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Abstract. With a view to prolong the duration of the wireless sensor
network, many battery lifetime prediction algorithms run on individ-
ual nodes. If not properly designed, this approach may be detrimental
and even accelerate battery depletion. Herein, we provide a comparative
analysis of various machine-learning algorithms to offload the energy-
inference task to the most energy-rich nodes, to alleviate the nodes that
are entering the critical state. Taken to its extreme, our approach may
be used to divert the energy-intensive tasks to a monitoring station,
enabling a cloud-based approach to sensor network management. Exper-
iments conducted in a controlled environment with real hardware have
shown that RSSI can be used to infer the state of a remote wireless
node once it is approaching the cutoff point. The ADWIN algorithm was
used for smoothing the input data and for helping a variety of machine
learning algorithms particularly to speed up and improve their prediction
accuracy.

1 Introduction

When sensor nodes operate in harsh environments, there are many points of
failures. They need to have enough computational intelligence to cope with fail-
ures [8]. One of the main causes of failure could be fast, unpredictable battery
depletion of the nodes. Failure of strategic nodes can bring down the entire net-
work and is not favorable for the end users who depend on it for their day-to-day
operation. Besides the support of critical applications, battery level prediction is
important for self-organization of wireless sensor networks (WSN). An important
action for topology control in a WSN is the power scaling of the transmitters.
The aim of such action is to improve the connectivity of the transmitter and
reduce the interference in a highly dense wireless network. However, a node is
not aware of how the transmission power should be scaled in order to avoid
shadowing the neighbors. Symmetrically, in self-organized networks, nodes may
react on behalf of their neighbors to report a critical state to a monitoring system.

Within that context, this paper analyses the possibilities of using machine learn-
ing algorithms to infer the critical state of the battery of a neighboring node.



Inference of that state can be used in both transmitter power scaling or collab-
orative cloud-based monitoring. Failing nodes which lack the power to transmit
their state can be reported by neighboring nodes to a cloud service with a global
overview of the network status. The cloud aggregates multiple data about the
failing node from neighbors. It is, hence, more safely inferred whether that node
is a strategic node and whether it can easily be assumed that the reported node
is reaching the cutoff point.

The approach presented is a two-step processing of Received Signal Strength
Indicator (RSSI) values. RSSI was chosen as it is an already available indicator
in every sensor node and provides some indirect information about the remote
transmitting node. The RSSI values are filtered at the node level with a fast
inexpensive data smoothing algorithm. Then, the smoothened values are sub-
mitted to prediction algorithms running in the cloud for estimating the voltage
level those values correspond to.

The contribution of this work lies on the comparative analysis of various well-
established machine learning algorithms for predicting the voltage level of a re-
mote node using exclusively RSSI values. Although our experimentations show
that, the nature of RSSI values does not allow for an early and accurate infer-
ence of the nodes current voltage level, we found that the cutoff point is very
quickly detectable by many algorithms. However it is essential that the chosen
data smoothing algorithm (ADWIN) [3] does not only prune the outliers but
also significantly reduces the amount of necessary data points for training the
learning algorithms.

The remaining parts of this study are as follows. Section 2 provides a focused
criticism on similar efforts to estimate the battery depletion rate. Section 3 is
a description of the envisioned cloud-based system; and section 4 describes our
experimental setup. Section 5 analyses the conducted experiments; and section 6
concludes and provides suggestions for further research steps on this topic.

2 Related Work

In the literature, we find two broad categories of techniques to maximize the
lifetime of a sensor network based, respectively on 1) the prediction of the en-
ergy consumption in the WSN and 2) the prediction of the battery depletion of
the sensor network. The latter one is an indirect way in the sense that knowing
how fast the energy is depleting can help the network engineer replace the dying
batteries of the node and thereby extend the operation time of the network. Fur-
ther, the battery depletion techniques can be further classified into: a) battery
life modeling and b) estimating techniques.

[7] points out that both the Received Signal Strength Indicator (RSSI) and the
Link Quality Indicator (LQI) become unstable shortly before the depletion of the



nodes battery. Based on the fact that as RSSI values deteriorate, Inacio et al [12]
used six mathematical models such as Simple Average, linear regression, Auto
regressive, etc. They found that auto regression could adequately represent the
charge depletion process thereby permitting to predict the node behavior and to
detect the moment to replace its batteries.

