that will never return to the distribution center.
They could be broken, lost or stored away permanently.

The sum M(t) = R(t) + S(t) + B(t) of these three numbers represents the total
number of bottles present in the market at time t. The company is especially interested
in estimating S(t) more accurately.

2.2 Available Data
2.2.1 Volumes

The company has kept track of the volumes of the sold as well as the returned bottles
for more than 20 years for different factories. These data are collected per product on
a monthly basis. We introduce the following notation:

• Sold items σ(t)
σ(t) = the number of bottles sold in month t.

• Returned items µ(t)
µ(t) = the number of bottles returned in month t.

To obtain the number of bottles accumulated in the market since the beginning of
measurements, we take the sum of the number of sold items and substract the number
of returned items, that is,

M(t)−M(0) =
t∑

s=0

(
σ(s)− µ(s)

)
.

2.2.2 Circulation Times

More recently, the company has started collecting samples of circulation times of bot-
tles. The circulation time of a bottle is the time that elapses between leaving and
returning to the distribution center. The data on the circulation times can be used to
estimate R(t), as explained in Section 3 and Section 4. As this data only represents
returned bottles, it cannot be used to differentiate between sleeping and broken bot-
tles. However, we can extract estimates for M(t) and R(t), and hence also for the sum
B(t) + S(t) = M(t)−R(t).
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Currently the data is collected in a rather biased way, which results in unreliable
estimates for the circulation time. In Section 5 we elaborate on how to improve the
sampling.

2.3 Approximation of R(t) + S(t)

We are left with the question of how to estimate the total number of returning materials
R(t)+S(t). We proceed by assuming that S(t) stabilizes for sufficiently large times t.
This is a reasonable assumption since the storage capacity for bottles in the market is
limited and hence the number of sleeping bottles cannot grow indefinitely. Moreover,
we also assume that the fraction of sold bottles that ends up broken is constant. We call
this constant β and refer to it as the break rate. Thus βM(t) ≈ B(t) for large times t.
By our assumptions, the break rate can be estimated by the number of bottles that are
not returned in a long time period [t0, t1] divided by the number of bottles sold in that
time period. That is,

β̂ =

∑t1
s=t0

(σ(s)− µ(s))
∑t1
s=t0

σ(s)
= 1−

∑t1
s=t0

µ(s)
∑t1
s=t0

σ(s)
,

for t0, t1, t1 − t0 large enough.
Now we can write

R(t) + S(t) = M(t)−B(t) = M(t)− β̂M(t) =

∑t1
s=t0

µ(s)
∑t1
s=t0

σ(s)
M(t).

Remark: The first assumption on the stabilization of the number of sleeping bottles
in the market might not be very realistic in fast growing markets.

3 Analysis based on Markov models
In this section we propose a simple Markovian model to model the ‘dynamics’ of a
single bottle while it is with a customer. It should be considered an example. More
realistic models can be constructed by introducing more states and/or more complex
dynamics (e.g., dynamics that are not homogeneous in time). The models in this section
are especially suited for the deposit system, and less so for the ‘full-for-empty’ system,
because we do not model the fact that a customer returns bottles at the same time that
he buys new ones. See also the discussion in Section 3.5.

3.1 Markov model for single unit
First let us consider an individiual bottle at a customer. Suppose it behaves according
to the following simple Markov dynamics. The bottle can be in either of four states,
FULL, EMPTY, BROKEN and RETURNED. The states BROKEN and RETURNED are
absorbing. Transitions (per unit of time) occur as in Figure 2.
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Figure 2: A Markov model. Transition rates between the states F(ull), E(mpty),
B(roken), and R(eturned) are denoted by λFE , λFB , λER, λEB .