However, our experimental results point out that RSSI values are so unpre-
dictable that the accuracy of most of the classification algorithms are not plau-

sible to claim that battery depletion can be predicted by the RSSI parameter
alone.

3 System Overview

Figure 1 represents the system overview.
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Fig. 1: System Overview

E?:l l; represents the end nodes that are responsible for collecting the domain
specific readings such as temperature, humidity, etc.

Z?zl C; represents the cluster head nodes that aggregates the data at local level.
Once the head nodes collect aggregated data, it transmits it to the sink node S.
The sink node S contains the ADWIN algorithm that does the pre-processing of
the data and sends the pre-processed data to the cloud, which runs the popular
scikit-Learn Machine Learning framework [10].

Due to environmental conditions such as interference or temperature, the RSSI
values are non-linear in nature. Providing the Machine Learning algorithms with
data having sharp variations can give less accurate predictions. In order to in-
crease the prediction accuracy of the machine learning algorithms and to reduce



the number of outliers, we need to smooth the data. Due to sharp variations in
the RSSI values, it is not possible to classify whether the battery level is good, av-
erage, or bad with single RSSI value. Hence, we need to maintain a window that
keeps the most recently read RSSI values. Furthermore, since machine learning
is a time consuming process it should be triggered only when the average of the
sequence of RSSI values in the window crosses the sensitivity threshold set by
the network engineer. To meet the above-mentioned requirements, the algorithm
of choice for our experiments is ADWIN as it uses the concept of sliding win-
dow allows for the engineers to set the sensitivity threshold an a priori parameter.

We used the scikit-Learn Machine learning framework to check how feasible it
is to predict the battery depletion level classes (good, average, and bad), based
on various popular classification algorithms.

4 Experimental Setup

Since RSSI is the sum of the pure received signal and the noise floor [1], it is
important to reduce the noise floor to get accurate received signal strength read-
ings. Therefore, the experimentation was conducted inside an anechoic chamber
that is an interference free room.

The noise in the sensor node communication is introduced due to co-location
of 802.11b network [11]. In addition to this, the presence of Bluetooth network
and domestic appliances can significantly affect the transmission in the IEEE
802.15.4 network [1,13].

Since the concurrent transmission from other nodes in the network can introduce
the noise in the communication channel [9] and for the sake of simplicity, only
the communication between one cluster head node (transmitting) and sink node
(receiving) was performed.

We conducted two sets of experiments using CrossBows TelosB motes. In the
first setup, the distance between the transmission node and the receiving node
was set to 2 meters. In the second setup, the distance was increased by 5 meters.
The battery depletion of the transmitting cluster head node was emulated using
Benchmark power supply.

The following settings were kept constant for the entire experiment.

1. The transmitting node was configured to send the data to the receiving node

every 250 ms.

The receiving node connected to the laptop was our sink node.

3. The position of the transmitting and the receiving node was not changed
during the entire experimentation process.

4. The amps were set at 0.25mA.

5. For every voltage ranging from 3V to 1.5V, 1000 RSSI reading were taken.

N



5 System Evaluation

This section presents the experimental results from conducting the aforemen-
tioned experiments. The section is split in two parts: data smoothing and battery
level prediction. Data smoothing is executed at the sensor node level and aims
at reducing either the processing or the communication or both. Moreover, it
contributes on the efficiency of the prediction algorithm by reducing the outlier
data points and, hence, the overlap of the classes used at classifiers or reducing
the bias in the regression models. Smoothened data are the input to the predic-
tion algorithms which are running in the cloud. The algorithms are evaluated
based on their accuracy and speed.

Fig. 2 presents the raw input RSSI data in the two datasets as well as the
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Fig.2: Raw and pre-processed input data from the two monitored network conditions
(two datasets for 2-meter and 5-meter distance between two sensors). Fig. 2a illustrates
all raw datapoints, Fig. 2b presents the moving average of those datasets with a sliding
window of 10 samples, Fig. 2¢ depicts the output of ADWIN algorithm in verbose mode
and Fig. 2d illustrates the ADWIN output when the window size changes. you need to
add the labels a to d to the actual plots

smoothing of that data using a naive moving average (Fig. 2b) and the ADWIN
(Fig. 2¢ and Fig. 2d) algorithms. The moving average algorithm outputs the
average value of a window of the 10 latest samples for every new RSSI value
received. The ADWIN algorithm is used in two modes:



Table 1: Legends for Table 2, 3, 4, and 5

SVM-RBK: Support Vector Machine with Radial Basis Kernel[6]
SVM-PK: Support Vector Machine with Polynomial Kernel[6]
GMM: Gaussian Mixture Model[4]
RFT: Random Forest Trees|[5]
KNN: K Nearest Neighbors[4]
LogR+RBM: Logistic Regression[4] built on a top of a
Restricted Boltzmann Machine[2]
LogR: Logistic Regression[4]
LR: Linear Regression[4]
RC: Random Classifier
Not available(NA): Algorithm was halted if being executed for more
than 1 minute.

— Verbose: for every RSSI value received, ADWIN outputs the average value
of the current window (Fig. 2c).

— Change-detection: ADWIN provides the average value of the last window
just on moments of a change at the window size (Fig. 2d).

As shown in Fig. 2a, the two RSSI raw datasets are overlapping. On the one
hand, the moving average algorithm filters out many outliers that were causing
that overlap. On the other hand, ADWIN has reduced significantly the variance
of the two datasets and has increased the gap in between. As expected, the
data-points generated by ADWIN in Fig. 2d are significantly fewer than those
in Fig. 2c as data are submitted to the prediction algorithms in the cloud solely
upon a considerable change to the ADWIN window size.

An ADWIN window changes upon a shift of the estimated voltage level, i.e.
concept, based on the received RSSI values. Had such concept shift not been
present, there would also be no need for triggering the battery voltage level
prediction algorithm. Therefore, ADWIN on change-detection mode reduces the
communication overhead for the sensor nodes and the processing overhead for
the prediction algorithms.

The input data shown in Fig. 2 are the training data for the prediction algo-
rithms. Every training data-point in those datasets is classified to one of the 16
voltage levels (1.5v-3v). Therefore, any RSSI value from the testing datasets has
to be fed into the prediction algorithm and classified to one of those levels i.e.
classes. The output of ADWIN algorithm in both modes was used for the classi-
fication process. Tables 2 and 3 (please see Table 1 for the acronyms description)
present the evaluation of various algorithms with regards to their accuracy (per-
centage of input data-points classified in the correct class) and execution time
(seconds spent during training phase). From Table 2, it becomes clear that all
tested algorithms perform at most twice as good as a random classifier. On the
other hand, Table 3 demonstrates a slightly improved situation when the clas-
sifiers use ADWIN output exclusively when the window adapts to the concept
drifting. However, even in that case (ADWIN in change-detection mode) their



Table 2: Prediction algorithms evaluation. Input data come from the output of ADWIN
in verbose mode. RSSI values are classified to one of the 16 voltage levels i.e. classes

Classification|2-meter distance dataset|5-meter distance dataset
Algorithms [Accuracy (%)| Time (sec) |Accuracy (%)| Time (sec)
SVM-RBK 10.76% 3.7464 10.51% 3.7499
SVM-PK NA| > 1 minute NA| > 1 minute
GMM 5.51% 2.3817 7.27% 3.2728
RFT 10.23% 0.3366 9.76% 0.3472
KNN 10.19% 0.0108 9.89% 0.0107
LogR+RBM 12.86% 4.1106 13.99% 4.0429
LogR 12.71% 0.1648 12.36% 0.1727
LR 5.62% 0.0277 10.56% 0.0221

RC 6.25% 6.25%

Table 3: Prediction algorithms evaluation. Input data come from the output of ADWIN
in change-detection mode. RSSI values are classified to one of 16 voltage levels i.e.
classes

Classification|2-meter distance dataset|5-meter distance dataset
Algorithms |Accuracy (%)| Time (sec) |Accuracy (%)| Time (sec)
SVM-RBK 7.86% 0.0010 12.10% 0.00309
SVM-PK 17.97% 0.4803 NA| > 1 minute
GMM 8.98% 0.0523 8.28% 0.0630
RFT 17.97% 0.0050 15.92% 0.0050
KNN 12.35% 0.0007 12.10% 0.0005
LogR+RBM 12.35% 0.0492 14.01% 0.0799
LogR 11.23% 0.0492 13.37% 0.0034
LR 7.86% 0.0019 12.74% 0.0003

RC 6.25% 6.25%

performance is limited. Therefore, the results in tables 2 and 3 are inconclusive
with regards to the inference of the battery level of a neighboring sensor node
using only received RSSI values.