3.2 Markov model for quantities of bottles
From the Markov model for a single bottle we can derive a model for the flow of
bottles. Suppose, at time t there are a total number of Ft non-empty bottles and Et
empty bottles in the market. Let h > 0 be a small time step and suppose a number of
Ut+h − Ut bottles are sold during the time interval [t, t+ h). Denote the total number
of returned bottles within [t, t+h) by Yt+h−Yt. The variable names U for input and Y
for output are chosen to correspond to the usual notation in systems theory. In systems
theory, there also is the notion of state, denoted by X , corresponding in our case with
the two-dimensional vector (E,F ).

Remark: Note that the number of bottles sold per unit of time is (Ut+h − Ut)/h,
which for small h is equivalent to the time derivative of Ut. The same holds for Yt.
This ‘cumulative’ notation for U and Y is helpful in the continuous time limit, where
trajectories of U and Y will typically be non-differentiable.

If we denote by (F → B)t and (E → B)t the number of full and empty bottles
broken within [t, t + h), respectively, (F → E)t the number of emptied bottles and
(E → R)t the number of empty bottles returned within this interval, we obtain the
following balance equations:

Ft+h = Ft + Ut+h − Ut − (F → B)t − (F → E)t,

Et+h = Et + (F → E)t − (E → B)t − (E → R)t,

Yt+h = Yt + (E → R)t.

Now for all the transitions in the Markov model, assuming independent ‘behaviour’
of individual bottles, and using that h is small, we see that e.g. (F → B)t ∼
Bin(Ft, λFBh). Using the normal approximation for the binomial distribution (assum-
ing Ft and Et are large), we find that (F → B)t is approximately normally distributed
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with mean hλFBFt and variance Ft(hλFB)(1−hλFB)=̇hλFBFt. Therefore, we have
approximately the following discrete time Markov model

Ft+h = (1− h(λFB + λFE))Ft + Ut+h − Ut −
√
hλFBFtε

FB
t −

√
hλFEFtε

FE
t ,

Et+h =Et + h(λFEFt − (λEB + λER)Et) +
√
hλFEFtε

FE
t

−
√
hλEREtε

ER
t −

√
hλEBEtε

EB
t ,

Yt+h =Yt + hλEREt +
√
hλEREtε

ER
t .

where all the ε...t are normally distributed with mean 0 and variance 1. Assuming the
fluctuations in F and E to be relatively small, the following model is more straightfor-
ward to analyse.

Ft+h = (1− h(λFB + λFE))Ft + (Ut+h − Ut)−
√
hσFBε

FB
t −

√
hσFEε

FE
t ,

Et+h =Et + h(λFEFt − (λEB + λER)Et) +
√
hσFEε

FE
t

−
√
hσERε

ER
t −

√
hσEBε

EB
t , (1)

Yt+h =Yt + hλEREt +
√
hλEREtε

ER
t .

3.2.1 Diffusion limit

By taking the h ↓ 0 limit, we may write the Markov model (1) as the following system
of stochastic differential equations (SDEs),

dFt = − (λFB + λFE)Ft dt+ dUt −
√
λFBFt dW

FB
t −

√
λFEFt dW

FE
t ,

dEt = [λFEFt − (λEB + λER)Et] dt+
√
λFBFt dW

FB
t

−
√
λEBEt dW

EB
t −

√
λEREt dW

ER
t ,

dYt =λEREt +
√
λEREt dW

ER
t ,

where W ...
t are independent Brownian motions.

This (non-linear) system is rather difficult to analyse, mainly because of the pres-
ence of square roots. As before, under the assumption that the fluctuations in F and E
around their average values Faverage and Eaverage are relatively small, we could work
with the linearized system of stochastic differential equations in which the randomness
is additive:

dFt = −(λFB + λFE)Ft dt+ dUt − σFB dWFB
t − σFE dWFE

t ,

dEt = [λFEFt − (λEB + λER)Et] dt+ σFB dW
FB
t − σEB dWEB

t − σER dWER
t ,

dYt = λEREt dt+ σER dW
ER
t . (2)

Here σFB =
√
λFBFaverage, etc.
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Assuming U is sufficiently smooth, we may write dU = u(t) dt. We may write (2)
in abstract form as

dX(t) = A1X(t) dt+Bu(t) dt+ Σ1 dWt,

dY (t) = A2X(t) dt+ Σ2 dWt. (3)

where

X(t) =

[
Ft
Et

]
, Y (t) = Yt,

A1 =

[
−(λFB + λFE) 0

λFE −(λEB + λER)

]
, A2 =

[
0 λER

]
,

B =

[
1
0

]
, Σ2 =

[
0 0 0 σER

]
, and

Σ1 =

[
−σFB −σFE 0 0
σFB 0 −σEB −σER

]

and W is a four-dimensional standard Brownian motion.

3.2.2 ODE approximation / fluid limit

For the mean value behaviour of either of the models (1) or (2), we obtain the system
of ordinary differential equations





ḟ(t) = −(λFB + λFE)f(t) + u(t),
ė(t) = λFEf(t)− (λEB + λER)e(t),
y(t) = λERe(t),

where f(t) = EFt, e(t) = EEt, but y(t) = d
dtEYt. Let λF := λFB + λFE and

λE := λEB + λER. The solution to this system of ordinary differential equations is
given by

f(t) = exp(−λF t)f(0) +

∫ t

0

exp(−λF (t− s))u(s) ds,

e(t) = exp(−λEt)e(0) +

∫ t

0

exp(−λE(t− s))f(s) ds,

y(t) = λERe(t).

This equation of f tells us the following. As λF ∈ (0, 1), the first term on the right
hand side decays exponentially fast to zero. This means that the dependence on the
initial value of the number of full bottles in the system will not matter. The second
term says that the value of f(t) depends on the history of the average number of the
inflow of bottles (i.e. u(s) for s ∈ [0, t]), where the dependence is the strongest at the
most recent history.
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To interpret e, we need some more calculation. Just as in the interpretation of f ,
we can conclude from the first term in the right hand side of the expression for e(t)
that the dependence on the initial data decays exponentially. For the second term, we
separate 3 cases:

λF = λE , In this case, the probability that a full bottle leaves the FULL state in a
certain time period, equals the probability that an empty bottle leaves the EMPTY
state in the same period. We get

e(t)− exp(−λEt)e(0) =

∫ t

0

exp(−λE(t− s))f(s) ds

= t exp(−λF t)f(0) +

∫ t

0

(t− s) exp(−λE(t− s))u(s) ds,

from which we learn that also e(t) depends on the history of u(t), but with a
certain delay. This expression also shows that the dependence of f(0) on e(t)
vanishes exponentially fast in the long run, but at the start there is an increasing
dependence.

λF 6= λE . In this case, we obtain

e(t)− exp(−λEt)e(0) =

∫ t

0

exp(−λE(t− s))f(s) ds

=
exp(−λF t)− exp(−λEt)

λE − λF
exp(−λF t)f(0)

+

∫ t

0

exp(−λF (t− s))− exp(−λE(t− s))
λE − λF

exp((λE − λF )s) u(s) ds,

from which we see again that the influence of f(0) decays exponentially. The
second term denotes the cumulative and delayed dependence on the input stream
u(t).

The interpretation of the number of bottles that is expected to be returned per time
unit, i.e. y(t), is just a fixed fraction of e(t), of which we discussed its behaviour above.

3.3 State estimation: Kalman filtering

Let us consider the stochastic model again (see (1) for the time-discrete model and (2)
for the continuous in time model). Before stating how we can get information out of
the data by using these stochastic models, we would like to discuss the basic theory
behind Kalman filtering.

Suppose a random variable Y has a conditional distribution depending on ‘hidden
state’ X and ‘input’ U ; loosely denoted as p(Y |X,U). Furthermore suppose X and U
are distributed according to some ‘prior’ distribution p(X,U). Bayes’ formula gives
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us that, given observations of U and Y , we may compute X as

p(X = x|Y = y, U = u) =
p(X = x, Y = y, U = u)

p(Y = y, U = u)

=
p(Y = y|X = x, U = u)p(X = x, U = u)∑
x p(Y = y|X = x, U = u)p(X = x, U = u)

.