There are various reasons behind this inaccuracy. The input raw RSSI values
have very high variance for each voltage level. This variance, in a well-controlled
environment like the anechoic chamber, might be caused by the inaccuracy of
RSSI register at the receiver, which, in TelosB nodes, varies for 6dBm. More-
over, the average RSSI value of any voltage level differs maximum 3dBm from
any other level. These two issues create a very wide overlapping among the volt-
age classes that all the tested classifiers cannot easily detect.

However, during the experiments above we noticed that two voltage levels were
more accurately inferred than others. As shown in Table 4 and Table 5, the clas-
sifiers can perform much better when just two classes are considered. Instead
of 16 classes, the classifiers were trained with the same input data to classify



Table 4: Prediction algorithms evaluation. Input data come from the output of ADWIN
in verbose mode. RSSI values are classified to one of two classes (1.5-1.6V or 1.7-3V)

Classification|2-meter distance dataset|5-meter distance dataset
Algorithms [Accuracy (%)| Time (sec) |Accuracy (%)| Time (sec)
SVM-RBK 89.11% 1.5670 86.08% 2.1382
SVM-PK NA| > 1 minute NA| > 1 minute
GMM 67.08% 0.4543 64.14% 0.4907
RFT 83.19% 0.1664 79.19% 0.2405
KNN 81.10% 0.0109 76.95% 0.0110
LogR+RBM 87.44% 2.8912 87.41% 4.8276
LogR 92.44% 0.1741 84.65% 0.1659
LR 24.75% 0.0218 26.03% 0.0220

RC 50.00% 50.00%

Table 5: Prediction algorithms evaluation. Input data come from the output of ADWIN
in change-detection mode. RSSI values are classified to one of two classes (1.5-1.6V or
1.7-3V)

Classification|2-meter distance dataset|5-meter distance dataset
Algorithms [Accuracy (%)| Time (sec) [Accuracy (%)| Time (sec)
SVM-RBK 86.51% 0.0004 85.35% 0.0009
SVM-PK 92.13% 0.3010 78.34% 10.8300
GMM 68.53% 0.0137 73.88% 0.0206
RFT 88.76% 0.0040 85.35% 0.0040
KNN 88.76% 0.0006 84.71% 0.0005
LogR+RBM 91.01% 0.0387 85.98% 0.0629
LogR 89.88% 0.0019 85.98% 0.0032
LR 29.21% 0.0003 31.84% 0.0003

RC 50.00% 50.00%

data-points into either the 1.5V-1.6V class or the 1.7V-3.0V class. That classi-
fication can practically infer if the battery of the remote sensor has maximum
0.2V before it is drained. Table 4 presents an accuracy of tested classifiers up
to 92.4% for the 2-meter distance dataset and up to 87.4% for the 5-meter dis-
tance dataset. The benefit of using ADWIN in change-detection mode is shown
in Table 5 as the accuracy or execution time of many algorithms is considerably
improved compared to Table 4.

6 Conclusions and Future Work

We found through our experimentation that the nature of the RSSI values does
not allow for an early and accurate prediction of the stationary node’s current
voltage level. On the contrary, the cut-off point (1.6V and 1.5V), most of the
time detectable by majority of the classification algorithms.



In the course of the experiment, we discovered that providing the classification
algorithm with raw RSSI values reduces the accuracy of the prediction of the
algorithms. The reason for this being large of number of outliers.

Furthermore, we found that it is not possible to classify whether the battery
level is good, average, or bad with single RSSI value. Therefore, we needed to
maintain a window that buffers the most recent RSSI values.

In addition to this, since classification algorithms are computational intensive
process it should be triggered only when the average sequence of RSSI values in
the windows exceeds the sensitivity set by the users.

To cater these demanding needs, we found ADWIN algorithm to be best suited
to reduce the time and computing cost of the machine learning algorithms.
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