In other words, based on the conditional distribution p(Y |X,U) and the prior distri-
bution p(X,U), we may compute a ‘posterior’ distribution p(X|Y, U). This posterior
distribution enables us to estimate the hidden state X based on observations of U and
Y .

The same idea may be applied recursively to systems of the form (3), leading to
the Kalman-Bucy filter [4, 7], or, in discrete time, the Kalman filter [1, 9]. Such a
filter allows us in this example to obtain estimates F̂t, Êt of Ft and Et, based on
observations of Ut and Yt. Kalman filters appear notationally invovled, but once the
dynamic model (such as (1) or (2)) is identified, implementation of such a filter is
relatively straightforward. It gives us estimates for EEt, EFt, VarEt and VarFt,
which become more accurate for larger t. It is therefore preferable to use a data set
with a long time series.

3.4 Estimation of the model parameters

To complete our model, we need to estimate the λ... parameters. In this section we
demonstrate an estimation method based on the data of the sampling.

3.4.1 Estimation through distribution of circulation times

Conditional on the eventual return of a bottle, we have to wait time TE ∼ exp(λFE)
before a bottle is being emptied, plus a time TR ∼ exp(λER) before the empty bottle
is returned. The total waiting time T = TE + TR is then the sum of two exponential
random variables, and has a hypoexponentially distribution with parameters λFE and
λER.

For convenience, we write λ1 = λFE and λ2 = λER. Since the random variables
TE and TR are independent, the mean of T is ET = 1

λ1
+ 1

λ2
and the variance is

Var(T ) = 1
λ2
1

+ 1
λ2
2

. The distribution function of T may be computed (in case λ1 6= λ2)
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as

FT (t) = P(TE + TR ≤ t) =

∫ t

0

P(TE + TR ≤ t|Te = s)fTe(s) ds

=

∫ t

0

P(Tr ≤ t− s)λ1 exp(−λ1s) ds

= λ1

∫ t

0

(1− exp(−λ2(t− s))(exp(−λ1s) ds

= 1 +
1

λ1 − λ2
(λ2 exp(−λ1t)− λ1 exp(−λ2t)) , t ≥ 0.

The density function is then

fT (t) =
d

dt
FT (t) =

λ1λ2
λ1 − λ2

(exp(−λ2t)− exp(−λ1t)) , t ≥ 0.

In case λ1 = λ2, a similar computation gives FT (t) = 1−exp(−λ1t)−λ1t exp(−λ1t)
and fT (t) = λ21t exp(−λ1t) for t ≥ 0.

Given n i.i.d. observations t1, . . . , tn of a hypoexponentially distributed random
variable, we can estimate the parameters λ1 and λ2 in two ways:

(i) By maximizing the (log)-likelihood function

l(λ1, λ2) =

n∑

i=1

ln

(
λ1λ2
λ1 − λ2

(exp(−λ2ti)− exp(−λ1ti))
)
, λ1, λ2 > 0

with respect to λ1 and λ2. This will always provide estimates for λ1 and λ2, but
needs to be performed numerically.

(ii) By the method of moments: choose λ1 and λ2 so that the sample mean and
variance match the computed expectation and variance. Let σ̂2 denote sample
variance and µ̂ denote sample mean. Write a1 = 1/λ1 and a2 = 1/λ2. By the
above expressions for mean and variance of T , we find the conditions a21 + a22 =

σ̂2, and a1 + a2 = µ̂. This results in the expression a1,2 = 1
2 µ̂±

√
1
2 σ̂

2 − 1
4 µ̂

2,
so that

λ1,2 =
1

a1,2
=

(
1
2 µ̂±

√
1
2 σ̂

2 − 1
4 µ̂

2

)−1
.

Note that these estimates become non-sensical in case 1
2 σ̂

2 − 1
4 µ̂

2 < 0 or if√
1
2 σ̂

2 − 1
4 µ̂

2 ≥ 1
2 µ̂. This means that we require

1
2 µ̂

2 ≤ σ̂2 < µ̂2,

which will not hold in all cases. This is a limitation of the method of moments,
whereas likelihood maximization will provides an estimate for all cases. It is
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however also an indication that the proposed model does not need to be a perfect
fit for the observed data. In Figure 3, the frequency data of bottle circulation
times is compared with the best hypoexponential fit, using the method of mo-
ments.
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Figure 3: Frequency data of circulation times and the hypoexponential fit according to
the method of moments.

3.4.2 Estimation based on stationarity assumption – 2 state model

Consider (1) in a stationary regime. For simplicity assume h = 1 and all transition
probibilities λ... � 1. We assume the number of bottles sold in a time interval [t, t+1)
equals U(t + h) − U(t) ∼ N(µU , σ

2
U ). Furthermore suppose F ∼ N(µF , σ

2
F ), E ∼

N(µE , σ
2
E), and Y (t + 1) − Y (t) ∼ N(µY , σ

2
Y ). By the discrete time equations (1)

(with h = 1), we immediately find

µF =
µU

λFE + λFB
, µE =

λFEµF
λEB + λER

, µY = λERµE ,

giving

µY =
λERλFE

(λEB + λER)(λFE + λFB)
µU

and thus providing an equation for the unknown parameters λ... in terms of means µU
and µY , which can be estimated by the respective sample averages.
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3.4.3 Estimation based on stationarity assumption – 1 state model

By a more involved analysis concerning covariances, extra equations may be obtained.
We will explain this idea for a simplified model with only one recurrent state. It should
in principle be possible, but more involved, to carry out the same analysis for the two-
state model.

Consider the situation in which, within a single time step, a bottle can be broken
(rate per unit time λB) or returned (rate λR). See Figure 4.

B

R

X

Figure 4: A simple Markov model with one absorbing state, used for determination of
model parameters.

In a time interval [t, t + 1) a number of Ut+1 − Ut bottles is bought, independent
of the number of unreturned bottles Xt. Assuming stationarity of the randomness as
before, we have the following simple Markov system:

Xt+1 = (1− λB − λR)Xt + Ut+1 − Ut − σBεBt − σRεRt ,
Yt+1 − Yt = λRXt + σRε

R
t .

We further simplify this model by assuming σB = λBµX , σR = λRµX , since the
variance of a Bin(n, λ) random variable is proportional to nλ(1 − λ)=̇nλ for small
λ. This model has three unknowns λB , λR, µU . Using the same argument as before,
we can relate the empirical means µ̂Y and µ̂U of µY and µU through the equality
µY = λR

λB+λR
µU . Furthermore,

σ2
X + µ2

X = EX2
t+1 = E

[{
(1− λB − λR)Xt + Ut+1 − Ut − σBεBt − σRεRt

}2]

= (1− λB − λR)2(σ2
X + µ2

X) + σ2
U + µ2

U + σ2
B + σ2

R,

or equivalently
{

1− (1− λB − λR)2
}

(σ2
X + µ2

X) = σ2
U + σ2

B + σ2
R.
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Therefore

E(Yt+1 − Yt)2 = σ2
R + λ2REX2

t = σ2
R +

λ2R
(
σ2
U + σ2

B + σ2
R

)

1− (1− λB − λR)2

= λ2R

(
µ2
X +

σ2
U + µ2

X(λ2B + λ2R)

1− (1− λB − λR)2

)
.

Finally, by similar reasoning,

ρ = E[(Yt+1 − Yt)(Ut − Ut−1)] = λR(µ2
U + σ2

U ),

where the quantity on the lefthand side may be estimated from the data as

ρ̂ =
1

n

n∑

i=1

yiui−1,

where ui and yi are the observed sales and returns in time period i, respectively. To
summarize we have obtained three equations that relate the unknowns λB , λR and µX
in terms of σ̂2

U , µ̂U , σ̂2
Y , µ̂Y , and ρ̂.

3.5 Discussion
The above results are for illustration purposes. A more detailed analysis should be
performed to determine which simple model might adequately describe the dynamics
of the system. From such a model, equations should be derived as in the last section
which estimate system parameters from observed statistics. Then state estimation may
be performed on-line to compute actual estimates of number of full and empty bottles in
the system, using Kalman filtering, based on observations of sold bottles and returned
bottles, or perhaps using observations of circulation times.

In the full-for-empty system, in which full bottles are only sold once the same
number of empty bottles is returned, extra modelling is necessary. A simple Markov
model might than model the behaviour of a customer, who in a time period may drink
a unit, do nothing, or buy a bottle and thus also return bottles.

4 A queueing model for the number of bottles in the
market

In Section 3, we described a rather detailed modelling approach to the description of
bottles in the market. We now discuss alternative models from queueing theory that
have been thoroughly investigated in the literature and are by now well understood.
These models stem from different modelling assumptions on the demand process (a
compound Poisson process) and particularly focus on fluctuations of the demand rate
in time. Another important difference is that these models only describe bottles that
will be returned; the rate at which bottles break should be discounted in the demand
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process. That is, if the demand rate is x and a fraction p of the bottles are broken, then
(1− p)x is the effective demand rate of bottles that will be returned.

In this section we describe the infinite server model from queueing theory that
serves as a building block to model the number of bottles out in the market. The
following is required as input for this model: The effective demand rate (function) and
the distribution of dt, the circulation time (cf. the definition in Section 2). The output
is a distribution for the number of bottles that are simultaneously out in the market.

4.1 Constant demand rate, fixed circulation time distribution
We start by assuming that the demand has a constant rate and can be modeled by a
Poisson process. Specifically, we start by assuming that the number of bottles pur-
chased in an interval of t days has a Poisson distribution with an average of λt bottles,
where λ is the daily average demand rate. Letting D denote a generic random variable
having the distribution of the circulation time of a bottle we find that N –the number
of bottles out in the market (in the stationarity regime)– has a Poisson distribution with
mean λED. The distribution of D enters the calculation only through its mean; this is
usually referred to as “insensitivity” toward the circulation time distribution. The main
requirement is that the time out in the market for each bottle is independent of that of
all other bottles and shares the distribution of D. This result is standard in queueing
theory and can be found in any textbook, see for example [5].

In reality, both the demand rate and the circulation time is season-dependent and/or
may have a certain non-stationary trend. We discuss these in the following two para-
graphs.

4.2 Time varying demand rate, fixed circulation time distribution
Assume now that the demand rate fluctuates over time. At time t it is λ(t), i.e., the
demand process is a time-varying Poisson process with rate function λ(t). Still the
number of bottles out in the market has a Poisson distribution, but this is no longer
insensitive to the circulation time distribution. Now, the number of bottles out in the
market at time t has a Poisson distribution with mean

EN(t) =

∫ ∞

0

P(D > v) dv =

∫ ∞

0

(∫ t

t−v
λ(u)du

)
fD(v) dv, (4)

where fD(t) is the density of the distribution of the circulation timeD; see for example
Theorem 1 of [3]. For a constant demand rate, we recover from equation (4) that
EN(t) = λED.

4.3 Time varying demand rate, time varying exponential circula-
tion time distribution

If we restrict on the generality of the circulation time distribution and assume it has an
exponential distribution, then a rather classical paper by [2] generalizes the previous to
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the case where the mean of the circulation time distribution may fluctuate over time.
Again the number of bottles in the market at time t is Poisson with mean J(t)I(t)
where

J(t) = e−
∫ t
0
ν(u)du, (5)

with 1/ν(t) representing the mean circulation time at time t, and

I(t) =

∫ t

0

λ(u)

J(u)
du. (6)

Of course, if we choose a fixed exponential circulation time by setting ν(t) = 1
ED in

(5) and setting fD(t) = 1
ED e

− 1
ED t in (4), we obtain the same result.

For the data available from Heineken, this is probably the most useful model. In
case more is known about the characteristics of the demand function and circulation
time distribution, a useful extension to the above can be found in [6]. The model
there allows for time varying non-exponential demand and circulation time distribu-
tions (specifically, they allow for phase type distributions).

5 Sampling the circulation time

A key quantity to understand is the expectation for the circulation time of bottles (see
Section 2.2.2 for a definition of circulation time). We describe a method to obtain
this value, together with a confidence interval depending on the sample size. We also
discuss how other fluctuations in the beer market, like seasonality, can be incorporated
in the method to improve the estimations.

The statistical theory of estimation, sampling, and confidence intervals is well-
developed. In line with this theory, we consider the circulation times of individual
bottles as random variables with identical distribution. Shape or parameters of this
distribution are obtained by means of sampling, that is, computation of the circulation
time for a small number of bottles (a sample), and extrapolation of the findings for this
sample to the entire population of bottles.

The practical side of sampling is easy: When a bottle is returned, the expiry date on
the label allows calculation of the production date, which in turn gives a sound estimate
of the time of sale. Together with the time of return of the bottles, this allows a fairly
exact computation of the circulation time. However, a high-volume or even continuous
computation of circulation times in this way is expansive and impractical. Therefore,
we first discuss in this section the required sample sizes in order to guarantee a certain
confidence limit for the parameters. Subsequently, we discuss how seasonality and
other artifacts of the beer market can be incorporated in order to improve the estimation.

A standard assumption to facilitate the statistical analysis is (mutual) independence
of the circulation time of the bottles in a sample. Therefore, the choice of the sample
should be made as random as possible.
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5.1 Batch sizes

We address now the question how many bottles should be sampled in order to guarantee
a certain accuracy of the circulation time. Suppose we have a sample ofN different bot-
tles with circulation times X1, X2, . . . , XN . Under the assumption that X1, . . . , XN

are independently and identically distributed (i.i.d.), we use the sample to infer on the
(unknown) distribution of circulation time. In parametric statistics, one assumes a cer-
tain family of distributions indexed by a finite-dimensional parameter space. It is then
sufficient to estimate these parameters.

Usefulness of this approach is crucially relying on a decent choice of the family
of distributions. The often used normal family identifies a 95%-confidence interval for
the mean as all points at distance smaller than 1.96 times sample standard deviation
from the sample mean.

In light of Section 3.4, it seems most reasonable to choose as model the hypoex-
ponential distribution with two parameters. Derivation of confidence limits in closed
form, such as for the normal family, seems impossible for this model. Nevertheless,
bootstrapping provides a theoretically not very pleasing, yet very efficient, practical
method to determine confidence interval by means of Monte Carlo simulation. This
works as follows. Start by estimating the two parameters of the hypoexponential dis-
tribution by using either of the methods (i) or (ii) in Section 3.4. Use then a statistical
software package to generate a high number, say 1000, of i.i.d. random variables with
this distribution using the estimated parameters, and sort them from smallest to largest
(call them Y1, . . . , Y1000). The (1 − α)%-confidence interval for the circulation time
as given by the bootstrap is the interval

[
Yα/2×1000, Y(1−α/2)×1000

]
.

5.2 Seasonality

An artifact of the beer market is seasonality. Sales show a certain seasonal peak, typi-
cally located in summer, when people drink more beer than in other times of the year.
Particularly in full-for-empty systems for returnable packaging materials, it is tempting
to believe that customers operate with more bottles during peak time, and store some
bottles elsewhere throughout the rest of the year. If this reasoning is true, then season-
ality has an impact on the circulation time (at the start of the peak, customers bring the
stored bottles, which yields a higher circulation time).

We propose to carry out a statistical test whether the null hypothesis H0: “Sea-
sonality has no significant effect on circulation time” can be rejected in favor of the
alternative hypothesis H1: “Seasonality does have a significant effect on circulation
time”. A possible test could go as follows. Gather data at several moments in the year,
e.g. monthly, bi-monthly or quarterly. Call k the number of measurements per year,
and K the total number of measurements. Record the following data:

Yn circulation time at time n
Ȳ = 1/K

∑K
n=1 Yi mean circulation time,

Xn sales volume at time n,
n = 1, 2, . . . ,K time.
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We are now considering the general linear model in centralized form:

Yn − Ȳ = β1(Xn −Xn−1) + β2
(
Xn −

k∑

i=1

Xn−i
)

+ εn, n = 1, . . . ,K, (7)

where the error terms εn (n = 1, . . . ,K) are i.i.d. normally distributed. In this model,
β1 ‘explains’ derivation in circulation time by an upward or downward sales trend
(mimicking the beginning or end of a peak period). Further, Xn−

∑k
i=1Xn−i is large

if we are in a peak, and small otherwise. Hence, β2 simply relates circulation time to
peaks. Of course, the above model could easily be adapted to account for other effects,
for example, incorporating long-term trends in sales. Mind that the Yn itself are sample
means, which justifies our normality assumption for the εn.

With this model at hand, our earlier described null hypothesis can be sharpened as

H0 : β1 = β2 = 0.

In order to test the hypothesis, we use multilinear regression obtaining regression sum
of squares (RSS) and error sum of squares (ESS). Dividing both by their corresponding
degree of freedom (2 for RSS,K−2 for ESS), and comparing the ratio of these two with
the F (2, n−2)-distribution obtains the p-value associated with the data. This is known
in the statistical literature as ANOVA (‘analysis of variance’). Further tests could be
imposed if the null hypothesis has been rejected at the desired level of confidence.

A somewhat simpler approach would concentrate only on the ’peak’ phenomenon.
This time, we take only two samples per year, one at the beginning of the peak, and the
other one at the end of the peak. We estimate parameters for each of these two samples
separately, and compare how ’distant’ they are using the methods described in the next
subsection. This method is simpler than the one described before, but sheds no light on
other (possible) temporal dependencies.

5.3 Handling different distribution channels
Circulation time may very well depend on the distribution channel. The main differ-
ence we shall consider here are the channels bars/restaurants on the one hand, and
private customers on the other hand. Similar to the discussion in the previous subsec-
tion, we suggest a statistical test to investigate the issue. The general setup is somewhat
easier this time. We are in the situation where we have two samples, with two estimated
sets of parameters, and now we want to test whether they are “significantly different”
in order to reject the null hypothesis H0: “There is no difference in circulation time
parameters for different distribution channels.” The F -test (ANOVA) is the right one
under the assumption of normality. However, there are also generally applicable non-
parametric tests, for details we refer to Section 11.2 in [8].

5.4 Unreadable labels – an indicator for a long circulation time
A practical problem that occurs at the sampling procedure, is that the expiration date
is not readable on some bottles. This is due to damage to the label, or a completely
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removed label. It is likely that these bottles have a longer circulation time than the
bottles with readable expiration dates, so it would bias the statistics if one leaves these
bottles out of the sample. Although there are methods available to reduce the bias
compared to leaving these bottles out of the sample (for example, the EM algorithm),
we did not look into this any further.

6 Conclusion
In Section 2.3, we discussed a way of estimating the break rate of bottles from data
that is currently available. This is already an interesting result in itself, but can also be
used to identify some parameters in the stochastic flow models (see (1) and (3)) and
in the queueing model (see Section 4.3). In Section 3 and Section 4, we then studied
two different kinds of models for the number of bottles in the market. All of our
models are quite simple, and might therefore not be very accurate in practice. Further
(statistical) research is required to test their accuracy. It may be necessary to increase
model complexity by dropping some assumptions. However, we note that this may
result in a) lack of explicit solutions of the models, b) more unknown parameters that
need to be estimated and/or c) increased computational effort.

In Section 5 it is discussed how to obtain the expected circulation time of a bottle
in the market from the data, together with a confidence interval. As this value may
depend on the time in the year at which the sampling has been done, we also discussed
a method to test whether it is reasonable to assume that this seasonality is of little
importance.
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